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Abstract 
Motivation: Computational prediction of protein-protein complex structure by docking can provide 
structural and mechanistic insights for protein interactions of biomedical interest. However, current 
methods struggle with difficult cases, such as those involving flexible proteins, low-affinity complexes 
or transient interactions. A major challenge is how to efficiently sample the structural and energetic 
landscape of the association at different resolution levels, given that each scoring function is often 
highly coupled to a specific type of search method. Thus, new methodologies capable of accommodat-
ing multi-scale conformational flexibility and scoring are strongly needed. 
Results: We describe here a new multi-scale protein-protein docking methodology, LightDock, capable 
of accommodating conformational flexibility and a variety of scoring functions at different resolution 
levels. Implicit use of normal modes during the search and atomic/coarse-grained combined scoring 
functions yielded improved predictive results with respect to state-of-the-art rigid-body docking, espe-
cially in flexible cases.  
Availability: The source code of the software and installation instructions are available for download at 
https://life.bsc.es/pid/lightdock/ 
Contact: juanf@bsc.es (JFR) 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Protein-protein interactions are involved in virtually all cellular processes, 
such as protein expression regulation, cell-cycle control, or immune re-
sponse, among many others (Eisenberg et al., 2000). Characterizing such 
interactions at atomic level is of paramount importance to better under-
stand pathological conditions at molecular level. However, structural data 
at atomic resolution is only available for a tiny fraction of the estimated 
number of protein-protein complexes in human (Stumpf et al., 2008; Ven-
katesan et al., 2009; Mosca et al., 2013). In this context, computational 
docking is being increasingly applied for the structural modeling of pro-
tein-protein interactions, aiming to complement experimental methods. 
 
From a technical point of view, the docking problem presents two main 
challenges: the efficient sampling of the conformational and orientation 

space in search of near-native structures (sampling), and the identification 
of such near-native structures among the many models generated (scoring) 
(Moal and Bates, 2010). In most of the cases, the applicability of a given 
scoring function is strongly dependent on the sampling approaches used. 
The widely used Fast-Fourier Transform (FFT) based methods can effi-
ciently generate geometrically complementary rigid-body docking poses 
(Katchalski-Katzir et al., 1992; Gabb et al., 1997). Their main advantage 
is their high computational speed, which can be even further accelerated 
by using graphics processing units (GPU) (Ritchie and Venkatraman, 
2010). However, the inclusion of new scoring schemes within the FFT 
approach is difficult, since any extra atomic pairwise scoring function 
needs to be defined as one or more additional 3D grids, usually at a higher 
computational cost. Thus very often, it is more efficient to use external 
scoring functions, such as that in pyDock (Cheng et al., 2007). Another 
major limitation of the FFT grid-based methods is that they cannot explic-
itly consider conformational flexibility, although recently reported new 
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developments could alleviate some of these limitations (Padhorny et al., 
2016).  

 
Other docking methods are based on explicit representation of the inter-
acting proteins, using a larger variety of scoring functions at atomic or 
coarser-grained level. However, in the majority of the cases, these scoring 
functions are highly coupled to a specific sampling protocol. In addition, 
the computational cost of conformational search in atomistic representa-
tion is high, so in practice, these methods usually consist in an initial rigid-
body docking search, followed by an additional flexible refinement step 
(Fernández-Recio et al., 2003; Dominguez et al., 2003; Schueler-Furman 
et al., 2005). A few docking procedures consider flexibility during the en-
tire search phase, using a reduced representation of the conformational 
search space (Zacharias, 2003; May and Zacharias, 2008; Li et al., 2010). 

 
The development of new scoring functions that can be independently ap-
plied to different sets of docking models generated by a variety of docking 
methods is an active area of research (Brenke et al., 2012; Schneidman-
Duhovny et al., 2012; Moal and Moretti et al., 2013; Moal and Torchala 
et al., 2013). However, as above mentioned, the use of new scoring func-
tions in docking has been traditionally limited by the type of sampling 
method. On the one hand, grid-based docking search methods have diffi-
culties in efficiently including energy-based scoring functions. On the 
other hand, molecular dynamics, minimization or Monte-Carlo sampling 
methods usually are linked to a specific force-field and cannot easily ac-
cept new scoring schemes. It is thus necessary the development of new 
sampling schemes in docking that can use multi-scale representation of 
the proteins, accept flexibility at different degrees, and accommodate a 
large variety of new scoring functions. 

 
In this context, Swarm Intelligence (SI) is a family of the artificial intelli-
gence algorithms inspired by emergent systems in nature, which can per-
form a more efficient search in a complex space, quite independently on 
the scoring function to optimize. Basically, those algorithms make use of 
simple agents that interact locally in a decentralized way, and whose in-
teractions lead to complex emergent patterns or systems in nature, e.g. fish 
schooling or termite mounds. SI algorithms have been applied to protein-
protein docking, such as Particle Swarm Optimization (PSO) in 
SwarmDock (Li et al., 2010). Another algorithm is Glowworm Swarm 
Optimization (GSO) (Krishnanand and Ghose, 2008), a bio-inspired algo-
rithm from the SI family, which is based in the concept that in nature, 
glowworms are being attracted by other mates depending on the quantity 
of emitted light. This metaphor is used by the GSO algorithm for simulta-
neously capturing multiple local optima in multimodal functions. Each 
agent in the algorithm, a glowworm, carries out a quantity of luciferin 
which encodes the actual fitness of the position of the agent in the explored 
search space. The algorithm has been applied to many different problems 
(Krishnanand and Ghose, 2009; Liao et al., 2011; Huang and Zhou, 2011), 
but not explicitly to protein-protein docking. GSO has some advantages 
over PSO (Krishnanand and Ghose, 2008). First, while PSO was initially 
designed for capturing global minima or maxima, GSO was also intended 
for capturing multimodal local. This property is especially relevant when 
exploring the protein-protein docking energetic landscape, which tends to 
be very noisy. This can be overcome in ad-hoc PSO implementations, such 
as in SwarmDock  (Li et al., 2010), which has additional features effi-
ciently adapted to the docking problem and uses multiple trajectories to 
avoid focusing only on a single global minimum.  Moreover, in GSO the 
number of captured minima or maxima is proportional to the number of 
defined agents, while this is not true in PSO, which poses a major draw-
back in systems which are required to scale. On the contrary, the major 

drawback of GSO over PSO is the computation time, which tends to be 
one order of magnitude higher. 
 
Here in this work we show that GSO can capture the multiple local and 
global energetic minima of the docking energetic landscape, inde-
pendently from the force-field used. The new method shows robust per-
formance in very noisy environments, and good scalability (an interesting 
property in high-performance computing architectures), and has been de-
vised as a protein-protein docking framework for fast-prototyping and 
testing of new scoring functions. 

2 Methods 

2.1 LightDock: GSO algorithm applied to protein-protein 
docking 

The agents in the GSO algorithm are defined as glowworms which carry 
a luminescent quantity called luciferin. At each step of the simulation, the 
quantity of luciferin 𝑙𝑙 depends on the evaluation of the complex energy by 
the user-defined scoring 𝑆𝑆 function in the actual search space 𝑥𝑥 and the 
previous value of the luciferin based on the trajectory of the given glow-
worm (Eq. 1). Decay of the quantity of luciferin is controlled by the 𝜌𝜌 
variable, and 𝛾𝛾 represents the enhancement constant, i.e. how much affects 
the actual evaluation of the energy in the luciferin quantity. 
 

𝑙𝑙𝑖𝑖(𝑡𝑡 + 1) = (1− 𝜌𝜌) ⋅ 𝑙𝑙𝑖𝑖(𝑡𝑡) + 𝛾𝛾 ⋅ 𝑆𝑆�𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)�         (1) 
 
In LightDock, these parameters are defined by default as: 𝜌𝜌 = 0.4, 𝛾𝛾 =
0.6, initial luciferin 𝑙𝑙(0) = 5.0 (Krishnanand and Ghose, 2008). Each 
glowworm 𝑔𝑔𝑖𝑖 initially represents a specific position in the translational 
and rotational space of the ligand (Eq. 2), where 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦 and 𝑡𝑡𝑧𝑧 are the com-
ponents of the vector  𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑞𝑞𝑤𝑤, 𝑞𝑞𝑥𝑥, 𝑞𝑞𝑦𝑦 and 𝑞𝑞𝑧𝑧 are the 
components of the quaternion that represents the ligand rotation in the 
four-dimensional quaternions space. The use of quaternions needs fewer 
variables than rotation matrices, and avoids the known gimbal lock prob-
lem of sampling based on Euler angles or polar coordinates (Shoemake 
and Ken, 1985).  

𝑔𝑔𝑖𝑖 = �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧, 𝑞𝑞𝑤𝑤 ,𝑞𝑞𝑥𝑥,𝑞𝑞𝑦𝑦,𝑞𝑞𝑧𝑧�         (2) 
 
In addition, the framework has the capability of using the anisotropic net-
work model (ANM) (Doruker et al., 2000; Atilgan et al., 2001) to intro-
duce a certain degree of backbone flexibility during the protein-protein 
binding process. In this case, each glowworm agent represents, in addition 
to a translation/rotation ligand position, the extent of deformation along 
each non-trivial normal mode for the receptor, 𝑛𝑛𝑛𝑛, and the ligand, 𝑛𝑛𝑛𝑛, in 
the optimization vector (Eq. 3). The number of normal modes is customi-
zable for the receptor, 𝑅𝑅, and the ligand, 𝐿𝐿. 
 

𝑔𝑔𝑖𝑖 = �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧, 𝑞𝑞𝑤𝑤 ,𝑞𝑞𝑥𝑥,𝑞𝑞𝑦𝑦,𝑞𝑞𝑧𝑧,𝑛𝑛𝑟𝑟1..𝑅𝑅,𝑛𝑛𝑙𝑙1..𝐿𝐿�         (3) 
 
ANM is implemented in the LightDock framework via the ProDy Python 
library (Bakan et al., 2011). The ANM model is calculated on the 𝐶𝐶𝐶𝐶 at-
oms of the backbone of both receptor and ligand and then extended to the 
rest of atoms for each residue. By default, we considered the first ten non-
trivial normal modes (R = L = 10) because of the good compromise be-
tween the percentage of recovery in the interface as seen in (Moal and 
Bates, 2010) (55% in ten normal modes versus 44% for the first five non-
trivial normal modes) and the computation time required. 
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2.2 Initial receptor/ligand models (glowworms) 
Each independent simulation in a LightDock run will contain a fixed num-
ber of receptor/ligand models (glowworm swarm) in which the randomly 
defined ligand positions will cover a given region around the receptor. The 
initial ligand positions can show a certain overlapping between some of 
the swarms so that taking all together they will cover all regions around 
the receptor. The use of independent simulations from different swarms 
has important advantages. First, only the glowworms within the same 
swarm can see each other. In this way, the agents can only sample a local-
ized region of the receptor and thus can maximize the acquired infor-
mation by the swarm in this specific region of the search space. Second, it 
makes the algorithm to be embarrassingly parallel, with no need of com-
munication between parallel executions and facilitates the optimal execu-
tion of the algorithm in high-performance computing architectures or 
small clusters. Finally, by selecting the swarms centers to be used in the 
simulation, it offers the opportunity to the users to avoid regions that are 
known in advance not to be likely involved in binding, i.e. transmembrane 
domains, as opposed to many FFT-based methods where this filtering has 
to be performed a posteriori. 
 
The setup of the initial glowworm swarms is as follows. Initially, a fixed 
number of initial swarm centers Ns (by default 400) are defined around the 
receptor, by using the spiral method (Rakhmanov et al., 1994), and are 
projected using a ray-tracing technique to find the closest atom from the 
receptor at the distance of the maximum radius of the ligand. To guarantee 
a correct sampling over the surface, a certain density of these centers is 
needed (Supplementary Methods 1.1). For each initial swarm center, 
glowworms are defined by randomly positioning the ligands (by default 
300) so that their center of coordinates are placed within a 10Å radius 
sphere from the given swarm center (Fig. 1). LightDock framework can 
also support the use of pre-calculated ligand poses generated by FTDock 
(Gabb et al., 1997) (Supplementary Methods 1.2). 

Fig. 1. Initial glowworm swarms together with initial ligand positions. Tryptophan 
synthase α(2)β(2) complex (PDB code 1WDW). The receptor is shown in blue, 300 ligand 
random positions for a given glowworm swarm are represented using a three-axis arrows 
model (red, yellow and blue represent the x, y and z orthogonal axis), showing their initial 
translation and rotation. Orange points over the surface of the receptor represent the 400 
initial swarm centers. 

 
If ANM model is considered, deformational extents for receptor and lig-
and are randomly generated from a Gaussian distribution with 𝜇𝜇 = 4.0 and 
𝜎𝜎 = 3.0. To minimize over-fitting, these values were tested against a small 
set of only four complexes of the Protein-Protein Benchmark 3.0 (Hwang 
et al., 2008) that were classified as rigid in the mentioned benchmark. In-

tuitively, a relatively large value of 𝜎𝜎 is required to ensure some variabil-
ity, but 𝜇𝜇 centered in 0.0 does not seem to be a good choice according to 
our tests (data not shown), since the range of the normal mode extents 
generated is not sufficient to recover unbound-bound conformational 
changes. Other methods as ATTRACT (de Vries and Zacharias, 2013) and 
SwarmDock (Moal and Bates, 2010) reported similar values for the defor-
mational extents. 

2.3 GSO sampling 
As above described, sets of initial receptor/ligand putative models (glow-
worms) are defined for their use in independent simulations. Each given 
glowworm 𝑔𝑔𝑖𝑖 will move towards the best-scoring (luciferin) neighbor 
glowworm 𝑔𝑔𝑗𝑗 with a given probability 𝑝𝑝𝑖𝑖𝑖𝑖 (Eq. 4) (Krishnanand and 
Ghose, 2008),  

𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑙𝑙𝑗𝑗(𝑡𝑡)−𝑙𝑙𝑖𝑖(𝑡𝑡)
∑ 𝑙𝑙𝑘𝑘(𝑡𝑡)−𝑙𝑙𝑖𝑖(𝑡𝑡)𝑘𝑘∈𝑁𝑁𝑖𝑖(𝑡𝑡)

         (4) 

 
where the number of neighbor glowworms (𝑁𝑁𝑖𝑖) of glowworm 𝑔𝑔𝑖𝑖 is defined 
by its vision range distance (initially 𝑟𝑟𝑑𝑑𝑖𝑖 = 5.0 Å), limited by the maximum 
number of neighbors (by default 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 5). 
 
The distance in the search space between two receptor/ligand models 
(glowworms) used to update this list of neighbors (𝑁𝑁𝑖𝑖) is computed as that 
between the centers of the minimum ellipsoids of the ligands (translation 
and rotation of the receptors does not vary). Other definitions of distance 
based on RMSD did not improve sampling (Supplementary Methods 1.3). 
The vision range of each glowworm 𝑟𝑟𝑑𝑑𝑖𝑖  is dynamically updated at each 
step (Eq. 5) (Krishnanand and Ghose, 2008) up to a maximum vision range 
(by default 𝑟𝑟𝑠𝑠 = 20.0 Å),  
 

𝑟𝑟𝑑𝑑𝑖𝑖(𝑡𝑡 + 1) =  𝑚𝑚𝑚𝑚𝑚𝑚 �𝑟𝑟𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚�0, 𝑟𝑟𝑑𝑑𝑖𝑖(𝑡𝑡) + 𝛽𝛽(𝑛𝑛𝑡𝑡 − |𝑁𝑁𝑖𝑖(𝑡𝑡)|)��      (5) 
 
where the 𝛽𝛽 parameter indicates how the vision range depends on the num-
ber of neighbors in the GSO algorithm (by default 𝛽𝛽 = 0.16). 
 
The evolution from one ligand pose (initial glowworm 𝑔𝑔𝑖𝑖) towards another 
one (target glowworm 𝑔𝑔𝑗𝑗) is composed of two different movements: a 
translation in the Cartesian space and a rotation in the space of the quater-
nions. Within the translational space, a new pose will be built from the 
initial pose by applying a number from the interval (0, 1) as defined in the 
translation step variable (by default 0.5) to the translation vector 𝑡𝑡𝑖𝑖𝑖𝑖  be-
tween 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗. As for the rotational movement, the movement in the 
quaternion space is calculated using the spherical linear interpolation 
(SLERP) (Morrison and Jack, 1992) between the quaternion components 
of 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗 with a default step of 0.5. In the case of using the ANM rep-
resentation, a simple interpolation in Euclidean space with a step of 0.5 
will be included in both receptor and ligand values. All of these step values 
can be changed by the users.  

2.4 Scoring functions 
The movement of the different agents though the search space is driven by 
the fitness of the scoring function 𝑆𝑆 (which defines the quantity of lucif-
erin; Eq. 1). The GSO algorithm is able to optimize the function as long 
as the agents are uniformly distributed along the search space. In that 
sense, the optimization method is independent from the search space and 
makes the strategy valid for any scoring function used. LightDock frame-
work offers the possibility to add new scoring functions abstracting the 
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way of how molecules are considered. In particular, users can easily spec-
ify their own protein models (full atoms or coarse grained) through the 
Adapter class. In the movement step, the model will be rotated and trans-
lated and there will be a new class coded by the user, the evaluation mod-
ule, the one in charge of evaluating the fitness of the scoring function. To 
demonstrate the possibilities of the framework regarding further exten-
sion, nine scoring functions have been implemented (see Results). 
 
The program allows the combination of two or more scoring functions, 
even if they are defined at different resolution levels. It only requires from 
the user a file containing, for each line, the name of the scoring function 
already implemented in LightDock and the weight of the function. For 
each simulation step, each scoring function is evaluated and the scoring 
function 𝑆𝑆 is the result of the linear combination of the selected individual 
scoring functions. 

2.5 Clustering of final docking poses 
The resulting models from each independent simulation (by default 300) 
are merged and clustered. Clustering plays an essential role in the final 
success rate independently of the scoring function applied, since it re-
moves redundant models. We applied a simple clustering procedure based 
on the Basic Sequential Algorithmic Scheme (BSAS) algorithm (The-
odoridis and Koutroumbas, 2008), which is devised to be able to discard 
redundant poses with a ligand RMSD below 4 Å. First, the best docking 
pose, in terms of energy, is identified, thus establishing the first sub-clus-
ter. Then, and sequentially, the rest of receptor-ligand complexes are 
structurally evaluated against the already clustered poses. If their ligand 
RMSD is within 4 Å from any of the cluster representatives, they will be 
included in that cluster, otherwise they will establish a new one. The final 
representative of each cluster corresponds to the structure with the best 
energy. 
 
Another hierarchical method (Supplementary Methods 1.4) was tested on 
the cases of the Protein-Protein Docking Benchmark version 5.0 (Vreven 
et al., 2015), but it yielded worse performance based on the ratio of near 
native solutions versus the number of total predictions. 

3 Results and Discussion 

3.1 Overall predictive performance of LightDock 
The predictive performance of LightDock was tested on the Protein-Pro-
tein Docking Benchmark 5.0, composed of a total of 230 complexes. The 
predictive success rates were based on the percentage of cases in which at 
least one near-native solution was found within the top N solutions (N = 
10, 100), as ranked according to the corresponding scoring function. Near-
native solutions were defined as those ones with a ligand RMSD < 10 Å 
with respect to the ligand position in the reference structure (when recep-
tor molecules are superimposed). We tested the performance of LightDock 
(using default parameters; see Methods) with DFIRE (Zhou and Zhou, 
2002) scoring function (LightDock-DFIRE), as well as that of LightDock 
with a faster implementation of the pyDock (Cheng et al., 2007) scoring 
function (Supplementary Methods 1.6) called pyDockLite (LightDock-
pyDockLite). For each docking case, LightDock generated a total of 
120,000 poses, which were clustered as described in the Methods section. 
After clustering, the final number of docking models obtained by 
LightDock-pyDockLite ranged between 600 (PDB 1CLV) and 6,387 
(PDB 1DE4), and near-native poses were found in 70% of the cases. In 

LightDock-DFIRE, the total number of docking models ranged between 
748 (PDB 1CLV) and 6,713 (PDB 1AKJ), and near-native poses were 
found in 75% of the cases. 
 
As a further test, docking simulations on the same complex using different 
scoring functions were combined in order to capture different near-native 
predictions. With this purpose, all the models independently generated by 
LightDock-DFIRE or by LightDock-pyDockLite were merged and re-
scored by pyDock scoring function (i.e. combination of LightDock-
DFIRE/pyDock and LightDock-pyDockLite/pyDock). The scoring func-
tion in pyDock has shown excellent performance in the scorers round of 
the CAPRI community-wide experiment (Pallara et al., 2013; Lensink et 
al., 2016), and it is sufficiently fast not to become an overhead in the total 
computation time of LightDock.  
 
As can be seen in Fig. 2A, the use of pyDockLite scoring function within 
LightDock showed better success rates for the top 10 docking solutions 
than when using the DFIRE scoring function. The performance of 
LightDock-pyDockLite is only slightly worse than that of pyDock applied 
on FTDock docking models (FTDock/pyDock), as in pyDock server (Ji-
ménez-Garcia et al., 2013).  For the top 100 success rates (Fig S3A), this 

Fig. 2. Predictive success rates for LightDock on the Protein-Protein Docking 
Benchmark 5.0, n = 230. (A) Success rates for the top 10 docking models are shown for: 
LightDock-pyDockLite (blue), LightDock-DFIRE (orange), LightDock-
pyDockLite/pyDock (grey), LightDock-DFIRE/pyDock (yellow), combination of 
LightDock-pyDockLite/pyDock and LightDock-DFIRE/pyDock (purple). For comparison, 
the performance of the standard protein-protein docking protocols FTDock/pyDock (green) 
and ZDock 3.0.2 (red) are shown. (B) Top 10 success rates are shown according to 
unbound-to-bound conformational changes. 
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difference in performance between LightDock-pyDockLite and 
LightDock-DFIRE scoring functions is higher, and interestingly, 
LightDock-pyDockLite top 100 success rate is even slightly better than 
that of the standard FTDock/pyDock.  
 
Interestingly, the number of successful cases after pyDock rescoring in-
creased for both methods. The improvement was more evident for 
LightDock-DFIRE models, which after re-scoring with pyDock 
(LightDock-DFIRE/pyDock), achieved success rates similar to 
LightDock-pyDockLite. This shows that the differences in the success 
rates when using pyDockLite or DFIRE as scoring function during the 
search mainly depended on the scoring of the resulting models, and not on 
the search algorithm itself, given that sampling, even with DFIRE, was 
able to provide good models that were later identified by pyDock re-scor-
ing. When combining the docking models obtained from the two 
LightDock versions, and subsequent re-scoring by pyDock, global success 
rates (19% for top 10; 44% for top 100) slightly improved with respect to 
the individual simulations, and were even better than those of standard 
pyDock on FTDock models (Fig. 2A). To explore whether these results 
by LightDock were due to the above mentioned clustering step, we applied 
the same clustering method to FTDock docking poses prior to pyDock 
scoring, but the results did not significantly change (data not shown). For 
the sake of comparison, we checked that top 10 performance of state-of-
the-art ZDock 3.0.2 (Pierce et al., 2011) was only slightly better than the 
combination of LightDock-pyDockLite/pyDock and LightDock-
DFIRE/pyDock (Fig. 2A), but top 100 performance was clearly worse 
(Fig. S3A). However, we should note that this small improvement comes 
at the expense of doubling the computational cost, since two independent 
simulations are needed. 
 
Preliminary tests on the use of two scoring functions during search have 
shown an improvement over the results when using the individual scoring 
schemes (data not shown). Although further analyses are needed, this 
opens new possibilities for the efficient combination of different multi-
scale models within LightDock protocol.  

3.2 LightDock is more efficient in flexible cases 
It is interesting to analyze whether the performance of LightDock (with 
different scoring functions) depends on the flexibility of the interacting 
proteins. For that, we have classified the cases, according to the RMSD of 
the interface Cα atoms (I-RMSDCα) between the unbound and bound 
states (as defined in the Protein-Protein Docking Benchmark 5.0), in the 
following categories: rigid (I-RMSDCα < 0.5 Å), low-flexible (0.5 Å < I-
RMSDCα < 1.0 Å), medium-flexible (1.0 Å < I-RMSDCα < 2.0 Å), flex-
ible (2.0 Å < I-RMSDCα < 3.0 Å) and highly-flexible (I-RMSDCα > 3.0 
Å). LightDock-pyDockLite performs better in the low-flexible cases (Fig. 
2B), while the standard FTDock/pyDock or ZDock protocols were more 
successful in the rigid cases. The introduction of the ANM representation 
is probably improving the predictions in the more flexible cases, but at the 
expense of worsening the results in the rigid cases (due to the introduction 
of some noise in the already good geometries). Strikingly, LightDock-
DFIRE showed its best results in the rigid cases, as in rigid-body 
FTDock/pyDock. It seems that the DFIRE scoring function cannot take 
advantage of the ANM model in the more flexible cases, perhaps due to 
the more coarse-grained character of the potentials. When both approaches 
are rescored with pyDock, these tendencies remain, which suggests that 

the scoring function imposed some differences in the ANM-based confor-
mational search. Results for top 100 show a similar fashion compared to 
top 10 (S3 Fig).  
 
The use of ANM-based flexibility aims to provide better predicted models. 
To evaluate this, we tested a version of LightDock that did not use the 
ANM model, being thus completely rigid-body sampling, on a heteroge-
neous set of 30 complexes (6 rigid, 17 low-flexible, 5 medium-flexible 
and 2 flexible) from the Protein-Protein Benchmark 5.0. The success rates 
were much worse (10% for top 10; 20% for top 100; as compared to 17% 
and 27%, respectively, when using ANM and LightDock-DFIRE option). 
Interestingly, the analysis by category of flexibility shows that there is no 
difference between the use of ANM in the rigid-body class (17% for top 
10 and top 100, using or not ANM), but the difference of success rate 
comes from an improvement in the low-flexible and medium-flexible cat-
egories for both top 10 and top 100 results. This improvement provided 
by ANM is in the same range as that reported for other state of the art 
methods that use normal mode analysis (Moal and Bates, 2010; de Vries 
and Zacharias, 2013). 

3.3 Extending the framework to multi-scale 
Seven additional scoring functions have been implemented in the frame-
work (see Supplementary Methods 1.5 for more details on defining new 
scoring functions) as a demonstration of the capabilities of LightDock for 
being extended with new scoring functions: DFIRE2 (Yang and Zhou, 
2008), MJ3h (Miyazawa et al., 1999), PISA (Viswanath et al., 2013), 
TOBI (Tobi and Bahar, 2006), SIPPER (Pons et al., 2011), a truncated van 
der Waals scoring as defined in pyDock (Cheng et al., 2007) and the 
SwarmDock scoring energy (Moal and Bates, 2010) with electrostatics 
and van der Waals charges from AMBER force-field. Several other op-
tions are supported by the framework. For instance, local energy optimi-
zation using a non-gradient algorithm has been implemented. For each 
swarm and each step, the best glowworm in terms of scoring energy is 
minimized using this non-gradient algorithm. This strategy should help 
the algorithm to converge in fewer steps (data not shown). 
 
On the other hand, the LightDock framework includes the option of using 
pre-calculated conformational ensembles, in which case each structure for 
receptor and ligand is identified by a unique identifier that is added to the 
optimization vector. For the future, a clearer strategy to define the distance 
between two conformers is needed so that it can be more efficiently used 
when one of the glowworms is moving towards the other one. The search 
could be optimized by maintaining a global list of the most successful or 
used conformers for receptor and ligand, and then use it to define a prob-
ability for selecting a given conformer. 
 
Multi-scale chained simulations are currently supported by the frame-
work. One possible strategy is to perform a first run of the LightDock pro-
tocol using a given scoring function and then, after identifying the best 
energy wells, the predictions could be expanded by a new LightDock run, 
using the same scoring function or a different one, with finer sampling 
parameters for instance. In this way, a first quick run could be performed 
with a coarse-grained force-field, which can be followed by a more accu-
rate refinement using a full-atom scoring function. As mentioned before, 
LightDock also supports the use of multiple weighted scoring functions 
upon search, which opens the protocol to the use of multi-scale models at 
the sampling process. For example, coarse-grained models could be com-
bined with full-atomistic models for a better sampling of the energetic 
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landscape. This approach would be only limited by computational re-
sources. 
 
Finally, the framework includes more than 200 unit tests and more than 
10 regression tests from point to point to guarantee a good testing coverage 
of the code, and additional usage examples to users who aim to extend the 
framework. 

3.4 Computational performance 
Optimizations at the level of the scoring function (the most time-consum-
ing part) were performed using the Python C extensions mechanism. The 
average computation time for all the 230 complexes in the Protein-Protein 
Docking Benchmark 5.0 using DFIRE scoring function and 400 CPU 
cores (1 core per swarm) is of 1.5 hours, while for pyDockLite scoring 
function is of 2.0 hours in the same conditions. For demonstration pur-
poses, some scoring functions are provided in native Python, Cython 
(www.cython.org) and Python/C versions. In addition, LightDock is im-
plemented using multicore and MPI Python libraries, and the algorithm is 
embarrassingly parallel, which means that can ideally scale proportional 
to the number of CPU cores used. 

4 Conclusions 
We have presented here a new protein-protein docking protocol called 
LightDock, which is based on the GSO algorithm for sampling the trans-
lational and rotational space of protein-protein docking, and ANM repre-
sentation for the inclusion of flexibility. LightDock aims to be a publicly 
available framework for testing and developing new scoring strategies for 
protein-protein docking. The use of pyDockLite scoring function during 
the search provides comparable success rates to state-of-the-art protocols, 
and the combination with additional functions, like DFIRE, can further 
improve the predictions. This multi-scale docking framework has capabil-
ities for the use of many different scoring functions (alone or in combina-
tion) and the inclusion of flexibility at different resolution levels.   
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