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1 Introduction

Financial derivatives, in particular options, became very popular financial
contracts in the last few decades. Options can be used, for instance, to
hedge assets and portfolios in order to control the risk due to movements in
the share price. We recall that a European Call (Put) option provides the
right to buy (to sell) a fixed number of assets at the fixed exercise price E
at the expiry time τ0 [10].

In an idealized financial market the price of a European option can be
obtained as the solution of the celebrated Black-Scholes equation [5, 24].
This equation also provides a hedging portfolio that replicates the contingent
claim. However, the Black-Scholes equation has been derived under quite
restrictive assumptions (for instance, frictionless, liquid, complete markets).
In recent years, nonlinear Black-Scholes equations have been derived in order
to model

• transaction costs arising in the hedging of portfolios [1, 6, 9],

• feedback effects due to large traders [12, 13, 14, 16, 26, 32], and

• incomplete markets [22].

The derived time-continuous models are quasi-linear or fully nonlinear pa-
rabolic diffusion-convection equations. In this paper we are interested in the
option pricing with transaction costs. In 1973, Boyle and Vorst [6] derived
from a binomial model an option price that takes into account transaction
costs and that is equal to a Black-Scholes price but with a modified volatility
of the form

σ = σ0(1 + cA)1/2, A =
µ

σ0

√
4t

,

with c = 1. Here, µ is the proportional transaction cost, 4t the transac-
tion period, and σ0 is the original volatility constant. Leland [23] computed
the constant c = (2/π)1/2. Kusuoka [19] then showed that the “optimal” c
depends on the risk structure of the market.

Another approach is the maximization of the utility function. For in-
stance, Davis et al. [9] compute the option price as the solution of a nonlinear
quasi-variational inequality. This approach has also been used in [1, 15, 37].
It has the disadvantage that the option price depends on the special choice of
the utility function. Constantinides and Zariphopoulou [8] obtained universal
bounds independent of the utility function.

Parás and Avellaneda [25] derived the modified volatility

σ = σ0(1 + A sign(VSS))
1/2 (1)
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from a binomial model using the algorithm of Bensaid et al. [2]. Here, V is
the option price, S the price of the underlying asset, and VSS denotes the
second derivative of V with respect to S (the ‘Gamma’). In particular, the
option price does not need to be convex.

A more complex model has been proposed by Barles and Soner [1]. In
their model the nonlinear volatility reads

σ = σ0

(

1 + Ψ
[

exp(ρ(τ0 − τ))a2S2VSS

])

, (2)

where ρ is the risk-free interest rate, τ0 the maturity, and a = µ
√
γN , with

the risk aversion factor γ and the number N of options to be sold. The
function Ψ is the solution of the nonlinear initial-value problem

Ψ′(A) =
Ψ(A) + 1

2
√

AΨ(A)− A
, A 6= 0, Ψ(0) = 0. (3)

The above model can be derived from a control problem using an exponential
utility function in the limit ε = 1/γN → 0, µ→ 0 such that a = µ/

√
ε.

In the mathematical literature, only a few results can be found on the nu-
merical discretization of Black-Scholes equations. The numerical approaches
vary from binomial approximations (see, for instance [21] for American op-
tions in a stochastic framework), Monte-Carlo methods [20], finite-element
discretizations [11, 27], and finite-difference approximations [10]—however,
mainly for linear Black-Scholes equations.

The numerical discretization of the Black-Scholes equations with the non-
linear volatilities (1) and (2) has been performed using explicit finite differ-
ence schemes [1, 25]. However, explicit schemes have the disadvantage that
restrictive conditions on the discretization parameters (for instance, the ratio
of the time and space step) are needed to obtain stable, convergent schemes
[35]. Moreover, the convergence order is only one in time and two in space.

In this paper we discretize the Black-Scholes equation with nonlinear
volatility (2). Our main goal is to obtain efficient and precise schemes, i.e.
we wish to derive numerical schemes whose order is superior to standard
schemes for second-order equations (like the explicit Euler, the semi-implicit
Euler, the Crank-Nicolson and the Leap-Frog Du Fort-Frankel schemes) and
whose computing time is comparable to that of classical schemes. Since the
equation is of second order, usually a three-point approximation is used [10]
and a scheme which is (consistent) of order one in time and two in space
is obtained (except the Leap-Frog Du Fort-Frankel scheme; see below). To
obtain higher order schemes (of order 2 in time and 4 in space), one possibility
is to use more spatial points but this complicates the approximation of the
boundary conditions and results in a discretization matrix with larger band
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width. In this paper, we present an alternative using high-order compact
schemes which need three points in space only.

More precisely, we study the equation

Vτ +
1
2
σ(VSS)

2S2VSS + ρSVS − ρV = 0, (4)

where the nonlinear volatility σ(VSS) is given by (2). This equation is solved
for the price S ≥ 0 of the underlying asset and time τ0 ≥ τ ≥ 0, i.e. backward
in time. The terminal condition is

V (S, τ0) = V0(S), S ≥ 0. (5)

The equation is derived in [1] for European Call options, i.e. V0(S) = max(0, S−
E), where E is the exercise price. The ‘boundary’ conditions are as follows:

V (0, τ) = 0, τ0 ≥ τ ≥ 0, V (S, τ) ∼ S − Eeρ(τ−τ0) (S →∞). (6)

The last condition has to be understood in the sense

lim
S→∞

V (S, τ)

S − Eeρ(τ−τ0)
= 1

uniformly for τ0 ≥ τ ≥ 0.
We apply the compact schemes R3A and R3B derived by Rigal [29] to the

initial-boundary value problem (4)-(6). The nonlinearity is treated explicitly
i.e., the final scheme is semi-implicit. The numerical experiments show that,
as expected, the l2 error is much smaller, for fixed parameters, than the error
for the standard schemes (explicit Euler, semi-implicit Euler, Leap-Frog Du
Fort-Frankel). The CPU time is only slightly higher for the compact schemes,
for a fixed number of grid nodes.

In the nonlinear case, the information on the stability becomes very lim-
ited. In any case, linear stability is a necessary condition for the stability of
nonlinear problems but it is certainly not sufficient. Particular methods were
developed for nonlinear problems. Stetter and Keller studied the nonlinear
stability and local stability [18, 34], which have been used successfully for
nonlinear ordinary differential equations. Ben-Yu [3] proposed a generalized
stability of difference schemes which has been applied widely to numerical
solutions of many nonlinear partial differential equations. In this paper we
do not use this technique which can be very complicated. Instead, we give
results for the linear case (a = 0) and validate them in the nonlinear case by
numerical studies.

Furthermore, we construct a new three-point compact scheme R3C, which
generalizes the scheme R3B of Rigal, and show that this scheme is uncondi-
tionally stable and non-oscillatory. The study of the properties of the scheme
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is based upon a thorough Fourier analysis of the Cauchy problem associated
with (4). We resort to a local analysis with frozen values of the nonlinear
coefficient to make the formulation linear.

Finally, we present a numerical example of a European Call option with
different risk aversion constants a. As expected, the option price with positive
a is higher than the Black-Scholes price (a = 0). The difference between the
option price for a > 0 and the Black-Scholes price is maximal (in absolute
value) near the strike price E, but changes with time. In particular, far from
the maturity the difference is maximal at asset prices smaller than the strike
price.

The paper is organized as follows. In section 2 the initial-boundary value
problem (2)-(6) is reformulated using an exponential transformation. Some
classical finite difference schemes are presented and their stability properties
are recalled in section 3. A new compact scheme is proposed and analyzed in
section 4. Section 5 is devoted to a numerical comparison of the schemes in
terms of stability, convergence and efficiency. Finally, in section 6 the solution
of the nonlinear Black-Scholes problem is presented for different transaction
cost parameters, and some Greeks are computed.

2 The transformed problem

In this section we reformulate the problem (4)-(6) using a variable transfor-
mation. In [1] the existence of a unique continuous viscosity solution V to
this problem has been shown.

To overcome a possible degeneration at S = 0 and to obtain a forward
parabolic problem, we use the variable transformations

x(S) = ln
(S

E

)

, t(τ) =
1

2
σ2

0(τ0 − τ), u = exp(−x)
V

E
.

Equation (4) is hereby transformed into

ut − (1 + Ψ
[

exp(Kt+ x)a2E(uxx + ux)
]

)(uxx + ux)−Kux = 0, (7)

with

x ∈ R, 0 ≤ t ≤ T = σ2
0τ0/2, K =

2ρ

σ2
0

.

The problem is completed by the following initial and boundary conditions:

u(x, 0) = u0(x) = max(1− exp(−x), 0),

u(x, t) = 0 (x→ −∞),

u(x, t) ∼ 1 (x→ +∞).



6 B. Düring, M. Fournié, A. Jüngel

3 Finite Difference Schemes

In this section we recall standard finite difference schemes and the compact
schemes derived by Rigal [29]. For the computation we replace R by [−R,R]
with R > 0. For simplicity, we consider a uniform grid Z = {xi ∈ [−R,R] :
xi = ih, i = −N, ..., N} consisting of 2N + 1 grid points, with R = Nh
and with space step h and time step k. Let Un

i denote the approximate
solution of (7) in xi at the time tn = nk and let Un = (Un

i )
2N+1
i=1 . All

schemes we consider here use two time levels—except the Leap-Frog Du Fort-
Frankel scheme which uses three time levels. In the space variable x we use
a compact stencil requiring only three consecutive points in time level n+1.
The schemes—except the Leap-Frog Du Fort-Frankel scheme—can be written
in the following form:

AnUn+1 = BnUn (8)

with the discretization matrices An and Bn

An = [a−1, a0, a1], Bn = [b−2, b−1, b0, b1, b2].

The matrix An is tridiagonal, therefore the resulting linear systems can be
solved very efficiently linearly in time using a special form of the Gaussian
elimination known as the Thomas algorithm [7]. We suppose that

1
∑

i=−1

ai =
2
∑

i=−2

bi = 1

which is satisfied by any consistent scheme after normalisation of the coeffi-
cients.

The nonlinearity is introduced explicitly in all the schemes. In the fol-
lowing let sni denote the explicitly discretized nonlinear volatility correction:

sni = Ψ

[

exp(Knk + xi)a
2E

(

Un
i−2 − 2Un

i + Un
i+2

4h2
+

Un
i+1 − Un

i−1

2h

)]

. (9)

We use this form of the discretization of the second derivative because it
gives a smoother approximation of uxx. With a standard central difference
the schemes become instable for small values of h unless k is very small.
The problem lies in the initial condition u0 since it is not differentiable at
x = 0. We use spline interpolation of high order to carefully smooth the
initial data, but only in combination with the five-point approximation (9)
we obtain acceptable results.
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We use a Dormand-Prince-4-5 Runge-Kutta scheme to solve the ordinary
differential equation (3) and a cubic spline interpolation to obtain the values
of Ψ for arbitrary arguments (cf. Figure 1).
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)
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Figure 1: Solution of the ODE (3).

The boundary conditions on the limited grid are treated as follows. Dirich-
let conditions are used on both boundary points:

Un
−N = 0,

and
Un

+N = 1− exp(−xN −Knk).

The latter corresponds to the asymptotic value of the exact solution of the
equation for a = 0. More precisely, the solution of (7) satisfies (see (6)):

u(x, t) ∼ 1− exp(−x−Kt) as x→∞.

Approximately, we have u(R, t) ≈ 1 − exp(−xN −Kt) for sufficiently large
R > 0. The nonlinear correction of the volatility in (4) is a function of
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the second derivative, so we assume that the influence of the nonlinearity at
the boundary can be neglected for large R. The error caused by boundary
conditions imposed on an artificial boundary for a class of Black-Scholes
equations has been studied rigorously in [17].

In the following let

λ = −(1 +K), α =
λh

2
, r =

k

h2
, µ =

k

h
(10)

denote the linear part of the coefficient of the convection term in (7), the
so-called cell Reynolds number, the parabolic mesh ratio and the hyperbolic
mesh ratio, respectively. We say a scheme is of order (m,n) if it is formally
consistent of order m in time and of order n in space or, more precisely, the
truncation error is of order O(km + hn).

3.1 Classical schemes

In the following we recall some classical finite difference schemes and their
properties corresponding to the linear case, i.e. a = 0 or sni = 0. We verify
these properties for the nonlinear case a > 0 by the numerical studies in
section 5.

3.1.1 Explicit scheme (FTCS)

The Forward-Time Central-Space explicit scheme (FTCS) is given by

b−2 =
r

4
sni ,

a−1 = 0, b−1 = r +
λ

2
µ− 1

2
µsni ,

a0 = 1, b0 = 1− 2r − r

2
sni ,

a1 = 0, b1 = r − λ

2
µ+

1

2
µsni ,

b2 =
r

4
sni .

It is of order (1,2), with a very restrictive stability condition. In the linear
case it reads [35]:

r ≤ 1

2
. (11)

To avoid oscillations, the following condition must be satisfied:

|α| ≤ 1. (12)



High order compact schemes for a nonlinear Black-Scholes equation 9

3.1.2 Semi-implicit scheme (BTCS)

The semi-implicit scheme, using Backward-Time Central-Space differencing
(BTCS) for the linear part and explicit treatment of the nonlinearity, is given
by

b−2 =
r

4
sni ,

a−1 =
λ

2
µ− r, b−1 = −1

2
µsni ,

a0 = 1 + 2r, b0 = 1− r

2
sni ,

a1 = −λ

2
µ− r, b1 =

1

2
µsni ,

b2 =
r

4
sni .

It is unconditionally stable and of order (1,2). It is non-oscillatory if (12) is
satisfied [35].

3.1.3 Crank-Nicolson (CN)

The Crank-Nicolson scheme with explicit treatment of the nonlinearity is
given by

a−1 =
(

−r

2
+

µ

4

)

sni −
r

2
− λ

4
µ, b−1 =

(r

2
− µ

4

)

sni +
r

2
+

λ

4
µ,

a0 = 1 + r(1 + sni ), b0 = 1− r(1 + sni ),

a1 =
(

−r

2
− µ

4

)

sni −
r

2
+

λ

4
µ, b1 =

(r

2
+

µ

4

)

sni +
r

2
− λ

4
µ

and b−2 = b2 = 0. It is unconditionally stable and of order (2,2).

3.1.4 Leap-Frog Du Fort-Frankel scheme (LFDF)

The Leap-Frog Du Fort-Frankel scheme is an explicit three-time-level scheme.
It is given by

Un+1
i − Un−1

i

2k
=

Un
i−1 − (Un−1

i + Un+1
i ) + Un

i+1

h2
+ (1 +K)

Un
i+1 − Un

i−1

2h

+sni

(

Un
i−2 − 2Un

i + Un
i+2

4h2
+

Un
i+1 − Un

i−1

2h

)

.

Due to the nature of three-time-level schemes we need an additional method
to compute the numerical solution at the first time step. In our numerical
test in section 5 the compact scheme R3B (see below) is used for this purpose.
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The scheme is stable in the linear case [30] if

r <
1

2 |α| (13)

and it is of order (2,2). It is non-oscillatory if condition (12) is valid [30].

3.2 Compact schemes of higher order

The following two schemes were introduced by Rigal [29] for linear convection-
diffusion problems. We apply them to problem (7). They are both compact
two-level schemes of order (2,4) in the linear case. The nonlinearity is treated
semi-implicitly as in the previous subsections.

3.2.1 R3A scheme

The scheme R3A is given by

a−1 =

(

1

12
− r

2

)

(1 + α)− α2r

6
+

α2r2

3
,

a0 =
5

6
+ r +

α2r

3
− 2α2r2

3
,

a1 =

(

1

12
− r

2

)

(1− α)− α2r

6
+

α2r2

3
,

b−2 =
r

4
sni ,

b−1 =

(

1

12
+

r

2

)

(1 + α) +
α2r

6
+

α2r2

3
− 1

2
µsni ,

b0 =
5

6
− r − α2r

3
− 2α2r2

3
− r

2
sni ,

b1 =

(

1

12
+

r

2

)

(1− α)− α2r

6
+

α2r2

3
+

1

2
µsni ,

b2 =
r

4
sni .

This scheme is stable in the linear case sni = 0 [29] if

r ≤ 1√
2 |α|

. (14)

It is non-oscillatory for arbitrary values of α.
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3.2.2 R3B scheme

The scheme R3B is given by

a−1 =

(

1

12
− r

2

)

(1 + α)− α2r

6
+

α3r2

3
− 2α4r3

3
,

a0 =
5

6
+ r +

α2r

3
+

4α4r3

3
,

a1 =

(

1

12
− r

2

)

(1− α)− α2r

6
− α3r2

3
− 2α4r3

3
,

b−2 =
r

4
sni ,

b−1 =

(

1

12
+

r

2

)

(1 + α) +
α2r

6
+

α3r2

3
+

2α4r3

3
−
(

r

4
+

1

2
µ

)

sni ,

b0 =
5

6
− r − α2r

3
− 4α4r3

3
− 2rsni ,

b1 =

(

1

12
− r

2

)

(1 + α) +
α2r

6
− α3r2

3
+

2α4r3

3
−
(

r

4
− 1

2
µ

)

sni ,

b2 =
r

4
sni .

It is unconditionally stable and non-oscillatory in the linear case sni = 0 [29].

4 R3C scheme

In the nonlinear case a > 0 it seems to be quite difficult to prove the stability
of the schemes presented above. The reason lies in the fact that, using five
space points at the present time level, the study of the amplification factor
involves certain cubic polynomials. We would need to study their positivity
properties for all possible values of the nonlinear coefficients in (7). It turns
out that it is not possible to show positivity of these polynomials for arbitrary
coefficients.

Therefore we construct now a (semi-implicit) two-level three-point com-
pact scheme which is of high order and can be proved to be stable. We expect
that these theoretical benefits will also make the scheme superior in numer-
ical tests. We will use the modified equation technique [36] to construct the
scheme.

To obtain an efficient scheme it is important to approximate the nonlinear
coefficients in (7) explicitly, i.e. at the time level n. Otherwise one would
need to perform a nonlinear iteration in each time step which is quite time-
consuming.
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With

β = 1 + Ψ
[

exp(Kt+ x)a2E(∆2U
n +∆0U

n)
]

,

λ = 1 + Ψ
[

exp(Kt+ x)a2E(∆2U
n +∆0U

n)
]

+K,

where

∆0U
n
j =

Un
j+1 − Un

j−1

2h
,

∆2U
n
j =

Un
j+1 − 2Un

j + Un
j−1

h2
,

the “semi-discretized” equation (7) takes the following form:

ut = βuxx − λux. (15)

We will now study equation (15) for arbitrary values β, λ > 0. We define a
general two-level three-point scheme

DtU
n
j = β(1

2
+ A1)∆2U

n
j + β(1

2
+ A2)∆2U

n+1
j − λ(1

2
+B1)∆0U

n
j

− λ(1
2
+B2)∆0U

n+1
j , (16)

where

DtU
n
j =

Un+1
j − Un

j

k
,

and Ai, Bi are real constants which must be chosen in such a way that the
lower order terms in the truncation error are eliminated and that the scheme
is stable and non-oscillatory.

With this explicit discretization of the nonlinear coefficients we study the
local stability (‘frozen coefficients’) of the linearized equations. It is well-
known [28] that for linear problems with variable coefficients (not in general,
but for important classes of equations, namely parabolic and symmetric hy-
perbolic equations) local stability is necessary for overall stability and slightly
strengthened local stability is also sufficient to ensure overall stability.

We recall some general results on two-level three-point schemes:

Lemma 1 A two-level three-point finite difference scheme is stable if and
only if the coefficients ai, bi satisfy

(a1 − a−1)
2 − (b1 − b−1)

2 > a1 + a−1 − b1 − b−1, (17)

(a1 + a−1)
2 − (b1 + b−1)

2 > a1 + a−1 − b1 − b−1. (18)
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Lemma 2 A two-level three-point finite difference scheme is non-oscillatory
if the coefficients ai, bi satisfy

(a1 − b1)(a−1 − b−1) ≥ 0. (19)

For the proofs we refer to [29, Lemmas 1 and 2].
Applying (16) to a sufficiently smooth solution of (15), we obtain the

truncation error Eu(k, h). Differentiating (15) we obtain higher order equa-
tions. Using them to eliminate the time derivatives, we may write Eu(k, h)
in terms of the space derivatives only:

Eu(k, h) =
4
∑

j=1

ej∂
j
xu+ higher order derivatives

with

e1 = λ(B2 +B1), (20)

e2 = −β(A2 + A1)− kλ2B2, (21)

e3 = 1
12
λ(2h2 + 2h2B2 + 6λ2k2B2 + k2λ2

+ 12kβA2 + 2h2B1 + 12kβB2), (22)

e4 = − 1
24
(1 + 4B2)λ

4k3 − 1
4
(2A2 + 4B2 + 1)βλ2k2

− 1
12
(λ2h2 + 12β2A2 + 2λ2h2B2)k − 1

12
(1 + A1 + A2)βh

2. (23)

To obtain a scheme of order (2,4), Ai, Bi must be chosen such that these
error terms vanish or are of order (2,4).

Solving the linear system consisting of (20)-(22) in terms of A1, A2, B1

we get a class of schemes depending only on the parameter B2. This scheme,
called (16’), is given by (16) with

B1 = −B2, (24)

A1 = − 1
12kβ

(−2h2 + 6λ2k2B2 − k2λ2 − 12kβB2), (25)

A2 = − 1
12kβ

(2h2 + 6λ2k2B2 + k2λ2 + 12kβB2). (26)

Equation (24) is a necessary condition to have a consistent scheme. The
coefficient B2 should be chosen in such a way that we obtain a stable and
non-oscillatory scheme of order (2,4). Further we require our scheme to be
forward diffusive (in relation with the parabolic problem being well-posed),
i.e.

1 + βA1 + βA2 > 0. (27)

We now study the properties of the scheme (16’). We obtain the following
result:
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Theorem 3 Scheme (16’) is stable if and only if the coefficient B2 and
r, α, β satisfy

(−β + 4rα2B2)(−1 + 4r2α2 + 12βrB2) > 0. (28)

It is non-oscillatory if B2 and r, α, β satisfy

(−β + 4rα2B2 + α)(−β + 4rα2B2 − α) ≥ 0. (29)

It is forward diffusive if and only if B2, r, α satisfy

1− 4rα2B2 > 0. (30)

Proof. To prove stability we need to verify conditions (17) and (18). This is
shown by straightforward computation. The scheme (16) can be written in
the form (8) where the coefficients ai, bi are given by

a−1 = −β( r
2
+ rA2)− µ

4
− µB2

2
, b−1 = β( r

2
+ rA1) +

µ
4
+ µB1

2
,

a0 = 1 + β(r + 2rA2), b0 = 1− β(r + 2rA1),

a1 = −β( r
2
+ rA2) +

µ
4
+ µB2

2
, b1 = β( r

2
+ rA1)− µ

4
− µB1

2

and b−2 = b2 = 0. With these coefficients (17) and (18) are equivalent to

(B2 +B2
2 −B1 −B2

1)µ
2 + (2β + 2βA2 + 2βA1)r > 0,

−2rβ(1 + A1 + A2)(2βrA1 − 2βrA2 − 1) > 0.

Using (24)-(26) these inequalities simplify to

2βr > 0, (31)

2

3
r(−β + 4rα2B2)(−1 + 4r2α2 + 12βrB2) > 0, (32)

respectively. Condition (31) is always satisfied and (32) yields (28).
For non-oscillation we have to check condition (19). Elementary compu-

tations using the above coefficients and substituting B1, A1, A2 from (24)-(26)
give the condition

1

4
(−2rβ + 2rkλ2B2 + µ)(−2rβ + 2rkλ2B2 − µ) ≥ 0.

Writing this condition in terms of α and r gives (29).
Substituting (25) and (26) into (27) we obtain

1− kλ2B2 > 0,
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which is equivalent to (30).

We will now propose a choice of the coefficient B2 and study the properties
of the scheme obtained by this choice. By construction, e1 = e2 = e3 = 0 for
the scheme (16’). The error e4 can be written as:

e4 =
1

12
k(−λ2h2 + k2λ4 + 12β2)B2 −

1

12
β(−h2 + 2k2λ2). (33)

We must choose B2 in such a way that e4 is of order (2,4). The lower order
part of e4 is

kβ2B2 +
1

12
βh2.

Therefore we make the ansatz

B2 = − 1

12

h2

βk
+ b. (34)

We have to choose the constant b of order O(h4) to obtain a truncation error
e4 of the same order. The obvious choice b = 0 is not recommended since in
the linear case β = 1 or a = 0, this choice leads to the R3A scheme which
is not unconditionally stable. We want to choose b in such a way that the
conditions (28)-(30) of Theorem 3 are satisfied.

We define the R3C scheme by choosing

b = −rα2

3β
= −λ2k

12β
,

which yields

B2 = −1 + 4r2α2

12βr
. (35)

For the (linear) case β = 1 this choice corresponds to the R3B scheme of
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Rigal [29]. The coefficients ai, bi are given by:

a−1 = −12rβ2 − 2β + rλ2h2 + r3λ4h4 + 6rλhβ − λh− r2λ3h3

24β
,

a0 =
10β + 12rβ2 + rλ2h2 + r3λ4h4

12β
,

a1 = −12rβ2 − 2β + rλ2h2 + r3λ4h4 − 6rλhβ + λh+ r2λ3h3

24β
,

b−1 =
12rβ2 + 2β + rλ2h2 + r3λ4h4 + 6rλhβ + λh+ r2λ3h3

24β
,

b0 = −−10β + 12rβ2 + rλ2h2 + r3λ4h4

12β
,

b1 =
12rβ2 + 2β + rλ2h2 + r3λ4h4 − 6rλhβ − λh− r2λ3h3

24β
.

Theorem 4 The R3C scheme defined above is an unconditionally stable,
non-oscillatory and forward diffusive scheme of order (2,4). Its truncation
error is given by

e4 = −λ2(k4λ4 − h4 + 36k2β2)

144β
. (36)

Proof. Substituting (35) in (33) we get (36), i.e. the scheme is of order (2,4),
since e1 = e2 = e3 = 0.

Taking into account (35), conditions (30) and (28) are equivalent to

1 +
α2(1 + 4α2r2)

3β
> 0,

4

3

(

β +
α2(1 + 4α2r2)

3β

)

> 0,

respectively. These conditions hold for all values of β.
Using (35) in (29), we find that this condition is valid if for all values of

β

1

9

r2

β2
(3β2 + α2 + 4α4r2 + 3βα)(3β2 + α2 + 4α4r2 − 3βα) ≥ 0 (37)

or, equivalently, if for all values of β

3β2 − 3αβ + α2 + 4α4r2 ≥ 0. (38)

This is a quadratic polynomial in β. Its leading coefficient is positive and its
discriminant is equal to −3α2 − 48α4r2 which is negative for all values of α
and r. Hence there are no roots and (38) is true for any value of β.
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Remark 5 In the linear case β = 1 or a = 0 the R3C scheme coincides with
the R3B scheme.

5 Numerical study

5.1 Stability

To study the stability of the schemes numerically, we compute the l2-error
ε2 of the numerical solutions for different values of α and r, where

ε2 =

(

h
+N
∑

i=−N

∣

∣

∣
UkT

i − u(xi,T )
∣

∣

∣

2
)

1

2

and T = kTk. In the linear case a = 0 we use the exact solution and in the
nonlinear case a > 0 a solution on a very fine grid (with N = 800) as reference
solution. The computations were done using the following parameters

σ0 = 0.45, ρ = 0.1, E = 100, T = 0.50625.

In Figure 2 the error ε2 is plotted in the α − r-plane (see (10) for each
classical scheme and in Figure 3 for the compact schemes for the linear case
(a = 0) and the nonlinear case (a = 0.02). Different scales were used for the
error of classic and compact schemes. We notice that the schemes’ behaviour
is similar in both cases:

• FTCS: The conditions (11) and (12) for the stability and non-oscillation
can be found again numerically. For large values of α and r, the scheme
is unstable and oscillations occur. The area in which the scheme pro-
duces acceptable results is very small. In the nonlinear case the stability
area is even smaller.

• BTCS: The l2-error of this scheme is large for larger values of α, giving
unsatisfactory results for this region (oscillations).

• LFDF: For large values of α the error grows rapidly. The errors are
slightly smaller than those of the BTCS scheme.

• CN: The error in the linear case is small compared to the other classical
schemes. In the nonlinear case the error grows fast for large values of
α.

• R3A: The error of this scheme shows its good properties. No oscillations
occur, the stability region is very large as predicted by (14).
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• R3B: We observe that scheme R3B gives a slightly better behavior
than R3A. There are no oscillations and the scheme is unconditionally
stable.

• R3C: As predicted by our theoretical results the scheme is uncondition-
ally stable and non-oscillatory. In the nonlinear case (a > 0) the error
is even smaller than that of R3A/R3B. In the linear case (a = 0) the
result is identical to that of R3B (cf. Remark 5).
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Figure 2: Classical schemes: l2-error in the r − α−plane.

Comparing the computational results of the different schemes we can
make the following observations. In the small region of the α − r-plane,
where the FTCS scheme is stable, the error of all classical schemes is about
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Figure 3: Compact schemes: l2-error in the r − α−plane.

the same. The CN scheme gives the best results of all the classical schemes.
Comparing the classical (FTCS, BTCS, LFDF, CN) to the high order com-
pact schemes, we notice the superiority of the compact schemes. They are
generally significantly more accurate than the classical schemes (due to their
higher order); they show no oscillations and their use is not restricted by
strong stability conditions. The error difference between R3A and R3B is
insignificant whereas R3C provides even better results in the nonlinear case.

5.2 Convergence

The truncation error given by expression (36) represents the pointwise error
in approximating the differential equation (but not necessarily the solution)
[35]. We present in this section a numerical study to compute the order of
convergence of the R3C scheme. Asymptotically, we expect the pointwise
error to converge as

ε2 = Chm
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Figure 4: Numerical Convergence: l2-error vs. h.

for some m and C representing a constant. This implies

log(ε2) = log(C) +m log(h).

Hence, the double-logarithmic plot ε2 against h should be asymptotic to a
straight line with slope m. This gives a method for experimentally determin-
ing the order of accuracy of the method. We refer to Figure 4 for the results
with the parameters

a = 0.02, σ0 = 0.45, ρ = 0.1, E = 100, T = 0.009375.

Table 1 summarizes the maximal, minimal and average numerical conver-
gence rates. We observe that the numerical convergence rates roughly corre-
spond to the order of the schemes.

5.3 Efficiency

An important point in our comparison is the efficiency of the schemes, i.e.
the computation time to obtain a given accuracy. Obviously this is machine
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mmax mmin mav

FTCS 2.65 2.34 2.48
BTCS 2.70 2.09 2.43
LFDF 2.08 1.52 1.80
CN 2.76 2.64 2.69
R3A 3.41 2.75 3.13
R3B 3.42 2.75 3.13
R3C 4.26 2.98 3.29

Table 1: Convergence rates.

as well as programming dependent. The different schemes were implemented
in an efficient and consistent manner in order not to bias any of them. The
computation times recorded include the time for matrix setups, inversions
and boundary condition evaluation. All results were computed on the same
machine. The number of operations to solve the tridiagonal systems with
the Thomas Algorithm is of order O(N) (see section 3 for the definition of
N). Hence the dominant factor in the running time is the matrix setup, not
the inversion.

We computed solutions on grids with N = 10, 20, 30, 40. In Figure 5 we
plotted the relative l2-error versus the CPU time for the different grids and
schemes. We see that for fixed error the compact schemes take less CPU time
than the classic schemes. Due to the strong stability condition of the FTCS
scheme, it is generally very time consuming. For fixed time the error of the
compact schemes is always significantly smaller. The three compact schemes
are the most efficient ones where the R3C scheme seems to be superior to
the R3A and R3B schemes.

Using the same values of α and r, the implicit schemes’ (BTCS, CN,
R3A, R3B, R3C) computation time is not much larger than that of the
explicit schemes (FTCS, LFDF), but the accuracy of the compact schemes
is significantly better.

6 Financial Example

The Black-Scholes analysis requires continuous trading of the hedged port-
folio and this may be expensive in a market with proportional transaction
costs. To show the influence of the transaction costs on the price of the Euro-
pean Call option, we compute the price given by the numerical solution of (4)
and the standard Black-Scholes value for the following choice of parameters
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Figure 5: Efficiency: CPU-time vs. l2-error.

σ0 = 0.2, ρ = 0.1, E = 100, T = 0.04.

The solutions at time t = 0.02 = 1 year are plotted in Figure 6 for different
values of the transaction cost parameter a. Figure 7 shows the difference
between the Black-Scholes price and the price given by the solution of (4).
Since the nonlinear volatility depends on the Gamma (VSS), the difference is
small in regions with small Gamma. The difference is not symmetric. The
position of the maximal difference is moving in negative direction in time,
relating to the negative sign of the convective term in (7). At one year the
maximal difference is at S = 95. The linear Black-Scholes price is about 9.93
whereas the nonlinear price (a = 0.02) is about 12.28. The nonlinear price is
23.6 % higher than the linear Black-Scholes price.

In financial context the option price sensitivities are known as ‘Greeks’.
Mathematically, they are the derivatives of the option price with respect
to the variables or parameters. The most important ones are the first and
second derivatives with respect to the price of the underlying stock, called
‘Delta’ and ‘Gamma’, respectively. Since price sensitivities are a distinctive
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measure of risk, growing emphasis on risk management issues has suggested
a greater need for their efficient computation.

Figure 8 shows the error of the Greeks of the numerical solution computed
using 50 grid points. The following parameters were used in the computation

a = 0.02, σ0 = 0.2, ρ = 0.1, E = 100, T = 0.02.

The Greeks were computed using the standard fourth order central difference
approximation of the numerical solutions of (4). We observe that the compact
scheme R3C gives the best approximation. The Crank-Nicolson scheme and
the compact schemes R3A and R3B also produce acceptable results. The
errors of the classical schemes (FTCS, BTCS, LFDF) are up to three times
larger than those of the compact schemes. The Leap-Frog Du Fort-Frankel
scheme even produces spurious oscillations in the derivatives (not shown).
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7 Conclusions

We have derived a new compact scheme R3C generalizing the schemes R3A
and R3B derived by Rigal. It turns out that the compact schemes, applied
to a semi-implicitly discretized nonlinear Black-Scholes equation, give signif-
icantly better results than classical schemes. More precisely,

• they give significantly better accuracy;

• their use is not restricted by strong stability or non-oscillatory condi-
tions; and

• their CPU time is not much larger than that of the classical schemes.

The compact schemes combine good properties (stability, non-oscillations)
with a high order of accuracy. The errors in the Greeks Delta and Gamma,
computed with the compact scheme R3C, are about one third of the corre-
sponding errors using the BTCS scheme and about half of the errors using
the CN scheme.



High order compact schemes for a nonlinear Black-Scholes equation 25

40 60 80 100 120 140 160 180
−10

−5

0

5

x 10
−3

S

E
rr

o
r ∆

FTCS
BTCS
CN
R3A
R3B
R3C

40 60 80 100 120 140 160 180

−8

−6

−4

−2

0

2

4

6
x 10

−4

S

E
rr

o
r Γ

FTCS
BTCS
CN
R3A
R3B
R3C
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These results indicate that compact schemes seem to be an efficient tool
in the numerical analysis of option pricing.
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