
Bioinformatics, YYYY, 0–0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Manuscript Category

Original Paper

LightDock: A New Multi-Scale Approach to Pro-
tein-protein Docking
Brian Jiménez-García1, Jorge Roel-Touris1, Miguel Romero-Durana1, Miquel
Vidal1, Daniel Jiménez-González1,2 and Juan Fernández-Recio1,3*
1 Barcelona Supercomputing Center (BSC), Barcelona, Spain, 2 Universitat Politècnica de Catalunya,
Barcelona, Spain, 3 IBMB-CSIC, Barcelona, Spain,

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: Computational prediction of protein-protein complex structure by docking can provide
structural and mechanistic insights for protein interactions of biomedical interest. However, current
methods struggle with difficult cases, such as those involving flexible proteins, low-affinity complexes
or transient interactions. A major challenge is how to efficiently sample the structural and energetic
landscape of the association at different resolution levels, given that each scoring function is often
highly coupled to a specific type of search method. Thus, new methodologies capable of accommodat-
ing multi-scale conformational flexibility and scoring are strongly needed.
Results: We describe here a new multi-scale protein-protein docking methodology, LightDock, capable
of accommodating conformational flexibility and a variety of scoring functions at different resolution
levels. Implicit use of normal modes during the search and atomic/coarse-grained combined scoring
functions yielded improved predictive results with respect to state-of-the-art rigid-body docking, espe-
cially in flexible cases.
Availability: The source code of the software and installation instructions are available for download at
https://life.bsc.es/pid/lightdock/
Contact: juanf@bsc.es (JFR)
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Protein-protein interactions are involved in virtually all cellular processes,
such as protein expression regulation, cell-cycle control, or immune re-
sponse, among many others (Eisenberg et al., 2000). Characterizing such
interactions at atomic level is of paramount importance to better under-
stand pathological conditions at molecular level. However, structural data
at atomic resolution is only available for a tiny fraction of the estimated
number of protein-protein complexes in human (Stumpf et al., 2008; Ven-
katesan et al., 2009; Mosca et al., 2013). In this context, computational
docking is being increasingly applied for the structural modeling of pro-
tein-protein interactions, aiming to complement experimental methods.

From a technical point of view, the docking problem presents two main
challenges: the efficient sampling of the conformational and orientation

space in search of near-native structures (sampling), and the identification
of such near-native structures among the many models generated (scoring)
(Moal and Bates, 2010). In most of the cases, the applicability of a given
scoring function is strongly dependent on the sampling approaches used.
The widely used Fast-Fourier Transform (FFT) based methods can effi-
ciently generate geometrically complementary rigid-body docking poses
(Katchalski-Katzir et al., 1992; Gabb et al., 1997). Their main advantage
is their high computational speed, which can be even further accelerated
by using graphics processing units (GPU) (Ritchie and Venkatraman,
2010). However, the inclusion of new scoring schemes within the FFT
approach is difficult, since any extra atomic pairwise scoring function
needs to be defined as one or more additional 3D grids, usually at a higher
computational cost. Thus very often, it is more efficient to use external
scoring functions, such as that in pyDock (Cheng et al., 2007). Another
major limitation of the FFT grid-based methods is that they cannot explic-
itly consider conformational flexibility, although recently reported new

B.Jiménez-García et al.

developments could alleviate some of these limitations (Padhorny et al.,
2016).

Other docking methods are based on explicit representation of the inter-
acting proteins, using a larger variety of scoring functions at atomic or
coarser-grained level. However, in the majority of the cases, these scoring
functions are highly coupled to a specific sampling protocol. In addition,
the computational cost of conformational search in atomistic representa-
tion is high, so in practice, these methods usually consist in an initial rigid-
body docking search, followed by an additional flexible refinement step
(Fernández-Recio et al., 2003; Dominguez et al., 2003; Schueler-Furman
et al., 2005). A few docking procedures consider flexibility during the en-
tire search phase, using a reduced representation of the conformational
search space (Zacharias, 2003; May and Zacharias, 2008; Li et al., 2010).

The development of new scoring functions that can be independently ap-
plied to different sets of docking models generated by a variety of docking
methods is an active area of research (Brenke et al., 2012; Schneidman-
Duhovny et al., 2012; Moal and Moretti et al., 2013; Moal and Torchala
et al., 2013). However, as above mentioned, the use of new scoring func-
tions in docking has been traditionally limited by the type of sampling
method. On the one hand, grid-based docking search methods have diffi-
culties in efficiently including energy-based scoring functions. On the
other hand, molecular dynamics, minimization or Monte-Carlo sampling
methods usually are linked to a specific force-field and cannot easily ac-
cept new scoring schemes. It is thus necessary the development of new
sampling schemes in docking that can use multi-scale representation of
the proteins, accept flexibility at different degrees, and accommodate a
large variety of new scoring functions.

In this context, Swarm Intelligence (SI) is a family of the artificial intelli-
gence algorithms inspired by emergent systems in nature, which can per-
form a more efficient search in a complex space, quite independently on
the scoring function to optimize. Basically, those algorithms make use of
simple agents that interact locally in a decentralized way, and whose in-
teractions lead to complex emergent patterns or systems in nature, e.g. fish
schooling or termite mounds. SI algorithms have been applied to protein-
protein docking, such as Particle Swarm Optimization (PSO) in
SwarmDock (Li et al., 2010). Another algorithm is Glowworm Swarm
Optimization (GSO) (Krishnanand and Ghose, 2008), a bio-inspired algo-
rithm from the SI family, which is based in the concept that in nature,
glowworms are being attracted by other mates depending on the quantity
of emitted light. This metaphor is used by the GSO algorithm for simulta-
neously capturing multiple local optima in multimodal functions. Each
agent in the algorithm, a glowworm, carries out a quantity of luciferin
which encodes the actual fitness of the position of the agent in the explored
search space. The algorithm has been applied to many different problems
(Krishnanand and Ghose, 2009; Liao et al., 2011; Huang and Zhou, 2011),
but not explicitly to protein-protein docking. GSO has some advantages
over PSO (Krishnanand and Ghose, 2008). First, while PSO was initially
designed for capturing global minima or maxima, GSO was also intended
for capturing multimodal local. This property is especially relevant when
exploring the protein-protein docking energetic landscape, which tends to
be very noisy. This can be overcome in ad-hoc PSO implementations, such
as in SwarmDock (Li et al., 2010), which has additional features effi-
ciently adapted to the docking problem and uses multiple trajectories to
avoid focusing only on a single global minimum. Moreover, in GSO the
number of captured minima or maxima is proportional to the number of
defined agents, while this is not true in PSO, which poses a major draw-
back in systems which are required to scale. On the contrary, the major

drawback of GSO over PSO is the computation time, which tends to be
one order of magnitude higher.

Here in this work we show that GSO can capture the multiple local and
global energetic minima of the docking energetic landscape, inde-
pendently from the force-field used. The new method shows robust per-
formance in very noisy environments, and good scalability (an interesting
property in high-performance computing architectures), and has been de-
vised as a protein-protein docking framework for fast-prototyping and
testing of new scoring functions.

2 Methods

2.1 LightDock: GSO algorithm applied to protein-protein
docking

The agents in the GSO algorithm are defined as glowworms which carry
a luminescent quantity called luciferin. At each step of the simulation, the
quantity of luciferin 𝑙𝑙 depends on the evaluation of the complex energy by
the user-defined scoring 𝑆𝑆 function in the actual search space 𝑥𝑥 and the
previous value of the luciferin based on the trajectory of the given glow-
worm (Eq. 1). Decay of the quantity of luciferin is controlled by the 𝜌𝜌
variable, and 𝛾𝛾 represents the enhancement constant, i.e. how much affects
the actual evaluation of the energy in the luciferin quantity.

𝑙𝑙𝑖𝑖(𝑡𝑡 + 1) = (1− 𝜌𝜌) ⋅ 𝑙𝑙𝑖𝑖(𝑡𝑡) + 𝛾𝛾 ⋅ 𝑆𝑆�𝑥𝑥𝑖𝑖(𝑡𝑡 + 1)� (1)

In LightDock, these parameters are defined by default as: 𝜌𝜌 = 0.4, 𝛾𝛾 =
0.6, initial luciferin 𝑙𝑙(0) = 5.0 (Krishnanand and Ghose, 2008). Each
glowworm 𝑔𝑔𝑖𝑖 initially represents a specific position in the translational
and rotational space of the ligand (Eq. 2), where 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦 and 𝑡𝑡𝑧𝑧 are the com-
ponents of the vector 𝑣𝑣𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑞𝑞𝑤𝑤, 𝑞𝑞𝑥𝑥, 𝑞𝑞𝑦𝑦 and 𝑞𝑞𝑧𝑧 are the
components of the quaternion that represents the ligand rotation in the
four-dimensional quaternions space. The use of quaternions needs fewer
variables than rotation matrices, and avoids the known gimbal lock prob-
lem of sampling based on Euler angles or polar coordinates (Shoemake
and Ken, 1985).

𝑔𝑔𝑖𝑖 = �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧, 𝑞𝑞𝑤𝑤 ,𝑞𝑞𝑥𝑥,𝑞𝑞𝑦𝑦,𝑞𝑞𝑧𝑧� (2)

In addition, the framework has the capability of using the anisotropic net-
work model (ANM) (Doruker et al., 2000; Atilgan et al., 2001) to intro-
duce a certain degree of backbone flexibility during the protein-protein
binding process. In this case, each glowworm agent represents, in addition
to a translation/rotation ligand position, the extent of deformation along
each non-trivial normal mode for the receptor, 𝑛𝑛𝑛𝑛, and the ligand, 𝑛𝑛𝑛𝑛, in
the optimization vector (Eq. 3). The number of normal modes is customi-
zable for the receptor, 𝑅𝑅, and the ligand, 𝐿𝐿.

𝑔𝑔𝑖𝑖 = �𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧, 𝑞𝑞𝑤𝑤 ,𝑞𝑞𝑥𝑥,𝑞𝑞𝑦𝑦,𝑞𝑞𝑧𝑧,𝑛𝑛𝑟𝑟1..𝑅𝑅,𝑛𝑛𝑙𝑙1..𝐿𝐿� (3)

ANM is implemented in the LightDock framework via the ProDy Python
library (Bakan et al., 2011). The ANM model is calculated on the 𝐶𝐶𝐶𝐶 at-
oms of the backbone of both receptor and ligand and then extended to the
rest of atoms for each residue. By default, we considered the first ten non-
trivial normal modes (R = L = 10) because of the good compromise be-
tween the percentage of recovery in the interface as seen in (Moal and
Bates, 2010) (55% in ten normal modes versus 44% for the first five non-
trivial normal modes) and the computation time required.

LightDock: A New Multi-Scale Approach to Protein-protein Docking

2.2 Initial receptor/ligand models (glowworms)
Each independent simulation in a LightDock run will contain a fixed num-
ber of receptor/ligand models (glowworm swarm) in which the randomly
defined ligand positions will cover a given region around the receptor. The
initial ligand positions can show a certain overlapping between some of
the swarms so that taking all together they will cover all regions around
the receptor. The use of independent simulations from different swarms
has important advantages. First, only the glowworms within the same
swarm can see each other. In this way, the agents can only sample a local-
ized region of the receptor and thus can maximize the acquired infor-
mation by the swarm in this specific region of the search space. Second, it
makes the algorithm to be embarrassingly parallel, with no need of com-
munication between parallel executions and facilitates the optimal execu-
tion of the algorithm in high-performance computing architectures or
small clusters. Finally, by selecting the swarms centers to be used in the
simulation, it offers the opportunity to the users to avoid regions that are
known in advance not to be likely involved in binding, i.e. transmembrane
domains, as opposed to many FFT-based methods where this filtering has
to be performed a posteriori.

The setup of the initial glowworm swarms is as follows. Initially, a fixed
number of initial swarm centers Ns (by default 400) are defined around the
receptor, by using the spiral method (Rakhmanov et al., 1994), and are
projected using a ray-tracing technique to find the closest atom from the
receptor at the distance of the maximum radius of the ligand. To guarantee
a correct sampling over the surface, a certain density of these centers is
needed (Supplementary Methods 1.1). For each initial swarm center,
glowworms are defined by randomly positioning the ligands (by default
300) so that their center of coordinates are placed within a 10Å radius
sphere from the given swarm center (Fig. 1). LightDock framework can
also support the use of pre-calculated ligand poses generated by FTDock
(Gabb et al., 1997) (Supplementary Methods 1.2).

Fig. 1. Initial glowworm swarms together with initial ligand positions. Tryptophan
synthase α(2)β(2) complex (PDB code 1WDW). The receptor is shown in blue, 300 ligand
random positions for a given glowworm swarm are represented using a three-axis arrows
model (red, yellow and blue represent the x, y and z orthogonal axis), showing their initial
translation and rotation. Orange points over the surface of the receptor represent the 400
initial swarm centers.

If ANM model is considered, deformational extents for receptor and lig-
and are randomly generated from a Gaussian distribution with 𝜇𝜇 = 4.0 and
𝜎𝜎 = 3.0. To minimize over-fitting, these values were tested against a small
set of only four complexes of the Protein-Protein Benchmark 3.0 (Hwang
et al., 2008) that were classified as rigid in the mentioned benchmark. In-

tuitively, a relatively large value of 𝜎𝜎 is required to ensure some variabil-
ity, but 𝜇𝜇 centered in 0.0 does not seem to be a good choice according to
our tests (data not shown), since the range of the normal mode extents
generated is not sufficient to recover unbound-bound conformational
changes. Other methods as ATTRACT (de Vries and Zacharias, 2013) and
SwarmDock (Moal and Bates, 2010) reported similar values for the defor-
mational extents.

2.3 GSO sampling
As above described, sets of initial receptor/ligand putative models (glow-
worms) are defined for their use in independent simulations. Each given
glowworm 𝑔𝑔𝑖𝑖 will move towards the best-scoring (luciferin) neighbor
glowworm 𝑔𝑔𝑗𝑗 with a given probability 𝑝𝑝𝑖𝑖𝑖𝑖 (Eq. 4) (Krishnanand and
Ghose, 2008),

𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑙𝑙𝑗𝑗(𝑡𝑡)−𝑙𝑙𝑖𝑖(𝑡𝑡)
∑ 𝑙𝑙𝑘𝑘(𝑡𝑡)−𝑙𝑙𝑖𝑖(𝑡𝑡)𝑘𝑘∈𝑁𝑁𝑖𝑖(𝑡𝑡)

 (4)

where the number of neighbor glowworms (𝑁𝑁𝑖𝑖) of glowworm 𝑔𝑔𝑖𝑖 is defined
by its vision range distance (initially 𝑟𝑟𝑑𝑑𝑖𝑖 = 5.0 Å), limited by the maximum
number of neighbors (by default 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 5).

The distance in the search space between two receptor/ligand models
(glowworms) used to update this list of neighbors (𝑁𝑁𝑖𝑖) is computed as that
between the centers of the minimum ellipsoids of the ligands (translation
and rotation of the receptors does not vary). Other definitions of distance
based on RMSD did not improve sampling (Supplementary Methods 1.3).
The vision range of each glowworm 𝑟𝑟𝑑𝑑𝑖𝑖 is dynamically updated at each
step (Eq. 5) (Krishnanand and Ghose, 2008) up to a maximum vision range
(by default 𝑟𝑟𝑠𝑠 = 20.0 Å),

𝑟𝑟𝑑𝑑𝑖𝑖(𝑡𝑡 + 1) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑟𝑟𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚�0, 𝑟𝑟𝑑𝑑𝑖𝑖(𝑡𝑡) + 𝛽𝛽(𝑛𝑛𝑡𝑡 − |𝑁𝑁𝑖𝑖(𝑡𝑡)|)�� (5)

where the 𝛽𝛽 parameter indicates how the vision range depends on the num-
ber of neighbors in the GSO algorithm (by default 𝛽𝛽 = 0.16).

The evolution from one ligand pose (initial glowworm 𝑔𝑔𝑖𝑖) towards another
one (target glowworm 𝑔𝑔𝑗𝑗) is composed of two different movements: a
translation in the Cartesian space and a rotation in the space of the quater-
nions. Within the translational space, a new pose will be built from the
initial pose by applying a number from the interval (0, 1) as defined in the
translation step variable (by default 0.5) to the translation vector 𝑡𝑡𝑖𝑖𝑖𝑖 be-
tween 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗. As for the rotational movement, the movement in the
quaternion space is calculated using the spherical linear interpolation
(SLERP) (Morrison and Jack, 1992) between the quaternion components
of 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗 with a default step of 0.5. In the case of using the ANM rep-
resentation, a simple interpolation in Euclidean space with a step of 0.5
will be included in both receptor and ligand values. All of these step values
can be changed by the users.

2.4 Scoring functions
The movement of the different agents though the search space is driven by
the fitness of the scoring function 𝑆𝑆 (which defines the quantity of lucif-
erin; Eq. 1). The GSO algorithm is able to optimize the function as long
as the agents are uniformly distributed along the search space. In that
sense, the optimization method is independent from the search space and
makes the strategy valid for any scoring function used. LightDock frame-
work offers the possibility to add new scoring functions abstracting the

B.Jiménez-García et al.

way of how molecules are considered. In particular, users can easily spec-
ify their own protein models (full atoms or coarse grained) through the
Adapter class. In the movement step, the model will be rotated and trans-
lated and there will be a new class coded by the user, the evaluation mod-
ule, the one in charge of evaluating the fitness of the scoring function. To
demonstrate the possibilities of the framework regarding further exten-
sion, nine scoring functions have been implemented (see Results).

The program allows the combination of two or more scoring functions,
even if they are defined at different resolution levels. It only requires from
the user a file containing, for each line, the name of the scoring function
already implemented in LightDock and the weight of the function. For
each simulation step, each scoring function is evaluated and the scoring
function 𝑆𝑆 is the result of the linear combination of the selected individual
scoring functions.

2.5 Clustering of final docking poses
The resulting models from each independent simulation (by default 300)
are merged and clustered. Clustering plays an essential role in the final
success rate independently of the scoring function applied, since it re-
moves redundant models. We applied a simple clustering procedure based
on the Basic Sequential Algorithmic Scheme (BSAS) algorithm (The-
odoridis and Koutroumbas, 2008), which is devised to be able to discard
redundant poses with a ligand RMSD below 4 Å. First, the best docking
pose, in terms of energy, is identified, thus establishing the first sub-clus-
ter. Then, and sequentially, the rest of receptor-ligand complexes are
structurally evaluated against the already clustered poses. If their ligand
RMSD is within 4 Å from any of the cluster representatives, they will be
included in that cluster, otherwise they will establish a new one. The final
representative of each cluster corresponds to the structure with the best
energy.

Another hierarchical method (Supplementary Methods 1.4) was tested on
the cases of the Protein-Protein Docking Benchmark version 5.0 (Vreven
et al., 2015), but it yielded worse performance based on the ratio of near
native solutions versus the number of total predictions.

3 Results and Discussion

3.1 Overall predictive performance of LightDock
The predictive performance of LightDock was tested on the Protein-Pro-
tein Docking Benchmark 5.0, composed of a total of 230 complexes. The
predictive success rates were based on the percentage of cases in which at
least one near-native solution was found within the top N solutions (N =
10, 100), as ranked according to the corresponding scoring function. Near-
native solutions were defined as those ones with a ligand RMSD < 10 Å
with respect to the ligand position in the reference structure (when recep-
tor molecules are superimposed). We tested the performance of LightDock
(using default parameters; see Methods) with DFIRE (Zhou and Zhou,
2002) scoring function (LightDock-DFIRE), as well as that of LightDock
with a faster implementation of the pyDock (Cheng et al., 2007) scoring
function (Supplementary Methods 1.6) called pyDockLite (LightDock-
pyDockLite). For each docking case, LightDock generated a total of
120,000 poses, which were clustered as described in the Methods section.
After clustering, the final number of docking models obtained by
LightDock-pyDockLite ranged between 600 (PDB 1CLV) and 6,387
(PDB 1DE4), and near-native poses were found in 70% of the cases. In

LightDock-DFIRE, the total number of docking models ranged between
748 (PDB 1CLV) and 6,713 (PDB 1AKJ), and near-native poses were
found in 75% of the cases.

As a further test, docking simulations on the same complex using different
scoring functions were combined in order to capture different near-native
predictions. With this purpose, all the models independently generated by
LightDock-DFIRE or by LightDock-pyDockLite were merged and re-
scored by pyDock scoring function (i.e. combination of LightDock-
DFIRE/pyDock and LightDock-pyDockLite/pyDock). The scoring func-
tion in pyDock has shown excellent performance in the scorers round of
the CAPRI community-wide experiment (Pallara et al., 2013; Lensink et
al., 2016), and it is sufficiently fast not to become an overhead in the total
computation time of LightDock.

As can be seen in Fig. 2A, the use of pyDockLite scoring function within
LightDock showed better success rates for the top 10 docking solutions
than when using the DFIRE scoring function. The performance of
LightDock-pyDockLite is only slightly worse than that of pyDock applied
on FTDock docking models (FTDock/pyDock), as in pyDock server (Ji-
ménez-Garcia et al., 2013). For the top 100 success rates (Fig S3A), this

Fig. 2. Predictive success rates for LightDock on the Protein-Protein Docking
Benchmark 5.0, n = 230. (A) Success rates for the top 10 docking models are shown for:
LightDock-pyDockLite (blue), LightDock-DFIRE (orange), LightDock-
pyDockLite/pyDock (grey), LightDock-DFIRE/pyDock (yellow), combination of
LightDock-pyDockLite/pyDock and LightDock-DFIRE/pyDock (purple). For comparison,
the performance of the standard protein-protein docking protocols FTDock/pyDock (green)
and ZDock 3.0.2 (red) are shown. (B) Top 10 success rates are shown according to
unbound-to-bound conformational changes.

LightDock: A New Multi-Scale Approach to Protein-protein Docking

difference in performance between LightDock-pyDockLite and
LightDock-DFIRE scoring functions is higher, and interestingly,
LightDock-pyDockLite top 100 success rate is even slightly better than
that of the standard FTDock/pyDock.

Interestingly, the number of successful cases after pyDock rescoring in-
creased for both methods. The improvement was more evident for
LightDock-DFIRE models, which after re-scoring with pyDock
(LightDock-DFIRE/pyDock), achieved success rates similar to
LightDock-pyDockLite. This shows that the differences in the success
rates when using pyDockLite or DFIRE as scoring function during the
search mainly depended on the scoring of the resulting models, and not on
the search algorithm itself, given that sampling, even with DFIRE, was
able to provide good models that were later identified by pyDock re-scor-
ing. When combining the docking models obtained from the two
LightDock versions, and subsequent re-scoring by pyDock, global success
rates (19% for top 10; 44% for top 100) slightly improved with respect to
the individual simulations, and were even better than those of standard
pyDock on FTDock models (Fig. 2A). To explore whether these results
by LightDock were due to the above mentioned clustering step, we applied
the same clustering method to FTDock docking poses prior to pyDock
scoring, but the results did not significantly change (data not shown). For
the sake of comparison, we checked that top 10 performance of state-of-
the-art ZDock 3.0.2 (Pierce et al., 2011) was only slightly better than the
combination of LightDock-pyDockLite/pyDock and LightDock-
DFIRE/pyDock (Fig. 2A), but top 100 performance was clearly worse
(Fig. S3A). However, we should note that this small improvement comes
at the expense of doubling the computational cost, since two independent
simulations are needed.

Preliminary tests on the use of two scoring functions during search have
shown an improvement over the results when using the individual scoring
schemes (data not shown). Although further analyses are needed, this
opens new possibilities for the efficient combination of different multi-
scale models within LightDock protocol.

3.2 LightDock is more efficient in flexible cases
It is interesting to analyze whether the performance of LightDock (with
different scoring functions) depends on the flexibility of the interacting
proteins. For that, we have classified the cases, according to the RMSD of
the interface Cα atoms (I-RMSDCα) between the unbound and bound
states (as defined in the Protein-Protein Docking Benchmark 5.0), in the
following categories: rigid (I-RMSDCα < 0.5 Å), low-flexible (0.5 Å < I-
RMSDCα < 1.0 Å), medium-flexible (1.0 Å < I-RMSDCα < 2.0 Å), flex-
ible (2.0 Å < I-RMSDCα < 3.0 Å) and highly-flexible (I-RMSDCα > 3.0
Å). LightDock-pyDockLite performs better in the low-flexible cases (Fig.
2B), while the standard FTDock/pyDock or ZDock protocols were more
successful in the rigid cases. The introduction of the ANM representation
is probably improving the predictions in the more flexible cases, but at the
expense of worsening the results in the rigid cases (due to the introduction
of some noise in the already good geometries). Strikingly, LightDock-
DFIRE showed its best results in the rigid cases, as in rigid-body
FTDock/pyDock. It seems that the DFIRE scoring function cannot take
advantage of the ANM model in the more flexible cases, perhaps due to
the more coarse-grained character of the potentials. When both approaches
are rescored with pyDock, these tendencies remain, which suggests that

the scoring function imposed some differences in the ANM-based confor-
mational search. Results for top 100 show a similar fashion compared to
top 10 (S3 Fig).

The use of ANM-based flexibility aims to provide better predicted models.
To evaluate this, we tested a version of LightDock that did not use the
ANM model, being thus completely rigid-body sampling, on a heteroge-
neous set of 30 complexes (6 rigid, 17 low-flexible, 5 medium-flexible
and 2 flexible) from the Protein-Protein Benchmark 5.0. The success rates
were much worse (10% for top 10; 20% for top 100; as compared to 17%
and 27%, respectively, when using ANM and LightDock-DFIRE option).
Interestingly, the analysis by category of flexibility shows that there is no
difference between the use of ANM in the rigid-body class (17% for top
10 and top 100, using or not ANM), but the difference of success rate
comes from an improvement in the low-flexible and medium-flexible cat-
egories for both top 10 and top 100 results. This improvement provided
by ANM is in the same range as that reported for other state of the art
methods that use normal mode analysis (Moal and Bates, 2010; de Vries
and Zacharias, 2013).

3.3 Extending the framework to multi-scale
Seven additional scoring functions have been implemented in the frame-
work (see Supplementary Methods 1.5 for more details on defining new
scoring functions) as a demonstration of the capabilities of LightDock for
being extended with new scoring functions: DFIRE2 (Yang and Zhou,
2008), MJ3h (Miyazawa et al., 1999), PISA (Viswanath et al., 2013),
TOBI (Tobi and Bahar, 2006), SIPPER (Pons et al., 2011), a truncated van
der Waals scoring as defined in pyDock (Cheng et al., 2007) and the
SwarmDock scoring energy (Moal and Bates, 2010) with electrostatics
and van der Waals charges from AMBER force-field. Several other op-
tions are supported by the framework. For instance, local energy optimi-
zation using a non-gradient algorithm has been implemented. For each
swarm and each step, the best glowworm in terms of scoring energy is
minimized using this non-gradient algorithm. This strategy should help
the algorithm to converge in fewer steps (data not shown).

On the other hand, the LightDock framework includes the option of using
pre-calculated conformational ensembles, in which case each structure for
receptor and ligand is identified by a unique identifier that is added to the
optimization vector. For the future, a clearer strategy to define the distance
between two conformers is needed so that it can be more efficiently used
when one of the glowworms is moving towards the other one. The search
could be optimized by maintaining a global list of the most successful or
used conformers for receptor and ligand, and then use it to define a prob-
ability for selecting a given conformer.

Multi-scale chained simulations are currently supported by the frame-
work. One possible strategy is to perform a first run of the LightDock pro-
tocol using a given scoring function and then, after identifying the best
energy wells, the predictions could be expanded by a new LightDock run,
using the same scoring function or a different one, with finer sampling
parameters for instance. In this way, a first quick run could be performed
with a coarse-grained force-field, which can be followed by a more accu-
rate refinement using a full-atom scoring function. As mentioned before,
LightDock also supports the use of multiple weighted scoring functions
upon search, which opens the protocol to the use of multi-scale models at
the sampling process. For example, coarse-grained models could be com-
bined with full-atomistic models for a better sampling of the energetic

B.Jiménez-García et al.

landscape. This approach would be only limited by computational re-
sources.

Finally, the framework includes more than 200 unit tests and more than
10 regression tests from point to point to guarantee a good testing coverage
of the code, and additional usage examples to users who aim to extend the
framework.

3.4 Computational performance
Optimizations at the level of the scoring function (the most time-consum-
ing part) were performed using the Python C extensions mechanism. The
average computation time for all the 230 complexes in the Protein-Protein
Docking Benchmark 5.0 using DFIRE scoring function and 400 CPU
cores (1 core per swarm) is of 1.5 hours, while for pyDockLite scoring
function is of 2.0 hours in the same conditions. For demonstration pur-
poses, some scoring functions are provided in native Python, Cython
(www.cython.org) and Python/C versions. In addition, LightDock is im-
plemented using multicore and MPI Python libraries, and the algorithm is
embarrassingly parallel, which means that can ideally scale proportional
to the number of CPU cores used.

4 Conclusions
We have presented here a new protein-protein docking protocol called
LightDock, which is based on the GSO algorithm for sampling the trans-
lational and rotational space of protein-protein docking, and ANM repre-
sentation for the inclusion of flexibility. LightDock aims to be a publicly
available framework for testing and developing new scoring strategies for
protein-protein docking. The use of pyDockLite scoring function during
the search provides comparable success rates to state-of-the-art protocols,
and the combination with additional functions, like DFIRE, can further
improve the predictions. This multi-scale docking framework has capabil-
ities for the use of many different scoring functions (alone or in combina-
tion) and the inclusion of flexibility at different resolution levels.

Acknowledgements
We give our thanks to Iain H. Moal for his invaluable help in many discussions on
normal mode analysis, PSO and protein-protein docking in general. We are grateful
to the Joint BSC-CRG-IRB Research Program in Computational Biology.

Funding
B.J-G was supported by a FPI fellowship from the Spanish Ministry of Economy and
Competitiveness. This work was supported by I+D+I Research Project grants
BIO2013-48213-R and BIO2016-79930-R from the Spanish Ministry of Economy
and Competitiveness. This work is partially supported by the European Union H2020
program through HiPEAC (GA 687698), by the Spanish Government through Pro-
grama Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and
Technology (TIN2015-65316-P) and the Departament d’Innovació, Universitats i
Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-
gramació i Entorns d’Execució Paral·lels (2014-SGR-1051).

Conflict of Interest: none declared.

References
Atilgan,A.R. et al. (2001) Anisotropy of fluctuation dynamics of proteins with an

elastic network model. Biophys. J., 80, 505–515.

Bakan,A. et al. (2011) ProDy: protein dynamics inferred from theory and experi-
ments. Bioinformatics, 27, 1575–1577.

Brenke,R. et al. (2012) Application of asymmetric statistical potentials to antibody-
protein docking. Bioinformatics, 28, 2608–2614.

Cheng,T.M.-K. et al. (2007) pyDock: electrostatics and desolvation for effective
scoring of rigid-body protein-protein docking. Proteins, 68, 503–515.

Dominguez,C. et al. (2003) HADDOCK: A Protein−Protein Docking Approach
Based on Biochemical or Biophysical Information. J. Am. Chem. Soc., 125,
1731–1737.

Doruker,P. et al. (2000) Dynamics of proteins predicted by molecular dynamics sim-
ulations and analytical approaches: application to alpha-amylase inhibitor. Pro-
teins, 40, 512–524.

Eisenberg,D. et al. (2000) Protein function in the post-genomic era. Nature, 405,
823–826.

Fernández-Recio,J. et al. (2003) ICM-DISCO docking by global energy optimization
with fully flexible side-chains. Proteins, 52, 113–117.

Gabb,H.A. et al. (1997) Modelling protein docking using shape complementarity,
electrostatics and biochemical information. J. Mol. Biol., 272, 106–120.

Hwang,H. et al. (2008) Protein-protein docking benchmark version 3.0. Proteins:
Struct. Funct. Bioinf., 73, 705–709.

Jiménez-García,B. et al. (2013) pyDockWEB: a web server for rigid-body protein-
protein docking using electrostatics and desolvation scoring. Bioinformatics, 29,
1698–1699.

Katchalski-Katzir,E. et al. (1992) Molecular surface recognition: determination of
geometric fit between proteins and their ligands by correlation techniques. Proc.
Natl. Acad. Sci. U. S. A., 89, 2195–2199.

Krishnanand,K.N. and Ghose,D. (2008) Glowworm swarm optimization for simul-
taneous capture of multiple local optima of multimodal functions. Swarm Intel-
ligence, 3, 87–124.

Krishnanand,K.N. and Ghose,D. (2009) A Glowworm Swarm Optimization Based
Multirobot System for Signal Source Localization. In, Studies in Computational
Intelligence., pp. 49–68.

Lensink,M.F. et al. (2016) Prediction of homo- and hetero-protein complexes by
protein docking and template-based modeling: a CASP-CAPRI experiment. Pro-
teins.

Liao,W.-H. et al. (2011) A sensor deployment approach using glowworm swarm op-
timization algorithm in wireless sensor networks. Expert Syst. Appl., 38, 12180–
12188.

Li,X. et al. (2010) Detection and refinement of encounter complexes for protein-
protein docking: taking account of macromolecular crowding. Proteins, 78,
3189–3196.

May,A. and Zacharias,M. (2008) Energy minimization in low-frequency normal
modes to efficiently allow for global flexibility during systematic protein-protein
docking. Proteins, 70, 794–809.

Miyazawa,S. et al. (1999) Self‐consistent estimation of inter‐residue protein contact
energies based on an equilibrium mixture approximation of residues. Proteins:
Structure, Function, and Genetics, 34, 49–68.

Moal,I.H., Moretti,R., et al. (2013) Scoring functions for protein-protein interac-
tions. Curr. Opin. Struct. Biol., 23, 862–867.

Moal,I.H., Torchala,M., et al. (2013) The scoring of poses in protein-protein dock-
ing: current capabilities and future directions. BMC Bioinformatics, 14, 286.

Moal,I.H. and Bates,P.A. (2010) SwarmDock and the use of normal modes in pro-
tein-protein docking. Int. J. Mol. Sci., 11, 3623–3648.

Morrison,J. and Jack,M. (1992) QUATERNION INTERPOLATION WITH
EXTRA SPINS. In, Graphics Gems III (IBM Version)., pp. 96–97.

Mosca,R. et al. (2013) Interactome3D: adding structural details to protein networks.
Nat. Methods, 10, 47–53.

Padhorny,D. et al. (2016) Protein-protein docking by fast generalized Fourier trans-
forms on 5D rotational manifolds. Proc. Natl. Acad. Sci. U. S. A., 113, E4286–
93.

Pallara,C. et al. (2013) Expanding the frontiers of protein-protein modeling: from
docking and scoring to binding affinity predictions and other challenges. Pro-
teins, 81, 2192–2200.

Pierce,B.G. et al. (2011) Accelerating protein docking in ZDOCK using an advanced
3D convolution library. PLoS One, 6, e24657.

Pons,C. et al. (2011) Scoring by intermolecular pairwise propensities of exposed res-
idues (SIPPER): a new efficient potential for protein-protein docking. J. Chem.
Inf. Model., 51, 370–377.

Rakhmanov,E.A. et al. (1994) Minimal Discrete Energy on the Sphere. Math. Res.
Lett., 1, 647–662.

Ritchie,D.W. and Venkatraman,V. (2010) Ultra-fast FFT protein docking on
graphics processors. Bioinformatics, 26, 2398–2405.

LightDock: A New Multi-Scale Approach to Protein-protein Docking

Schneidman-Duhovny,D. et al. (2012) A method for integrative structure determina-
tion of protein-protein complexes. Bioinformatics, 28, 3282–3289.

Schueler-Furman,O. et al. (2005) Progress in protein-protein docking: atomic reso-
lution predictions in the CAPRI experiment using RosettaDock with an im-
proved treatment of side-chain flexibility. Proteins, 60, 187–194.

Shoemake,K. and Ken,S. (1985) Animating rotation with quaternion curves. ACM
SIGGRAPH Computer Graphics, 19, 245–254.

Stumpf,M.P.H. et al. (2008) Estimating the size of the human interactome. Proc.
Natl. Acad. Sci. U. S. A., 105, 6959–6964.

Theodoridis,S. and Koutroumbas,K. (2008) Pattern Recognition Academic Press.
Tobi,D. and Bahar,I. (2006) Optimal design of protein docking potentials: efficiency

and limitations. Proteins, 62, 970–981.
Venkatesan,K. et al. (2009) An empirical framework for binary interactome map-

ping. Nat. Methods, 6, 83–90.
Viswanath,S. et al. (2013) Improving ranking of models for protein complexes with

side chain modeling and atomic potentials. Proteins, 81, 592–606.
Vreven,T. et al. (2015) Updates to the Integrated Protein-Protein Interaction Bench-

marks: Docking Benchmark Version 5 and Affinity Benchmark Version 2. J.
Mol. Biol., 427, 3031–3041.

de Vries,S. and Zacharias,M. (2013) Flexible docking and refinement with a coarse-
grained protein model using ATTRACT. Proteins, 81, 2167–2174.

Yang,Y. and Zhou,Y. (2008) Ab initio folding of terminal segments with secondary
structures reveals the fine difference between two closely related all-atom statis-
tical energy functions. Protein Sci., 17, 1212–1219.

Yang Y. and Zhou Y. (2011) Using Glowworm Swarm Optimization Algorithm for
Clustering Analysis. Journal of Convergence Information Technology, 6, 78–85.

Zacharias,M. (2003) Protein-protein docking with a reduced protein model account-
ing for side-chain flexibility. Protein Sci., 12, 1271–1282.

Zhou H. and Zhou Y. (2002) Distance-scaled, finite ideal-gas reference state im-
proves structure-derived potentials of mean force for structure selection and sta-
bility prediction. Protein Sci., 11, 2714–2726

	1 Introduction
	2 Methods
	2.1 LightDock: GSO algorithm applied to protein-protein docking
	2.2 Initial receptor/ligand models (glowworms)
	2.3 GSO sampling
	2.4 Scoring functions
	2.5 Clustering of final docking poses

	3 Results and Discussion
	3.1 Overall predictive performance of LightDock
	3.2 LightDock is more efficient in flexible cases
	3.3 Extending the framework to multi-scale
	3.4 Computational performance

	4 Conclusions
	Acknowledgements
	Funding
	References

