16 research outputs found

    Maximum Torque per Ampere Control of Permanent Magnet Synchronous Motor Using Genetic Algorithm

    Get PDF
     Permanent magnet synchronous motor (PMSM) drives have many advantages over other drives, i.e. high efficiency and high power density. Particularly, PMSMs are epoch-making and are intensively studied among researchers, scientists and engineers. This paper deals with a novel high performance controller based on genetic algorithm. The scheme allows the motor to be driven with maximum torque per ampere characteristic. In this paper assuming an appropriate fitness function, the optimum values for d-axis current of motor set points at each time are found and then applied to the controller. Simulation results show the successful operation of the proposed controller

    Simplified fuzzy control for flux-weakening speed control of IPMSM drive

    Get PDF
    This paper presents a simplified fuzzy logic-based speed control scheme of an interior permanent magnet synchronous motor (IPMSM) above the base speed using a flux-weakening method. In this work, nonlinear expressions of d-axis and q-axis currents of the IPMSM have been derived and subsequently incorporated in the control algorithm for the practical purpose in order to implement fuzzy-based flux-weakening strategy to operate the motor above the base speed. The fundamentals of fuzzy logic algorithms as related to motor control applications are also illustrated. A simplified fuzzy speed controller (FLC) for the IPMSM drive has been designed and incorporated in the drive system to maintain high performance standards. The efficacy of the proposed simplified FLC-based IPMSM drive is verified by simulation at various dynamic operating conditions. The simplified FLC is found to be robust and efficient. Laboratory test results of proportional integral (PI) controller-based IPMSM drive have been compared with the simulated results of fuzzy controller-based flux-weakening IPMSM drive system

    A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

    Get PDF
    This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC metho

    A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

    Get PDF
    This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC metho

    High speed solid rotor permanent magnet machines: concept and design

    Get PDF
    This paper proposes a novel solid rotor topology for an Interior Permanent Magnet (IPM) machine, adopted in this case for an aircraft starter-generator design. The key challenge in the design is to satisfy two operating conditions which are: a high torque at start and a high speed at cruise. Conventional IPM topologies which are highly capable of extended field weakening are found to be limited at high speed due to structural constraints associated with the rotor material. To adopt the IPM concept for high speed operation, it is proposed to adopt a rotor constructed from semi-magnetic stainless steel, which has a higher yield strength than laminated silicon steel. To maintain minimal stress levels and also minimize the resultant eddy current losses due to the lack of laminations, different approaches are considered and studied. Finally, to achieve a better tradeoff between the structural and electromagnetic constraints, a novel slitted approach is implemented on the rotor. The proposed rotor topology is verified using electromagnetic, static structural and dynamic structural Finite Element (FE) analyses. An experiment is performed to confirm the feasibility of the proposed rotor. It is shown that the proposed solid rotor concept for an IPM fulfils the design requirements whilst satisfying the structural, thermal and magnetic limitations

    Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles

    Get PDF
    With ever-increasing concerns on our environment, there is a fast growing interest in electric vehicles (EVs) and hybrid EVs (HEVs) from automakers, governments, and customers. As electric drives are the core of both EVs and HEVs, it is a pressing need for researchers to develop advanced electric-drive systems. In this paper, an overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies. Then, three major research directions of the PM BL drive systems are elaborated, namely, the magnetic-geared outer-rotor PM BL drive system, the PM BL integrated starter-generator system, and the PM BL electric variable-transmission system. © 2008 IEEE.published_or_final_versio

    A study of potential retroffiting existing Sultan Ibrahim heritage building to green building

    Get PDF
    Green building amount in Malaysia is still in small percentage compared to the other countries. Heritage buildings in one of the old buildings that preserved, carefully, but still not achieved sustainability because there are few factors that will become the barriers. This paper is to identify the potential and the barrier of retrofitting that Sultan Ibrahim building toward green building initiatives. All the information obtained is from the study of literature, distributing questionnaires, and preliminary interviews. The respondents were selected from green building experts, contractors, engineers, and Sultan Ibrahim Building’s staffs. The result of this study shows availability some components in Sultan Ibrahim Building that have potential retrofit and know how far the building availability for retrofit according to green building guideline. Moreover, there are some barriers had been analyzed may be happened during retrofitting Sultan Ibrahim building towards green building

    CAF: Cluster Algorithm and A-Star with Fuzzy Approach for Lifetime Enhancement in Wireless Sensor Networks

    Get PDF
    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria

    Avonapaisten kestomagneettitahtikoneiden ja säädön toteutus tuulivoimaa emuloivassa testipenkissä

    Get PDF
    The growing concern about climate change has effected to that the corporations and governments invest more and more to renewable energy sources, which are less pollutant to the atmosphere. One of the renewable energy sources is wind power and in whole this millennium the popularity of wind power has steadily risen, which has caused an economical interest to develop as efficient wind turbine generators as possible. This thesis focuses on a wind power related test bench, in which permanent magnet synchronous machines are used. The test bench will be located in the laboratory of power electronics of Tampere University of Technology and it will have one motor and one generator, which are controlled by converters. The motor works as prime mover and it has an input of torque reference, which emulates the torque caused by the wind speed. Our own control is implemented on the generator side and between these two machines is installed a torque transducer. The voltages and the currents are measured by Boombox sensors and the power quality is enhanced by LCL filters. The test bench will be used for research purposes after it is complete. Interest is to investigate the dynamics of the control system. The other interest is to model numerically the stator windings by the help of preinstalled measurement windings. The test bench uses interior permanent magnet synchronous machines, where the inductances are different at direct- and quadrature-axes. The motor and generator were chosen with shaft powers of 17 kW. The nominal rotating speed in both was 127 rpm. Inside the machines were installed incremental encoders to provide more accurate measurement of the rotating speed. Four commercial converters were chosen with 61 A maximum current. The diode bridges were bypassed for enabling bidirectional power flow, when connecting the DC-link together by two similar converters in motor and generator side. The generator side had also VaconBus adapters, which allow to develop our own control algorithms. The MATLAB Simulink models of the permanent magnet synchronous generator were created based on the dynamic equations, which were then simulated. The motor operation was verified by testing it without load, and the results were measured and documented

    Performance analysis of interior permanent magnet synchronous motor (IPMSM) drive system using different speed controllers

    Get PDF
    The present research is indicating that the Permanent magnet motor drive could become serious competitor to the induction motor drive for servo application. Further, with the evolution of permanent magnet materials and control technology, the Permanent Magnet Synchronous Motor (PMSM) has become a pronounced choice for low and mid power applications such as computer peripheral equipments, robotics, adjustable speed drives and electric vehicles due to its special features like high power density, high torque/inertia ratio, high operating efficiency, variable speed operation, reliability, and low cost etc. Here we deals with the detailed modeling of an IPMSM drive system with Hybrid PI-Fuzzy logic controller (PI-FLC) as speed controller and Adaptive Hysteresis Current Controller as torque controller by controlling the current components of torque.In this thesis we deals with a simulation for speed control and improvement in the performance of a closed loop vector controlled IPMSM drive which employ two loops for better speed tracking and fast dynamic response during transient as well as steady state conditions by controlling the torque component of current. The outer loop employ Hybrid PIFuzzy logic controller (PI-FLC) while inner loop as Adaptive Hysteresis Band Current Controller (AHBCC) designed to reduce the torque ripple. Despite proportional plus Integral (PI) controller are usually preferred as speed controller due to its fixed gain (Kp) and Integral time constant (Ki), the performance of PI controller are affected by parameters variations, speed change and load disturbances in PMSM, due to which it results to unsatisfied operation under transient conditions. The drawbacks of PI controller are minimized using fuzzy logic controller (FLC). So for this a fuzzy control technique is also designed using mamdani type, triangular based 5x5 MFs and selecting the superior functionalities of PI and FLC, a Hybrid PI-FLC designed for effective speed control under transient and steady state condition.The complete viability of above mentioned integrated control strategy is implemented and tested in the MATLAB/Simulink environment and a performance comparison of proposed drive system with conventional PI, fuzzy logic controller and Hybrid PI-Fuzzy Logic Controller integrated separately as speed controller in terms of steady state and transient analysis with fixed step, variable step load and variable speed condition has been presented. Beside this a detailed comparative study of AHBCC is also done with Conventional Hysteresis Current Control(CHCC) scheme. The simulation circuits parameters for IPMSM, inverter, speed and current controllers of the drive system are given in Appendix-A
    corecore