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Abstract: Since financial engineering problems are of great importance in the academic community,
effective methods are still needed to analyze these models. Therefore, this article focuses mainly on
capturing the discrete behavior of linear and nonlinear Black–Scholes European option pricing models.
To achieve this, this article presents a combined method; a sixth order finite difference (FD6) scheme in
space and a third–order strong stability preserving Runge–Kutta (SSPRK3) over time. The computed
results are compared with available literature and the exact solution. The computed results revealed
that the current method seems to be quite strong both quantitatively and qualitatively with minimal
computational effort. Therefore, this method appears to be a very reliable alternative and flexible to
implement in solving the problem while preserving the physical properties of such realistic processes.

Keywords: Black–Scholes equation; option pricing modelling; European option; volatility; high-order
finite difference

1. Introduction

In the last few decades, the corporations looked for important tools in terms of financial securities.
As part of the financial securities, options are mainly used to assure assets in order to cover the risks
generated in the stock prices changes [1]. To properly understand what alternatives we have for these
options, Lesmana and Wang [2] stated that there are two main types of options: European options can
only be exercised on a given date (expiry date) and American options can be exercised on or before the
expiry date.

An economic issue, which is important for both the traders and the investors, is to have a proper
method for price options to determine the appropriate price or theoretical value for a call or a put option.
During the time, price options were not so commonly explained by the traders as a sufficient financial
instrument and valuation of an option has always been a difficult and challenging task. According
to Rad et al. [3], options are priced using mathematical models that are often challenging to solve.
Of course, in the last 50 years, there have been some attempts to introduce different methods for
price options. For instance, a major step was taken by Black and Scholes [4–6] in 1973 to propose a
mathematical model for calculating a fair value for an option. According to them [4], the Black–Scholes
model is a pure log-normal diffusion model and it leads to a parabolic partial differential equation
under Ito’s calculus.

Another important contribution was made by Merton [7], who extended the model equation
proposed by Black and Scholes. All three of them demonstrated that their formulae leading to
partial differential equations could help to determine a fair value for a call or a put option. One of
the main obstacles identified by Lesmana and Wang [2] is that the Black–Scholes option pricing
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methodology is no longer valid in the presence of transaction costs on trading in the risk-free security
or stock. To overcome this drawback, different models were proposed by Leland [8], Boyle and
Vorst [9], Kusuoka [10] or Barles and Soner [11]. In addition, Cox and Ross [12] published an
article aimed at finding ways to overcome difficulties with payouts and bankruptcies. Another
important contribution is mainly related to the Crank–Nicolson scheme used in numerical pricing
within the Black–Scholes framework [13]. A good example of this scheme is the work of McCartin
and Labadie [14] in the case of pricing vanilla options. In addition, Ankudinova and Ehrhardt [15]
used a Crank–Nicolson method and devised a numerical scheme for the linearized Black–Scholes
equation using the frozen values of nonlinear volatility. From the point of view of nonlinear volatility,
an approach based on the method of lines and the backward Euler scheme was proposed by Company
et al. [16]. Other than these, in recent years, Jeong et al. [17], Koleva et al. [18], Manisha [19] and
Sari and Bălăcescu [20], Mashayekhi and Hugger [21] and Hout and Valkov [22] used various
schemes based on finite differences to analyze the Black–Scholes model. Jeong et al. [17] proposed
a finite difference scheme not using the far-field boundary condition. Koleva et al. [18] construct a
fourth order compact finite difference scheme in space for European options modeling markets to
liquidity shocks. A high-order difference scheme was considered by Manisha [19] for the Black–Scholes
equation, which governs four option styles of European-type variable parameters. To analyze the
option pricing model, Sari and Balacescu [20] proposed a fourth-order difference and MacCormack
schemes. One of the most comprehensive models, the Barles and Soner [11] model was solved with
various difference schemes to compare their precision and order of convergence [21]. Hout and
Valkov [22] solved the European two-asset options by a finite difference based numerical method
considering non-uniform grids. In addition, Hendrick et al. [23] combined a high-order finite difference
scheme with the Alternating Direction Implicit scheme for the parabolic partial differential equation
representing the European basket option in a sparse grid setting.

Another work by Markolefas [24] demonstrated the ability of a finite element method to formulate
discrete approximation models resulting from the Black–Scholes pricing model. Specifically, his/her
work demonstrates a version of Galerkin finite element methods to capture accurate and efficient
behaviour: the parabolic partial differential equations, with a complex initial, boundary and/or
internal conditions, resulting from various option pricing theories. However, Lin and Chen [25]
presented a European option pricing model by applying the Model-Order-Reduction method, which is
able to reduce the order of the original finite difference method systems.

Likewise, in the case of a nonlinear parabolic partial differential equation that governs the
European option pricing in transaction costs, it is worth pointing out the contribution to Lesmana
and Wang [2] who proposed an upwind difference scheme for spatial discretization. In addition,
there are more than 30 years since the two experts of banking and financial markets developed the first
commercially available pricing formula for options linked to the average price of crude oil; they called
this option as Asian option [26]. The Asian option, also known as average options, is an option where
the return on return is dependent on the arithmetic average of the price of the underlying asset over
its lifetime [27–30]. Kumar et al. [27] described the implementation of the local radial basis function
based on a grid-free method for the numerical solution of the Asian option. In addition, Rad et al. [28]
described the valuation of the Asian option with a radial basis function approach based on the finite
difference method.

In another representative work created by Sin [31], he/she used some numerical methods to
compute barrier options considering both Black–Scholes and Heston models. In addition, he/she
computed barrier options using the standard Monte Carlo method. The method was improved
by Moon [32] in dealing with the problem. The key idea behind his/her approach, the improved
one, is to use the exit probability and uniformly distributed random numbers to predict the first
instance of hitting the barriers. In addition, Zeng et al. [33] focused on a comparative study of
the Monte Carlo simulation and finite difference method for the European option pricing under a
regime-switching framework.
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In spite of the great efforts made to deal with the problem in the literature, the researchers chose
to use relatively low order methods [34–39] for the problem.

In recent years, the option market has become increasingly important. This increases the need for
higher computational capacity as the complexity of financial models increases in an operating area
where real-time market calculations are required. The well-known Black–Scholes model provides a
closed form for the values of certain options such as European style. However, for the solutions of
more complex models, either there is no closed form solution or, in the absence of tractable closed form,
computationally intensive approximate techniques are required. In this case, the finite difference
based methods are commonly employed in price options. Therefore, in this article, a sixth order
finite difference scheme (FD6) in space and a third-order strong stability preserving Runge–Kutta
(SSP-RK3) in time have been combined to obtain effective numerical solutions of the European put
option problem that has an exact closed-form solution. This choice provides a direct and accurate
estimation of approximation error. High-order approximations reduce the computational effort to
achieve the required accuracy. Therefore, they are highly popular in solving real world problems and
for all financial markets increased calculation speed is a strategic advantage. Moreover, the choice of
time integration is important in many respects such as accuracy, computational effort and stability.
The SSP-RK3 scheme, which is a class of high order SSP-time integration techniques, was developed by
Gottlieb et al. [40] to investigate hyperbolic conservation laws with a spatial discretization guaranteeing
the stability properties expected of the forward Euler method [40]. Therefore, it was considered that
the combination of the FD6 and SSP-RK3 could solve the corresponding model with high accuracy.
In addition, this method is quite straightforward to write codes in any programming language. Our
computations show that the results produced by the current method approximates the exact solution
and available solution in the literature [41] very well. To the best knowledge of the authors, this
method has not been implemented for the problem represented by the European put option pricing
model.

The rest of the paper is organized as follows: in Section 2, the mathematical formulation of the
European put option problem is introduced. In Section 3, numerical methods for space and time
discretizations are summarized. The results and illustrations are presented in Section 4. Final remarks
are reported in Section 5.

2. Mathematical Formulation

The Black–Scholes model is of great importance in option pricing theory. The model was
developed by Black and Scholes [4] and previously by Merton [7]. The value of an option V(S, t)
is a function of stock price S and time t can be determined by the following Black–Scholes partial
differential equation,

∂V
∂t

= L V, t ∈ (0, T] , (1)

where

L = −1
2

σ2S2 ∂2

∂S2 − rS
∂

∂S
+ r, S ∈ (0,+∞) ,

and r ≥ 0 and σ are positive constant parameters, referred to risk-free interest rate and volatility that
are both known functions over the life of the option. Here, the stock price S is modeled by a Geometric
Brownian motion, i.e., S satisfies the following stochastic differential equation

dS = µSdt + σSdW, (2)

where µ > 0 is the drift rate of the stock and W is a standard Brownian motion. The Black–Scholes
equation is given by Equation (1), which assumes that the market is frictionless, is a trading enviroment
and there are no transaction costs and restraints on transactions. In addition, Equation (1) does not
include arbitrage opportunities.
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The Black–Scholes Equation (1) is very effective for modeling pricing options in a complete
market without transaction costs. However, in the presence of transaction cost on trading in the
riskless security or stock, the Black–Scholes option pricing methodology is no longer valid, since
perfect hedging is impossible [2]. Due to transaction cost where the volatility σ can depend on the
time t, the stock price S or the derivatives of the option price V itself, the Black–Scholes model (1) is
transformed to the following nonlinear equation:

∂V
∂t

= −1
2

σ̃ (t, S, Vs, VSS) S2 ∂2V
∂S2 − rS

∂V
∂S

+ rV, S ∈ (0,+∞) , t ∈ (0, T] , (3)

where σ̃ is the modified volatility as a function of t, S, VS, VSS. The problem represented by the model
equation is very complex and depends on too many parameters, which makes the model more realistic,
and, in this case, careless use of those parameters can lead to unrealistic results. Among these
parameters, volatility is one of the most considerable factors in the pricing model. Volatility must
be considered carefully, as the option value depends on the future stock price. The option pricing
model with transaction cost has been studied in the literature by some researchers, such as Boyle and
Vorst [10] proposed an option price with the volatility of the form

σ̃ = σ0 (1 + cA)1/2 , A =
µ

σ0
√

∆T
, c = 1, (4)

where µ is the proportional transaction cost, ∆t is the transaction period and σ0 is the original
volatility constant.

Leland [8] obtained that the option price is the solution to Equation (2) with the volatility

σ̃2 = σ2
0 (1 + Le× sign(VSS)) , (5)

where Le is the Leland number given by

Le =

√
2
π

(
κ

σ0
√

δt

)
,

where δt and κ represent the transaction frequency and transaction cost measure, respectively.
A more complex model was proposed by Barles and Soner [11]. In their model, the nonlinear

volatility is given by

σ̃2 = σ2
0

(
1 + Ψ

[
er(T−t)a2S2VSS

])
, (6)

where a = κ
√

γN with κ being the transaction cost parameter, γ being a risk aversion factor and N
being the number of options to be sold. The function Ψ is the solution to the following nonlinear initial
value problem:

Ψ′ (z) =
Ψ(z) + 1

2
√

zΨ(z)− z
for z 6= 0 and Ψ(0) = 0. (7)

Equation (7) implies that

lim
x→∞

Ψ(z)
z

= 1 and lim
x→−∞

Ψ(z) = −1. (8)

This property accepts the treatment of the function Ψ(.) as the identity for large arguments and
therefore the volatility becomes

σ̃2 = σ2
(

1 + er(T−t)a2S2VSS

)
. (9)

For solving Equations (1) and (3) uniquely, one final condition and two boundary conditions
are required. These conditions depend on both types of options (put or call) and whether or not the
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stock pays cash dividends. The European put option, which gives the holder the right to sell for the
strike price K at maturity time T, is studied in this work, and the boundary and final conditions are
as follows:

V(S, T) = max{K− S, 0}, 0 ≤ S < ∞, (10)

V(S, t) ∼ 0, S→ ∞, (11)

V(0, t) = Ker(T−t), 0 ≤ t ≤ T. (12)

The existence and uniqueness of the solution of the problem were shown in the context of
stochastic optimal theory in the study of Barles and Soner [11].

The exact solution of the linear European put option problem is determined by

V(S, t) = Ke−r(T−t)N(−γ2)− Se−δ(T−t)N(−γ1), (13)

with the parameters

γ1 =
lnS− lnK + (r− δ + 1

2 σ2)(T − t)
σ
√

T − t
,

γ2 = γ1 − σ
√

T − t,

N(y) =
1√
2π

∫ y

−∞
e−

1
2 x2

dx,

where N is the standard normal cumulative probability distribution function and δ is continuous
dividend yield [42].

3. The Solution Method

This section is dedicated to a numerical solution of the linear and nonlinear European put
option problems. For the sake of brevity, the nonlinear European put option model is discussed with
the nonlinear volatility (9) proposed by Barles and Soner [11]. In spatial discretization, a sixth-order
finite difference method (FD6) is applied and a third-order strong stability preserving a Runge–Kutta
(SSP-RK3) method is considered in temporal discretization. The FD6 scheme based on high order
differences achieves the required accuracy. In addition, the SSP-RK3 scheme, which is a class of the
SSP-time integration techniques with the spatial discretization, guarantees the stability [40]. Hence,
it is expected that the proposed method will solve the problem effectively.

3.1. Spatial Discretization

Spatial derivatives are computed by the FD6 scheme based on the Taylor series expansion [43].
In order to use finite difference approximation, it is started by defining a uniform grid consisting of N
points satisfying 0 = x0 < x1 < ... < xN = xmax. The step size h = xi+1 − xi, i = 0, 1, ..., N − 1 is equal
to each other at any point i. The first derivative V

′
i at point i can be approximated by

V
′
i =

1
h

R

∑
j=−L

aj+LVi+j, 1 ≤ i ≤ N, (14)

where R and L represent the number of points on the right-hand side and left-hand side for taken nodes,
respectively. Hence, Equation (14) involves (R + L + 1) constants, a0, a1, ..., aR+L. R is equal to L for the
considered nodes at internal points, but this is not the case for the boundary points. The coefficients aj
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are calculated by using the Taylor expansion near point i. The FD6 scheme uses seven points at interior
and boundary points as follows:

V′i (t) =
−147Vi + 360Vi+1 − 450Vi+2 + 400Vi+3 − 225Vi+4 + 72Vi+5 − 10Vi+6

60h
, i = 1,

V′i (t) =
−10Vi−1 − 77Vi + 150Vi+1 − 100Vi+2 + 50Vi+3 − 15Vi+4 + 2Vi+5

60h
, i = 2,

V′i (t) =
2Vi−2 − 24Vi−1 − 35Vi + 80Vi+1 − 30Vi+2 + 8Vi+3 −Vi+4

60h
, i = 3,

V′i (t) =
−Vi−3 + 9Vi−2 − 45Vi−1 + 45Vi+1 − 9Vi+2 + Vi+3

60h
, 4 ≤ i ≤ N − 3, (15)

V′i (t) =
−2Vi+2 + 24Vi+1 + 35Vi − 80Vi−1 + 30Vi−2 − 8Vi−3 + Vi−4

60h
, i = N − 2,

V′i (t) =
10Vi+1 + 77Vi − 150Vi−1 + 100Vi−2 − 50Vi−3 + 15Vi−4 − 2Vi−5

60h
, i = N − 1,

V′i (t) =
147Vi − 360Vi−1 + 450Vi−2 − 400Vi−3 + 225Vi−4 − 72Vi−5 + 10Vi−6

60h
, i = N.

The sixth order scheme (15) can be written in a more compact form as follows:

V′ =
1
h

AV. (16)

The second order derivative terms are obtained by applying the first operator twice:

V′′ =
1
h

AV′, (17)

where V = (V1, V2, .., VN)
T and

A =



− 147
60

360
60 − 450

60
400
60 − 225

60
72
60 − 10

60
10
60 − 77

60
150
60 − 100

60
50
60 − 15

60
2

60
2

60 − 24
60 − 35

60 − 80
60 − 30

60
8

60 − 8
60

− 1
60

9
60 − 45

60 0 45
60 − 9

60
1

60
− 1

60
9

60 − 45
60 0 45

60 − 9
60

1
60

. . . . . . . . . . . . . . . . . .
− 1

60
9

60 − 45
60 0 45

60 − 9
60

1
60

1
60 − 8

60
30
60 − 80

60
35
60

24
60

−2
60

− 2
60

15
60 − 50

60
100
60 − 150

60
77
60

10
60

10
60 − 72

60
225
60 − 400

60
450
60 − 360

60
147
60



.

3.2. Temporal Discretization

The SSP-RK3 scheme for the discretization of Equation (1) is presented in time. A class of
high-order SSP time discretization techniques was introduced by Gottlieb et al. [40] for solving
hyperbolic conservation laws with stable spatial discretizations. The SSP methods guarantee the
stability properties expected of the forward Euler method [40].

The computational domain for time consists of M points satisfying 0 = t0 < t1 < ... < tM = T.
The uniform time step dt = tn+1 − tn, n = 0, 1, 2, ..., M− 1 is equidistant at any point n. After applying
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the FD6 method, Equation (1) can be reduced into a set of ordinary differential equations in time. Then,
the equation system can be expressed by

dVi
dt

= LVi. (18)

The SSP-RK3 scheme integrates the semi-discrete Equation (18) from time t0 to t0 + dt through
the operations

V(1)
i = Vn

i + dtLVn
i ,

V(2)
i =

3
4

Vn
i +

1
4

V(1)
i +

1
4

dtLV(1), (19)

Vn+1
i =

1
3

Vn
i +

2
3

V(2) +
2
3

dtLV(2),

where L is the discretization form of L .
For the SSP-RK3, the total variation (TV) of the numerical solution

TV(V) = ∑
i
| Vi+1 −Vi | (20)

does not increase in time [40];
TV(Vk+1) ≤ TV(Vk). (21)

4. Numerical Results and Analysis

To show efficiency and accuracy of the proposed methods, numerical experiments on the
European put option model have been performed. For the computations through the current schemes,
computer codes have been produced in MATLAB R© 2019. The validity of the scheme has been verified
through the produced results.

Semi-infinite domain [0,+∞) in Equation (1) is replaced by the bounded interval [0, Smax) where
Smax is an artifical limit will be chosen larger than three to four times the exercise price. In order to use
the difference approximation, it is started by defining a uniform grid consisting of N points satisfying
0 = S0 < S1... < SN = Smax. The step size dS = Si+1 − Si, i = 0, 1, ..., N − 1 is equal to each other at
any point i. Similarly, the interval (0, T) is divided into M subintervals with mesh nodes satisfying
0 = t0 < t1 < ... < tM = T. The step size dt = tn+1 − tn, n = 0, 1, 2, ..., M is equal to each other at any
point n. In the nonlinear model, the square of volatility approximation σ̃2 given by Equation (9) has
been discretized at the node Si and time t, being

σ̃2
i = σ2

(
1 + er(T−t)a2S2

i ∆i(V(t))
)

, (22)

where

∆i(V(t)) =
V(Si+1, t)− 2V(Si, t) + V(Si−1, t)

dS2 , i = 0, 1 and i = N, N + 1 (23)

and

∆i(V(t)) =
1

180dS2 (2V(Si−3, t)− 27V(Si−2, t) + 270V(Si−1, t)− 490V(Si, t) + 270V(Si+1, t)

− 27V(Si+2, t) + 2V(Si+3, t)), i = 3, N − 1 (24)

and has been used in the discretized form of Equation (3).
The parameters T = 0.25, K = 10.0, r = 0.1, σ = 0.4, M = 2000, N = 200 [41] and a = 0.02 are

used in all calculations. For the purpose of being realistic, the results obtained by the proposed method
are compared with the literature. Complience with the literature and with a realistic problem was taken
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into consideration in the selection of parameters. In terms of the realistically considered parameters,
the computed results are believed to be helpful in making a decision for a viable trading strategy.

The numerical results and exact solution for the linear and numerical results for the nonlinear
European put option model are presented in Table 1. The computed results revealed that the current
method approximates the exact solution very well and is applicable, effective and easy to use.
The qualitative behaviour of the option value is plotted in Figures 1–3. Furthermore, the values
of the option for the three different values of a are represented in Figure 4. From the figure, it can be
seen that qualitative behavior is in agreement with the literature [2].

Table 1. Comparison between exact and numerical solutions of the linear and nonlinear European put
option model for various stock price values at t = 0.

S
SSP-RK3 + FD6

Dura and Moşneagu [41]
Exact

Linear Model Nonlinear Model Solution

a = 0.02 a = 0.05 (Linear Model)

4.0 5.753096 5.753096 5.753096 5.753102 5.753100
8.0 1.902102 1.904440 1.915559 1.902102 1.902434
10.0 0.668906 0.673788 0.696650 0.668360 0.669390
16.0 0.005324 0.005498 0.006353 0.005419 0.005386
20.0 1.091776 × 10−4 1.139578 × 10−4 1.375594 × 10−4 1.170806 × 10−4 1.129336 × 10−4

Figure 1. Prices of the linear European put option at t = 0.
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Figure 2. Prices of the linear European put option for different time values.

Figure 3. Price of the linear European put option.
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Figure 4. Valuation of the European put option in both linear and nonlinear cases.

After applying the methods to the linear Black–Scholes equation and initial and boundary
conditions, the resulting system has MN unknowns. Since the present methods are explicit, the stability
condition is given by

dt ≤ (dS)2

2a
, (25)

where a = 1
2 σ2S2 is the coefficient in front of the second derivative term in the Black–Scholes

equation. In the current computation, this condition is provided at each time and spatial step.
In the nonlinear model, the nonlinear coefficient σ̃i is frozen at each discretized time level, therefore,
the condition (25) is provided.

To show accuracy of the method for the linear model, convergence rates are calculated by

Rate (|| . ||∞) =
|| Vdt

ds −Vexact(Si, tj) ||∞
|| Vdt/2

ds/2 −Vexact(Si, tj) ||∞
, (26)

Rate (|| . ||2) =
|| Vdt

ds −Vexact(Si, tj) ||2
|| Vdt/2

ds/2 −Vexact(Si, tj) ||2
, (27)

where Vdt
ds represents the solution with the spatial mesh size ds and the time mesh size dt, Vexact

represents the exact solution for the linear model whilst || . ||∞ and || . ||2 are maximum norm and
L2-norm are given, respectively, by

|| Vdt
ds −Vexact ||∞:= max

16j6M;16i6N
| V j

i −Vexact(Si, tj) |, (28)

|| Vdt
ds −Vexact ||∞:=

(
∑

1≤j≤M
∑

1≤i≤N
| V j

i −Vexact(Si, tj) |2 dsdt

)1/2

. (29)

To determine these rates, a sequence of meshes generated by halving the mesh sizes of the
previous ones by starting from a given coarse mesh is accepted. As seen in Table 2, the current method
is seen to be effective to enhance the accuracy of the numerical solution. When M and N are halved,
the error reduced by a factor that is equal to ten. The order of convergence of the combination of FD6
and SSPRK3 is about 6.6 in || . ||∞ and 4.4 in || . ||2.
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For the nonlinear model, since the exact solution is unknown, taking fixed value of dt, the
difference V(S, t, ds = k)−V(S, t, ds = k/2) is plotted in Figure 5. In addition, Table 3 presents the
errors of the accuracy of the linear and nonlinear models that are calculated by the `2-error given by

Error(t = 0) =

(
1
ds

N+1

∑
i=1
| v(xi, 0)−V0

i |
2

)1/2

. (30)

Reference solution is denoted by v(xi, 0), which has been obtained by the proposed method on
a fine grid dt = 6.25 × 10−5 and ds = 0.1. The numerical solution V0

i has been calculated with the
previously indicated parameters.

Figure 5. Difference Vds −Vds/2.

Table 2. Convergency results for the linear model.

N M ‖.‖ds,∞ Ratio ‖.‖ds,∞ ‖.‖ds,2 Ratio ‖.‖ds,2

51 101 0.018822 0.007153
101 1001 0.018035 1.043695 0.002887 2.477658
201 2001 0.002668 6.759370 6.547562 × 10−4 4.409275
401 4001 4.036584 × 10−4 6.609549 1.392947 × 10−4 4.700510

Table 3. `2-error for the linear and nonlinear models.

N M Error (Linear Model) Error (Nonlinear Model)

51 101 0.013100 0.012081
101 1001 0.004132 0.003932
201 2001 8.054754 × 10−4 9.081600 × 10−4

To indicate the influence of transaction cost modeled by volatility (9), the difference
Vnonlinear(S, t) − Vlinear(S, t) between the price of the European put option with transaction costs
and the price of the European put without transaction costs is plotted in Figure 6. The numerical
results present an economically significant price deviation between the linear model and the nonlinear
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model. It is seen that the difference is not symmetric but decreases closer to the expiry date and is
maximal close to the stock price S = 10, where the nonlinear price is higher than the linear price.

Figure 6. Barles and Soner model (a = 0.02) vs. the linear model.

In Table 4, the required times are compared when the proposed method is applied for the linear
and nonlinear option problems. For both situations, the required CPU times increase with respect to
the number of spatial and temporal discretizations. Although part of the computational time pertains
to the calculation of the nonlinear volatility, the CPU times of the nonlinear model for every N and
M discretization point are close to the linear model. The present work provides effective estimates in
terms of easy programming and relatively low cost.

Table 4. CPU time (seconds).

N M CPU (Linear Model) CPU (Nonlinear Model) CPU (Nonlinear Model)
a = 0.02 a = 0.05

51 101 0.136891 0.166548 0.171630
101 2001 3.223077 3.807224 3.830958
201 4001 12.112536 14.122904 14.242410
401 8001 63.284679 72.833058 72.978609

5. Conclusions and Recommendations

The complexity and stochastic properties of option pricing problems make it difficult to determine
the value of the option. Therefore, accurate approximation methods are needed to understand the
behavior of these problems and those are of great importance for scientific developments in financial
markets. In this paper, a combination of a sixth-order finite difference scheme in space and a third-order
strong stability preserving Runge–Kutta in time has been implemented to obtain effective numerical
solutions of the linear and nonlinear European put option models represented by the Black–Scholes
equation. The convergence of the solution has been measured by some error norms and it is confirmed
that the present method is asymptotically convergent. In addition, the produced results are in good
agreement with the literature and the exact solution. Therefore, the proposed method provides a better
perspective to describe behavior of the option pricing model represented by the Black–Scholes equation
and can be preferred due to reliability and accuracy with minimal computational effort. This study is
believed to help researchers who want to uncover challenging financial and stochastic behaviours in
modeling. In terms of the realistically considered parameters, it is believed that the computed results
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are helpful in making decisions for viable trading strategies. The valuation of the European option
pricing problem by the proposed method can be compared with realistic option values.
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