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Abstract 

The Black-Scholes equations have been increasingly popular over the last three decades since they provide 

more practical information for optional behaviours. Therefore, effective methods have been needed to analyse 

these models. This study will mainly focus on investigating the behaviour of the Black-Scholes equation for the 

European put option pricing model. To achieve this, numerical solutions of the Black-Scholes European option 

pricing model are produced by three combined methods. Spatial discretization of the Black-Scholes model is 

performed using a fourth-order finite difference (FD4) scheme that allows a highly accurate approximation of 

the solutions. For the time discretization, three numerical techniques are proposed: a strong-stability preserving 

Runge Kutta (SSPRK3), a fourth-order Runge Kutta (RK4) and a one-step method. The results produced by the 

combined methods have been compared with available literature and the exact solution. It has seen that the 

results with minimal computational effort are sufficiently accurate.   

 

AMS (MOS) subject classifications. 91B99, 35Q91, 65M06 

Keywords: Black-Scholes  equation, Option pricing modelling, High-order finite difference, Temporal 
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Avrupa Tipi Satış Opsiyonu Modeli için Nümerik bir Değerlendirme 

Öz 

Black-Scholes denklemleri opsiyon davranışlarında pratik bilgiler sağladığından son otuz yılda daha popüler 

hale gelmiştir. Bu nedenle, bu modelleri analiz etmek için etkili yöntemlere ihtiyaç duyulmaktadır. Bu çalışma 

temel olarak Avrupa tipi satış opsiyonu fiyatlama modeli için Black-Scholes denkleminin davranışını 

araştırmaya odaklanmıştır. Bunun için, Black-Scholes Avrupa tipi opsiyon fiyatlama modelinin sayısal 

çözümleri üç birleştirilmiş yöntem ile üretilmiştir. Black-Scholes modelinin uzaysal ayrıklaştırması, çözümlerin 

yüksek hassasiyetli yaklaşımlarına izin veren dördüncü mertebeden bir sonlu fark (FD4) şeması kullanılarak 

yapılmıştır. Zaman ayrıklaştırması için üç sayısal teknik kullanılmıştır: Kuvvetli kararlılık koruyan Runge-

Kutta (SSPRK3), dördüncü mertebe Runge Kutta (RK4) ve tek adımlı bir yöntem. Birleştirilmiş yöntemlerle 

üretilen sonuçlar literatürde mevcut olan çözüm ve tam çözüm ile karşılaştırılmıştır. Sonuçların minimum 

hesaplama çabasıyla yeterince hassas olduğu görülmüştür. 

Anahtar Kelimeler: Black-Scholes Denklemi, Opsiyon Fiyatlama Modellemesi, Yüksek Mertebe Sonlu Fark, 

Zaman Ayrıklaştırması  

 

1. Introduction  

Financial markets in the business world are 

growing rapidly and depend on many 

parameters. As part of the financial securities, 

options are used to assure assets for covering 

the risk in the stock price changes. There are 

many types of options but the most often used 

ones are the European options and American 

options. While the European options can only 

be exercised on the expiry date, the American 

options can be exercised on or before the 

expiry date. 

Option pricing theory has made fast 

developments with the option pricing model 

proposed by Black and Scholes (1973) and 
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previously by Merton (1973). This model has 

expressed the value of an option is equal to the 

value of a self-financing replicating portfolio 

comprising risk-less security and a risky 

stock. The model behaviour is represented by 

a partial differential equation of the form 

𝑉𝑡 +
1

2
𝜎2𝑆2𝑉𝑠𝑠 + 𝑟𝑆𝑉𝑠 − 𝑟𝑉 = 0,

(𝑆, 𝑡) ∈  (0,∞)  × [0, 𝑇) (1.1) 

with the boundary and terminal conditions 

depending on the type of option, where V is 

the price of the option with respect to the stock 

price S and time t. r and 𝜎 are referred to the 

interest rate and volatility, respectively. 

Since the Black-Scholes model is very 

effective for pricing options, in the last few 

decades, various numerical techniques have 

been proposed to understanding behaviour of 

the valuation of an option. Under the influence 

of the Black-Scholes, to get rid of difficulties 

with payouts and potential bankruptcies, Cox 

and Ross (1976) published an article on the 

valuation of options based upon different 

jump and diffusion processes. Schwartz 

(1977) developed a numerical procedure for 

valuing options on the dividend-paying stock 

using a finite difference method. After that 

Courtadon (1982) used the same approach that 

is more accurate than the Schwartz 

approximation for the valuation of the option. 

Heston (1993) proposed a closed-form 

solution for the European call option with 

stochastic volatility. Wilmott et al. (1995) 

investigated the numerical solutions of the 

Black-Scholes equation extensively. 

Although the Black-Scholes model is very 

effective for pricing options in a complete 

market without costs on transactions of risky 

and riskless securities, in the presence of 

transaction costs on trading in the riskless 

security or stock, it is no longer valid. To 

overcome this drawback, different models 

with transaction costs were proposed by 

Leland (1985), Boyle and Vorst (1992), 

Kusuoka (1995) and Barles and Soner (1998). 

After these studies, many authors took into 

account the models with transaction costs in 

their studies (Ankudinova and Ehrhardt, 2008; 

Company et al., 2008; Company et al., 2009; 

Lesmana and Wang, 2013; Mashayekhi and 

Fugger, 2015; Koleva et el., 2016). 

Recently, many researchers have paid more 

attention to the methods using finite 

difference schemes to obtain more accurate 

solutions of the option pricing models. For 

instance, Tavella and Randall (2000) dealt 

with the finite difference solutions of the 

pricing equations of different types and 

investigated the stability analysis. Düring et 

al. (2003) extended the compact finite 

difference scheme of Rigal (1994) for a 

nonlinear Black-Scholes equation with 

transaction cost. Duffy (1976) investigated 

option pricing problems represented by a 

partial differential approach. Besides, to 

obtain high order accuracy in the solution of 

different option pricing models, some authors 

studied compact difference schemes (Zhao et 

al., 2007; Liao and Khaliq, 2009; Tangman et 

al., 2008; Düring et al., 2014; Jeong et al., 

2018, Raol and Goura, 2020). Ankudinova 

and Ehrhardt (2008) focused on the numerical 

solution of several models defined by the 

nonlinear Black-Scholes equations for the 

European and American options with 

nonlinear volatilities. Company et al. (2008, 

2009) put the Black-Scholes equations on 

their agenda by publishing two articles. They 

applied various difference scheme to the 

Barles and Soner model. Lesmana and Wang 

(2013) developed a numerical method based 

on an upwind finite difference scheme for the 

spatial discretization for a nonlinear European 

option pricing problem. Jeong et al. (2018) 

proposed a finite difference scheme for the 

solution of the Black-Scholes equation 

without boundary conditions. Rao et al. (Rao 

et al., 2018) considered numerical solutions of 

Black-Scholes equation governing four 

different option styles of European type with 

variable parameters by using high order 

difference approximation. Gulen et al. (2019) 

proposed a new approach based on a sixth-

order finite difference scheme for the 

European put option problem with minimal 

computational effort. Besides, recently, some 

authors focused on construct to solutions of 

multidimensional Black-Scholes equations by 

using difference schemes (Heo et al., 2019, 

Kim et al., 2020, Yan et al., 2020).  
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As mentioned earlier, the option pricing 

problems are becoming increasingly 

important in the financial markets and 

academic community. However, the 

complexity and stochastic properties of these 

problems make it difficult to carry out the 

numerical solution of the problem. To 

overcome this difficulty, efficient 

approximation methods are needed to 

understand the behaviour of the option pricing 

problems. Although the above studies were 

successfully used to analyze option pricing 

problems, most of them lead to lower 

accuracy solutions. Besides, even the 

European put option pricing problem which 

we have considered has exact closed-form 

solutions, a more complex model does not 

have any closed-form. From all reasons 

above, to solve these problems 

computationally accurate approximate 

techniques are required. Therefore, in this 

paper, we aim to propose high-order efficient 

schemes whose order is superior to the 

literature to understand the behaviour of the 

European put option pricing model. For this 

purpose, we have examined the use of popular 

time discretization schemes, a third-order 

strong stability preserving Runge-Kutta 

(SSPRK3) scheme, a fourth-order Runge-

Kutta (RK4) scheme and a one-step method 

are combined with a fourth-order finite 

difference scheme for the European put option 

problem.  This choice provides a direct and 

accurate estimation of approximation error. 

While high-order approximations reduce the 

computational effort, the time integration 

techniques are important in accuracy and 

stability. Therefore, the chosen techniques 

could solve the model with high accuracy and 

minimal computational effort. Our 

computations have shown that the results from 

the current methods approximate the exact 

and the available solution in the literature very 

well. Furthermore, based on the literature 

review, this method has not been implemented 

for the problem represented by the Euroepan 

put option pricing and we believed that the 

proposed scheme can be adapted to analyze 

the other financial and real-world problems, 

especially nonlinear. 

2. Pricing European Put Option under 

Black-Scholes Model 

This paper considers a general case in which 

no transaction costs and restraint on 

transactions and adopts the PDE given in 

Eq.(1.1). For solving Eq.(1.1) uniquely, one 

final condition and two boundary conditions 

are required. These conditions are given 

according to the option types (put or call). The 

final and boundary conditions of the European 

put option problem is given as follows: 

𝑉(𝑆, 𝑇) = max{𝐾 − 𝑆, 0} ,   0 ≤ 𝑆 < ∞ (2.1) 

𝑉(𝑆, 𝑇)~0,     𝑆 ⟶ ∞                                 (2.2) 

𝑉(0, 𝑇) = 𝐾𝑒𝑟(𝑇−𝑡),       0 ≤ 𝑡 ≤ 𝑇          (2.3) 

The exact solution of the European put option 

problem 

𝑉(𝑆, 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(−𝛾2)

− 𝑆𝑒−𝛿(𝑇−𝑡)𝑁(−𝛾1)             (2.4) 

with parameters 

𝛾1 =
𝑙𝑛𝑆 − 𝑙𝑛𝐾 + (𝑟 − 𝛿 +

1
2

𝜎2) (𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

𝛾2 = 𝑑1 − 𝜎√𝑇 − 𝑡 

𝑁(𝑦) =
1

√2𝜋
∫ 𝑒−

1
2
𝑥2

𝑑𝑥

𝑦

−∞

 

where N, 𝛿 and K denote the standard normal 

cumulative probability distribution function, 

continuous dividend yield and exercise price, 

respectively (Leentvar, 2003). 

 

3. Solution Methods 

This section is dedicated to the numerical 

solutions of the European put option problem. 

In spatial discretization, a fourth-order finite 

difference method (FD4) is applied while the 

SSPRK3, the RK4 and the one-step time 

method are considered in temporal 

discretization. 

3.1. Spatial Discretization 

The spatial domain [0,∞) in which Eq.(1.1) is 

reconsidered with [0, 𝑆𝑚𝑎𝑥) where 𝑆𝑚𝑎𝑥 is an 

artificial limit will be chosen large enough, 
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approximately, which is larger than three or 

four times the exercise price. Then, the spatial 

domain [0, 𝑆𝑚𝑎𝑥)  is discretized with 

uniformly spread N grids satisfying 0 = 𝑆1 <
𝑆2 < ⋯𝑆𝑁 = 𝑆𝑚𝑎𝑥.  The step size 𝑑𝑆 =
𝑆𝑖+1 − 𝑆𝑖,   𝑖 = 0,1, … ,𝑁 is equal to each 

other at any point i.  

Spatial derivatives are computed by the FD4 

scheme. The first derivative 
𝜕𝑉

𝜕𝑆
(𝑆𝑖, 𝑡) is given 

by 

𝜕𝑉

𝜕𝑆
(𝑆𝑖 , 𝑡)

=
𝑉(𝑆𝑖−2, 𝑡 ) − 8𝑉(𝑆𝑖−1, 𝑡) + 8𝑉(𝑆𝑖+1, 𝑡) − 𝑉(𝑆𝑖+2, 𝑡)

12𝑑𝑆
.  (3.1) 

Then, with the values 𝑣𝑖(𝑡) approximated to 

𝑉(𝑆𝑖, 𝑡), Eq. (1.1) is transformed to the system 

of ordinary differential equations 

𝜕𝑣(𝑡)

𝑑𝑡
= 𝐴𝑣(𝑡) + 𝑤 

= 3,… ,𝑁 − 2           (3.2) 

where 𝑣(𝑡) = [𝑣1, 𝑣2, … , 𝑣𝑁]𝑇 , 𝑤 is a column 

vector, with  

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1

12

−8

12

8

12

−1

12
0 0 0 0

0
1

12

−8

12

8

12

−1

12
0 0 0

0 0
1

12

−8

12

8

12

−1

12
0 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

0 0 0
1

12

−8

12

8

12

−1

12
0

0 0 0 0
1

12

−8

12

8

12

−1

12
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the points 𝑖 = 2 and 𝑖 = 𝑁 − 1, the 

second-order approximation is applied. 

The fourth order scheme (3.2) can be written 

in a more compact form as follows 

𝒗′ =
1

ℎ
𝐴𝒗                                                             (3.3) 

The second-order derivative terms are 

obtained by applying the first operator twice: 

𝒗′′ =
1

ℎ2
𝐴𝒗′                                                         (3.4) 

3.2. Temporal Discretization 

For the time discretization of Eq. (1.1), the 

SSPRK3, the RK4 and the one-step method 

have been considered. A class of high-order 

SSP time discretization technique was 

developed by Gottlieb et al. (2001) for solving 

hyperbolic conservation laws with stable 

spatial discretizations. The SSP methods 

guarantee the stability properties expected of 

the forward Euler method (Gottlieb et al., 

2001). 

The computational domain for the time 

consists of M points satisfying  0 = 𝑡1 < 𝑡2 <
⋯ < 𝑡𝑀 = 𝑇.  The uniform time step 𝑑𝑡 =
𝑡𝑛+1 − 𝑡𝑛 , 𝑛 = 1,2, … ,𝑀 is equal to any 

point n. After applying the FD4 method, Eq. 

(3.2) is transformed into a set of ordinary 

differential equations in time as follows:  

𝑑𝑣𝑖(𝑡)

𝑑𝑡
= 𝐿𝑣𝑖(𝑡),      𝑖 = 3,… ,𝑁 − 2              (3.5) 

where L is the discretization form of  

ℒ = −
1

2
𝜎2𝑆2𝑣𝑆𝑆 + 𝑟𝑆𝑣𝑠 − 𝑟𝑣.                       (3.6) 

Then, three different time discretization 

methods have been applied as explained in the 

following subsections. 

3.2.1. The SSPRK3 Method  

Eq.(3.5) is integrated in time with the 

consideration of the SSPRK3 scheme, 

𝑑𝑣𝑖

𝑑𝑡
= 𝐿𝑣𝑖.                                                             (3.7) 

The SSPRK3 scheme integrates the semi-

discrete equation (3.7) from time to 𝑡0 (step k) 

to 𝑡0 + 𝑑𝑡 (step k + 1) through the operations 

𝑣𝑖
(1)

= 𝑣𝑖
𝑛 + 𝑑𝑡𝐿𝑣𝑖

𝑛                                          

𝑣𝑖
(2)

=
3

4
𝑣𝑖

𝑛 +
1

4
𝑣𝑖

(1)
+

1

4
𝑑𝑡𝐿𝑣(1)                (3.8)    

𝑣𝑖
𝑛+1 =

1

3
𝑣𝑖

𝑛 +
2

3
𝑣(2) +

2

3
𝑑𝑡𝐿𝑣(2) 
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For the SSPRK3 method, the total variation 

(TV) of the numerical solution 

𝑇𝑉(𝑣) = ∑|𝑣𝑖+1 − 𝑣𝑖|                                    (3.9)

𝑖

 

does not increase in time; i.e. the following so-

called TVD property holds (Gottlieb et al., 

2001): 

 𝑇𝑉(𝑣𝑘+1)  ≤ 𝑇𝑉(𝑣𝑘).                                   (3.10) 

3.2.2. The RK4 Method 

The RK4 scheme can be used to integrate the 

semi-discrete equation (3.5) through the 

operations 

𝑣𝑖
(1)

= 𝑣𝑖
𝑛 +

1

2
𝑑𝑡𝐿𝑣𝑖

𝑛 

𝑣𝑖
(2)

= 𝑣𝑖
𝑛 +

1

2
𝑑𝑡𝐿𝑣𝑖

(1)
                                  (3.11)   

𝑣𝑖
(3)

= 𝑣𝑖
𝑛 + 𝑑𝑡𝐿𝑣𝑖

(2)
  

𝑣𝑖
𝑛+1 = 𝑣𝑖

𝑛 + 𝑑𝑡 [𝐿𝑣𝑖
𝑛 + 2𝐿𝑣𝑖

(1)
+ 2𝐿𝑣𝑖

(2)

+ 𝐿𝑣𝑖
(3)

].  

3.2.3. The One-Step Method 

The time discretization of Eq.(3.5) is obtained 

by the following one-step method (Ascher et 

al., 1995) 

𝑣𝑛+1 = 𝑣𝑛 + 𝜃1𝐿𝑖
𝑛+1 + 𝜃2𝐿𝑖

𝑛 + 𝜃3𝐿𝑡
𝑛+1    

+ 𝜃4𝐿𝑡
𝑛                              (3.12) 

where, when 𝜃1 = 𝜃2 = 𝑑𝑡 2⁄ , 𝜃3 = 𝜃4 = 0 

the method is of order 2 known as Crank-

Nicolson method  and when 𝜃1 = 𝜃2 =

𝑑𝑡 2⁄ , 𝜃3 = −
𝑑𝑡2

12
𝜃4 =

𝑑𝑡2

12
, the method is of 

order 4 and 𝐿𝑡 is the time derivation of ℒ. In 

this study, it is chosen the method is of order 

four.  

4. Numerical Illustration  

In this section, to illustrate performance of the 

proposed methods, numerical experiments on 

the European put option model have been 

performed. For the computations through the 

current schemes, computer codes have been 

produced in MATLAB 2018. 

𝑇 = 0.25, 𝐾 = 10.0, 𝑟 = 0.1, 𝜎 = 0.4,𝑀 =
2000, 𝑁 = 200 (Dura and Moşneagu, 2010) 

are used in all calculations. To compare 

accuracy of the proposed methods, the 

numerical values for the SSPRK3, the RK4, 

the one-step method, the literature (Dura and 

Moşneagu, 2010) and exact solution at time t 

= 0 are presented in Table 1. It is seen that the 

SSPRK3 results and the RK4 results for the 

different stock prices are nearly the same as 

with the exact solution. The one-step method 

produces less accurate solutions than the other 

two. Due to non-smoothness of the final 

condition 𝑚𝑎𝑥(𝐾 − 𝑆, 0), the option price 

𝑉(𝑆, 𝑡) should not be very smooth near the 

strike price K and near T.  As seen in Figure 1, 

for the selected parameters, one step method 

does not give the desired accurate solution for 

7 <  𝑆 <  20, namely, near the strike price 

K.  Besides, the qualitative behaviours of the 

European put option problem are plotted in 

Figure 2. 

 

Figure 1.  Solutions of the model by the 

methods SSPRK3, RK4, and the one-step at t 

= 0. 

Since the proposed methods are explicit, the 

stability condition is given as follows: 

𝑑𝑡 ≤
𝑑𝑆2

2𝑎
 

where 𝑎 =
1

2
𝜎2𝑆2 is the coefficient in front of 

the second derivative term in the Black-

Scholes equation. In the present methods, this 

condition has been verified for each time and 

spatial steps. 

To show accuracy of the methods, the 

convergence rates are calculated by 
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𝑅𝑎𝑡𝑒(‖. ‖2)    

=
‖𝑉𝑑𝑆

𝑑𝑡 − 𝑉𝑒𝑥𝑎𝑐𝑡(𝑆𝑖, 𝑡
𝑗)‖

2

‖𝑉𝑑𝑆/2
𝑑𝑡/2

− 𝑉𝑒𝑥𝑎𝑐𝑡(𝑆𝑖 , 𝑡
𝑗)‖

2

                          (3.13) 

where 𝑉𝑑𝑆
𝑑𝑡 represents the solution with spatial 

mesh size ds and time mesh size dt and ‖. ‖2 

is L2-norm are given by 

‖𝑉𝑑𝑆
𝑑𝑡 − 𝑉𝑒𝑥𝑎𝑐𝑡(𝑆𝑖, 𝑡

𝑗)‖
2

≔ ( ∑ ∑ |𝑉𝑖
𝑗

1≤𝑖≤𝑁1≤𝑗≤𝑀

− 𝑉𝑒𝑥𝑎𝑐𝑡(𝑆𝑖, 𝑡
𝑗)|

2
𝑑𝑠𝑑𝑡)

1 2⁄

Table 1. Comparison of numerical solutions of the European put option model for various 

stock price values 

 

 

Figure 2. Solutions of the model by the SSPRK3, RK4 and one-step methods 

  

Figure 3. Solutions of the model by the SSPRK3, RK4 and one-step methods 

Table 2. Convergence results for the model solved by the SSPRK3, RK4 and one-step 

methods 
 

                                             SSPRK3                                      RK4                                 One-step method 

 N           M                  ‖. ‖𝑑𝑆,2                Rate                  ‖. ‖𝑑𝑆,2            Rate                   ‖. ‖𝑑𝑆,2           Rate 

50         500           0.00684723                                    0.00684725                                0.24431677  

100      1000          0.00299818         2.28379550        0.00299817        2.28380979     0.25681997    0.95131531 

200      2000        6.75679292e-4      4.43728265      6.75673287e-4     4.43730728     0.25630399    1.00201315 

400     4000        1.45117522e-4       4.65608344      1.45128904e-4     4.65567690     0.23383970    1.09606705 

S             SSPRK3                  RK4                    One-step Method            Dura and Moşneagu (2010)              Exact Solution 

4.0         5.75309640            5.75309641                 5.75309912                                5.753102                                           5.753100 

8.0         1.90209428             1.90209429                 1.75331994                             1.902102                                        1.902434 

 10.0        0.66888856            0.66888857                0.14301843                             0.668360                                        0.669390 

 16.0        0.00532372            0.00532372                       0.00                                  0.005419                                        0.005386 

 20.0       1.09130731e-04     1.09130661e-04                 0.00                                  1.170806e-04                                 1.129336e-04 
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It is quite clear from the results in Table 2 that 

the SSPRK3, the RK4 and one-step method 

are all convergent, but while the SSPRK3 and 

the RK4 has the fourth-order of accuracy, the 

one-step method has the first order of 

accuracy for space x. The non-smoothness of 

the payoff of the option in strike price S=K 

can cause less accuracy in numerical 

computation. However, the one-step method 

has an advantage in computational time 

(CPU) than the other two methods at different 

N and M values, as seen in Table 3. 

 

Table 3. CPU time (seconds) 
 
 N           M           SSPRK3           RK4           One-step method        

50         500          0.524095         1.760635       0.025198 

100      1000         1.811687         6.288984       0.063711 

200      2000         8.739596        31.350653      0.215877 

400      4000        61.126498     211.443305      0.987350 

 

5.  Conclusion 

This paper has proposed three combined 

methods for effectively solving the European 

put option pricing model. The FD4 scheme in 

space have been combined with the SSPRK3, 

RK4 and one-step method in time for solving 

the Black-Scholes equation for pricing the 

European put option. The convergence of the 

solutions has been measured by some error 

norms and it has been confirmed that the 

proposed methods are asymptotically 

convergent. Besides, the discussed 

computational procedures successfully 

worked to give very reliable and accurate 

solutions to the problem. The solutions 

obtained are compatible with available 

solution in the literature and exact solution 

and it has been seen that the present methods. 

This study is expected to provide a better 

understanding of the behavioural impacts of 

the economic models. 
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