2,105 research outputs found

    Efficient Dynamic Unstructured Methods and Applications for Transonic Flows and Hypersonic Stage Separation

    Get PDF
    Relative-moving boundary problems have a wide variety of applications. They appear in staging during a launch process, store separation from a military aircraft, rotor-stator interaction in turbomachinery, and dynamic aeroelasticity. The dynamic unstructured technology (DUT) is potentially a strong approach to simulate unsteady flows around relative-moving bodies, by solving time-dependent governing equations. The dual-time stepping scheme is implemented to improve its efficiency while not compromising the accuracy of solutions. The validation of the implicit scheme is performed on a pitching NACA0012 airfoil and a rectangular wing with low reduced frequencies in transonic flows. All the matured accelerating techniques, including the implicit residual smoothing, the local time stepping, and the Full-Approximate-Scheme (FAS) multigrid method, are resorted once a dynamic problem is transformed into a series of “static” problems. Even with rather coarse Euler-type meshes, one order of CPU time savings is achieved without losing the accuracy of solutions in comparison to the popular Runge-Kutta scheme. More orders of CPU time savings are expected in real engineering applications where highly stretched viscous-type meshes are needed. The applicability of DUT is also extended from transonic/supersonic flows to hypersonic flows through special measures in spatial discretization to simulate the staging of a hypersonic vehicle. First, the simulations in Mach 5 and Mach 10 flights are performed on the longitudinal symmetry plane. A network of strong shocks and expansion waves are captured. A prescribed two-degrees-of-freedom motion is imposed on the booster and the adapter to mimic the staging. Then, a 3-D static Euler solver with an efficient edge-based data structure is modified for time-accurate flows. The overall history of aerodynamic interference during the staging in Mach 5 flight is obtained by an animation method, consisting of six static solutions along the assumed stage path. From the animation method, the following conclusions are made. After the booster and the adapter move away from the research vehicle by 60% vehicle length, their effects on the research vehicle are confined to the wake flow of the research vehicle. The aerodynamic forces on the research vehicle converge to the values in free flight when the booster is away from the research vehicle by 1.77 times vehicle length. The aerodynamic interference is a highly nonlinear function in terms of the distance between the vehicle, the booster, and the adapter. Finally, two dynamic computations are performed when the booster and the adapter are extremely close to the research vehicle. It is observed from these 3-D dynamic computations that as the stage separation advances, the aerodynamic interference becomes less sensitive to further relative motions

    Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide

    Full text link
    A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes a promising system for the realization of single-photon transistors, quantum-logic gates based on giant single-photon nonlinearities, and high bit-rate deterministic single-photon sources. The key figure of merit for such devices is the β\beta-factor, which is the probability for an emitted single photon to be channeled into a desired waveguide mode. We report on the experimental achievement of β=98.43±0.04%\beta = 98.43 \pm 0.04\% for a quantum dot coupled to a photonic-crystal waveguide, corresponding to a single-emitter cooperativity of η=62.7±1.5\eta = 62.7 \pm 1.5. This constitutes a nearly ideal photon-matter interface where the quantum dot acts effectively as a 1D "artificial" atom, since it interacts almost exclusively with just a single propagating optical mode. The β\beta-factor is found to be remarkably robust to variations in position and emission wavelength of the quantum dots. Our work demonstrates the extraordinary potential of photonic-crystal waveguides for highly efficient single-photon generation and on-chip photon-photon interaction

    Computational Fluid Dynamics Methods Used in the Development of the Space Launch System Liftoff and Transition Lineloads Databases

    Get PDF
    The objective of this paper is to document the reasoning and trade studies that supported the selection of appropriate tools for constructing aerodynamic lineload databases for the Liftoff and Transition phases of flight for launch vehicles. These decisions were made amid the maturation of an evolving workflow for generating databases on variants of the Space Launch System launch vehicle, with most being based on results from brief developmental studies performed in response to specific, unforeseen challenges that were encountered in analyzing a given configuration. This report is intended to provide a summary of the results and the decision-making processes chronologically over the design cycles of various configurations, starting with isolated free-air bodies for the Block 1 Crew, then the Block 1B Crew and Cargo configurations, and most recently the Block 1B Crew configuration in proximity to the launch tower. The results from these analyses led to the selection of the CREATE-AV Kestrel flowsolver for simulating these problems. The need to accurately capture the expected leeward-wake flow field characteristics required the use of Delayed Detached Eddy Simulation (DDES) method, for which the vorticity magnitude was employed as the solution Adaptive Mesh Refinement (AMR) function over the off-body Cartesian grid region. In addition, the Spalart-Allmaras (SA) model is used to account for the flow turbulence effects

    Ein Gas-Kinetic Scheme Ansatz zur Modellierung und Simulation von Feuer auf massiv paralleler Hardware

    Get PDF
    This work presents a simulation approach based on a Gas Kinetic Scheme (GKS) for the simulation of fire that is implemented on massively parallel hardware in terms of Graphics Processing Units (GPU) in the framework of General Purpose computing on Graphics Processing Units (GPGPU). Gas kinetic schemes belong to the class of kinetic methods because their governing equation is the mesoscopic Boltzmann equation, rather than the macroscopic Navier-Stokes equations. Formally, kinetic methods have the advantage of a linear advection term which simplifies discretization. GKS inherently contains the full energy equation which is required for compressible flows. GKS provides a flux formulation derived from kinetic theory and is usually implemented as a finite volume method on cell-centered grids. In this work, we consider an implementation on nested Cartesian grids. To that end, a coupling algorithm for uniform grids with varying resolution was developed and is presented in this work. The limitation to local uniform Cartesian grids allows an efficient implementation on GPUs, which belong to the class of many core processors, i.e. massively parallel hardware. Multi-GPU support is also implemented and efficiency is enhanced by communication hiding. The fluid solver is validated for several two- and three-dimensional test cases including natural convection, turbulent natural convection and turbulent decay. It is subsequently applied to a study of boundary layer stability of natural convection in a cavity with differentially heated walls and large temperature differences. The fluid solver is further augmented by a simple combustion model for non-premixed flames. It is validated by comparison to experimental data for two different fire plumes. The results are further compared to the industry standard for fire simulation, i.e. the Fire Dynamics Simulator (FDS). While the accuracy of GKS appears slightly reduced as compared to FDS, a substantial speedup in terms of time to solution is found. Finally, GKS is applied to the simulation of a compartment fire. This work shows that the GKS has a large potential for efficient high performance fire simulations.Diese Arbeit präsentiert einen Simulationsansatz basierend auf einer gaskinetischen Methode (eng. Gas Kinetic Scheme, GKS) zur Simulation von Bränden, welcher für massiv parallel Hardware im Sinne von Grafikprozessoren (eng. Graphics Processing Units, GPUs) implementiert wurde. GKS gehört zur Klasse der kinetischen Methoden, die nicht die makroskopischen Navier-Stokes Gleichungen, sondern die mesoskopische Boltzmann Gleichung lösen. Formal haben kinetische Methoden den Vorteil, dass der Advektionsterms linear ist. Dies vereinfacht die Diskretisierung. In GKS ist die vollständige Energiegleichung, die zur Lösung kompressibler Strömungen benötigt wird, enthalten. GKS formuliert den Fluss von Erhaltungsgrößen basierend auf der gaskinetischen Theorie und wird meistens im Rahmen der Finiten Volumen Methode umgesetzt. In dieser Arbeit betrachten wir eine Implementierung auf gleichmäßigen Kartesischen Gittern. Dazu wurde ein Kopplungsalgorithmus für die Kombination von Gittern unterschiedlicher Auflösung entwickelt. Die Einschränkung auf lokal gleichmäßige Gitter erlaubt eine effiziente Implementierung auf GPUs, welche zur Klasse der massiv parallelen Hardware gehören. Des Weiteren umfasst die Implementierung eine Unterstützung für Multi-GPU mit versteckter Kommunikation. Der Strömungslöser ist für zwei und dreidimensionale Testfälle validiert. Dabei reichen die Tests von natürlicher Konvektion über turbulente Konvektion bis hin zu turbulentem Zerfall. Anschließend wird der Löser genutzt um die Grenzschichtstabilität in natürlicher Konvektion bei großen Temperaturunterschieden zu untersuchen. Darüber hinaus umfasst der Löser ein einfaches Verbrennungsmodell für Diffusionsflammen. Dieses wird durch Vergleich mit experimentellen Feuern validiert. Außerdem werden die Ergebnisse mit dem gängigen Brandsimulationsprogramm FDS (eng. Fire Dynamics Simulator) verglichen. Die Qualität der Ergebnisse ist dabei vergleichbar, allerdings ist der in dieser Arbeit entwickelte Löser deutlich schneller. Anschließend wird das GKS noch für die Simulation eines Raumbrandes angewendet. Diese Arbeit zeigt, dass GKS ein großes Potential für die Hochleistungssimulation von Feuer hat

    IFCPT S-Duct Grid-Adapted FUN3D Computations for the Third Propulsion Aerodynamics Works

    Get PDF
    Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted

    LightDock: a new multi-scale approach to protein–protein docking

    Get PDF
    Computational prediction of protein–protein complex structure by docking can provide structural and mechanistic insights for protein interactions of biomedical interest. However, current methods struggle with difficult cases, such as those involving flexible proteins, low-affinity complexes or transient interactions. A major challenge is how to efficiently sample the structural and energetic landscape of the association at different resolution levels, given that each scoring function is often highly coupled to a specific type of search method. Thus, new methodologies capable of accommodating multi-scale conformational flexibility and scoring are strongly needed. We describe here a new multi-scale protein–protein docking methodology, LightDock, capable of accommodating conformational flexibility and a variety of scoring functions at different resolution levels. Implicit use of normal modes during the search and atomic/coarse-grained combined scoring functions yielded improved predictive results with respect to state-of-the-art rigid-body docking, especially in flexible cases.B.J-G was supported by a FPI fellowship from the Spanish Ministry of Economy and Competitiveness. This work was supported by I+D+I Research Project grants BIO2013-48213-R and BIO2016-79930-R from the Spanish Ministry of Economy and Competitiveness. This work is partially supported by the European Union H2020 program through HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology (TIN2015-65316-P) and the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programaciói Entorns d’Execució Paral·lels (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Feasibility study of an explosive gun

    Get PDF
    Feasibility of high performance, explosively driven device, and calculations for deformable piston light gas gu

    Analysis, design, fabrication and testing of an optical tip clearance sensor

    Get PDF
    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed

    Communication-Avoiding Algorithms for a High-Performance Hyperbolic PDE Engine

    Get PDF
    The study of waves has always been an important subject of research. Earthquakes, for example, have a direct impact on the daily lives of millions of people while gravitational waves reveal insight into the composition and history of the Universe. These physical phenomena, despite being tackled traditionally by different fields of physics, have in common that they are modelled the same way mathematically: as a system of hyperbolic partial differential equations (PDEs). The ExaHyPE project (“An Exascale Hyperbolic PDE Engine") translates this similarity into a software engine that can be quickly adapted to simulate a wide range of hyperbolic partial differential equations. ExaHyPE’s key idea is that the user only specifies the physics while the engine takes care of the parallelisation and the interplay of the underlying numerical methods. Consequently, a first simulation code for a new hyperbolic PDE can often be realised within a few hours. This is a task that traditionally can take weeks, months, even years for researchers starting from scratch. My main contribution to ExaHyPE is the development of the core infrastructure. This comprises the development and implementation of ExaHyPE’s solvers and adaptive mesh refinement procedures, it’s MPI+X parallelisation as well as high-level aspects of ExaHyPE’s application-tailored code generation, which allows to adapt ExaHyPE to model many different hyperbolic PDE systems. Like any high-performance computing code, ExaHyPE has to tackle the challenges of the coming exascale computing era, notably network communication latencies and the growing memory wall. In this thesis, I propose memory-efficient realisations of ExaHyPE’s solvers that avoid data movement together with a novel task-based MPI+X parallelisation concept that allows to hide network communication behind computation in dynamically adaptive simulations
    • …
    corecore