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This thesis regards non-Lambertian surfaces and their challenges, solutions and study in computer
vision. The physical theory for understanding the phenomenon is built first, using the Lambertian
reflectance model, which defines Lambertian surfaces as ideally diffuse surfaces, whose luminance
is isotropic and the luminous intensity obeys Lambert’s cosine law. From these two assumptions,
non-Lambertian surfaces violate at least the cosine law and are consequently specularly reflecting
surfaces, whose perceived brightness is dependent from the viewpoint. Thus non-Lambertian sur-
faces violate also brightness and colour constancies, which assume that the brightness and colour
of same real-world points stays constant across images. These assumptions are used, for example,
in tracking and feature matching and thus non-Lambertian surfaces pose complications for object
reconstruction and navigation among other tasks in the field of computer vision.

After formulating the theoretical foundation of necessary physics and a more general reflectance
model called the bi-directional reflectance distribution function, a comprehensive literature review
into significant studies regarding non-Lambertian surfaces is conducted. The primary topics of
the survey include photometric stereo and navigation systems, while considering other potential
fields, such as fusion methods and illumination invariance. The goal of the survey is to formulate
a detailed and in-depth answer to what methods can be used to solve the challenges posed by non-
Lambertian surfaces, what are these methods’ strengths and weaknesses, what are the used datasets
and what remains to be answered by further research. After the survey, a dataset is collected and
presented, and an outline of another dataset to be published in an upcoming paper is presented.
Then a general discussion about the survey and the study is undertaken and conclusions along with
proposed future steps are introduced.
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Introduction
Computer vision has since 1970s sought the visionary ideal of a machine that could
see and perceive like a human being [58]. In spite of the blooming optimism of the
early days and the splendour consequences of the realization of that ideal, the ultimate
solutions have turned out to be elusive for a myriad of reasons and the research on
computer vision remains versatile and lively to this day, taking on challenges rang-
ing from cost-effective imaging to the accurate reconstructions of objects and flawless
image matching, as extensively introduced by Szeliski in his book ”Computer Vision
Algorithms and Applications” from 2021 [58].

One of the essential challenges of modern computer vision lies in what I shall
refer to as featurelessness, which can be roughly translated as the lack of anything to
look at or to be observed by image sensors. A few practical examples include uni-
formly coloured settings and strongly reflecting surfaces, the latter referred to as non-
Lambertian surfaces [25]. While the immediately obvious consequence is the absence
of useful quantifiable information, one must consider also their secondary side effect,
which disturbs the functionality of algorithms as a whole. Non-Lambertian surfaces
have proven to be quite the hurdle, for example, in medical endoscopies [50], where
the closed environment of human body permits no changes, the mucous body fluids
and metallic tools produce specularities, and the primary equipment is an endoscope
unable to perform major adjustments to itself after the start of operation. It has thus
led to sophisticated masking algorithms capable of assisting medical professionals to
see vital details in real-time during the operations, despite the specularities present
[53].

Naturally these bright spotlights have been spotted in other fields of computer vi-
sion as well, such as navigation [16]. As the cameras and algorithms can not, metaphor-
ically speaking, put a finger on it what they’re observing, the tasks of localization and
image patch feature matching become increasingly difficult for the regions occupied
with the light [25]. It thus brings forth the notion of significant loss in accuracy due
to this phenomenon and the inevitable research question of how to effectively address
the issue in terms of the algorithm and equipment.

In this thesis, I shall formulate answers to three questions: ”what methods can be
used to extract useful information from non-Lambertian surfaces for computer vision
algorithms in different fields’, ”how good exactly are those methods” and ”what kind
of datasets are used”. This is done by the means of a literature survey, where from
the reader I assume the basic knowledge of computer vision, such as the definitions
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of camera calibration and projection matrices, familiarity with features and feature
matching algorithms and a basic understanding of monocular cameras. Necessary
knowledge can be gained, for example, from chapters 2, 7 and 10 in ”Computer Vision:
Algorithms and Applications” by Szeliski [58], or chapters 1, 5 and 7 in ”Computer
Vision: Modern Approach” by Forsyth and Ponce [13].

I will then start by presenting the fundamental theoretical foundation and physi-
cal models of non-Lambertian surfaces, and then continue on to present relevant studies
from various fields of computer vision. After the survey, I’ll present the commonly used
datasets in the surveyed methods, collect and test a new dataset aimed at quantifying
the non-Lambertian surfaces’ exact effect for single-view monocular depth estimation
and close off by proposing another dataset regarding tracking and mapping, to be pub-
lished in a paper in near future. Thirdly a discussion about pros and cons of the con-
ducted empirical studies takes place, in which I shall suggest ideas for further research
by regarding the existing state-of-the art methods and the results of the conducted
empirical studies. The thesis is closed by conclusions from the survey and the future
steps. I argue the benefits of such survey, studies and discussions lie in the extensive
viewpoint from which non-Lambertian surfaces are studied on across vastly different
fields of computer vision. Such approach is to my knowledge first of its kind and thus it
may instigate fresh research avenues for the upcoming state-of-the-art methods aiming
to solve the issue posed by non-Lambertian surfaces.



1. Theoretical background
The theoretical background for the proposed solutions so far regarding non-Lambertian
surfaces, is a convoluted mix of knowledge spanning diverse topics and four decades of
research [5, 53]. Here I have adopted the problem-centric approach, where the problem
and its physical models are presented first and its solutions afterwards. I claim that
by understanding the problem and phenomenon itself in great detail, the solutions
become consequently clearer to the reader, and moreover the scope of the literature
survey can be limited to the most relevant parts regarding the theoretical foundation of
proposed future research. Thus, this chapter considers the surface reflectance’s physical
models and the definitions of non-Lambertian surfaces as formulated by the models. If
the reader is acquainted with elemental physics regarding light and energy, they may
freely skip to following section and refer to Table 1.1 for exact units and Table 1.2
for descriptions of quantities, as needed. Likewise readers further acquainted with the
Lambertian reflectance model and bi-directional reflection distribution function may
skip to the following chapter, referring to Equations (1.2) and (1.1), and Tables 1.1
and 1.2 as needed.

1.1 Surface reflectance models

1.1.1 Surface reflectance

To understand surface reflectance models, one must first define what exactly is surface
reflectance. Simply put, surface reflectance is defined as light the surface reflects when
light is emitted at it, as explained in McCluney’s book ”Introduction to radiometry and
photometry” (2014) [37]. Continuing from this generally accepted viewpoint, the light
can be physically perceived in three major ways: either as electromagnetic radiation
in radiometry or more directly as the human’s sensory perception of brightness in
photometry or as the behaviour of a specific energy source in optics. On account
of these differences in focus, McCluneuy demonstrated there are a few distinctions
between the fields, such as the photometry’s limited scope of only visible light opposed
to other two, but the basic quantities and units of measurement, which enable us to
quantify light for the surface reflectance models, are still largely the same. Assuming
only an elemental notion of geometry and waves — namely, the concepts of wavelength,
frequency and radian — from the reader, I’ll present a short introduction into these
quantities and units next and the surface reflectance models in the next section. For a
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4 Chapter 1. Theoretical background

General concept Quantity
Name Name Description

Flux
Radiant flux Radiant energy per unit time

Spectral flux Radiant flux per
unit frequency or wavelength

Luminous flux Luminous energy per time unit

Intensity
Radiant intensity Radiant flux per unit angle

Spectral intensity Radiant intensity per
unit frequency or wavelength

Luminuous intensity Luminous flux per unit angle

Radiance
Radiance Radiant flux by a surface,

per unit angle per unit area

Spectral radiance Radiance per
unit frequency or wavelength

Irradiance
Irradiance Radiant flux received by a surface per

unit area

Spectral irradiance Irradiance per
unit frequency or wavelength

Exitance
Radiant exitance Radiant flux emitted by a surface per

unit area

Spectral exitance Radiant exitance per
unit frequency or wavelength

Luminous exitance
Luminous flux

per unit angle per
unit projected source area

Radiosity
Radiosity Radiant flux leaving a surface

per unit area

Spectral radiosity Radiosity of a surface per
unit frequency or wavelength

Luminance
Luminance

Luminous flux per
unit solid angle per

unit projected source area

Illuminance Luminous flux incident
on a surface

Surface albedo Surface albedo Ratio of radiosity to the irradiance

Table 1.1: A table describing the different physical quantities related to light.
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more detailed overview, I’ll refer the reader to the aforementioned McCluney’s book,
to which the rest of this section is based on [37].

Three central quantities of radiant energy include radiant intensity, radiance and
irradiance, which are all constructively founded on another central quantity, radiant
flux [37]. Radiant flux is the radiant energy transferred per time unit, measured as watts
(denoted as W). Radiant intensity is then emitted radiant flux per unit angle, and is
measured as watts per steradian (W · sr−1), where steradian is a three-dimensional unit
angle, analogous to two-dimensional radian. Respectively radiance is radiant flux by a
surface, per unit angle per unit area and is measured watts per steradian per square
metre (W · sr−1 ·m−2). Finally, irradiance is radiant flux received by a surface area and
is measured as watts per square metre (W ·m−2). Here it is important to note the small
difference between radiance and irradiance: the former refers to any transferred light
with respect to a surface, whether it was reflected, transmitted, received or emitted,
while the latter only concerns the light received by the surface. Thus the unit is
different as well.

All of these quantities have also their distinct equivalents in the context of elec-
tromagnetic radiation [37]. They are called spectral quantities, namely spectral flux,
spectral intensity, spectral radiance and spectral irradiance. Their difference to the
radiant quantities is minute, but vital: all is measured as per unit frequency or wave-
length. Consequently, the units of measurement depend on whether the unit frequency
(Hz) or wavelength (metres) is being used. Spectral flux is then measured as radiant
flux per time unit per wavelength or unit frequency, and the unit can be either watts
per hertz or watts per metre. A similar reasoning can be followed for the rest: spec-
tral intensity is radiant intensity per wavelength or unit frequency, spectral radiance
is radiance per wavelength or unit frequency and spectral irradiance is irradiance per
wavelength or unit frequency [37]. For the exact units of measurement, I refer the
reader to Table 1.1; for descriptions regarding the quantities, I refer to Table 1.2.

In addition to the aforementioned quantities, photometry has a few equivalent
quantities of its own: luminous flux, luminous intensity, luminance and illuminance.
They are roughly equivalent to their radiant and spectral counterparts in idea, but
the light waves are weighted according to a luminosity function, leading to different
units. The unit for luminous flux is lumen, equal to candela steradian, measuring
the luminous energy per time unit. The rest of the luminant units follow the logic of
radiant and spectral units, but are measured in terms of lumens. The Table 1.1 contains
the exact units for these quantities, as well as for radiant and spectral radiosity and
radiant, spectral and luminous exitance, which respectively distinct radiant flux exiting
a surface or emitted by a surface. The descriptions for all aforementioned quantities
can be found in Table 1.2. As a final remark, a surface albedo is a commonly used
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General concept Quantity Unit
Name Name Symbol Symbol (name)

Flux
Radiant flux Φe W · sr−1

Spectral flux Φe,λ or Φe,v W · sr−1

Luminous flux Φe,λ or Φe,v W · sr−1

Intensity
Radiant intensity Ie,Ω W · sr−1

Spectral intensity Ie,v,λ
W · sr−1 ·m−1

or W · sr−1 · Hz−1

Luminuous intensity Iv cd = lm · sr−1 (candela)

Radiance
Radiance Le,Ω W · sr−1 ·m−2

Spectral radiance Le,Ω,λ
W · sr−1 ·m−2 · Hz−1

or W · sr−1 ·m−3

Irradiance
Irradiance Ee W ·m−1

Spectral irradiance Ee,v or Ee,λ
W ·m−2 · Hz−1

or W ·m−3

Exitance
Radiant exitance Me W ·m−2

Spectral exitance Me,v or Me,λ

W ·m−2 · Hz−1

or W ·m−3

Luminous exitance Mv lm ·m−2

Radiosity
Radiosity Je W ·m−2

Spectral radiosity Je,v or Je,λ
W ·m−2 · Hz−1

or W ·m−3

Luminance
Luminance Lv cd ·m−2

Illuminance Ev lx = lm ·m−2 (lux)

Table 1.2: A table detailing units of measurement and symbols for different physical
quantities related to light.

measurement in the computations to describe the surface’s ability to reflect light, and
is defined as the ratio of radiosity to the irradiance received by a surface [37]. However,
as this is a dimensionless quantity without a symbol and unit of its own, it is omitted
from Table 1.1 and presented in Table 1.2 only.

As we have now gone over the basic operationalization of light, it is time to ask
how these quantities enable us to model the light. The key quantities are the luminous
intensity and luminous radiance, which capture the light received by the surface in
a directional fashion. Let us next present the two models based on these quantities,
the first of which coined the term for non-Lambertian surfaces and the second which
generalized the theory behind the first model [37]. Through out the next section, while
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it may be cumbersome, I shall use the notation from Table 1.1 in quantities’ subscripts
to absolve any ambiguity regarding the measurement units for less physically oriented
readers. Hence I advice the reader to refer to the Table 1.1, when interpreting the
equations.

1.1.2 Lambertian reflectance model

One of commonly used models to approximate light reflection is the Lambertian re-
flectance model, where a light hitting a matte surface is reflected diffusely according to
Lambert’s cosine law [18]. Mathematically formulated, the surface’s reflected luminous
intensity, denoted by Iv;r, is a function of θ, the angle between the two-dimensional sur-
face normal n and specular reflection’s direction; Iv;0, the reflected luminous intensity
of the surface; and the surface colour C [18]:

Iv;r = C · Iv;0 · cos θ.

In many contexts, the C as a constant is omitted however, as it only affects the scale
of the reflected luminous intensity. An alternative formulation of the model is that
the luminous intensity of the surface follows Lambert’s cosine law and the luminance
is isotropic, ie. uniform in all directions [18]. Then the model can be expressed in the
vector form:

Iv;r = 〈n, l〉︸ ︷︷ ︸
cos θ

·C · Iv;0,

where 〈· , ·〉 denotes dot product, n is the surface normal vector and l is the normalized
incident light’s direction vector [18].

This model has coined diffusely reflecting surfaces as Lambertian surfaces and
their opposite as non-Lambertian surfaces, while the reflections are diffuse or specular
correspondingly [49]. The visual difference between these two reflections is illustrated
in Table 1.3; intuitively it can described as if the reflection is concentrated on a random
surface point (non-Lambertian, specular reflection), instead of being scattered evenly
around the point where the light hits the surface (Lambertian, diffuse reflection). Spec-
ular reflection therefore creates a lobe, a teardrop-shaped ray formation, bouncing off
the surface, whereas the diffuse reflection creates a half-circle of rays, as illustrated in
Figure 1.1a [18].

While the model is attractive for its simplicity and ease of use, it is generally
regarded as too inaccurate due to its failure in following conditions:

i) the model can’t account for bright surfaces’ non-diffuse reflections and

ii) with appropriately large angles, surfaces are known to exhibit properties of both
Lambertian and non-Lambertian surfaces [18].
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C

Diffuse

reflections Specular

reflection

Iv;r

Incident

light

l

Surface normal

n

Iv;0

θ

(a) The Lambertian reflectance
model.

Le,Ω;rEe;i

Specular

reflection
Incident

light

l

Surface normal
n
Iv;0

θrθi

(b) The BDRF model.

Figure 1.1: Two-dimensional diagrams depicting different surface reflectance models.
The blue arrow marks the specular reflection, while the red arrow is the incident light.
The gray arrows on the left mark the diffuse reflection. The vertical and thick black
line is the surface normal and the other horizontal black line the surface level. C stands
for colour, Iv:r for the reflection’s intensity and l for the directional vector of incident
light. Ee;i denotes the incident light’s irradiance and Le,Ω;r is the reflection’s radiance.
θi and θr mark the angles of incident and reflected light’s direction with respect to the
surface level.

As the model ignores these spectrums at large, a more intricate model is needed to
quantify the difference in this situation. Thus, a bi-directional reflectance distribution
function is often more accurate and is used instead, as the non-Lambertian reflectance
is only a special case in its framework. Let us investigate that next.

1.1.3 Bi-directional reflectance distribution function

The bi-directional reflectance distribution function (BRDF) is a more general and fine-
grained model, which can be used in two or three dimensions to model the reflected
radiant energy in a given direction [49]. Mathematically put, it is the ratio of reflected
ray’s radiance, Le,Ω; r, to the incident ray’s irradiance, Ee; i, given their directions with
respect to the surface normal n, denoted as θr and θi and called the elevation angles
[49]:

fr(θr, θi) = dLe,Ω; r(θr)
dEe; i(θi)

The name for the model stems from the fact that the directions of incident and reflected
ray can actually be reversed without changing the function’s value [65], a property
which is called the Helmholtz reciprocity [58].

In three dimensions, two more angle parameters called the azimuth angles, φr
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and φi, are added to measure the rays’ direction with respect to the surface tangent
(z-axis), forming a polar coordinate system [49]:

fr(θr, θi, φr, φi) = dLe,Ω; r(θr, φr)
dEe; i(θi, φi)

.

As the rays trail along the surface of a cone centered at the surface normal’s intersec-
tion point with the surface, the angles also define the said cone’s radius and height.
Thus, the three-dimensional BRDF can additionally be parametrized with a half-angle
bisector coordinate system, formulated as the following equation,

fr(θd, θh, φd, φh) = dLe,Ω; r(θh, φh)
dEe; i(θd, φd)

,

where h is the half-angle vector for the light rays, φh and θh are this vector’s polar
coordinates in the surface normal coordinate system and φd and θd are the incident
light’s polar coordinates in the transformed coordinate system [49]. The different
coordinate systems are further illustrated in Figure 1.2. To simplify the setting, the
coordinate system is normalized so that the x-axis is the surface tangent, then y-axis is
the surface normal and the z-axis is the viewing direction, as is common in computer
vision context.

As the BRDFs are thus characterized by the incident light, surface normal and
half-angle vector between the lights and their angles with respect to each other, it is
common practice to present them in the following vectorized form, where

• n is the three-dimensional surface normal vector,

• v is the three-dimensional viewing point,

• h is the three-dimensional half-angle vector and

• l is the three-dimensional incident light vector [53].

Then the BRDF becomes

fr(θr, θi, φr, φi) = fr(n, l), (1.1)
fr(θd, θh, φd, φh) = fr(v, l) (1.2)

h = l + v
||l + v||

,

θh = 〈n,h〉 = arccos
(
nTh

)
,

θd = 〈l,h〉 = arccos
(
lTh

)
.

From now on, we shall use Equations 1.1 and 1.2 to refer to the BRDF formulation,
for the sake of brevity.
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fr(n, l)

θr
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φr

(a) A diagram of the 3D BRDF in a
surface normal coordinate system.
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z
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h
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φh
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(b) A diagram of the 3D BRDF in a
half-angle bisector coordinate system.

Figure 1.2: Diagrams of three-dimensional BRDF models in two different coordinate
systems. The parameters of the BRDF are different depending on the coordinate
system. Red indicates incident light, blue reflected light and black the half-angle
vector. The gray circle represents the object’s surface and the coordinate axes the
surface level (x), normal (y) and tangent (z) respectively.
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Surface Straight Rotated w.r.t. z- and y-axes (30◦, 15◦)

Lambertian

Non-Lambertian

Table 1.3: Different reflections on a flat circle-shaped object from different viewpoints.
A visibly clear local difference in brightness and colour can be observed in between the
viewpoints on a non-Lambertian surface, which leads to possible false or missing feature
matches for feature matching algorithms relying on colour or brightness values.

Further generalizations of the BRDF model have been presented, such as the spa-
tially varying BRDF (SVBRDF), where two parameters are added to measure incident
ray’s location on the surface, so as to model the spatially varying surface normals; and
a bi-directional surface scattering reflectance distribution function (BDSSRDF) with
eight parameters, to quantify surface’s internal scattering [37]. However, the true power
of BRDF lies in the fact that the bi-directional function fr can be defined case-wise, al-
lowing flexibility over suitable functions [49]. For example, the Lambertian reflectance
is a special case, where fr is a constant function [53].

The main observation from the model is, however, that non-Lambertian surfaces’
specular reflections — called specularities from now on — are dependent on a viewing
angle, as the angle parameters change depending on the viewing direction as well.
This phenomenon is further illustrated in Table 1.3. When a non-Lambertian surface
is tilted with respect to y- and z-axes, while the incident light’s direction stays constant,
a visible local difference in brightness and colour can be observed. The exact nature
of these specularities can vary, as the specularities can be local and sparse, like little
pinpricks, or global and dense, which are blindingly bright areas. Regardless of the
nature of these specularities, the non-Lambertian reflectance violates the following
assumptions:
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i) brightness constancy, where it is assumed that the brightness of pixels stays
constant across images and

ii) colour constancy, where it is assumed that the colour of objects stays constant
across images [58].

Due to these violations, non-Lambertian surfaces can, for example, lead to false image
patch feature matches relying on texture, colour or brightness values, as specularities
distort the values in one frame but not the other, depending on whether the viewing
point and illumination stays fixed [73]. Furthermore, as depth estimation algorithms
rely on sufficient texturing, and specularities cause the regions to look uniformly tex-
tured despite the different ground truth, the depth and surface reconstruction can also
be erroneously estimated for non-Lambertian surfaces [53]. Another notable subclass
of problems arises in medical computer vision, where global and dense specularities oc-
cur in closed non-adjustable environments of human bodies during medical endoscopies
[53]. The mucous fluids in human body act as non-Lambertian surfaces obscuring the
investigated tissue underneath, as seen in the studies by Meslouhi et al., Mirko et al.,
and Saint-Pierre et al. respectively [38] [39] [50]. These far-reaching complications
along with the computer vision’s natural interest in optical exceptions has led to versa-
tile research about non-Lambertian surfaces, compassing numerous fields of computer
vision. Let us now delve into them.



2. Non-Lambertian surfaces
The major fields actively studying exclusively non-Lambertian surfaces are quite cer-
tainly related to visual rendering, such as photometric stereo and shape and texture
from shading. The main reason for this are the common research questions posed
by them, such as the accurate 3D reconstruction of objects under different, possibly
unknown, lighting conditions and the extraction of surface normal maps from objects
[53]. As such, non-Lambertian surfaces pose an immediate problem, as the speculari-
ties block the information that is meant to be extracted and thus there is an acute need
for a method dealing with them. The method in turn varies depending on the exact
research question and test setting of the study. Let us then investigate the setting
and the research questions in detail. I shall consider mostly photometric stereo as it is
closely coupled with shape and texture from shading in general.

2.1 Photometric stereo

In photometric stereo, there are multiple adjustable light sources present in the en-
vironment [58], and the research question is generally formulated as modelling the
specularities’ behaviour under different lighting conditions [53]. Likewise the name
”photometric stereo”, coined by Woodham in 1980 [67], alludes to the multiple light
sources present in the environment taking up the role of image sensors in a traditional
stereo system. Additionally — as opposed to the term ”stereo camera” referring to the
camera’s characteristics — the usage of different sensors, such as intensity and image
sensors, is not out of the question in the studies of photometric stereo [53].

To study photometric stereo, a mathematical-physical framework for reflectance
must be assumed as the starting point. The most flexible theoretical model for mod-
elling reflections is the BRDF, which was presented previously in Section 1.1. Assuming
this model in the form presented in Equation (1.1), the mathematical formulation for
the problem with calibrated photometric stereo is the following: given

• I, the m× k-matrix of m observed points in k lighting conditions,

• L, the 3× k-matrix of k observed three-dimensional lighting vectors l, and

• a fixed viewing direction vT = (0, 0, 1),

we are trying to solve NT , the m × 3 matrix of the three-dimensional surface normal
vectors n in m points, from the following equation, where ◦ denotes the element-wise

13
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Object x

y

z

l1

l2
l3

l4

fr(n, l) Sensor

Figure 2.1: An illustrative diagram of a general test set-up in photometric stereo.
Red arrows indicate incident lights and the blue arrow is the reflected light encoded
by the BRDF. A dark gray box indicates the image or light sensor, and the light gray
circle the object surface.

multiplication,

I = max{fr (n, l) ◦
(
NTL

)
, 0}, (2.1)

by using different assumptions and constraints on them×k-dimensional BRDF, fr(n, l)
[53]. Respectively in uncalibrated photometric stereo, the matrix L is unknown, and it
needs to be estimated before solving the N [53]. Here it is good to take note that the
zero, the second argument of the max function, represents the apparent shadow of the
surface [53], which doesn’t give up any information about the BRDF. The environment
and test set-up is illustrated in Figure 2.1.

The logical next question is what kind of different assumptions and constraints
might be of use to us. One is naturally the Lambertian reflectance model that was
mentioned before, mathematically put as

fr(n, l) ≈ D,

where D is a diagonal matrix with each row being a constant, representing the constant
diffuse radiance [53]. If the L is known and has three different light vectors, the N
can be uniquely solved by the linear least squares, and the reflectance values are the
normalized rows of the N, as proven by Woodham in 1980 [67]. As this solution assumes
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the surface to be Lambertian and the linear least square is not able to reject the non-
linear non-Lambertian surfaces, the accuracy suffers greatly from specularities [68].
Additionally it does not apply outdoors due to sun’s nigh planar trajectory causing
the inverse of the N to disappear [67]. Finally, it is not truly useful in other realistic
use cases either, as the assumption of Lambertian surfaces is rarely met sufficiently
due to surfaces exhibiting both Lambertian and non-Lambertian properties [18]. Thus
more recent efforts focus on a general unknown fr that doesn’t directly comply with
the Lambertian reflectance model [53].

Another useful assumption would then be the local and sparse nature of specular-
ities and shadows, which gives us a possibility to detect and discard them as outliers.
These outlier rejection methods have been studied as early as 1982 by Coleman and
Jain [11], and as such, there exists various criteria for detection and rejection. A few
examples include studies by Verbiest and Van Gool from 2008 [61], and Wu and Tang
from 2009 [68], which model inliers or outliers as Markov random fields due to their
non-isolated grouped nature, thus capitalizing on the expectation maximization algo-
rithms capable of optimizing the surface normals and realistic visual reconstructions of
the surfaces. In contrast, a more recent avenue assumes the outliers, such as shadows,
noise and specularities, to form a sparse matrix E, which is added to the Lambertian
reflection matrix D [53]:

fr(n, l) ≈ D + E.

Consequently by minimizing the rank of E with more elaborate statistical criteria —
which translates as the reduction of linearly dependent noise present in the system of
equations formed by fr and D — we can achieve more robust rejection of specularities
[53]. An example of this approach can be made from the study of Ikehata et al. from
2012 [27], where a hierarchical Bayesian approximation is used to estimate surface
normals while modeling the E and enforcing its rank to three based on the same rank
of the surface normals and lighting vectors formulating the m× k -dimensional image,
thus limiting the number of possible Lambertian reflections available for the image [27].

The inherent weakness of any outlier rejection method lies in the implicit assump-
tion of local and sparse outliers: when met with dense outliers, the algorithms’ accuracy
decreases [53]. For Ikehata et al., additional problems arise from non-Lambertian diffu-
sive surfaces that don’t fit in the statistical model [27]. Other aspects worth considering
are the computational complexity of the EM models regarding the fine-tuning of the
parameters and amount of input images needed for reliable and valid statistical anal-
ysis: for example, both Verbiest and Van Gool [61] and Wu and Tang [68] use a dense
set of images, which translates to having over 100 images per reconstructed object.
Henceforth, while being robust methods, the research in photometric stereo has veered
towards analytical BRDFs accounting for outliers as well [53].
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1980s 1990s 2000s 2010s 2020s

Woodham, 1980

Hayakawa, 1994

Rusinkiewicz, 1998

Outlier rejection methods
1982-2012

Analytical
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2008-2012

Generalized BRDFs
2008-2020

LCNet, 2019

PS-FCN, 2020

Figure 2.2: An approximate timeline of the milestones in photometric stereo, regard-
ing non-Lambertian surfaces.

A couple analytical BRDFs include the Ward and Sparrow-Torrance models [53],
which model the surfaces as a set of microfacets, microscopic surface areas acting
as individual specular reflectors [46]. The distribution of microfacets’ normals then
differ from the surface normal depending on the surface’s characteristics specified by
the model [46]. For example, the Torrance-Sparrow model assumes microfacets to
be perfectly specular and thus only the microfacets with their normal equal to the
half-angle vector h can cause specularities in the viewing direction [46]. This model
has been adapted, for instance, in a study of Georghiades regarding the uncalibrated
photometric stereo in 2003 [21]. In general though, more studies have been dedicated
to the Ward model, which assume an elliptical Gaussian distribution for the isotropic
microfacet normals, thus having no preference over the reflectance direction [65]. The
studies by Chung and Jia in 2008 [10], Goldman et al. in 2010 [22] and Ackermann
et al. in 2012 [1] all use the Ward model or a variation of it. The exact approach to
the outliers in the Ward model varies: Chung and Jia use the shadows to estimate the
parameters of the BRDF [10], whereas Goldman et al. optimize the object shape and
model parameters, and pixel-wise parameters and surface normals in alternating turns
[22], and finally Ackermann et al. select the less shadowed pixels, which are most likely



2.1. Photometric stereo 17

to offer viable info about the BRDF [1].
In the end though, while analytical approaches have the strength of accuracy on

their side, little can be done about their weaknesses: the analytical models are material-
specific, the models can be non-linear, requiring careful and long optimization [53] and
finally, there is no guarantee that an analytical model fits the observed BRDF well [49].
For example, while Goldman et al. observe that there are ”fundamental materials”,
which make up most of the objects in real-life use cases and even constrain the materials’
amount to two per object in their study, their assumption of linear combinations for
the materials’ BRDFs leads to solving a non-linear equation, with the estimation of
the surface normal at the same time [22].

Thus another avenue in photometric stereo aims to overcome the challenge of
generalizable BRDFs by using the general properties of BRDF, such as monotonic-
ity, Helmholtz reciprocity and isotropy [53]. These generalized BRDFs are further
supported by the fact that materials often show structured BRDF values in real life,
implying isotropy [53]. Isotropy then simplifies the mathematical formulation of the
BRDF in a half-angle coordinate system, presented in Equation (1.2): the function has
now only three parameters, as the φh is no longer necessary [63]. Monotonicity, in the
other hand, implies that the intensity increases as the input increases in value, giving
a unique inverse function for the BRDF [63]. These constraints open various possi-
bilities, including the bi-polynomial approximations as various models don’t anymore
show significant dependency on φd either, as demonstrated by Rusinkiewicz in 1998
[49]. The bi-polynomial model is then formulated in the following fashion [49]:

fr (v, l) ≈ g (θh, θd) .

An example of a bi-polynomial model is the study of Shi et al. from 2014 [54], where it
is further assumed that the aforementioned equation can be factored into two separate
terms g1(θh) and g2(θd), enabling iterative estimation of the surface normal in a suit-
able slow-varying low-frequency domain with shadow and specular cut-off thresholds.
Another generalized BRDF without the bi-polynomial model was used in the study of
Wang et al. from 2020, where the incident light is assumed to be collocated with the
viewing point, allowing to decouple the surface normal from the BRDF [63]. These gen-
eralized approaches bring reasonable approximations of multitude of reflections with
various computational complexities, but they have difficulties dealing with anisotropic
reflections, which remains as an actively studied challenge [53].

Another avenue implicitly used both in generalized and analytical BRDFs is the
component-wise structure of the reflection [49]. In this case, the overall reflection
is built as a sum of two or three separate components, such as mirror, specular or
diffuse reflection components, which can individually accommodate different reflectance
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General equation for photometric stereo:
I = max{fr (n, l) ◦

(
NTL

)
, 0}

Proposed solution Study Assumptions Weaknesses

fr (n, l) ≈ D,
linear least square

[67]

Lambertian
reflection,
a constant
diagonal D

non-Lambertian
reflections

fr (n, l) ≈ D + E,
outlier rejection

[61], [68] Local and sparse
specularities

Global and dense
specularities,

a large number of images

Analytical BRDFs,
eg. Ward and

Torrance-Sparrow
models

[10], [21], [22]

Microfacets
and their

surface normal
distribution w.r.t.

specularities

Computational
complexity,

material specificity

Generalized
BRDFs

[18], [63]

Component-wise
reflection or

generic properties
of BRDF

Reflections or
components, which

violate the assumptions,
eg. anisotropic reflection

Bi-polynomial
approximations
fr(v, l) ≈ g(θh, θd)

[54] Monotonic and
isotropic BRDF

Reflections or
components, which

violate the assumptions,
eg. anisotropic reflection

Specialized data
collection methods

[34], [55], [76] -
Unpractical set-up,

lack of robustness and
generality

Depth priors [23], [75] -
Definition and

collection of priors,
computational complexity

Masking methods [38], [39], [50]
Uniform colour
or limited colour

variation

Lack of robustness
and generality,
soft specularities

Neural networks [6], [30], [59] -
Lack of a well-defined

BRDF, explainability and
various special cases

Table 2.1: A table describing briefly the proposed solutions in calibrated photometric
stereo.
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models [18]. An example of this approach can be seen in the study of Earp et al.
from 2007, where a pseudo-specular and diffuse Lambertian component is used [18].
These component models tend to be approximations of the actual mappings, and thus
some loss of accuracy is often present, where the observed reflectance doesn’t fit the
components directly.

The most recent venture in photometric stereo involves using neural networks
that learn the reflectance mapping directly [6]. While this approach tends to have the
advantage of dealing with majority of reflectance at ease, a few limits exist: Chen et
al. experience significant error with noisy light intensities [6], Taniai et al. have a long
runtime and decreased performance in complex reflections [59] and Kaya et al. have
problems with concave shapes [30].

As we have now covered most of calibrated photometric stereo, let us now cover
uncalibrated photometric stereo as well. As noted earlier, uncalibrated photometric
stereo has to estimate the lighting matrix L in Equation (2.1) along with the surface
normal matrix N [53]. Mathematically, uncalibrated photometric stereo is based on the
assumption that the reflectance is Lambertian so that the albedo-scaled lighting matrix
L and surface normal matrix S formulate the observed image [24]. As the normals are
scaled, we can solve the ambiguity caused by scaling, denoted as A, by the singular
value decomposition [24] or matrix factorization [15]. Thus the whole problem can be
stated as the following equation,

I = max{D ◦
(
NTL

)
, 0} = STL = ŜTATA−1L̂ (2.2)

where Ŝ and L̂ are the unscaled pseudo-normal and pseudo-lighting matrices respec-
tively [24]. However, solving the final ambiguity matrix ATA−1 requires additional
steps in the testing or calibration phase, which is an intricate and onerous process [53].
For instance, the rotation ambiguity can be solved with six different surface points with
constant albedo or intensity [53], but more common constraints are the integrability of
the surface or the observation of shadow boundary, which reduces the problem to the
Generalized Bas-Relief ambiguity, stated as the following equation [24]:

I = max{D ◦
(
NTL

)
, 0} = STL = ŜTATA−1L̂ = ŜTGTG−1L̂. (2.3)

For solving the matrix G with three unknown variables, there are numerous alternative
solutions to choose from, such as the perspective camera model, a ring of light sources
or an analysis of the specularities [53]. Each approach comes with their own limitations
and advantages. For contrast, Shi et al. use chromatic clustering to detect points, which
have equal albedo [52], Papadhimitri and Favaro locate the points where n = l [44],
and Alldrin et al. minimize the entropy after assuming a limited amount of dominant
colours in the image [2]. The first study is unsuitable to grayscale images [52], the
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Figure 2.3: A diagram of the architecture of PS-FCN (left) and LCNet (right). Cited
from Chen et al. [6].

second is limited solely to the diffuse component [44] and the third requires intricate
pre-processing steps [2].

Recently, neural networks have also been utilized to solve the uncalibrated prob-
lem in a general form without the assumption of the Lambertian reflectance or the
uniform distribution of light sources required for solving general BRDFs [7]. A notable
example is the LCNet from 2019 by Chen et al. [7] that uses convolutional layers and
max pooling to detect global features from local features. The network has been further
enhanced in the study from 2020 by Chen et al. [6] and it ranks among state-of-the-
art systems in photometric stereo. The architectures of both networks, Photometric
Stereo Fully Convoluted Network (PS-FCN) and Light Calibration Network (LCNet),
are illustrated in Figure 2.3.

Another study using neural networks has been conducted by Kaya et al. in 2021
[30]. Both still have performance issues with ambiguous special cases: Chen et al.
with piece-wise planar and planar surfaces with uniform albedo [6] and Kaya et al.
with concave shapes [30]. Another avenues outside the Equation (2.2) are the manifold
embedding methods, which acquire the surface normals up to a rotational ambiguity
and then use additional constraints, such as integrability or shadow boundary, to solve
that [53]. Examples include the study by Sato et al. from 2007 [51] and Lu et al. from
2015 [36].

Finally, aside from solving the Equation (2.1) by any of the aforementioned ap-
proaches, there are numerous methods of solving calibrated or uncalibrated photometric
stereo by changing the data collection method or the input [53]. For example, a study
by Zhou et al. uses multi-spectral light field, which gives them additional constraints
of multiple viewpoints and point lights and thus more accurate measurements of the
surface normals’ orientation [76]. Object motion works in a similar albeit stricter man-
ner [53], and it has been utilized in the studies of Simakov et al. in 2003 [55] and Lim



2.1. Photometric stereo 21

General equation for
uncalibrated photometric stereo:

I = max{fr(n, l) ◦
(
NTL

)
, 0} [53]

Manifold embedding
methods, [36], [51]

Assuming Lambertian reflection:
I = max{D ◦

(
NTL

)
, 0} = STL [24]

Reduced by the SVD to:
I = STL = ŜTATA−1L̂ [24]

By assuming
shadow boundary

or surface integrability,
leading to the GBR problem:

I = ŜTATA−1L̂ = ŜTGTG−1L̂ [53]

To solve
the matrix G:

Matrix factorization [15]

equal albedo [52]

points, where n = l [44]

a few dominant colours [2]

eg. a perspective
camera model,
a ring light field,

specularity analysis,
etc. [53]

Figure 2.4: An approximate diagram describing briefly the proposed solutions in
uncalibrated photometric stereo. Blue boxes mark the steps required for the solutions
on the right, drawn in light gray boxes.

et al. in 2005 [34]. An alternative solution can be found from the colour channels,
which reveal specularities when studied individually [53]. This approach has also been
utilized to create sophisticated masking methods for medical endoscopies in the studies
of Saint-Pierre et al., Mirko et al., and Meslouhi et al. respectively between 2007 and
2011 [38] [39] [50]. Another interesting method is the use of depth priors: by fusing a
priori depth info as regularizers for the final reconstructions, corrections can be made
in problematic low-frequency domains [53], like has been done in the studies by Zhang
et al. in 2012 [75] and Hague et al. in 2014 [23]. Lastly, other alternative solutions



22 Chapter 2. Non-Lambertian surfaces

to photometric stereo include also colored lighting, a perspective camera model, which
is more accurate than the traditional model, and cameras with non-linear response,
among many other methods [53]. While these solutions have generally gained interest-
ing results, their weaknesses tend to be often the lack of robustness or the specialized
data collection method, which is often not practically feasible, easily adjustable and
possibly not even usable outdoors or outside any controlled environment.

This concludes our survey of photometric stereo. The approximate timeline for
the milestones in photometric stereo is presented in Figure 2.2, and Table 2.1 and
Figure 2.4 recount the presented solutions to calibrated and uncalibrated photometric
stereo in a general level respectively. As we have now gone over photometric stereo
in an extensive manner, it is time to ask what might the other fields of computer
vision offer regarding the non-Lambertian surfaces. One worth taking a good look at
is the field of navigation, where the non-Lambertian surfaces play a significant role in
a central concept of featurelessness. Let us go there next.

2.2 Navigation

Navigation has been around since 1980s in computer vision research [58], entertain-
ing the ideas of an autonomously moving robots and vehicles. As Szeliski points out,
the research has progressed rapidly in various areas, producing a new golden standard
for today: Simultaneous Localization And Mapping, shortly put SLAM. What makes
SLAM different from its predecessors is its unique approach to the key questions con-
tained in its name, localization (”where we are”) and mapping (”what is around us”)
solved at the same time. Consequently, the availability of different sensors has been a
major driving force in the emergence of new SLAM methods [5]. Let’s present now the
most basic mathematical formulation of the SLAM. Given

• t+ 1 discrete time steps, often realized as frames of the camera or the frame rate
of the video,

• a t-dimensional vector o = (o1, o2, . . . , ot) of previous observations and the current
observation ot+1, usually in the form of image or inertial data or both,

• a t-dimensional vector c = (c1, c2, . . . , ct) of control inputs associated with each
time step, such as the vehicle state or camera calibration parameters,

• a t-dimensional vector of previous locations, denoted as x = (x1, x2, . . . , xt) and

• a t-dimensional vector of previous environment maps, denoted as m =
(m1,m2, . . . ,mt) and practically translated as anything of interest in the en-
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vironment, such as landmarks, objects, vehicle’s relative location or background
images,

we need to predict the location and environment map at the current time step, denoted
xt+1 and mt+1 respectively [17], as demonstrated in Figure 2.5. The SLAM in early
days was a probabilistic problem, so assuming this formulation, we have the following
equation as our objective,

P (xt+1,mt+1|c,o,x,m)

and we need the predict the joint posterior probability distribution at each time step
[17]. Assuming the Markov property for locations — that is, the next location xt+1 is
only dependent on the previous location xt and control input ct — and the conditional
independence of observations given the environment and current control inputs, ap-
plying Bayes’ theorem makes the problem recursive for observations and environment
maps [17]. In this form, the problem can then be formulated followingly:

P (xt+1,m|o, c, x0) =
∫
P (xt+1|xt, ct+1)P (xt,m|o, c, x0) dxt (2.4)

P (xt+1,m,mt+1|o, ot+1, c, x0) = P (ot+1|xt+1,m)P (xt+1,m|o, c, x0)
P (mt+1|o, c) . (2.5)

These equations can be further refined depending on, for example, whether we
assume the location xt is known, leading to a conditional probability density function,
or the environment maps’ locations are known, when the objective changes to predicting
the vehicle’s relative location with respect to environment maps [17]. However, the
aforementioned Equations (2.4) and (2.5) are sufficient for the purpose of our literature
survey, so we shall not make further assumptions and instead move on to investigate
how the SLAM solves this problem in general and how non-Lambertian surfaces play
a part in it.

In a probabilistic form, the solution for SLAM is to find the transition models for
observations and environment maps, commonly referred to as localization and mapping
respectively as per the name SLAM [17]:

P (ot+1|xt,m), P (xt+1|x, ct). (2.6)

General approaches how to construct these models can be categorized into three differ-
ent groups based on their sensors and input data: RGB-D SLAM, where both monoc-
ular RGB cameras and depth sensors are used; the visual-inertial SLAM (VI-SLAM),
where the inertial measurement units (IMUs) and images from stereo or monocular
cameras are used; and the visual SLAM, where only the stereo or monocular images
are used [5]. Another categorization of SLAM is a division into feature-based (indirect)
and direct methods. The feature-based methods use only features consisting of image
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(a) A 3D view.
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Figure 2.5: A two diagrams illustrating the SLAM problem in an urban setting,
prevalent in applications for autonomous navigation. The black dashed line with an
arrow marks the trajectory of the black car, and the blue circles and dashed lines mark
the observed environment maps along the way. The control variables (driving cues) at a
time step i are denoted by ci, the input data is denoted by oi, the previous environment
maps by mi and the car’s location by xi.
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keypoints and their respective descriptors to extract camera poses, whereas the direct
methods use the sensor data without pre-processing, minimizing the photometric er-
ror in the environment maps [5]. It is good to note here that the categorizations of
environment mappings’ density and input data are not mutually exclusive here, and
thus any combination of them is possible, resulting in eight options. This difference is
illustrated further in Figure 2.6.

The key observation in approaches besides their input is the density of the en-
vironment maps [5]. Depending on the approach, desired computational complexity
and research question, dense, semi-dense or sparse environment maps nay be sought,
as the density poses a significant computational constraint [5]. In the other hand,
feature-based methods experience poor performance in featureless environments, as it
generates a sparse map only [5]. The visual difference between different maps is illus-
trated in Figure 2.6. Here we can observe that non-Lambertian surfaces are thus ideal
to cause problems for feature-based methods, but the issue can not straightforwardly
be excluded for the direct methods either: the unprocessed data can consider also
pixels’ intensities, where the brightness constraint is of utmost importance [5].

Another key issue of non-Lambertian surfaces then regards the tracking process,
as the environment maps affect them as well as a joint optimization problem. I shall
use a concept called optical flow to highlight the root of the issue, but it is quintessen-
tial to note that while optical flow is a prevalent approach in tracking, it is not the
only possible approach. Thus non-Lambertian surfaces may pose different issues for
alternative approaches, but for the purpose of this survey and understanding the issue
posed, it is sufficient to regard this one example.

Optical flow is used to model the relative motion between the sensor and object
using constant brightness values across the frames, formulated as

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (2.7)

where a pixel at spatiotemporal location (x, y, t) with intensity I(x, y, t) has moved
by ∆x,∆y and ∆t between the two frames [58]. As non-Lambertian surfaces violate
the brightness constancy assumption, the above Equation (2.7) does not hold and the
optical flow is disturbed. This issue is then manifested as a phenomenon called drifting,
the gradually occurring deviation between the actual and predicted location of the ve-
hicle [17]. Generally formulated outside the framework of optical flow, non-Lambertian
surfaces exhibit temporary featurelessness at a time step t in an observation ot where
we do not expect it to be, whereas in other time steps’ observations specularities are
not visible, thus affecting the system’s localization via unpredictable and ambiguous
input data.

Furthermore, as these locations are predicted constantly, the drift in one time step
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Figure 2.6: A diagram about the differences between SLAM systems. The sparse
mapping has been cited from ORB-SLAM2 [41], the semi-dense from CNN-SLAM [60]
and the dense from DTAM’s presentation video [47].
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MonoSLAM, PTAM
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2011

ORB-SLAM2, CNN-SLAM
2017

DeepSDF, CubeSLAM
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2020

DSP-SLAM, 2021

Figure 2.7: An approximate timeline of the milestones in navigation, regarding visual
monocular SLAM and semantic SLAM.

will be implicitly inherited to the whole history of locations, commonly termed as the
”trajectory” [5]. Ergo the drifting is an issue in terms of navigation system’s overall
accuracy, but it presents a substantial problem also for loop closure, a key process
in SLAM [4]. To have an upper bound in the uncertainty regarding the transition
models, SLAM systems correct their mapping and location prediction when entering a
previously visited area [5]. The noteworthy point is that in the case of enough drifting,
the detection of the familiar area might be skipped and thus the uncertainty and drift
remains unbounded. While it can be noted that the loop closure is only present in
SLAM systems out of all systems intended for navigation — indeed, the whole field of
visual odometry is focused on localization predictions without the loop closure [58] —
the drifting is ideally kept to minimum in every one for better performance and thus
non-Lambertian surfaces are a notable and diverse issue in navigation as well.

Consequently, a sizeable effort has been dedicated to solving this problem [5],
so let us recount the presented solutions. For the sake of completeness, I shall also
present other milestones relevant for the empirical studies, presented later in Chapter
3, primarily those of visual monocular SLAM as the inertial input can be loosely
coupled with the pose estimation of visual SLAM systems, thus making the boundary
between the VI-SLAM and visual SLAM flexible [5].

The very first SLAM study to propose an algorithm for monocular cameras was
the study of Davison et al. in 2007 named MonoSLAM [14]. Besides the unprecedented
equipment, the novelty of this study lies in the approach used to compute the movement
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between the time steps, namely the combination of ”smooth camera movement” and
the initialization procedure. In other words, it is assumed that the camera is moving
at constant velocity in between the frames and the first environment map is initialized
on start-up, by introducing a known object to the first image. Then by adopting the
probabilistic formulation of SLAM, the solution presented by Davison et al. was an
extended Kalman filter, a probabilistic non-linear model that uses measurements ot to
correct the existing predictions xt, as illustrated in Figure 2.8. In this solution, the
transition models of locations and observations, denoted by f and h respectively, are
non-linear yet differentiable, formulated in a following fashion:

xt = f(xt−1, ct) + wt

ot = h(xt) + vt,

where wt is the process noise at the time step t and vt is the measurement noise
at the time step t. The drawbacks of MonoSLAM are the high memory costs of a
feature-based approach, and the lack of global optimization to reduce this load. With
a memory complexity of O(n2), the size of the environment determines the usability of
the algorithm: Davison et al. themselves only used a sparse environment map of 100
features in a single room, where the robot’s trajectory was a circle with a 1.5 diameter
as to preserve the frame rate at 30 per second.

At around the same time, monocular feature-based PTAM was also introduced by
Klein and Murray, which had a new approach to global optimization: the decoupling
of the feature tracking and environment mapping to different threads [31]. This, along
with the idea of expanding the initial map gradually with new frames of interest, allowed
for thousands of features in the environment maps. The resulting environment maps,
however, were still low-quality point clouds, thus at best when used with landmarks.
Additionally, PTAM was not equipped to handle efficiently loop closure or significant
occlusion, ie. blocking of vision caused by invisible object. The architecture of PTAM

Prior information of
time step t

Prediction of
time step t

Update of
time step t Observations

Output estimate at
time step t+ 1

Initialization

Next time step: t← t+ 1

Figure 2.8: A diagram of an extended Kalman filter pipeline used in MonoSLAM.
Blue boxes marks the steps required, while the gray box denotes the data.



2.2. Navigation 29

is illustrated in Figure 2.9.
The next world-changing study was KinectFusion, made by Newcombe et al. in

2011 [42]. This study, along with monocular cameras, sported a new type of low-cost
depth sensor called ”Kinect”, which utilized infrared ranging techniques, making this a
RBG-D study. These kind of depth sensors are nowadays referred to as light detection
and ranging sensors, shortened as LiDAR sensors, [58], and are still widely used in
many studies despite the different types of algorithms needed to process the data [5].
This led to advent of accurate ground truth depth information to be used alongside
the following formula,

dxx
′ = Kx,

which projects the monocular image point x′ from a homogeneous coordinate system
into a real-world point x, given the depth of the point x, denoted by dx, and the camera
intrinsic matrix, denoted by K [69]. KinectFusion also enabled the field of semantic
SLAM, now already lurking around the corner.

Often heralded as the first semantic SLAM [76], SLAM++ was published in
2011 by Moreno et al [28]. While the preceding SLAM systems had been mapping
sparse point features and other geometric primitives from the environment, SLAM++
opted for an object-oriented approach constructed on top of geometric primitives, us-
ing KinectFusion to build the object database required for the reconstruction. This
concept of obtaining prior information of objects in the form of parameter vectors is
nowadays referred to as shape priors and is still widely used in fields of SLAM and
object detection, as can be seen from the studies of Chhaya et al. [9], Yang et al. [71],
Häne et al. [26] and Dame et al. [12]. Semantic SLAM systems mark also a very
prominent avenue for producing methods capable of coping with non-Lambertian sur-
faces, as the shape priors can fill in the info that specularities block from the images.
Thus a few more notable studies are presented later on, which can be regarded as the
current state-of-the-art or the enabling basis for them.

The next milestone is DTAM, Dense Tracking And Mapping, from 2011 by New-
combe et al., which was the first fully direct SLAM method ever, and is the first dense
mapping method in our survey [5]. The mapping is based on a specialized loss function,
which the authors call ”the data cost volume” and is mathematically defined as the
average photometric error over varying pixel-wise depths with respect to the current
frame, calculated from the large collection of overlapping images [43]. The optimal
solution minimizing the error is used as a regularizer for the environment mapping,
along with a penalty function constraining the depth map to be spatially smooth. The
tracking is in turn done by comparing the camera projection of the 3D environment
mapping to the current frame, producing the estimated motion parameters. While the
mapping and tracking are detailed and accurate, and robust to rapid movement, the
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Figure 2.9: A diagram about PTAM architecture. Blue boxes marks the steps re-
quired, while red boxes indicate the threads involved.



2.2. Navigation 31

Next time step: t← t+ 1 PTAM’s tracking

Dense tracking

Estimate depth

Calculate cost volume

Tracking Mapping

Figure 2.10: A diagram about DTAM architecture. Blue boxes marks the steps
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Figure 2.11: A diagram about ORB-SLAM2 architecture. Blue boxes marks the
steps required, while red boxes indicate the threads involved.

advantages are paid for by the significant computational complexity and the lack of
global optimization and loop closure techniques. The architecture of DTAM is illus-
trated in Figure 2.10.

The next SLAM method of interest is ORB-SLAM2 by Mur-Artal and Tardós
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Figure 2.12: A diagram about CNN-SLAM architecture. Blue boxes marks the steps
required. As the tracking and mapping threads are interleaved within each other, they
are not marked in the architecture.

from 2017 [41]. It is even today considered as the state-of-the-art of feature-based
SLAM systems due to its enhanced optimization and loop closure techniques, the wide
range of applicable input from monocular and stereo images to RBG-D data [5], and a
modern feature matching algorithm ”Oriented FAST and rotated BRIEF” (ORB) by
Rublee et al., which is built on the preceding algorithms of FAST and BRIEF, but with
accelerated speed and better rotation invariance [48]. Utilizing its predecessor ORB-
SLAM’s ideas from 2015 [40], the tracking, local mapping and loop closing are separated
into their own threads, and the global bundle adjustment and motion optimization is
performed only after the threads are completed [41]. The drawbacks of this widely
used lightweight open-source solution stem from the weak robustness for motion blur
[41] and featureless regions, which accumulate drift considerably in monocular input
[25]. The architecture of ORB-SLAM2 is illustrated in Figure 2.11.

The next relevant milestone in our survey is the emergence of neural networks in
SLAM systems around 2017 [5]. One of the first precursors was the CNN-SLAM, which
utilized convolutional neural networks with the ResNet architecture to perform seman-
tic segmentation, and predict depth densely even in featureless regions by assuming a
baseline stereo and then refining the keyframe depth maps with the baseline stereo,
regularizer and each new frame’s depth estimations and depth uncertainty maps [60].
The architecture is illustrated in Figure 2.12. Convolutional neural networks, shortly
CNNs, continue to be widely used in semantic segmentation today [35], and indeed an-
other type of neural networks is used in our next milestone study from 2019, DeepSDF
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Figure 2.13: A diagram about the DeepSDF’s architecture. Randomly initialized
latent shape vectors (coloured blue) are input for the auto-decoder (coloured red),
which optimizes them until convergence via backpropagation and outputs their SDF
values (coloured orange) with respect to the other input, the 3D query point (coloured
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by Park et al. [45], which uses feed-forward networks in a probabilistic auto-decoder
architecture to learn continuous signed distance functions (SDFs), as illustrated in Fig-
ure 2.13. A signed distance function fd is defined as a continuous function of a point
coordinate x, which outputs a real number s presenting the distance to a surface of
interest in a following fashion:

fd(x) =


s > 0, if x is inside the surface

s = 0, if x is on the (decision) boundary of the surface

s < 0, if x is outside the surface.

With the decision boundary of fd the surface of interest can be constructed via ray-
tracing or the marching cubes algorithm [45]. By the universal application theorem,
the feed-forward networks in DeepSDF are harnessed to approximate this function up
to a computationally feasible precision with the following loss function,

L(fθ(x), s) = |fc(fd(x), δ)− fc(s, δ)| ,

where fθ is the approximation of fd produced by the network, defined by its parameter
vector θ; δ is the control distance parameter to the surface of interest maintaining the
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Figure 2.14: Raycast renderings of DeepSDF’s converged latent shape vectors. Cited
from Park et al [45].

metric SDF; and fc is the real-valued ”clamp function”, defined followingly:

fc(x, δ) := min(δ,max(−δ, x)).

Using this loss function to learn the latent low-dimensional variables of surfaces, which
can be directly inputted into the auto-decoder to be further optimized via back-
propagation, gives a possibility to model varying SDFs. Some of the optimized shape
codes are visualized in Figure 2.14. While admittedly DeepSDF is not a SLAM sys-
tem, but a 3D object detection and reconstruction system, it is a vital part of a notable
semantic SLAM system later on, which is why it is presented alongside other SLAM
systems.

A semantic SLAM we should take note of now is the CubeSLAM by Yang and
Scherer, which unites the fields of monocular 3D object detection and SLAM systems
once more [71]. By feeding the pose estimation info of SLAM system to the object
detection and the object detection information in turn to the SLAM pose and scale
estimation, the benefit is mutual and amplifies both systems’ performance. Aside from
this symbiotic info recycling, the novelties of CubeSLAM lie in the mathematical ap-
proaches to the bounding boxes, measurement functions between objects, cameras and
points and lastly memory efficiency to storing the objects. Continuing with seman-
tic SLAMs, we have also NodeSLAM by Sucar et al. [57] and From Detections to
3D Objects (FroDO) by Rünz et al. from 2020. FroDO uses the DeepSDF and en-
coder architecture to further refine the monocular object detection via shape priors
and other estimation steps [33], whereas NodeSLAM uses RGB-D data to optimize the
embeddings with the help of a new rendering volumetric function, which needs fewer
measurements and is capable of dealing with occlusion [57].

The most remarkable study of 2020 is, however, D3VO by Yang et al. [70], which
is a monocular visual odometry system — that is, a short-range monocular naviga-
tion system without loop closure. D3VO brings together the lessons of photometric
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stereo and SLAM united under brightness affine transformation and deep learning [70].
Assuming

1. an affine brightness transformation due to a change of camera exposure, with It′
being the new changed intensity and It is the previous unchanged intensity, [70],

It′ = aIt + b, a > 0, b > 0

2. a photometric error with comparison functions l, c and s for luminance, contrast
and structure [64],

r(It, It′) = λ

2 (1− SSIM(It, It′)) + (1− λ) ||It − It′||1 ,

SSIM(It, It′) = [l(It, It′)]α · [c(It, It′)]β · [s(It, It′)]γ,
α > 0, β > 0, γ > 0, 0 < λ < 1,
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Figure 2.16: The original data (left), predicted depth image (center) and predicted
uncertainty by D3VO on KITTI and EuRoC MAV datasets. Cited from Yang et al.
[70].

and thirdly

3. an uncertainty map of true pixel intensity y with Laplacian noise [70],

− log p(y|ŷ, σ) = |y − ŷ|
σ

+ log σ + C,C ∈ R,

and embedding all three of these equations into a self-supervised re-projection error
[70], D3VO can then adjust the weighting of the residual for areas with high uncer-
tainty, as demonstrated in Figure 2.16. This in turn achieves greater robustness against
featurelessness [70]. The architecture of D3VO is illustrated in Figure 2.15.

Now we can move on to the final study in our survey. It is a state-of-the-art
semantic SLAM by Wang et al. from 2021, called DSP-SLAM [62]. DSP-SLAM uses
ORB-SLAM2 architecture for sparse tracking and mapping and DeepSDF for the shape
embedding, to produce sparse backgrounds and dense shape reconstructions via deep
shape priors as its environment mappings. The input data can be monocular or stereo.
the latter optionally with LiDAR, while the system runs at 10 frames per second.
Being a sequential SLAM with both local feature and global object optimization, it
differs from FroDO’s batch implementation and NodeSLAM’s local optimization based
on depth images, but borrows inspiration from both. In the end, it brings about
considerably good visual results in low frame rate of 10hz, presented in Figure 2.18.
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Figure 2.17: A diagram about the DSP-SLAM architecture. Cited from Wang et al.
[62].

Figure 2.18: A sparse environment map, trajectory and a dense car reconstruction
from KITTI 00 sequence by DSP-SLAM. Cited from Wang et al. [62].

The architecture is illustrated in Figure 2.17.
Now we conclude our survey of SLAM. The approximate timeline for the mile-

stones of presented SLAM systems is presented in Figure 2.7, and Tables 2.2 and 2.3
recount the presented solutions in a general level respectively.

2.3 Other fields

As we have now covered photometric stereo and SLAM in the context of non-
Lambertian surfaces, it is only natural to move on to the field of computer vision that
is the synthesis of these two, called fusion methods [3]. The idea of fusion methods is
to use photometric stereo to define the surface normals, which can then be used to re-
cover depth information needed for more fine-grained object reconstruction. While the
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Name Approach Density Advancements Drawbacks

MonoSLAM
Monocular,

visual
feature-based

Sparse

Monocular EKF,
initialization
and smooth

camera
movement

High memory cost

PTAM
Monocular,

visual
feature-based

Semi-dense
Multi-threaded
tracking and
mapping

Sensitive to
occlusion
and a lack

of loop closure

DTAM Monocular,
visual direct

Dense

Data cost
volume, dense
mapping and

accurate
tracking

Lack of global
optimization
and loop
closure

ORB-SLAM2 Feature-based
Sparse

(optionally
semi-dense)

Feature
matching, loop
closure and

high optimization

Sensitive to
motion blur and
featurelessness

D3VO
Monocular,

visual
feature-based

Dense

Brightness
uncertainty,
increased

robustness to
featurelessness

Lack of
loop closure

Table 2.2: A summary table of presented SLAM systems.

first study leveraging this concept dates back roughly to 1990s in the wake of shape
from shading [3], the more recent related studies include exploring different penalty
functions for converting the surface normals to a depth estimate by Antensteiner et
al. from 2018 [3] and the usage of neural networks simultaneously to predict surface
normals and depth by Zhan et al. from 2019 [72].

The approach of fusion methods nevertheless heralds an interesting approach to
the question of depth estimation. Surface normals and gradients have been proven to
be a viable source of depth information in the studies of Zhang et al. [74], and Joshi et
al. [29], and photometric stereo can be regarded as the most versatile and resourceful
field regarding the estimation of surface normals. The major questions in utilizing pho-
tometric stereo techniques to acquire depth information lie in the problematic special
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Name Approach Density Advancements Drawbacks

KinectFusion Monocular,
RGB-D

Dense LiDAR sensing

Highly
expensive
in terms of
memory and

price,
a lack of

loop closure

SLAM++ Monocular,
RGB-D

Semi-dense Object tracking

Slow
framerate
of 20hz,

requires shape
priors

for detection

CNN-SLAM Monocular,
visual direct

Dense

CNNs,
increased

robustness to
featurelessness,
absolute scale
estimation and

semantic
segmentation

CPU+GPU
architecture
required for
real-time,

relies partially
on baseline

stereo

CubeSLAM
Monocular,

visual
feature-based

Sparse

Mathematical
approach,
info cycling
and memory
efficiency

Only
bounding
boxes

for objects

DSP-SLAM

Monocular
or stereo,
LiDAR
optional

with stereo,
feature-based

Dense
objects,
sparse

environment

Detailed
object

reconstruction,
environment maps,
high optimization
and run online

Slow
framerate
of 10hz

Table 2.3: A summary table of presented semantic SLAM systems.

cases and error margin. As pointed out by Antensteiner et al. in their survey of fusion
methods in 2018 [3], a small angular error in surface normals may lead to a significant
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depth error, and secondly, there is the question of penalizing the edges and planar sur-
faces so that the depth estimation remains accurate in both cases. One other aspect
more difficult to estimate is the computational complexity driven by this approach, as
the aforementioned fusion studies’ is not open sourced or accurately commented on in
the papers. As noted earlier in this chapter, while traditional and less costly BRDF
models have been accurately fitted for a variety of materials and even general classes
of materials, the neural networks so far have been most robust and general models
with the expense of computation. This prompts the question whether the traditional
models could be used to circumvent the computational cost of estimating the surface
normals and with what disadvantages to other properties of the model.

Finally in our survey, we shall consider a multi-faceted discipline of computer
vision called illumination invariance. The research of this topic covers diverse tasks,
such as object detection [56], SLAM [32], and face recognition [77], but the essential
question remains roughly the same across them: how can we extract the same infor-
mation under illumination changes. While the question may very well seem to cover
the specularities, the field is more focused on seasonal, daily or situational human-
made changes in illumination rather than specularities, which are a direct effect of
the prevailing illumination while not being a source of illumination or a change in the
sources per se. Thus while not particularly tested in the field, the used approaches
may present a problem in the non-Lambertian surfaces’ case as they may be devoid
of geometric, texture and signal information that could otherwise be present, eg. in
night- and daytime photos of same landmarks. Consequently, it would require further
research whether the illumination invariant techniques would be apt to dealing with
specularities, for example by quantifying the sufficient illumination for feature match-
ing algorithms — illumination invariant ones or not — to work, while the illumination
itself doesn’t cause specularities to appear.

As we have now completed the survey of existing methods regarding non-
Lambertian surfaces, it is only natural to look forward and what can be done next. The
next chapter shall then delve into datasets regarding non-Lambertian surfaces, striving
to quantify the specularities’ exact impact to navigation systems and their tasks.



3. Datasets with specularities
In the preceding chapter, we covered a good deal of the existing methods to deal with
specularities. Noteworthy about this survey are two very crucial questions: what are
the datasets used and how good exactly are these presented methods. Indeed, these
questions are even related; the answer to the latter can hardly be a definite yes, if
the used datasets don’t even reflect specularities properly. Thus, it is time to cast a
critical look into the most common datasets, KITTI in navigation [20] and DiLiGenT
in photometric stereo [53].

KITTI was first recorded in a run-of-the-mill countryside village of Karlsruhe,
Germany, in 2012, primarily for the research of autonomous driving applications [20].
The dataset can be loosely described as a continuous feed of images corresponding to
views a driver would see when driving leisurely around a medium-sized city and its
highways on a clear sunny day. As can be noted from Figure 3.1a, specularities in a
such setting are rather unequivocally minuscule, local and sparse, focused on cars and
other objects comprised of common non-Lambertian surfaces, such as glass and metal.
Consequently due to KITTI’s popularity, SLAM systems at large are not extensively
researched regarding global and dense specularities, and only three systems — CNN-
SLAM [60] and D3VO [70] with their uncertainty maps and the SLAM with a novel
feature matching algorithm by Dong et al. [16] — have actively paid attention to local
and sparse featurelessness in their approaches to the best of author’s knowledge.

Concluding, the very first obstacle when researching specularities’ effect to navi-
gation systems, one must have a new dataset, which contains not only local and sparse
but global and dense specularities as well. This kind of dataset is not publicly available
at the moment of writing to the best of author’s knowledge, which is why I propose
another dataset to be collected for this purpose. This dataset, to be published in a
paper in near future, will consist of monocular video and inertial data feeds captured in
an environment with an abundance of global and dense specularities: a sunny winter
day with water or ice on the road. The ground truth for depth estimation will be
recorded using a stereo camera and a short-range LiDAR sensor.

The second dataset to be inspected is DiLiGenT, a benchmark dataset in pho-
tometric stereo [53]. While DiLiGenT, unlike KITTI, was specifically designed with
specularities in mind, the special settings presiding in the dataset are worth noting.
DiLiGenT consists of dozens of static images taken from a limited set of objects with
a same viewpoint and varying lighting, with the background completely blacked out
[53]. The purpose is to assist the detection of specularities and to block out any noise

41
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(a) A frame from the KITTI dataset. (b) An edited picture of the object
”Lamb” from the DiLiGenT dataset.

Figure 3.1: A frame from then KITTI dataset on the left and an edited picture
of the object ”Lamb” from the DiLiGenT dataset on the right. As can be seen, the
specularities on KITTI are local and sparse, centered around cars’ corners and windows.
The specularities in DiLiGenT are either similar or like in the case, soft and local.

regarding the measurement of light with finicky equipment [53], but at the same time
it represents unnatural and highly ideal conditions, as can be seen in the Figure 3.1b.
Furthermore, even the specularities in DiLiGenT are small and mostly local and sparse
in nature, thus not accounting for global and dense specularities properly. Thus, even
in the field of photometric stereo, a more challenging benchmark dataset accounting
for global and dense specularities in objects could be introduced.

Thus, the next section shall focus on a new dataset collected by the author.
While not publicly available, it can be requested from the author via email. The task
the dataset is most suited for is single-view monocular depth estimation — that is,
a subfield of navigation, where a dense depth is estimated from a single image and
specularities hold potential for complications, as there is no prior or subsequent info
available. In the setting, a special attention was given to challenging lighting conditions,
ranging from darkness to overbrightness.

3.1 Single-view monocular depth estimation

3.1.1 Data collection

In this dataset collection, the aim was to collect data, which could be used to to
quantify the effect of specularities in single-view monocular depth estimation. The
data consists of ground truth depth data and monocular RGB images used as a test
set. The used equipment was a RealSense D435i stereo depth camera and a GoPro Max
camera, whose details are presented on Table 3.1. The cameras were positioned on a

mailto: sara.pyykola@helsinki.fi
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RealSense D435i
Width 424px
Height 240px

Bytes per pixel 2
Fx 213.326874
Fy 213.326874
PPx 211.939163
PPy 120.154716

Distortion Brown Conrady
Frame format Z16
Frame type Depth
File format .PNG, .RAW

(a) A table about RealSense D435i camera cal-
ibration parameters for the first ground truth
picture of natural illumination test set.

GoPro Max
Width 2704px
Height 2028px

Resolution 4MP
Focal length 3.00 mm

Shutter 1/156 s
F -value 2.8
ISO 300

White balance Auto
Flash None

Frame type RGB
File format .JPG

(b) A table about GoPro Max camera pa-
rameters for the natural illumination test
set.

Table 3.1: Examples of parameters used in the RealSense and GoPro Max cameras
during the dataset collection.

book pile atop an office table, located in a private office room at Exactum, a building
in University of Helsinki’s Kumpula campus, and angled towards a window and various
objects on the office table, such as a desk lamp, an award plate and a decorative picture.
Two subsets of data were gathered on both cameras, one set consisting of images where
the desk lamp on the table was turned on, referred to as ”the manual illumination” in
Table 3.2, and later, another set where the lamp was off, referred to as ”the natural
illumination” in Table 3.2. A sample of each subset is presented in Figure 3.3.

The nature of the second dataset should be brought to the reader’s attention. The
GoPro Max camera was set to capture one frame each minute on its own until stopped.
This continuous timelapse was run a little over 18 hours, totaling 1090 pictures. Some
of the notable illumination changes captured during the timelapse — referred to as ”the
natural illumination” — include the gradual day and night cycle, as well as a powerful
and bright reflection coming from the window, possibly caused by overexposure or a
specularity angled right towards the camera. In comparison, the first set of pictures
collected with the GoPro Max camera with the desk lamp turned on — referred to
as ”the manual illumination” — include stronger and larger specularities in the award
plate and near the window, and one softer specularity on the desk. The exact sizes
and collection times of each test and ground truth dataset are detailed in Table 3.2.

However, as many of the timelapse pictures exhibit barely perceivable differences
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Dataset Camera Partition Date Time Size

Ground truth
RealSense
D435i

Manual
illumination

21.6.2022 15.20-15.30 7
pictures

Natural
illumination

21.6.2022 15.40-15.50 5
pictures

Test set
GoPro
Max

Manual
illumination

21.6.2022 15.30.-15.45 13
pictures

Natural
illumination

21.-22.6.2022 15.52-10.02 1090
pictures

Table 3.2: The table describing the datasets collected.

in short time intervals, a smaller dataset with all the notable phenomena visible was
chosen for the tests. This set contains 19 pictures from the natural illumination test
set, taken on the hour between 16.00 and 10.00, and the fifth picture from the manual
illumination test set. The fifth picture from the natural illumination ground truth
data set, having more pixels than the manual illumination ground truth pictures, was
chosen for the evaluation.

3.1.2 Results

The testing of monocular depth estimation was carried out using DNet by Xue et al.
[69]. The reasons for the choice were numerous: modern state-of-the-art performance
in KITTI Eigen Split, the usage of surface normals in the algorithm, the estimation
of absolute depth for effortless evaluation against RealSense data, and the availability
of a public demo notebook for non-commercial uses. DNet’s novelties revolve around
a dense connected prediction (DCP) layer and the estimation of camera height. The
DCP layer can combine features from multiple scales leading to more accurate object-
level depths and boundaries. Then, assuming dense ground level points and using
surface normals to estimate the camera height, DNet solves the scaling factor required
in monocular SLAM systems to obtain the absolute depth estimation from the relative
depth estimation by dividing the true camera height with the estimated camera height.

The metrics of running DNet against the mini test set with the pre-trained model
from the paper of Xue et al. are presented in Table 3.3, while the visualized depth
estimations are presented in Figure 3.7. As can be deduced from the Table 3.3 and
Figure 3.7, DNet’s accuracy is fairly good, while not outstanding: the depth error
ranges roughly from 15 centimeters to 60, with incorrect predictions focusing around
the window and the wall on the background. Furthermore, the performance suffers most
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Figure 3.2: Samples from the collected test datasets. The picture on the right lower
corner is from the manually enhanced illumination set, while others are from the natural
illumination set.

(a) The natural illumination ground
truth.

(b) The manual illumination ground
truth.

Figure 3.3: Samples from the collected ground truth datasets.
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Picture Abs.rel. Sq.rel. RMSE Log RMSE 1.251 1.252 1.253

9_16_00.jpg 0.314 0.124 0.382 0.401 0.345 0.749 0.941
69_17_00.jpg 0.334 0.132 0.380 0.402 0.331 0.718 0.933
129_18_00.jpg 0.363 0.123 0.327 0.381 0.328 0.728 0.958
189_19_00.jpg 0.268 0.112 0.387 0.386 0.398 0.740 0.937
249_20_00.jpg 0.280 0.100 0.350 0.358 0.353 0.826 0.953
309_21_00.jpg 0.409 0.159 0.378 0.466 0.300 0.569 0.857
369_22_00.jpg 0.366 0.140 0.392 0.414 0.250 0.707 0.901
429_23_00.jpg 0.370 0.140 0.376 0.410 0.256 0.690 0.922
489_00_00.jpg 0.421 0.172 0.347 0.426 0.311 0.697 0.887
549_01_00.jpg 0.373 0.160 0.401 0.448 0.287 0.560 0.899
609_02_00.jpg 0.362 0.150 0.400 0.438 0.270 0.594 0.900
669_03_00.jpg 0.322 0.107 0.319 0.356 0.343 0.783 0.976
729_04_00.jpg 0.384 0.149 0.371 0.415 0.261 0.711 0.909
789_05_00.jpg 0.349 0.127 0.364 0.396 0.275 0.755 0.919
849_06_00.jpg 0.338 0.119 0.357 0.387 0.285 0.746 0.957
909_07_00.jpg 0.395 0.147 0.382 0.417 0.252 0.646 0.944
969_08_00.jpg 0.360 0.126 0.354 0.398 0.275 0.687 0.966
1029_09_00.jpg 0.331 0.117 0.365 0.389 0.267 0.735 0.956
1089_10_00.jpg 0.323 0.128 0.376 0.391 0.352 0.747 0.937

5 0.306 0.107 0.312 0.346 0.491 0.772 0.967

Table 3.3: Results of the depth estimation experiment against the mini test set.

from medium darkness accompanied with bright light than from the total darkness or
soft specularities. Thus, it can reasonably be concluded that DNet is passable as an
out-of-the-box solution in settings similar to the mini test test, and could be trained
with data similar to the mini test set if there is a need to increase the performance.
The sensor rig could additionally be equipped with a shadow or light source of its own,
to mitigate the effect of mixed illumination as needed. KITTI’s characteristics support
these notions: it is recorded in broad daylight outdoors and has a wildly different
scale of objects and distances than our simple setting indoors. Summarizing, it can
be concluded that extra care must be put into the training of DNet so that it may
cope with different aspects of featurelessness. The definitive answer whether this holds
for alternative SLAM systems would require further studies, but the results of DNet
indicate a need for it the very least. Settings with global and dense specularities would
be good to investigate as well.
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Figure 3.7: The visualized depth estimations of DNet running against the mini test
set. In disparity predictions (the middle images), light coloured areas have most dis-
parity and the dark areas the least. In absolute depth predictions (the lowest images),
the closest areas are dark and the areas farther away are bright. It can be clearly
observed that the changing illumination clearly impacts the performance and depth.



4. Discussion
As of now, we have gone through a wide range of studies regarding non-Lambertian
surfaces. Quickly recounting, from photometric stereo there are

• outlier methods, which deal well with bright, local and sparse specularities, but
have often difficulties with soft, global and dense ones

• analytical BRDFs, which suffer from computational complexity and poor gener-
alization

• masking methods, which have limiting assumptions, as the relevancy of nearby
pixels or a uniform distribution of colours

• generalized BRDFs and bi-polynomial approximations, which fail with the special
cases violating the assumptions and finally

• neural networks, which also fail with the special cases, have poor explainability
and dismiss the BRDF altogether.

As for navigation, D3VO and CNN-SLAM have utilized varying uncertainty mappings
to refine the depth estimation in case of specularities, whereas semantic SLAMs, such
as DSP-SLAM, and the SLAM system by Dong et al., have been able to use objects
to reconstruct info underneath the specularities. However, there is little or no data
available regarding these methods’ performance against global and dense specularities
as far as I am aware, and thus new studies about that should be conducted. Another
noteworthy point to be solved is how each system’s specific drawbacks might affect the
navigation tasks under global and dense specularities.

Summarizing, the most viable source of information we can gain from specularities
is the geometric and reflection information. As the specularity is caused by a reflection
from a surface, both from the reflection and the surface can be deduced several facts,
such as the approximate position of the surface and the characteristic reflection of the
surface. While this information can come with a measure of uncertainty, it still holds
potential for future, and sincerely I can say that I expect most benefit to come from the
union of the models of photometric stereo, the optimized neural network computations
and system architectures of SLAM, and the uncertainty or shape mappings. Fusion
methods especially hold potential for overcoming the specularities, given that the en-
tailed computational complexity is not too much. Boldly assuming this, a new kind of
approach could be envisioned, which I refer to as the reflection segmentation. In this
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approach, different objects and materials could be classified with different reflection
profiles, such as the Ward model, the bi-polynomial approximation and so on, using
an uncertainty mapping over the mismatch of the data and the implied parameters to
choose the best fitting reflection model. Using this chosen model, the surface normals
of the object or surface could be estimated and fed into a pipeline that converts the
surface normals into absolute depth estimation, much like in the study of Antensteiner
et al. [3]. As considerable accuracy was already achieved in their study — by average
with a mean square error between 0.1 and 0.3 with the method of generalized Nehab
[3] — and the same level of accuracy would be sufficient for navigation, this whole
pipeline of surface normals and depth estimation might be the future of SLAM espe-
cially. Indeed, surface normals can be predicted at the same time as the depth with
the neural networks, as proven by Eigen et al. [19], Weerasekera et al. [66] and Zue et
al. [69] in their studies from 2014, 2017 and 2020 respectively. However, to do a such
pipeline in practice, a suitable dataset for the reflection segmentation testing should be
acquired. While the dataset presented in Chapter 3 is not straightforwardly meeting
this goal, it could still be used with semantic labelling and the DiLiGenT dataset is
viable as well and better equipped due to its larger size, as hundreds of images may be
required for anisotropic reflection and outdoor settings among other tasks.

The problem of suitable datasets regarding the study of non-Lambertian surfaces,
particularly in multidisciplinary topics of computer vision, is indeed the main hurdle
for now as was noted in the previous chapter. The collected dataset is nevertheless far
from enough, and it has its own shortcomings, like softer lighting and an absence of
global and dense specularities. It does, however, address a larger target audience of
illumination invariance research as well and may reveal other useful information besides
the system’s accuracy, such as the most useful lighting conditions for navigation. The
outlined dataset may well be even more generalizable to other tasks, such as object
detection and reconstruction, and thus has unique potential for future research of
specularities. Another noteworthy research topic in SLAM would be a new formulation
of photometric error that doesn’t rely on brightness constancy and which could be used
as a metric even with specularities present in the data.

As a concluding remark, we can still note that the elemental issues behind specu-
larities — the violations of brightness and colour constancies — are still there and have
noteworthy potential to curb the existing methods’ efficiency with global and dense
specularities. Without empirical studies, it can be only hypothesized whether a shape
prior can be sufficiently deduced for object reconstruction, whether a less bright picture
of non-Lambertian surface obtained for depth estimation or whether the assumptions
of masking methods met sufficiently in practical settings. Thus I would call for more re-
search around this topic to fully determine what significance non-Lambertian surfaces
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can hold, and whether the environment can work to our advantage or disadvantage
regarding them, as is investigated in illumination invariance.





5. Conclusions
This thesis has focused on non-Lambertian surfaces in the field of computer vision,
casting an in-depth review into their fundamental theory, issued posed for various
tasks, their respective solutions and finally the future steps for research.

The thesis was opened by presenting the elemental optics and the two frameworks
required for the modelling of non-Lambertian surfaces: the Lambertian reflectance
model and the bi-directional reflectance distribution function. The first defines Lamber-
tian surfaces as ideally diffuse surfaces, whose luminance is isotropic and the luminous
intensity obeys Lambert’s cosine law, and non-Lambertian surfaces as the opposite
of Lambertian surfaces, capable of creating specularities and violating either of the
aforementioned assumptions. This knowledge then gave a starting point for the more
general model: the bi-directional reflectance distribution function, shortened as the
BRDF, where the reflected light is a function of the incident light and surface normal.
By further investigating the definition of non-Lambertian surfaces, we concluded that
they contradict the brightness and colour constancies frequently used as assumptions
in computer vision algorithms and thus can cause an abundance of complications. An
alternative and slightly exaggerating phrasing of the issue is how we can say that two
camera coordinates are the same real-world coordinates, if the direct info available
from the coordinates is not the same.

Using the BRDF, a survey into photometric stereo could be conducted. Recount-
ing historically significant studies and theoretical advancements, along with modern
state-of-the-art methods with an extensive overview of pros and cons of existing meth-
ods was presented. As examples of the former kind of studies are Woodham [67],
Hayakawa [24] and Rusienkiewicz [49], and from the latter PS-FCN [8], LCNet [6] and
the inverse reflectance model from Wang et al. [30].

After photometric stereo the survey’s focus was shifted into another field of com-
puter vision, where specularities have been known to cause complications: naviga-
tion. Presenting the probabilistic formulation of Simultaneous Localization and Map-
ping (SLAM), various important systems involving monocular cameras were presented
along with SLAM systems capable of handling specularities in navigation, such as
MonoSLAM [14] and ORB-SLAM2 [41] for the former and DSP-SLAM [62] and D3VO
[70] for the latter. Finally a brief account of other potential fields — namely fusion
methods and illumination invariance — for the research of non-Lambertian surfaces
was given.

Concluding from the survey, the shortcomings of common benchmark datasets
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used in photometric stereo and navigation were pointed out regarding the global and
dense specularities, in contrast to extensively studied local and sparse specularities.
A new dataset including extreme lighting conditions and soft specularities was then
collected and presented, as to provide an alternative dataset from natural conditions
with larger specularities to the purpose of single-view monocular depth estimation.
Another dataset to be later released in a paper, aimed for the tasks of tracking and
mapping under global and dense specularities, was designed and generally outlined.

Finally, a critical discussion into the presented methods and collected dataset was
underwent and a theoretical description regarding a potential algorithm was given. The
main challenges of non-Lambertian surfaces and their research were summarized and
reflected on.

Concluding from all of this, it can be said that non-Lambertian surfaces have
not been given the scientific attention in computer vision they are deserving. As they
contradict the common assumptions of brightness and colour constancy, new tools to
handle them adequately and generally are required, which in turn expect a plenitude of
research. Especially global and dense specularities remain as a negligible subject, while
imposing severe theoretical consequences for the existing methods. The first necessary
step for the discovery of truly generalized and efficient solutions is to acquire datasets
introducing diverse specularities, and preferably numerous non-Lambertian surfaces.
Only after this, can a considerable effort be given to the testing of exiting methods
and the development of suitable new algorithms, ranging from photometric stereo and
navigation to feature matching algorithms and object tracking.
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