245 research outputs found

    Multicast traffic aggregation in MPLS-based VPN networks

    Get PDF
    This article gives an overview of the current practical approaches under study for a scalable implementation of multicast in layer 2 and 3 VPNs over an IP-MPLS multiservice network. These proposals are based on a well-known technique: the aggregation of traffic into shared trees to manage the forwarding state vs. bandwidth saving trade-off. This sort of traffic engineering mechanism requires methods to estimate the resources needed to set up a multicast shared tree for a set of VPNs. The methodology proposed in this article consists of studying the effect of aggregation obtained by random shared tree allocation on a reference model of a representative network scenario.Publicad

    Evolution of Broadband Communication Networks: Architecture and Applications

    Get PDF
    With the rapid increase in users’ demand for flexibility and scalability of communication services, broadband communication networks are facing an ongoing challenge of providing various broadband services using a single communication architecture. This leads to the evolution of a challenging field of multiservice broadband network architectures. This chapter discusses the basic concepts associated with broadband communication network architectures with emphasis on provision of multiservice, and it also focuses on the evolution of broadband communication networks from the traditional architecture to the incorporation of virtualization services, that is, cloud computing. Another important aspect, which relates to the multiservice broadband network, is the “applications” which, as this chapter highlights, are a key-driving factor for the evolution of broadband communication networks. Moreover, this chapter also includes a discussion on New Zealand’s government initiatives to provide improved network coverage within the country

    Packet Loss Rate Differentiation in slotted Optical Packet Switching OCDM/WDM

    Get PDF
    We propose a multi-class mechanism for Optical Code Division Multiplexing (OCDM), Wavelength Division Multiplexing (WDM) Optical Packet Switch (OPS) architecture capable of supporting Quality of Service (QoS) transmission. OCDM/WDM has been proposed as a competitive hybrid switching technology to support the next generation optical Internet. This paper addresses performance issues in the slotted OPS networks and proposed four differentiation schemes to support Quality of Service. In addition, we present a comparison between the proposed schemes as well as, a simulation scheduler design which can be suitable for the core switch node in OPS networks. Using software simulations the performance of our algorithm in terms of losing probability, the packet delay, and scalability is evaluated

    Supporting Service Differentiation in Multi-domain Multilayer Optical Networks

    Get PDF
    Providing differentiated quality of service became more and more important. This is not only because some service requests a high quality and real time transportation, but also because other services such as the capacity greedy applications request a higher bandwidth. In the meantime, has been the hybrid architecture consists of IP/MPLS domain and ASON/GMPLS optical domain projected as the infrastructure of the future internet. This architecture supports the transportation of the in near future expected data traffic on the ASON/GMPLS over DWDM optical domain, whereas it supports all the IP based service applications using the IP/MPLS domain. However, supporting service differentiation in multi-domain multilayer optical networks require the invention on routing scheme that supports both routing policies, the Physical Topology First (PTF) and Virtual Topology First (VTP), which are used to accommodate traffic in multilayer networks. In this work we use a hierarchical routing algorithm to evaluate the service differentiation schemes that are known in the literature in an IP/MPLS over ASON/GMPLS multi-domain network scenario, these service differentiation schemes are the Routing Policy Differentiation (RPD), Virtual Topology Differentiation (VTD) and Virtual Topology Sharing (VTS).&nbsp

    Getting routers out of the core: Building an optical wide area network with "multipaths"

    Full text link
    We propose an all-optical networking solution for a wide area network (WAN) based on the notion of multipoint-to-multipoint lightpaths that, for short, we call "multipaths". A multipath concentrates the traffic of a group of source nodes on a wavelength channel using an adapted MAC protocol and multicasts this traffic to a group of destination nodes that extract their own data from the confluent stream. The proposed network can be built using existing components and appears less complex and more efficient in terms of energy consumption than alternatives like OPS and OBS. The paper presents the multipath architecture and compares its energy consumption to that of a classical router-based ISP network. A flow-aware dynamic bandwidth allocation algorithm is proposed and shown to have excellent performance in terms of throughput and delay

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    OPTIMIZATION OF MOBILE TRANSPORT NETWORK USING INTERNET PROTOCOL/MULTI-PROTOCOL LABEL SWITCHING (IP/MPLS) APPROACH

    Get PDF
    This report focuses on a research-based project of the title ‘Optimization of Mobile Transport Network using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) Approach’. Current protocols utilized in mobile transport network are approaching a saturation point in terms of capacity to cater for a massive consumer demand growth in the network. Persistence on the conventional approaches will require much more expenditure with less encouraging revenue. Thus, much work need to be pumped into a newer and more effective alternative namely IP/MPLS. An upgrade of support node gateways and a network transmission algorithm are key elements of the project. A performance assessment of the proposed algorithm based on the Quality of Service (QoS) is also very crucial. Validation of the algorithm via the “OPNET” modeler suite software simulation results analysis is also to be carried out to define the best gateway for mapping process. A robust and flexible IP/MPLS approach will consequently results in a better network performance thus providing more opportunities for a more dynamic network growth for the benefit of mankind. The resulting approach can be further improved via continuous research and development (R&D) to produce a more reliable and resilient protocol. IP/MPLS will surely provide the vital boost to usher in the next generation of networking
    • …
    corecore