313 research outputs found

    A Brief Survey of Image-Based Depth Upsampling

    Get PDF
    Recently, there has been remarkable growth of interest in the development and applications of Time-of-Flight (ToF) depth cameras. However, despite the permanent improvement of their characteristics, the practical applicability of ToF cameras is still limited by low resolution and quality of depth measurements. This has motivated many researchers to combine ToF cameras with other sensors in order to enhance and upsample depth images. In this paper, we compare ToF cameras to three image-based techniques for depth recovery, discuss the upsampling problem and survey the approaches that couple ToF depth images with high-resolution optical images. Other classes of upsampling methods are also mentioned

    Image-guided ToF depth upsampling: a survey

    Get PDF
    Recently, there has been remarkable growth of interest in the development and applications of time-of-flight (ToF) depth cameras. Despite the permanent improvement of their characteristics, the practical applicability of ToF cameras is still limited by low resolution and quality of depth measurements. This has motivated many researchers to combine ToF cameras with other sensors in order to enhance and upsample depth images. In this paper, we review the approaches that couple ToF depth images with high-resolution optical images. Other classes of upsampling methods are also briefly discussed. Finally, we provide an overview of performance evaluation tests presented in the related studies

    Epälambertilaiset pinnat ja niiden haasteet konenäössä

    Get PDF
    This thesis regards non-Lambertian surfaces and their challenges, solutions and study in computer vision. The physical theory for understanding the phenomenon is built first, using the Lambertian reflectance model, which defines Lambertian surfaces as ideally diffuse surfaces, whose luminance is isotropic and the luminous intensity obeys Lambert's cosine law. From these two assumptions, non-Lambertian surfaces violate at least the cosine law and are consequently specularly reflecting surfaces, whose perceived brightness is dependent from the viewpoint. Thus non-Lambertian surfaces violate also brightness and colour constancies, which assume that the brightness and colour of same real-world points stays constant across images. These assumptions are used, for example, in tracking and feature matching and thus non-Lambertian surfaces pose complications for object reconstruction and navigation among other tasks in the field of computer vision. After formulating the theoretical foundation of necessary physics and a more general reflectance model called the bi-directional reflectance distribution function, a comprehensive literature review into significant studies regarding non-Lambertian surfaces is conducted. The primary topics of the survey include photometric stereo and navigation systems, while considering other potential fields, such as fusion methods and illumination invariance. The goal of the survey is to formulate a detailed and in-depth answer to what methods can be used to solve the challenges posed by non-Lambertian surfaces, what are these methods' strengths and weaknesses, what are the used datasets and what remains to be answered by further research. After the survey, a dataset is collected and presented, and an outline of another dataset to be published in an upcoming paper is presented. Then a general discussion about the survey and the study is undertaken and conclusions along with proposed future steps are introduced

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies

    Object Detection Using LiDAR and Camera Fusion in Off-road Conditions

    Get PDF
    Seoses hüppelise huvi kasvuga autonoomsete sõidukite vastu viimastel aastatel on suurenenud ka vajadus täpsemate ja töökindlamate objektituvastuse meetodite järele. Kuigi tänu konvolutsioonilistele närvivõrkudele on palju edu saavutatud 2D objektituvastuses, siis võrreldavate tulemuste saavutamine 3D maailmas on seni jäänud unistuseks. Põhjuseks on mitmesugused probleemid eri modaalsusega sensorite andmevoogude ühitamisel, samuti on 3D maailmas märgendatud andmestike loomine aeganõudvam ja kallim. Sõltumata sellest, kas kasutame objektide kauguse hindamiseks stereo kaamerat või lidarit, kaasnevad andmevoogude ühitamisega ajastusprobleemid, mis raskendavad selliste lahenduste kasutamist reaalajas. Lisaks on enamus olemasolevaid lahendusi eelkõige välja töötatud ja testitud linnakeskkonnas liikumiseks.Töös pakutakse välja meetod 3D objektituvastuseks, mis põhineb 2D objektituvastuse tulemuste (objekte ümbritsevad kastid või segmenteerimise maskid) projitseerimisel 3D punktipilve ning saadud punktipilve filtreerimisel klasterdamismeetoditega. Tulemusi võrreldakse lihtsa termokaamera piltide filtreerimisel põhineva lahendusega. Täiendavalt viiakse läbi põhjalikud eksperimendid parimate algoritmi parameetrite leidmiseks objektituvastuseks maastikul, saavutamaks suurimat võimalikku täpsust reaalajas.Since the boom in the industry of autonomous vehicles, the need for preciseenvironment perception and robust object detection methods has grown. While we are making progress with state-of-the-art in 2D object detection with approaches such as convolutional neural networks, the challenge remains in efficiently achieving the same level of performance in 3D. The reasons for this include limitations of fusing multi-modal data and the cost of labelling different modalities for training such networks. Whether we use a stereo camera to perceive scene’s ranging information or use time of flight ranging sensors such as LiDAR, ​ the existing pipelines for object detection in point clouds have certain bottlenecks and latency issues which tend to affect the accuracy of detection in real time speed. Moreover, ​ these existing methods are primarily implemented and tested over urban cityscapes.This thesis presents a fusion based approach for detecting objects in 3D by projecting the proposed 2D regions of interest (object’s bounding boxes) or masks (semantically segmented images) to point clouds and applies outlier filtering techniques to filter out target object points in projected regions of interest. Additionally, we compare it with human detection using thermal image thresholding and filtering. Lastly, we performed rigorous benchmarks over the off-road environments to identify potential bottlenecks and to find a combination of pipeline parameters that can maximize the accuracy and performance of real-time object detection in 3D point clouds

    MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

    Full text link
    In this paper, we propose MonoRec, a semi-supervised monocular dense reconstruction architecture that predicts depth maps from a single moving camera in dynamic environments. MonoRec is based on a MVS setting which encodes the information of multiple consecutive images in a cost volume. To deal with dynamic objects in the scene, we introduce a MaskModule that predicts moving object masks by leveraging the photometric inconsistencies encoded in the cost volumes. Unlike other MVS methods, MonoRec is able to predict accurate depths for both static and moving objects by leveraging the predicted masks. Furthermore, we present a novel multi-stage training scheme with a semi-supervised loss formulation that does not require LiDAR depth values. We carefully evaluate MonoRec on the KITTI dataset and show that it achieves state-of-the-art performance compared to both multi-view and single-view methods. With the model trained on KITTI, we further demonstrate that MonoRec is able to generalize well to both the Oxford RobotCar dataset and the more challenging TUM-Mono dataset recorded by a handheld camera. Training code and pre-trained model will be published soon.Comment: Project page with video can be found under https://vision.in.tum.de/research/monorec . 14 pages, 10 figures, 5 table
    corecore