77 research outputs found

    On-the-fly Computation Method in Field-Programmable Gate Array for Analog-to-Digital Converter Linearity Testing

    Full text link
    This paper presents a new approach to linearity testing of analog-to-digital converters (ADCs) through on-the-fly computation in field-programmable gate array (FPGA) hardware. The proposed method computes the linearity while it is processing without compromising the accuracy of the measurement, so very little overhead time is required to compute the final linearity. The results will be displayed immediately after a single ramp is supplied to the device under test. This is a cost-effective chip testing solution for semiconductor companies, achieved by reducing computing time and utilization of low-cost and low-specification automatic test equipment (ATE). The experimental results showed that the on-the-fly computation method significantly reduced the computation time (up to 44.4%) compared to the conventional process. Thus, for every 100M 12-bit ADC tested with 32 hits per code, the company can save up to 139,972 Php on electricity consumption

    On-the-fly computation method in field-programmable gate array for analog-to-digital converter linearity testing

    Get PDF
    © 2018 Published by ITB Journal Publisher. This paper presents a new approach to linearity testing of analog-to-digital converters (ADCs) through on-the-fly computation in field-programmable gate array (FPGA) hardware. The proposed method computes the linearity while it is processing without compromising the accuracy of the measurement, so very little overhead time is required to compute the final linearity. The results will be displayed immediately after a single ramp is supplied to the device under test. This is a cost-effective chip testing solution for semiconductor companies, achieved by reducing computing time and utilization of low-cost and low-specification automatic test equipment (ATE). The experimental results showed that the on-the-fly computation method significantly reduced the computation time (up to 44.4%) compared to the conventional process. Thus, for every 100M 12-bit ADC tested with 32 hits per code, the company can save up to 139,972 Php on electricity consumption

    Design-for-Test of Mixed-Signal Integrated Circuits

    Get PDF

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    A built-in self-test technique for high speed analog-to-digital converters

    Get PDF
    Fundação para a Ciência e a Tecnologia (FCT) - PhD grant (SFRH/BD/62568/2009

    High-speed Time-interleaved Digital-to-Analog Converter (TI-DAC) for Self-Interference Cancellation Applications

    Get PDF
    Nowadays, the need for higher data-rate is constantly growing to enhance the quality of the daily communication services. The full-duplex (FD) communication is exemplary method doubling the data-rate compared to half-duplex one. However, part of the strong output signal of the transmitter interferes to the receiver-side because they share the same antenna with limited attenuation and, as a result, the receiver’s performance is corrupted. Hence, it is critical to remove the leakage signal from the receiver’s path by designing another block called self-interference cancellation (SIC). The main goal of this dissertation is to develop the SIC block embedded in the current-mode FD receivers. To this end, the regenerated cancellation current signal is fed to the inputs of the base-band filter and after the mixer of a (direct-conversion) current-mode FD receiver. Since the pattern of the transmitter (the digital signal generated by DSP) is known, a high-speed digital-to-Analog converter (DAC) with medium-resolution can perfectly suppress main part of the leakage on the receiver path. A capacitive DAC (CDAC) is chosen among the available solutions because it is compatible with advanced CMOS technology for high-speed application and the medium-resolution designs. Although the main application of the design is to perform the cancellation, it can also be employed as a stand-alone DAC in the Analog (I/Q) transmitter. The SIC circuitry includes a trans-impedance amplifier (TIA), two DACs, high-speed digital circuits, and built-in-self-test section (BIST). According to the available specification for full-duplex communication system, the resolution and working frequency of the CDAC are calculated (designed) equal to 10-bit (3 binary+ 2 binary + 5 thermometric) and 1GHz, respectively. In order to relax the design of the TIA (settling time of the DAC), the CDAC implements using 2-way time-interleaved (TI) manner (the effective SIC frequency equals 2GHz) without using any calibration technique. The CDAC is also developed with the split-capacitor technique to lower the negative effects of the conventional binary-weighted DAC. By adding one extra capacitor on the left-side of the split-capacitor, LSB-side, the value of the split-capacitor can be chosen as an integer value of the unit capacitor. As a result, it largely enhances the linearity of the CADC and cancellation performance. If the block works as a stand-alone DAC with non-TI mode, the digital input code representing a Sinus waveform with an amplitude 1dB less than full-scale and output frequency around 10.74MHz, chosen by coherent sampling rule, then the ENOB, SINAD, SFDR, and output signal are 9.4-bit, 58.2 dB, 68.4dBc, and -9dBV. The simulated value of the |DNL| (static linearity) is also less than 0.7. The similar simulation was done in the SIC mode while the capacitive-array woks in the TI mode and cancellation current is set to the full-scale. Hence, the amount of cancelling the SI signal at the output of the TIA, SNDR, SFDR, SNDRequ. equals 51.3dB, 15.1 dB, 24dBc, 66.4 dB. The designed SIC cannot work as a closed-loop design. The layout was optimally drawn in order to minimize non-linearity, the power-consumption of the decoders, and reduce the complexity of the DAC. By distributing the thermometric cells across the array and using symmetrical switching scheme, the DAC is less subjected to the linear and gradient effect of the oxide. Based on the post-layout simulation results, the deviation of the design after drawing the layout is studied. To compare the results of the schematic and post-layout designs, the exact conditions of simulation above (schematic simulations) are used. When the block works as a stand-alone CDAC, the ENOB, SINAD, SFDR are 8.5-bit, 52.6 dB, 61.3 dBc. The simulated value of the |DNL| (static linearity) is also limited to 1.3. Likewise, the SI signal at the output of the TIA, SNDR, SFDR, SNDRequ. are equal to 44dB, 11.7 dB, 19 dBc, 55.7 dB

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system

    Conception pour la testabilité des systèmes biomédicaux implantables

    Get PDF
    Architecture générale des systèmes implantables -- Principes de stimulation électrique -- Champs d'application des systèmes implantables -- Les particularités des circuits implantables -- Tendance future -- Conception pour la testabilité de la partie numérique des circuits implantables -- "Desigh and realization of an accurate built-in current sensor for Iddq testing and power dissipation measurement -- Conception pour la testabilité de la partie analogique des circuits implantables -- BIST for digital-to-analog and Analogo-to-digital converters -- Efficient and accurate testing of analog-to-digital converters using oscillation test method -- Design for testability of Embedded integrated operational amplifiers -- Vérification des interfaces bioélectroniques des systèmes implantables -- Monitorin the electrode and lead failures in implanted microstimulators and sensors -- Capteurs de température intégrés pour la vérification de l'état thermique des puces dédiées -- Built-in temperature sensors for on-line thermal monitoring of microelectronic structures -- Un protocole de communication fiable pour la programmation et la télémétrie des système implantables -- A reliable communication protoco for externally controlled biomedical implanted devices
    • …
    corecore