377 research outputs found

    FoldGPCR: Structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A

    Full text link
    Building reliable structural models of G protein-coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template-based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1–3 Å CΑ RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter-residue contacts between the template and target, and exploits an all-atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor-ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human Β 2 -adrenergic receptor (Β 2 AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X-ray crystal structure of the Β 2 AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix-helix packing interactions that distinguish rhodopsin from Β 2 AR. Proteins 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77435/1/22731_ftp.pd

    Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment

    Get PDF
    The community-wide GPCR Dock assessment is conducted to evaluate the status of molecular modeling and ligand docking for human G protein-coupled receptors. The present round of the assessment was based on the recent structures of dopamine D3 and CXCR4 chemokine receptors bound to small molecule antagonists and CXCR4 with a synthetic cyclopeptide. Thirty-five groups submitted their receptor-ligand complex structure predictions prior to the release of the crystallographic coordinates. With closely related homology modeling templates, as for dopamine D3 receptor, and with incorporation of biochemical and QSAR data, modern computational techniques predicted complex details with accuracy approaching experimental. In contrast, CXCR4 complexes that had less-characterized interactions and only distant homology to the known GPCR structures still remained very challenging. The assessment results provide guidance for modeling and crystallographic communities in method development and target selection for further expansion of the structural coverage of the GPCR universe. © 2011 Elsevier Ltd. All rights reserved

    Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications

    Get PDF
    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs. These residues can be used to make testable hypotheses about the structural basis of receptor function and about the molecular basis of disease-associated single nucleotide polymorphisms

    Computational Approaches for the Characterization of the Structure and Dynamics of G Protein-Coupled Receptors: Applications to Drug Design

    Get PDF
    G Protein-Coupled Receptors (GPCRs) constitute the most pharmacologically relevant superfamily of proteins. In this thesis, a computational pipeline for modelling the structure and dynamics of GPCRs is presented, properly combined with experimental collaborations for GPCR drug design. These include the discovery of novel scaffolds as potential antipsychotics, and the design of a new series of A3 adenosine receptor antagonists, employing successful combinations of structure- and ligand-based approaches. Additionally, the structure of Adenosine Receptors (ARs) was computationally assessed, with implications in ligand affinity and selectivity. The employed protocol for Molecular Dynamics simulations has allowed the characterization of structural determinants of the activation of ARs, and the evaluation of the stability of GPCR dimers of CXCR4 receptor. Finally, the computational pipeline here developed has been integrated into the web server GPCR-ModSim (http://gpcr.usc.es), contributing to its application in biochemical and pharmacological studies on GPCRs

    Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008

    Get PDF
    Recent breakthroughs in the determination of the crystal structures of G protein-coupled receptors (GPCRs) have provided new opportunities for structure-based drug design strategies targeting this protein family. With the aim of evaluating the current status of GPCR structure prediction and ligand docking, a community-wide, blind prediction assessment - GPCR Dock 2008 - was conducted in coordination with the publication of the crystal structure of the human adenosine A2Areceptor bound to the ligand ZM241385. Twenty-nine groups submitted 206 structural models before the release of the experimental structure, which were evaluated for the accuracy of the ligand binding mode and the overall receptor model compared with the crystal structure. This analysis highlights important aspects for success and future development, such as accurate modelling of structurally divergent regions and use of additional biochemical insight such as disulphide bridges in the extracellular loops

    Untersuchung der Struktur und Interaktion mit allosterischen Modulatoren der Familie C GPCRs mit Hilfe von Sequenz-, Struktur- und Ligand-basierten Verfahren

    Get PDF
    This study focuses on structural features of a particular GPCR type, the family C GPCRs. Structure- and ligand-based approaches were adopted for prediction of novel mGluR5 binding ligand and their binding modes. The objectives of this study were: 1. An analysis of function and structural implication of amino acids in the TM region of family C GPCRs. 2. The prediction of the TM domain structure of mGluR5. 3. The discovery of novel selective allosteric modulators of mGluR5 by virtual screening. 4. The prediction of a ligand binding mode for the allosteric binding site in mGluR5. GPCRs are a super-family of structurally related proteins although their primary amino acid sequence can be diverse. Using sequence information a conservation analysis of family C GPCRs should be applied to reveal characteristic differences and similarities with respect function, folding and ligand binding. Using experimental data and conservation analysis the allosteric binding site of mGluR5 should be characterized regarding NAM and PAM and selective ligand binding. For further evaluation experimental knowledge about family A GPCRs as well as conservation between vertebrate rhodopsins was planned to be compared to results obtained for family C GPCRs (Section 4.1 Conservation analysis of family C GPCRs). Since no receptor structure is available for any family C GPCR, discussion of conserved sequence positions between family A and C GPCRs requires the prediction of a receptor structure for mGluR5 using a family A receptor as template. In order to predict the mGluR5 structure a sequence alignment to a GPCR template protein will have to be proposed and GPCR specific features considered in structure calculation (Section 4.1.4 Structure prediction of mGluR5). The obtained structure was intended to be involved in ligand binding mode prediction of newly discovered active molecules. For discovery of novel selective mGluR modulators several ligand-based virtual screening protocols were adapted and evaluated. Prediction models were derived for selection of possibly active molecules using a diverse collection of known mGluR binding ligands. For that purpose a data collection of known mGluR binding ligands should be established and this reference collection analyzed with respect to different ligand activity classes, NAM or PAM and selective modulators. The prediction of novel NAMs and PAMs using several combinations of 2D-, 3D-, pharmacophore or molecule shape encoding methods with machine learning techniques and similarity determining methods should be tested in a prospective manner (Section 4.2 Virtual screening for novel mGluR modulators). In collaboration with Merz Pharmaceuticals (Merz GmbH & Co. KGaA, Frankfurt am Main, Germany) the modulating effect of a few hundred molecules should be approved in a functional cell-based assay. With the objective to predict a binding mode of the discovered active molecules, molecule docking should be applied using the allosteric binding site of the modeled mGluR5 structure (Section 4.2.4 Modeling of binding modes). Predicted ligand binding modes are to be correlated to conservation profiles that had resulted from the sequence-based entropy analysis and information from mutation experiments, and shall be compared to known ligand binding poses from crystal structures of family A GPCRs.Im Rahmen dieser Arbeit wurden Konzepte zur AufklĂ€rung struktureller und funktioneller Eigenschaften von G-Protein gekoppelten Rezeptoren (GPCR) der Familie C entwickelt und angewendet. Mit unterschiedlichen Methodiken der Bio- und Chemieinformatik orientiert an experimentellen Ergebnissen wurden Fragestellungen bezĂŒglich des Funktionsmechanismus von GPCRs untersucht. In Verlauf wurde anhand verfĂŒgbarer experimenteller Daten aus Mutations- und Ligandenbindungsstudien ein Vergleich konservierter Bereiche der Rezeptor-Familien A und C angefertigt. Die Konserviertheitsanalyse stĂŒtzte sich auf die Berechnung der Shannon-Entropie und wurde fĂŒr ein multiples Sequenzalignment von TransmembrandomĂ€nen unterschiedlicher 96 Familie C GPCRs ermittelt. Konservierte Bereiche wurden mit Hilfe experimenteller Daten interpretiert und insbesondere zur Definition von Regionen in der allosterischen Bindetasche hinsichtlich SelektivitĂ€t verwendet. Mit dem Ziel, neue selektive allosterische Modulatoren fĂŒr den metabotropen Glutamatrezeptor des Typs fĂŒnf (mGluR5) zu finden, wurden mehrere Liganden-basierte AnsĂ€tze zur virtuellen Vorhersage der AktivitĂ€t von MolekĂŒlen entwickelt und getestet. Die dabei angewendete Strategie basierte auf der Kenntnis bereits bekannter Liganden, deren Strukturen und AktivitĂ€tswerte fĂŒr das Erstellen von Vorhersagemodelle genutzt werden konnten. Die prospektive Vorhersage stĂŒtzte sich auf unterschiedliche Methoden zur Ähnlichkeitsberechnung und Arten der MolekĂŒlkodierung. Die Testung der MolekĂŒle erfolgte hinsichtlich ihrer modulatorischen Wirkung am mGluR5. Die Art der Messung erfasste die Änderungen des Ca2+-Levels in der Zelle. mGluR5-bindende Modulatoren wurden zur SelektivitĂ€tsbestimmung einer Testung am mGluR1 unterzogen. Insgesamt konnten 8 von 228 getesteten MolekĂŒlen im AktivitĂ€tsbereich unter 10μM ermittelt werden, darunter befand sich ein positiver allosterischer Modulator. Von den restlichen sieben negativen Modulatoren (NAM) waren fĂŒnf selektiv fĂŒr mGluR5. Alle identifizierten NAMs wurden mittels molekularem Dockings auf mögliche Interaktion mit der TransmembrandomĂ€ne von mGluR5 untersucht. Die Bindungshypothese entsprach einer Überlagerung der gefundenen MolekĂŒle und ihrer möglicher Interaktionspunkte. Exemplarisch am mGluR5 konnte somit die Eignung einer modellierten GPCR-Struktur fĂŒr eine Hypothesengenerierung bezĂŒglich Ligandenbindung und struktureller ZusammenhĂ€nge untersucht werden

    RHYTHM—a server to predict the orientation of transmembrane helices in channels and membrane-coils

    Get PDF
    RHYTHM is a web server that predicts buried versus exposed residues of helical membrane proteins. Starting from a given protein sequence, secondary and tertiary structure information is calculated by RHYTHM within only a few seconds. The prediction applies structural information from a growing data base of precalculated packing files and evolutionary information from sequence patterns conserved in a representative dataset of membrane proteins (‘Pfam-domains’). The program uses two types of position specific matrices to account for the different geometries of packing in channels and transporters (‘channels’) or other membrane proteins (‘membrane-coils’). The output provides information on the secondary structure and topology of the protein and specifically on the contact type of each residue and its conservation. This information can be downloaded as a graphical file for illustration, a text file for analysis and statistics and a PyMOL file for modeling purposes. The server can be freely accessed at: URL: http://proteinformatics.de/rhyth

    Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: Meeting new challenges

    Get PDF
    © 2014 Elsevier Ltd All rights reserved. Despite tremendous successes of GPCR crystallography, the receptors with available structures represent only a small fraction of human GPCRs. An important role of the modeling community is to maximize structural insights for the remaining receptors and complexes. The community-wide GPCR Dock assessment was established to stimulate and monitor the progress in molecular modeling and ligand docking for GPCRs. The four targets in the present third assessment round presented new and diverse challenges for modelers, including prediction of allosteric ligand interaction and activation states in 5-hydroxytryptamine receptors 1B and 2B, and modeling by extremely distant homology for smoothened receptor. Forty-four modeling groups participated in the assessment. State-of-the-art modeling approaches achieved close-to-experimental accuracy for small rigid orthosteric ligands and models built by close homology, and they correctly predicted protein fold for distant homology targets. Predictions of long loops and GPCR activation states remain unsolved problems
    • 

    corecore