

UNIVERSITY OF TARTU
Institute of Computer Science

 Computer Science Curriculum

Mahir Gulzar

Object Detection Using LiDAR and Camera
Fusion in Off-road Conditions

Master’s Thesis (30 ECTS)

Supervisor:​ Tambet Matiisen

Tartu 2019

Object Detection Using LiDAR and Camera Fusion in
Off-road Conditions

Abstract:
Since the boom in the industry of autonomous vehicles, the need for precise
environment perception and robust object detection methods has grown. While we are
making progress with state-of-the-art in 2D object detection with approaches such as
convolutional neural networks, the challenge remains in efficiently achieving the same
level of performance in 3D. The reasons for this include limitations of fusing
multi-modal data and the cost of labelling different modalities for training such
networks. Whether we use a stereo camera to perceive scene’s ranging information or
use time of flight ranging sensors such as LiDAR, ​the existing pipelines for object
detection in point clouds have certain bottlenecks and latency issues which tend to
affect the accuracy of detection in real time speed. Moreover, ​these existing methods are
primarily implemented and tested over urban cityscapes.
This thesis presents a fusion based approach for detecting objects in 3D by projecting
the proposed 2D regions of interest (object’s bounding boxes) or masks (semantically
segmented images) to point clouds and applies outlier filtering techniques to filter out
target object points in projected regions of interest. Additionally, we compare it with
human detection using thermal image thresholding and filtering. Lastly, we performed
rigorous benchmarks over the off-road environments to identify potential bottlenecks
and to find a combination of pipeline parameters that can maximize the accuracy and
performance of real-time object detection in 3D point clouds.

Keywords:
Object detection, sensor fusion, LiDAR, camera, frustum, off-road scenarios, ROS.

CERCS: ​P170 Computer science, numerical analysis, systems, control

1

Objektituvastus maastikul kasutades lidarit ja kaamerat

Lühikokkuvõte:
Seoses hüppelise huvi kasvuga autonoomsete sõidukite vastu viimastel aastatel on
suurenenud ka vajadus täpsemate ja töökindlamate objektituvastuse meetodite järele.
Kuigi tänu konvolutsioonilistele närvivõrkudele on palju edu saavutatud 2D
objektituvastuses, siis võrreldavate tulemuste saavutamine 3D maailmas on seni jäänud
unistuseks. Põhjuseks on mitmesugused probleemid eri modaalsusega sensorite
andmevoogude ühitamisel, samuti on 3D maailmas märgendatud andmestike loomine
aeganõudvam ja kallim. Sõltumata sellest, kas kasutame objektide kauguse hindamiseks
stereo kaamerat või lidarit, kaasnevad andmevoogude ühitamisega ajastusprobleemid,
mis raskendavad selliste lahenduste kasutamist reaalajas. Lisaks on enamus
olemasolevaid lahendusi eelkõige välja töötatud ja testitud linnakeskkonnas liikumiseks.

Töös pakutakse välja meetod 3D objektituvastuseks, mis põhineb 2D objektituvastuse
tulemuste (objekte ümbritsevad kastid või segmenteerimise maskid) projitseerimisel 3D
punktipilve ning saadud punktipilve filtreerimisel klasterdamismeetoditega. Tulemusi
võrreldakse lihtsa termokaamera piltide filtreerimisel põhineva lahendusega.
Täiendavalt viiakse läbi põhjalikud eksperimendid parimate algoritmi parameetrite
leidmiseks objektituvastuseks maastikul, saavutamaks suurimat võimalikku täpsust
reaalajas.

Võtmesõnad:
Objektituvastus, sensorite ühitamine, lidar, kaamera, maastikukeskkond, ROS.

CERCS: ​ P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
(automaatjuhtimisteooria)

2

List of Abbreviations

Abbreviation Explanation

SAE Society of Automation Engineers

ROS Robot Operating System

UGV Unmanned Ground Vehicle

LiDAR Light Detection and Ranging

RANSAC Random sample consensus

SVM Support Vector Machine

HOG Histogram of Oriented Gradients

CNN Convolutional Neural Network

R-CNN Region Convolutional Neural Network

FOV Field of View

DBSCAN Density-based spatial clustering of applications with noise

GPS Global Positioning System

GNSS Global Navigation Satellite System

RPN Region Proposal Network

3

Table of Contents

1 Introduction 6

1.1 Motivation and Background 6
1.2 Problem Statement 8
1.3 Structure 8

2 Sensor fundamentals 10
2.1 Camera and Ranging Sensors 10

2.1.1 Camera 10
2.1.1.1 Camera as a ranging sensor: 11

2.1.2 LiDAR 12
2.2 Extrinsic Calibration and Sensor Fusion 14
2.3 Data Fusion Challenges 15

3 Related Work 18
3.1 2D Object Detectors 18
3.2 3D Detection Approaches 19

4 Detection Pipeline 21
4.1 Dataset description 21

4.1.1 FieldSAFE Dataset 21
4.1.2 Milrem Robotics Dataset 22

4.2 Detection Algorithm 23
4.2.1 Preprocessing 23
4.2.2 2D region proposals 24
4.2.3 Projection, Fusion & Frustum proposals 24
4.2.4 Filtering & Clustering 25

4.3 Baseline Algorithms (Mask-based) 27
4.3.1 Thermal Thresholded Masks 27
4.3.2 Segmentation Masks 28
4.3.3 Mask-based YOLO 29
4.3.4 Clustering Mask Proposals 29

4.4 Detection Pipeline vs Baselines 30
4.4.1 Mask vs Bounding boxes 30
4.4.2 Instance vs Without Instance Information 30

4.5 Stable Benchmarking and ROS 31
4.5.1 External Setup 31

4.6 Parameter Description 32
4.6.1 ROS parameters 32

4.6.1.1 Play rate 32

4

4.6.1.2 Time Synchronization method 32
4.6.2 Benchmarking parameters 33
4.6.3 Algorithm parameters 33

4.7 Evaluation Metrics 34

5 Benchmarking and Performance Analysis 35
5.1 Benchmarking Results 35

5.1.1 Dataset Benchmarks 35
5.1.1.1 FieldSAFE 35
5.1.1.2 Milrem 36

5.1.2 Frustum Based Detection vs Baselines 36
5.1.3 Algorithm Parameters (FieldSAFE) 38

5.1.3.1 Epsilon and Min Samples 38
5.1.3.2 Bounding Box Scale 39

5.1.4 Benchmarking Parameters 39
5.1.5 ROS Parameters 40

5.1.5.1 Play rate 40
5.1.5.2 Time Synchronization 41

5.2 Error Analysis 42
5.2.1 2D Misdetection causes 42

6 Conclusions and Future Work 45

7 References 46

Appendix 50
I. License 50

5

1 Introduction

1.1 Motivation and Background
Development of a fully autonomous vehicle where an intelligent agent can fully
perceive the environment and execute control decisions in real-time is among one of the
most challenging tasks for AI researchers. In fact, this research domain can be
subdivided into different categories of computer science and robotics, such as computer
vision, machine learning, deep learning, sensor simulation etc. The development
architecture of an autonomous vehicle is divided into different submodules which work
in a closed loop. These modules are environment perception, vehicle localization, path
planning and motion control (Figure 1.1).

Figure 1.1.​ The basic framework of an autonomous vehicle [1].

The main focus of this thesis is the perception module. The perception module detects
objects surrounding the vehicle e.g humans, vehicles, trees, buildings etc and might also
include object tracking as well. Our research revolves specifically around detecting
humans in real-time using data from multiple modalities e.g. camera and ranging
sensors in off-road scenarios. The top priority of a driverless vehicles is to reduce
human error to ensure safety of humans [2], so we consider this as a benchmarking
parameter in this thesis, mainly because even small errors in detection can cause
fatalities.
When it comes to detection, computer vision based approaches are very popular
nowadays. In recent years the emergence of fusion-based methods in multi-modal
systems became useful in different applications such as environment mapping [3] and
autonomous driving [4]. Using a combination of cameras with different ranging sensors
(such as LiDAR) is a way for an autonomous vehicle to detect objects with distance
information. A camera gives us high-quality scene image and a ranging sensor provides
depth or distance information of the environment. Single sensor data is often not enough
for the complete perception of the surrounding environment of an autonomous vehicle
mainly because of the limitations of each sensor [5]. Multi-modality (data from multiple
sensors) comes into play for perceiving different attributes of the environment to make

6

precise control decisions. On the other hand, multi-modal data has its own limitations
[6] which will be discussed in later chapters.
Instead of considering the problem of autonomy of a vehicle, in general, we look at it
from the perspective of the levels of autonomy. The Society of Automotive Engineers
(SAE) has defined a very useful classification system for different levels of driving
automation [7]. These levels are listed in Table 1.1 below.

Table 1.1.​ SAE levels of driving automation summary See [7, p. 17].

SAE
Level

Name

Description

Execution

Environment
Monitoring

Fallback
performance
of dynamic

task

Driving
Modes

Human driver monitors driving environment

0 No Automation Full-time performance by
human overall dynamic tasks

Human Driver

Human Driver

Human Driver

 N/A

1 Driver Assistance Driving mode specific
execution by a driver assistance
with an expectation that human
driver will perform all
remaining aspects of dynamic
tasks

Human Driver
and System

Some
driving
modes

2 Partial
Automation

Driving mode specific
execution by one or more driver
assistance with an expectation
that human driver will perform
all remaining aspects of
dynamic tasks

System

Automated driving system monitors the driving environment

3 Conditional
Automation

Driving mode specific
performance by an automated
driver system with the
expectation that a human driver
will respond appropriately to a
request to intervene

System

System

Human Driver

Some
driving
modes

4 High Automation Driving mode specific
performance by an automated
driver system even if a human
driver does not respond
appropriately to a request to
intervene

System

Many
driving
modes

5 Full Automation Full-time performance of an
automated driving system of all
aspects of a dynamic driving
task in all environmental
conditions.

All

driving
modes

Audi claims to have reached to the level 3 of the classification table [8] i.e. able to
drive autonomously in good conditions on highways and with light traffic in the city,
while requiring safety driver to be alert at all times. Even though achieving level 3 is a
considerable advancement in the automotive industry, we still lack in achieving the
same level of autonomy in off-road scenarios i.e. these advancements are applicable
only in well structured urban environments. There are several reasons for this:

● Off-road scenarios, in general, don’t have any structural aspect to the
environment i.e. there are no lane markers and road signs to assist the vehicle.
The terrain is uneven compared to the roads in an urban environment and there

7

is no clear distinction between drivable and non-drivable areas i.e. it is fine to
drive through bushes sometimes.

● There is no fixed point of reference for vehicle localization (trees and bushes
move slightly all the time compared to buildings in urban scenar​ios which stay
still).

● The scarcity of off-road datasets.

1.2 Problem Statement
Our work is primarily focusing on object detection in off-road scenarios. Another
challenge is to identify potential bottlenecks in our pipeline and tweak the environment
parameters to maximize the performance gain of the detection.

There are two core questions which we will address in this study:

1. How well can we detect humans in real-time using mature 2D object detection
methods to assist locating humans in 3D in off-road scenarios?

2. What are the best parameters for stable and robust benchmarking of object
detection using Robotic Operating System (ROS)?

In this thesis, a real-time model is defined as a minimum of 10 frames per second.

This study is a part of a collaborative project “Applied research on system of sensors
and software algorithms for safety and driver assistance on remotely operated ground
vehicles for off-road applications” with Milrem Robotics. The aim of this research is to
develop a baseline for fast and robust object detection in off-road scenarios for an
unmanned ground vehicle (UGV). The main objective is to maximize the performance
of 3D object detection using existing state-of-the-art 2D detection methods with camera
and LiDAR fusion. Inspired from frustum pointnets [9] method, which currently ranks
at the 4th position for detecting pedestrians in KITTI dataset [10], we develop simple
3D object detection pipeline for detecting humans in off-road scenarios. This thesis also
addresses the issues related to latency and stability of benchmarking results in the
perception module faced specifically while working with ROS. For this, we perform
extensive benchmarking over various parameters to give conclusive results and to
maximize the performance of our detection pipeline.

1.3 Structure
We divide this work into the following chapters:

● Chapter-2: Overview of the sensors involved in the object detection process
and their limitations. Camera-LiDAR calibration and fusion challenges.

● Chapter-3: Literature review of the existing approaches for object detection
using cameras and LiDARs.

● Chapter-4: An overview of the chosen datasets. Architecture and flow of our
perception module pipeline in ROS. A comparison of baselines with detection
pipeline and a description of benchmarking setup with parameters involved.

● Chapter-5: Benchmarking results of our methodology over different datasets
and detection methods used.

8

● Chapter-6: In the last chapter we conclude our work with a summary of our
module design, discuss limitations of it and possible future improvements.

9

2 Sensor fundamentals

This chapter gives a brief overview of the sensors used in this project, their working
principles as well as their limitations under which our detection pipeline is built upon.

2.1 Camera and Ranging Sensors

2.1.1 Camera
Optical sensors are very common for data acquisition among different available sensors.
Cameras give a high-resolution 2D understanding of the environment depending on the
type of camera (RGB, thermal etc.). Various computer vision based approaches can be
applied to images taken from both thermal and RGB cameras but choosing the right
type of camera depends on the use case. For example, detecting humans in low light
situations is comparatively difficult from an RGB image than from a thermal image
(Figure 2.1).

Figure 2.1:​ RGB vs Thermal in a low light scene [11].

Our study involves working with both RGB and thermal cameras. Thermal imagery can
be used to detect people in a wide range of environmental conditions and can have
performance gains over RGB [12]. RGB cameras work with visible reflected light over
three channels (red, green and blue) which makes it dependent to day and night light
conditions. On the other hand, RGB images have an advantage over thermal imagery in
resolving ambiguous situations such as tracking people in occlusions [13]. This makes
RGB a better choice for object tracking as RGB channels have more information about
the object compared to a single channel thermal image. Table 2.1 summarizes the pros
and cons of RGB and thermal cameras.

Table 2.1:​ RGB vs thermal pros and cons [13].
Camera Type Pros Cons

Thermal

Easier segmentation
Independent of light

Re-identification difficult
Expensive
Fair resolution
False information due to infrared reflectivity

10

RGB

Re-identification possible
Cheap sensor
High resolution

Sensitive to light
Privacy issues
Shadows

2.1.1.1 Camera as a ranging sensor:
The real-world scenes are three-dimensional i.e. the depth information of the scene is
crucial for object detection. A camera works on the principle of pinhole camera model
where the light rays pass through an aperture (hole) and the image of 3D environment is
inversely projected on an image plane (Figure 2.2). The parameters of pinhole model
are determined by (intrinsic) camera matrix that encodes focal length and sensor size of
the camera. Furthermore, to fuse the output of two sensors placed at a certain distance in
world space, the sensors undergo through a procedure of calculating external (extrinsic)
parameters. This process of determining the extrinsic and intrinsic camera parameters is
called calibration.

Figure 2.2.​ Pinhole camera model [14].

Cameras can be categorized into monocular and stereo, where stereo vision is used to
perceive depth or range of the scene using two cameras similar to the way humans
perceive through stereoscopic vision the distance of the objects in the world.

Figure 2.3.​ Ideal stereoscopic geometry [15]​.

11

In practice the stereo imaging for sensing range information in robotics has difficulties
[16]. The main problem for stereo methods is the reliable matching of image pixels for
the same object (point P in Figure 2.3) i.e. the depth information is prone to errors and
less accurate. Also, the constraint of lighting conditions applies in stereo vision too. On
the other hand, if mapped accurately, the stereo vision theoretically gives a
high-resolution depth mapping up to infinite range - something no other range sensor
gives at the moment [16]. The performance of camera sensor, in general, varies with use
case scenarios and properties. Figure 2.4 shows a performance chart of camera sensor.

Figure 2.4.​ Camera vision performance chart with different use-cases on a scale of 0 to
5 (where 5 is the best performance) [17].

2.1.2 LiDAR
LiDAR (LIght Detection And Ranging) is a sensor based on time of flight principle and
is very recently introduced compared to the camera. Time of flight is a method of
measuring the distance of an object from the sensor. This is done in four steps:

1. emit signal (Laser) pulse from the sensor,
2. catch reflected laser back to the pulse source,
3. measure the time taken by the laser pulse to come back,
4. lastly, calculate distance using the distance formula.

Figure 2.5.​ Measuring principle of LiDAR [18].

12

Another well known ranging sensor built on top of time of flight principle is radar
(RAdio Detection And Ranging) which uses radio wave as a signal carrier whereas
LiDAR uses light as a signal carrier (hence the rhyming name LiDAR). The output of
LiDAR is a sequence of points consisting of four values: distance, horizontal/vertical
angles and reflectivity [18]. The reflectivity of a surface depends on its texture, material
and color. One of the most common ways to represent LiDAR data is point cloud due to
a wide variety of available open source libraries. In point cloud format the data is
represented in the form cartesian coordinate system i.e. x, y and z. Figure 2.6 shows an
example frame of point cloud in urban environment

Figure 2.6.​ Velodyne 64 beam lidar scan [19].

In our study, we will be working on point-clouds retrieved from 32- and 16-beam
Velodyne rotating LiDARs. A rotating multi-beam LiDAR provides a 360-degree field
of view of the scene with a vertical resolution equal to the number of the beams, while
the horizontal resolution depends on the speed of rotation. Almost all the LiDARs
available today in the commercial market operate in near-infrared light spectrum thus
their output power is limited for eye safety constraints.
LiDARs are typically less affected by weather conditions when compared to cameras
however they lack the ability to capture the textures of the scene objects (Figure 2.7).

Figure 2.7.​ LiDAR performance chart with different use-cases on a scale of 0 to 5

(where 5 is the best performance) [17].

13

Additionally, a single attribute of dimension and shape cannot give accurate results in
object classification. Moreover, point-clouds are sparse i.e. there is always a level of
uncertainty between the scanned beams, especially for far away points. More recent
advancement in LiDAR technology is Flash LiDARs which can produce a
high-resolution object detail similar to that of cameras. These LiDARs were not used in
the project.

2.2 Extrinsic Calibration and Sensor Fusion
At this point, we can already draw a distinct conclusion that we cannot completely rely
on one vision sensor in order to do accurate and robust object detection due to the
limitations of each sensor. The following table summarizes the comparisons of the
sensor technologies discussed previously.

Table 2.2.​ A comparison of vision sensors adapted from [20].
Sensor Principle Computational

Complexity
Characteristics

Camera

Ambient visible light
intensity

Moderate High resolution, high vertical FOV, affected
by lighting conditions

Stereo
camera

Multiple cameras for
binocular vision

High Similar to cameras with the addition of depth
information, depth accuracy up to 50m

3D
LiDAR

Measure distance &
reflectance from 600-100
nm laser signal

Low Sparse, range up to 200m, 360 surround view
using a single mounting system.

Considering the characteristics of each sensor, i.e. if we get a high-resolution image of
the environment from the camera and accurate depth information from LiDAR, fusing
the two modalities can exploit their complementary strengths. In this context, to
combine two different data modalities, we find the correspondence between the
underlying data points so that we can transform from one modality to another.

In this work, the LiDAR and cameras are rigidly connected, i.e. to find correspondence
between them a transformation matrix is needed to convert points from LiDAR
coordinate system to camera coordinate system.. This step is often referred to as
LiDAR-Camera extrinsic calibration and it requires the camera intrinsics that was
explained earlier in this chapter. There are different methods for extrinsic calibration of
LiDAR and camera but the one which is commonly used is by taking planar
checkerboard pattern as a fiducial target. Each LiDAR point has an intensity value
which helps to pinpoint the corners of the checkerboard squares in LiDAR data. The
next step is to convert the LiDAR point cloud into a 2D image plane using camera
projection model. After obtaining a 2D image from 3D point cloud a point to point
correspondence of 2D LiDAR intensity image and the camera image is found. For this
purpose, an intensity image of interpolated LiDAR points is matched with an
automatically detected checkerboard pattern in camera (Figure 2.8). This
correspondence is used to calculate the transformation matrix between LiDAR and
camera using a RANSAC algorithm [21]. Once the correspondence is found we get a

14

transformation matrix for converting between LiDAR and camera coordinate system.
Figure 2.9 shows an example of projected camera image on LiDAR point cloud.

Figure 2.8.​ Correspondence between the camera image and intensity image (LiDAR)
on a planar checkerboard pattern [3].

Figure 2.9.​ An example of our fusion node on FieldSAFE dataset [22], on left is the

camera image and on right is the fused image with LiDAR points colored according to
the corresponding pixels.

In the end, the main purpose of fusion in this study is to propagate the detection results
from one modality to another thus achieving 3D object detection from the predictions
obtained from state-of-the-art 2D object detection methods.

2.3 Data Fusion Challenges
Multi-modal data streams are different from each other in terms of data format,
geometrical alignment and spatial resolution.
LiDAR data has an element of sparsity while imaging output is dense i.e. of high
resolution. While LiDAR and camera extrinsic calibration is a result of a rigid body
transformation as discussed previously, the transformation does not solve issues
regarding the uncertainty of sensor data. In order to make efficient use of data fusion by
heterogeneous sensors like camera and LiDAR, the sensors must be aligned in three
ways:

● Resolution-wise: Both modalities should have similar spatial density or
resolution. The LiDAR points are always more sparse than camera images, also

15

the far away LiDAR points are less dense than near points. This makes the
resolution gap more for far away objects than near. (Figure 2.10).

Figure 2.10:​ An illustration of spatial alignment problem where red dots represent

LiDAR points and yellow highlighted area shows the resolution gap between LiDAR
and camera which varies when human is near or far from LiDAR.

● Spatially: A pair of data points from both modalities correspond to a single

point in world space (Figure 2.11).

Figure 2.11:​ An illustration of spatial alignment problem. Red dots represent LiDAR
points and human figure represents the camera output. On the left the LiDAR and

camera are not horizontally aligned, on the right they are correctly aligned.

● Temporally: ​Two frames of different modalities showing a specific scene must
have the same time-stamps (Figure 2.12).

16

Figure 2.12:​ An illustration of temporal alignment problem where LiDAR points are
perfectly aligned when human is standing and unaligned while human is

walking/running due to delay in the acquisition.

Here, spatial alignment can be perfected with the efficient extrinsic calibration of the
sensors, whereas resolution-wise alignment problem is often formulated as
regression-based missing value prediction by interpolation on the measured data points
[23]. Lastly, the temporal alignment problem is mainly caused in motion due to the long
acquisition time and can be solved using time synchronization methods, i.e. triggering
all sensors on common timing signals.

17

3 Related Work
Reliable object detection has been a core topic in the field of mobile robotics and
computer vision. The research in object detection methods using camera and LiDAR
fusion (specifically pedestrian detection) has seen considerable progress over the last
decade. Most of the methodologies for 3D object detection rely on state-of-the-art 2D
object detectors. For this reason, this chapter is divided into two sections: An overview
of 2D object detectors followed by 3D detection approaches.

3.1 2D Object Detectors
Classical object detection methods had been popular among researchers before current
deep learning based object detectors. [24] used Histogram of Oriented Gradients (HOG)
to train an SVM classifier on KITTI dataset to extract feature-maps from RGB and
depth images for pedestrian detection. Similarly [25] used multiple HOG detectors for
detection and tracking of people using RGB-D data.
Since deep learning approaches took over as current state-of-the-art object detectors for
imaging, researchers have been trying to exploit different network architectures for
multi-modal perception in autonomous driving. Considering only RGB camera images,
it is worth mentioning that convolutional neural networks (CNN) [26] have emerged as
efficient algorithms for object detection. Object classification, detection and localization
are mostly addressed by training a CNN to generate semantic segmentation or bounding
boxes around predicted objects. Semantic segmentation makes predictions inferring
labels for every pixel in the image thus giving a fine-grained understanding of the
environment but is limited in giving instance level information of same classes. [27]
introduced a flavour of CNNs named Faster-RCNN (an improved version of
Fast-RCNN [28]), which is a region proposal network that predicts bounds and scores
for multiple objects in an image. Faster-RCNN takes detection as a classification
problem by generating object proposals before being sent to the classification head of
the network. Mask-RCNN [29] is an extension to Faster-RCNN that predicts instance
segmentation i.e. acquiring pixel level labels of each instance of the same classes.
Mask-RCNN works in two stages i.e. Faster-RCNN for generating bounding boxes as
ROI (Regions of Interest) and a second stage to generate segmentation mask inside
bounding boxes of the predicted objects. Another category of 2D detectors poses
detection as a regression problem. The most well-known is YOLO [30] which is a
single neural network that predicts bounding boxes and class probabilities for different
regions of an image. YOLO is comparatively faster than previously mentioned networks
because it makes predictions with a single network evaluation, unlike Faster-RCNN and
Mask-RCNN which work in multiple passes.
The speed dominance of YOLO over other existing methods makes it a perfect
candidate for real-time object detection on camera images in our human detection
pipeline.

18

3.2 3D Detection Approaches
Despite good performance, previously mentioned 2D object detectors are difficult to
adapt for 3D object detection. Researchers have approached 3D object detection in
various ways.
Image-based methods ​[31], [32] work on RGB images only i.e. they take shape or
occlusions as priors and estimate 3D bounding boxes from 2D. A similar category of
detectors includes handcrafted features or priors for proposal generation based methods
that estimate the geometry shape of the objects [33].
Clustering based approaches perform ground removal in LiDAR space. [20] extracted
ground from LiDAR points and estimated 3D bounding boxes from candidate clusters.
[34] applied radially bounded nearest neighbour clustering of 3D LiDAR points for
object detection as well as tracking in real-time. Clustering whole point cloud is very
time consuming, computationally expensive and may not be efficient in real time. [35]
downsampled the point cloud and made pedestrian detection more robust by adding
information from projected proposed 3D human clusters into classification scores. [36]
used a similar clustering based method by fusing LiDAR points with mosaiced images
to extend the camera field of view to detect moving objects.
Monocular based proposal generation approaches leverage 2D detection methods by
proposing regions of interest on the camera image. They became trendy from [37].
Frustum PointNets [9] is an inspiration of a similar approach where 2D region of
interests are projected to 3D LiDAR space making 3D frustum proposals where a
frustum represents 3D LiDAR modelled space that appear inside 2D bounding box on
screen (often referred to as view frustum in computer graphics consisting a clipped 3D
tilted pyramid with two parallel near and far planes). Proposed frustums, in the end, are
segmented for bounding box regression using PointNets [38].
Bird’s eye view-based approaches project LiDAR points to top-down view to train RPN
(Region Proposal Network) over feature maps extracted from bird’s eye view, LiDAR
front view and camera images [39]​, [40]​. [41] transformed feature maps extracted from
camera image into top-down view image feature maps thus implicitly learning the depth
of the image. Despite being ranked among one of the best approaches on KITTI dataset
for detecting cars, these methods are not efficient in detecting smaller objects such as
pedestrians etc.
3D based methods work only with single modality i.e. LiDAR data and are recent to
compared to other approaches. [42] train a 3D object classifier using SVM on
hand-crafted features of a point-cloud. [43] is an extension to the previous approach by
replacing SVM with CNN. A more recent approach is voxelization of point clouds to
train a generic 3D detection network thus removing the need for manual feature
engineering [44]​, [45]​. Depth based 3D bounding box prediction methods take top-down
view of LiDAR data as a 2D image, project point cloud to the front view, obtaining a
2D point map then apply a fully convolutional network on the 2D point map and predict
3D bounding boxes from the convolutional feature maps [46].
This thesis combines two approaches discussed above, first 2D regions of interests are
proposed the same way as they are proposed in Frustum PointNets [9] leveraging a
mature 2D object detector. These regions are extruded to 3D LiDAR space but instead
of filtering LiDAR points using PointNets we cluster them thus reducing the
computational cost as clustering is cheaper than running full-blown neural network.

19

Furthermore, as we only cluster points lying inside the proposed extruded frustums, this
also makes it computationally efficient instead of clustering whole point clouds which
many clustering based approaches do.

20

4 Detection Pipeline
This chapter describes the specifications of the datasets used, followed by an overview
of complete detection pipeline algorithm in ROS.

4.1 Dataset description
The detection methods discussed previously have their pros and cons depending on
various factors such as labelling cost, real-time speed, dataset category etc. KITTI [10]
benchmark ranking gives us a good in-depth guideline of different detection approaches
but limits us with only urban scenarios. Here we take data as a specification approach
and trim down the search for both 2D and 3D detection methods on the basis of off-road
scenarios.

4.1.1 FieldSAFE Dataset
One of the key factors in environment perception is the type and specification of the
dataset. There are a very limited number of available off-road datasets. Here we choose
FieldSAFE [22] dataset which is mainly purposed for obstacle detection in agriculture
scenarios and is, therefore, the closest match to off-road scenarios we are aiming for.
The specifications of different sensor modalities in FieldSAFE dataset are summarized
in Table 4.1.

Table 4.1.​ FieldSAFE dataset sensing modalities [22].

Sensor

Model

Resolution
FOV in
degrees

Range in
meters

Data-rate / fps

Stereo
Camera

Multisense S21
CMV2000

1024 x 544 85 x 50 1.5-50 10

Web
camera

Logitech HD Pro
C920

1920 x 1080 70 x 43 n/a 20

360
camera

Giroptic 360cam 2048 x 833 360 x 292 n/a 30

Thermal
camera

Flir A65, 13mm
lens

640 x 512 45 x 37 n/a 30

LiDAR Velodyne
HDL-32E

2172 x 32 360 x 40 1-100 10

Radar Delphi ESR 16 targets/frame
16 targets/frame

90 x 4.2
20 x 4.2

0-60
0-174

20
20

The FieldSAFE dataset comprises of almost two hours of raw multi-modal sensor data
in grass field where all the sensors are mounted on a ploughing machine attached to a
moving tractor. There are humans as dynamic obstacles which move around the field
doing various poses while the sensors are recording the data. One of the pros of working
with FieldSAFE dataset is the availability of almost 10 minutes of 3D human ground

21

truth coordinates which saves us the time to manually label human locations in 3D.
Figure 4.1 shows an example of the modalities we used from FieldSAFE dataset.

 (a) (b)

(c)

Figure 4.1.​ An example of FieldSAFE dataset multiple modalities where (a) shows
stereo-left camera image, (b) shows the thermal image output for the same frame and (c)

represents LiDAR point-cloud with red cylinders showing 3D human ground-truth
locations

4.1.2 Milrem Robotics Dataset
We intend to deploy the detection pipeline of human detection on Milrem Robotics
UGV, called Themis. The purpose of initially working with FieldSAFE dataset was to
refine our perception module and then perform benchmarks over Milrem datasets to
compare the results. Table 4.2 shows sensor specifications in Milrem dataset.

Table 4.2.​ Milrem dataset sensing modalities.

Sensor

Model
No. of

sensors

Resolution
/points

FOV in
degrees

Range in
meters

Datarate / fps

Camera SF332X-10X-

22

NVIDIA 2
Mega Camera

2 1920x1208 120x60 n/a 30

LiDAR Velodyne
LiDAR
VLP-16
PUCK

2 300,000 points,
16 beams

360 x 30 100 20

Figure 4.2.​ An example of Milrem dataset modalities where on left is the LiDAR
point-cloud and on right is the corresponding frame output of RGB camera image.

Milrem dataset comprises of almost 10 minutes of raw multi-modal sensor data in
snowy roads, snowy terrain with trees (Figure 4.2) where all the sensors are mounted on
a UGV. There are humans as dynamic obstacles which move around the UGV and do
different poses similar to what we have in FieldSAFE but this dataset has only limited
amount of human ground truth locations (50 frames).

4.2 Detection Algorithm

Figure 4.3.​ ROS detection pipeline.

The detection pipeline (Figure 4.3) can be divided into the following main steps:

4.2.1 Preprocessing
Before using raw images to generate region proposals, the images are preprocessed if
required, e.g. images are rectified to remove lens distortion. Additionally, in case of

23

FieldSAFE dataset, thermal images were converted from 16-bit to 8-bit format and
flipped in x, y-axis because of incorrect orientation.

4.2.2 2D region proposals
Once we get undistorted images the first step is to propose 2D regions on images. There
are two ways of doing it:

● Bounding boxes
● Object masks

As discussed in the previous chapter that at this stage we need a mature 2D object
detector. In our pipeline, we used bounding box based region proposals and tried two
pre-trained neural networks i.e. YOLO v2 and v3 for generating 2D region proposals.
Figure 4.4 shows an example of predicted bounding boxes from YOLO v3.

Figure 4.4.​ An example of 2D bounding boxes proposed by YOLO v3 on FieldSAFE

stereo left RGB camera image. Here, the bounding boxes are stretched horizontally and
contracted vertically because of the reasons explained in section 4.4.1.

4.2.3 Projection, Fusion & Frustum proposals
While the bounding box proposals are generated from camera images, at the time of raw
image acquisition, the LiDAR point cloud data is also acquired in parallel. First, the
LiDAR points are transformed from LiDAR coordinate system to camera coordinate
system using the transform acquired through extrinsic calibration (discussed in chapter
2). Then, using projection matrix extracted from camera information, the point-cloud
with all the points having z value (forward-backward direction) greater than 0 are
projected to an image plane of the same camera to which it is intended to be fused
(Figure 4.5). The reason for removing points with z less than 0 is to get rid of the
unnecessary transformations of LiDAR points which lie behind the camera plane. After
projection of point-cloud data on the image plane, the next thing is to perform two-step
filtering i.e. first filter out all the LiDAR points which exceed image height and width
giving us only those LiDAR points which have correspondence with camera image and
then filter all LiDAR points which lie inside proposed regions.

24

Figure 4.5.​ Projection of LiDAR points to camera image plane.

Once we get the filtered points which lie inside 2D region proposals, we implicitly get
frustum proposals i.e. all filtered points after extrusion makes 3D frustums (Figure 4.6)
of the regions where the humans are most likely to be found considering we have
accurate prediction by the 2D detector.

Figure 4.6.​ An illustration of extruded filtered LiDAR points as proposed frustum,
where yellow pixels in LiDAR show human but is cluttered by background points.

4.2.4 Filtering & Clustering
The frustum proposals acquired in the previous step have LiDAR points which
happened to lie inside proposed frustums but are not actually part of human figures. If
we would average over coordinates of all these points to get human location, it would be
inaccurate due to the scattering of points in the background. In order to localize the
prediction of human in proposed frustums, first, we filter the frustums i.e. consider only
those frustum points which lie inside a specified benchmark radius e.g. 30 meters
around the UGV. This removes all the points which are too far away and yet marked as
human due to bounding box filtering. Even after filtering the points like this, human
location can still be ambiguous in scenarios where human is near the vehicle and
background points are spread up to the benchmarking radius. Figure 4.6 demonstrates
such a scenario where human is near to the vehicle and has cluttered background points
in its frustum.
This problem can be addressed in many ways such as calculating the point density of
the top-down 2D LiDAR points per frustum, as human or any proposed object will have

25

dense points around it in a top-down view. We addressed this problem using DBSCAN
[47] algorithm. The idea here is to cluster remaining frustum points according to the
distance between the points in top-down view.
Once we cluster the points inside a frustum we still have to find the candidate human
cluster because there can be zero or many clusters inside one proposed frustum. At this
point, we take the nearest cluster as human candidate (Figure 4.7) for safety reasons.
This choice is a bit prone to foreground occluder errors where other objects can
sometimes be falsely predicted as humans i.e. in scenarios where humans are partially
occluded by some other object. But for safety purposes, a sudden halt of the UGV is
preferable to fatalities. After human candidate cluster is filtered, the candidate cluster
points are averaged to make cluster centers of the human predictions (Figure 4.8, Figure
4.9).

Figure 4.7.​ An illustration of clustering results using DBSCAN where green cylinders

are human ground truth and white pixels are clustered human points.

Figure 4.8​ A Top-down plot of figure 4.7 with red dots representing averaged cluster

centers and green circles are human ground truth scaled to the tolerance in meters.

26

Figure 4.9.​ Human predictions on averaged cluster centers in 3D, where light-blue

cylinders represent predictions and green cylinders represent ground-truth.

4.3 Baseline Algorithms (Mask-based)
Our detection pipeline is a follow-up of some baseline approaches which use object
masks as 2D proposed regions instead of 2D bounding boxes. The initial stage involved
working with thermal images and segmentation images. Additionally, YOLO
predictions were also used as 2D masks. The detection flow is very similar to our
current pipeline with the exclusion of frustum proposals.

Figure 4.10.​ Baseline detection methods.

Figure 4.10 shows that we get the object mask either from a thermal image or from an
RGB camera image segmentation result. This sub-divides the object mask retrieval into
two workflows.
4.3.1 Thermal Thresholded Masks
In this workflow raw image from thermal camera is taken and preprocessed as
explained earlier in this chapter, Additionally, the image is scaled into min and max
range calculated over all thermal images as min-max per image can lead to different
ranges of thresholding thus making it difficult to have consistent parameters of
thresholding.

27

Thermal input Simple Adaptive mean

 ​Adaptive gaussian Otsu Hybrid

Figure 4.11.​ An example of thermal image thresholding methods used.

We used a simple thresholding that checks if a pixel has a value greater than a threshold
and assigns it a value of 255 (white), otherwise assigns the value of 0 (black) thus
generating a masked image (Figure 4.11) [48]. We also experimented with adaptive
thresholding methods shown in Fig 4.11, but these did not work better than simple fixed
thresholding.

4.3.2 Segmentation Masks
Thermal camera images are useful in low-light conditions but are very much affected by
varying temperature of the environment. In this workflow, we tested ICNet [49] and
Deeplab [50] segmentation networks to propose 2D regions as object masks. Deeplab
Xception (Figure 4.12) gave the best performance among them.

Figure 4.12:​ An example of human masks predicted from Deeplab Xception where red
regions show human predictions.

28

4.3.3 Mask-based YOLO
Although a perfect segmentation can give precise human masks but tackling the
alignment problem in 2D masks is tricky. In this step, we used YOLO bounding box to
create 2D masks instead of segmentation masks. This method is very close to the main
algorithm i.e. in this case creating object masks loses instance information while
frustums in main algorithm retain instance information of each bounding box.

Figure 4.13:​ An example of human bounding box masks predicted from YOLO v3

where on left is the RGB image and on the right is the predicted human bounding
masks.

4.3.4 Clustering Mask Proposals
In contrast to frustum based approach which uses nearest cluster as human, we consider
every cluster in baselines as human, the reason being no information of predicted human
count from the 2D mask. Clustering parameters (discussed in later sections) help to
discard clusters which lie below a certain minimum size threshold. The remaining
clusters are averaged to acquire a cluster center for each cluster. These cluster centers
represent the predicted location of the human. Even after filtering clusters, we are still
left with a considerable amount of false positives in our predictions thus reducing the
performance of detection. Figure 4.14 shows an example of 2 false predictions against
one human ground truth due to mask based clustering.

Figure 4.14:​ An example of mask based clustering from top-down view on FieldSAFE

dataset where on left is the projected mask points and on right is the predicted human
cluster centers. Here red cylinder represent human ground truth and purple cylinders

represent predicted human cluster centers.

29

4.4 Detection Pipeline vs Baselines

4.4.1 Mask vs Bounding boxes
Segmentation networks are comparatively slower than bounding box based 2D detectors
but can give pixel level labels per object. The question of choosing segmentation
networks depends on the use case scenario i.e. are pixel level labels even required or we
can settle with bounding boxes to have certain regions marked as humans? Additionally,
we have to take in account the temporal alignment problem discussed in previous
chapters i.e. what if the projected human object mask doesn’t align properly with
corresponding LiDAR points (Figure 2.10, Figure 2.12)?

The experiments showed that object masks did not give benefit over bounding boxes.
The reason is that because of imperfect time alignment, the object masks may miss the
person entirely or misplace them. Extending bounding box horizontally improved the
results (Figure 4.15). On the other hand reducing the bounding box vertically decreased
the number of mis-placements due to ground points, picked up by the nearest cluster
heuristic.

Figure 4.15.​ Scaling of 2D bounding box helped with misaligned human LiDAR points
due to temporal lag while walking.

4.4.2 Instance vs Without Instance Information
Having no instance information with masks affects the clustering computation i.e. all
clusters are considered as humans and there is no instance information to separate them.
Without instance information, we cannot get a definite count of how many humans are
detected and must rely on minimum number of points in cluster to filter out human
clusters. We could have used instance segmentation masks using Mask-RCNN but as
discussed in previous chapter, Mask-RCNN doesn’t fit into our pipeline as a real-time

30

model due to a low speed of 5 frames per second. Even if we could tune the speed of
Mask-RCNN, there would still be the misalignment problem between 2D instance mask
and LiDAR human points as described in the previous section.
Here, bounding box based method with instance information gives the best combination
of all. The scaled extruded bounding boxes, firstly, help to resolve misalignments as
discussed above, secondly, they already tell how many humans should be expected in
3D predictions. This reduces clustering cost i.e. instead of clustering all points at once,
we cluster each frustum separately to find one candidate human cluster from each
frustum. Moreover, these methods are faster than instance segmentation based
approaches.

4.5 Stable Benchmarking and ROS
ROS is publish-subscribe architecture in which multiple nodes behave as subscribers
and publishers to pass processed information to each other as messages. It is one of the
mainstream robotics middlewares used to work with sensors and low-level device
control. The detection pipeline explained in the previous section is built on top of it.

ROS provides a feature to record real-time sensor data and store it into a BAG file.
Every message in BAG file has a time-stamp that tells ROS when to publish a message
during playback. This helps to achieve a consistent playback of the recorded streams.
ROS libraries use computer’s clock as source time but for playback of logged data, it is
desirable to use simulated clock which helps to slow or accelerate time over system’s
clock [51]. Although, each message in the BAG file has defined time-stamps, the
benchmarking of the pipeline parameters for both FieldSAFE and Milrem datasets
showed inconsistent results. Following can be the potential causes of such
inconsistency:

● Random delays in data acquisition from BAG file during playback.
● Random delays in processing (algorithm computation) even at lower BAG

speed.
● Inherent asynchronous nature of ROS architecture.

ROS has its own Time Synchronization message filter that helps to alleviate such
inconsistency problems by making sure that multiple messages arrive in a
time-synchronized way to a particular node. In our case, we used time synchronizer
while extracting data for benchmarking the 3D predictions i.e. the LiDAR point clouds,
camera images, ground truth and human prediction locations are retrieved
simultaneously.

4.5.1 External Setup
While time synchronization somewhat helps in solving the inconsistency problem
during playback of the BAG file, yet the results still differ in each benchmark run on the
same BAG. A better solution here is to perform benchmarking externally i.e.
independent of ROS environment. But even then, we are still dependent on using ROS
environment for extraction of sensor modalities and ground-truth of each frame into
some files that can later be read by external benchmarking scripts.

31

Figure 4.16.​ External Benchmarking Setup

For this, we created an external setup for benchmarking as shown in Figure 4.16. Here
instead of acquiring predictions within ROS, we extract the intended modalities along
with ground truth on a very slow playback rate to get less variance in extracted frames.
The data is extracted into 3 formats per frame i.e. PCD files for LiDAR point-cloud,
PNG for camera images (stereo or thermal) and NPZ for packing human ground truth
locations and transformation matrices to transform between two modalities. Once we
extract a dataset from ROS, all the benchmarking is performed on this dataset. This
gives consistency in human predictions thus making a reliable benchmarking pipeline
outside of ROS.

4.6 Parameter Description
The main purpose of making a stable benchmarking setup is to fine tune the pipeline
parameters which affect the performance of 3D detection. These parameters are
categorized into three main categories which are as follows:

4.6.1 ROS parameters
ROS parameters come into play during the extraction of the dataset. Tuning these
parameters stabilizes the extraction of multiple datasets of the same BAG. There are two
ROS parameters which affect the stability.

4.6.1.1 Play rate
The play rate controls the playback speed of the BAG file during dataset extraction. For
example play rate 2 means multiplying the publishing frequency of each message inside
the bag with 2 i.e. doubling the speed of playback.

4.6.1.2 Time Synchronization method
Time synchronization as discussed earlier helps to synchronize the sensor messages
coming from different modalities on the basis of their time-stamps. Table 4.3
summarizes the synchronization methods used.

32

Table 4.3.​ Time synchronization methods.

Method Type Description

Approximate ROS Time
Synchronizer

Synchronizes message callbacks by parameter called ​slop​. The slop
value tells how much difference between the two message timestamps
is tolerable. Additionally, it also has ​queue_size ​parameter that tells
how many messages can be queued from each source for timestamp
comparison.

Naive Cache

Custom

Proceed when all messages are available to process i.e. there is no
boundness on time stamp. Here we cache and use the last frame of
previously received messages until a fresh frame is received.

Naive Least
Frequent

Custom

Proceed when all messages are available to process i.e. there is no
boundness on time. Here we discard a frame once it is processed and
wait until all messages are available to process. All frame checks are
done inside the callback of the sensor modality with the ​lowest
frequency.

Naive Most
Frequent

Custom

Proceed when all messages are available to process i.e. there is no
boundness on time. Here we discard a frame once it is processed and
wait until all messages are available to process. All frame checks are
done inside the callback of the sensor modality with the ​highest
frequency.

4.6.2 Benchmarking parameters
Benchmarking parameters define the boundaries of radii during the evaluation of
results. There are two benchmarking parameters in our pipeline:

1. Benchmarking Radius: ​Refers to the radius in meters with origin at LiDAR,
inside which we evaluate our benchmarking results. This is motivated by the fact
that sensor accuracy degrades over a distance, but we are actually not interested
in detecting infinitely far objects. It is important to detect the objects that are
within braking distance of the UGV.

2. Tolerance: ​Refers to the radius in meters with origin at ground truth human
location in LiDAR frame. This tells how much distance is tolerable between 3D
human ground truth and nearby human prediction. This is partly motivated by
the fact that our benchmarking datasets (especially FieldSAFE) do not have
perfect ground truth and certain amount of prediction errors are expected.

4.6.3 Algorithm parameters
Algorithm parameters define values which affect the performance of localizing human
predictions in 3D. Table 4.4 summarizes the algorithm parameters with their usage in
detection pipeline.

Table 4.4.​ Summary of algorithm parameters.
Parameter Algorithm Usage in

Modality
Description

Method 2D Detection RGB and Thermal
Image

2D detection methods include, YOLOv2, YOLOv3,
Deeplab Xception, Deeplab_Mobilnet, and
thresholding. Where thermal images are only used for
thresholding.

Epsilon DBSCAN LiDAR The maximum distance in meters between two points

33

point-cloud so that they can be considered in the same cluster.

Min
Samples

DBSCAN LiDAR
point-cloud

Min number of points required to make a cluster.

Scale_X YOLO RGB Image Scaling factor along the width of the predicted YOLO
bounding box.

Scale_Y YOLO RGB Image Scaling factor along the height of predicted YOLO
bounding box.

Thermal
Threshold

Filtering Thermal Image Pixel threshold value between 0-255 for filtering 8-bit
thermal image.

4.7 Evaluation Metrics

The benchmarking we performed uses ​Precision​, ​Recall​, and ​F1-Score ​as evaluation
metrics​. ​Before explaining these metrics one should understand the underlying concepts
of the following:

● True positives (TP)​: A total count of predictions which lie inside the tolerance
radius of the intended human ground truth points.

● False positives (FP): A total count of predictions which lie outside the tolerance
radius of human ground truth points

● False negatives (FN): ​A total count of the human ground truth points which had
no predictions around them.

The definitions of precision, recall and f1-score are as follows:

● Precision = TP / (TP + FP)
● Recall = TP / (TP + FN)
● F1-Score = 2 * (Precision * Recall) / (Precision + Recall)

Where precision is the ratio of correctly predicted humans to the total number of
predicted humans or in other words it tells how much can we rely on the predictions
made (to be actually humans). Recall is the ratio of correctly predicted humans over
actual number of humans or in other words this helps to identity how often actual
humans are correctly predicted. Lastly, F1-score is the weighted average of Precision
and Recall. F1-Score gives balanced weightage to both precision and recall. We could
also incorporate F2 score to emphasize more on recall. This is due to the fact that the
safety of humans is more important than mispredictions which were not actually
humans. In other words we don’t want to miss any humans from the environment i.e.
the FN count should be least compared to FP. At the same time the precision shouldn’t
be too bad either because we don’t want the UGV to halt too much because of many
wrong human predictions. For now, we keep F1-score only to evaluate or detection
pipeline.

34

5 Benchmarking and Performance Analysis
This chapter summarizes the benchmarking results on different pipeline parameters and
analyses them for performance optimization.

5.1 Benchmarking Results
Similar to the previous section, the results of benchmarking human detection over
pipeline parameters are divided into different categories depending on the type of
parameters. In this section, we first summarize the main results showing the best
parameters over the main algorithm vs baselines and then summarize the benchmarking
results of each parameter with their performance impact analysis.

5.1.1 Dataset Benchmarks
This section shows the final benchmark results performed with the best parameters on
both FieldSAFE and Milrem dataset. FieldSAFE dataset (5041 frames) was split into
50% test and 50% validation, the validation set was used for parameter tuning and test
set for final results. To add diversity in validation and test split, we divided the complete
dataset into 4 splits and chose split 1 and 3 as validation set whereas split 2 and 4 as the
test set. Milrem dataset only had ground truth available for 50 frames. We did not split
it, because parameter tuning was done on FieldSAFE anyway.

5.1.1.1 FieldSAFE
Table 5.1:​ Benchmark on FieldSAFE Validation Set (2520 frames)​.

Method Camera Min
Samples

Epsilon Precision Recall F1-score

YOLO v2
Frustum

Stereo left 2 0.2 78.1% 48.3% 59.7%

YOLO v3
Frustum

Stereo left 2 0.2 87.9% 59.7% 71.1%

Table 5.2.​ Benchmark on FieldSAFE Test Set (2521 frames)​.

Method Camera Min
Samples

Epsilon Precision Recall F1-score

YOLO v2
Frustum

Stereo left 2 0.2 82.4% 35.9% 50.%

YOLO v3
Frustum

Stereo left 2 0.2 91.6% 47.8% 62.9%

Table 5.1 and 5.2 shows final benchmark results on FieldSAFE validation and test sets
over the best parameters listed in the next section. The results show that YOLO v3
outperformed its predecessor v2 which is expected as v3 is considerably better in
performance [52]. The precision in both validation and test set is greater than recall
because YOLO is mostly missing humans in 2D images rather than giving more false

35

predictions. Essentially, 3D prediction results imitate 2D predictions. Here, validation
set has better evaluation results than test set. One of the main reason for this could be
that the parameters were tuned too much on validation set thus leading to some
overfitting, but on the other hand there is some slight shift in dataset too i.e. validation
and test set doesn’t have similar number of human ground truth distribution and poses.
Additionally, YOLO is not good in recognizing humans lying on the ground or doing
uncommon arbitrary poses. The test set had comparatively more such cases than
validation set.

5.1.1.2 Milrem
Table 5.3.​ Benchmark on Milrem extract with 50 frames​.

Method Camera Min
Samples

Epsilon Precision Recall F1-score

YOLO v2
Frustum

Mono RGB 2 0.2 89.7% 71.7% 79.7%

YOLO v3
Frustum

Mono RGB 2 0.2 95.9% 81.4% 88.1%

Table 5.3 shows benchmark results on Milrem dataset using frustum based detection
with the best parameters. The results are comparatively better than FieldSAFE mainly
because the humans were very close to the UGV and therefore easily detected. Also the
results might be bit optimistic because of small number of benchmarked frames.

5.1.2 Frustum Based Detection vs Baselines
In this section, we summarize the results on the best parameters over both main
algorithm and baselines on FieldSAFE example extracted dataset. The best-fixed
parameters used during benchmarking are as follows:

● Time Sync Method:​ Naive most frequent
● Play rate:​ 0.2
● Scale_X (Frustum): ​1.5
● Scale_Y (Frustum): ​0.5
● Benchmarking Radius:​ 30
● Tolerance:​ 2
● Thermal Threshold:​ 160

Some parameters are specific to the type of detection methods e.g. Scale_X and
Scale_Y are only used in frustum based detection methods, whereas thermal threshold is
only applicable while filtering thermal images. The extracted datasets contain ​387
stereo left and ​597 thermal camera images. Due to time constraints, the comparison with
baselines is made on a smaller version of FieldSAFE dataset.

Table 5.4.​ Main algorithm vs baselines with their best parameters on FieldSAFE
dataset.

Method Camera Min
Samples

Epsilon Precision Recall F1-score

YOLO v3
Frustum

Stereo left 2 0.2 96.7% 73.7% 83.7%

36

YOLO v2
Frustum

Stereo left 2 0.2 77.1% 59.3% 67.1%

Yolo v3 Stereo left 11 0.3 97.3% 39.3% 56.0%

Yolo v2 Stereo left 11 0.3 60.6% 49.2% 54.3%

Deeplab
Mobilenet

Stereo left 11 0.3 22.8% 45.8% 30.4%

Deeplab
Xception

Stereo left 10 0.3 55.1% 49.4% 52.1%

Thermal
Thresholding*

(different
extract)

Thermal 2 0.4 47.2% 69.4% 56.2%

Table 5.4 summarizes the detection results with best parameters over FieldSAFE
example dataset. The highlighted methods in the above table are part of our frustum
based main detection pipeline where YOLO v3 and v2 are used as 2D region proposal
networks to generate 3D frustum proposals. YOLO v3 frustum based detection
outperformed all other baseline methods in F1-score which is our main evaluation
metric (Figure 5.1). Overall, instance based methods (frustums) work better than other
mask based methods. Also, bounding boxes from YOLO v2/v3 gave better performance
than pure object masks from Deeplab Xception and Mobilenet.

Figure 5.1.​ Human detection F1-score performance comparison chart of frustum based
detection vs baseline approaches on example FieldSAFE extracted datasets.

5.1.3 Algorithm Parameters (FieldSAFE)
In this section, we summarize the benchmarking results to fine-tune algorithm
parameters and discuss how tuning algorithm parameters improves detection
performance.

37

5.1.3.1 Epsilon and Min Samples
Table 5.4 shows performance impact while tuning min samples and epsilon clustering
parameters over simple YOLO v3 method on smaller version of FieldSAFE dataset.

Table 5.4.​ Epsilon and Min Sample detection performance impact.
Epsilon Min

Samples
Precision Recall F1-score

0.4 4 98.1% 69.6% 81.4%

0.4 3 97.7% 72.3% 83.1%

0.4 2 96.9% 73.8% 83.8%

0.3 4 98.1% 69.6% 81.4%

0.3 3 97.7% 72.3% 83.1%

0.3 2 96.9% 73.8% 83.8%

0.2 4 98.1% 69.6% 81.4%

0.2 3 97.7% 72.3% 83.1%

0.2 2 96.9% 73.8% 83.8%

0.1 4 97.9% 49.5% 65.7%

0.1 3 98.0% 68.4% 80.6%

0.1 2 96.8% 72.2% 82.7%

● Increasing min samples helps if the detected object is near the LiDAR as we get
dense LiDAR points near the point-cloud origin. The farther we go the less
nearby points we get due to sparsity of LiDAR points. A higher min samples
value will miss far away humans while a very low value will increase the
number of false positives near LiDAR origin. In other words, increasing min
samples increases precision at the expense of recall while decreasing min
samples increases recall, at the expense of precision.

● Epsilon value shows quite the opposite behaviour to that of min samples. A
higher epsilon value increases the number of false positives in nearby detection
but epsilon shows consistent results when its value is greater than or equal to 0.2
with min samples 2. On the other hand, a very low epsilon value may miss far
away human points to be counted in the same cluster.

● In general, min Samples and epsilon are affected by the distance of the object as
point cloud gets denser in near LiDAR beams.

38

5.1.3.2 Bounding Box Scale
Bounding box scale x and y are interestingly one of the main parameters that boost our
detection performance. As discussed in the previous chapters, the major problem with
2D driven 3D detection is the alignment of the modalities. Most of the temporal
alignment problems between LiDAR and camera are caused during the motion of an
object. It is practically illogical for humans to move along the vertical axis of the
camera image i.e. they move along horizontally (left-right or right-left) in front of a
vehicle. This means that we mostly suffer from temporal misalignment in the horizontal
axis of the LiDAR. To detect misaligned human points in 3D we scale up the width of
the proposed frustum by increasing the x scale of the predicted 2D bounding box to
some factor. Additionally, we reduce y scale of the 2D bounding box to reduce the
height of 3D frustum which avoids misclassification of ground points as humans.

Table 5.5.​ Bounding box scaling performance impact.
Scale_X Scale_Y Precision Recall F1-score

1 1 94.8% 72.9% 82.4%

1.2 0.8 96.1% 73.6% 83.3%

1.5 0.5 96.9% 73.8% 83.8%

Table 5.5 shows benchmarking results on bounding box scaling parameters on an
example FieldSAFE extracted dataset with 387 stereo-left images.

5.1.4 Benchmarking Parameters
This section summarizes the performance impact over LiDAR Benchmarking radius and
GPS error tolerance.

Table 5.6.​ Benchmarking parameters performance impact onFieldSAFE dataset using
YOLOv3 (387 images).

Benchmark
radius

Tolerance Precision Recall F1-score

10 4 96.2% 100.0% 98.0%

10 3 95.2% 100.0% 97.6%

10 2 93.5% 100.0% 96.7%

10 1 91.3% 100.0% 95.5%

20 4 98.8% 84.1% 90.9%

20 3 98.6% 83.0% 90.1%

20 2 98.6% 81.9% 89.5%

20 1 85.8% 74.1% 79.6%

30 4 99.2% 76.2% 86.2%

39

30 3 99.2% 75.7% 85.9%

30 2 96.9% 73.8% 83.8%

30 1 66.2% 51.6% 58.0%

40 4 98.9% 66.2% 79.3%

40 3 98.9% 66.1% 79.3%

40 2 90.3% 60.6% 72.5%

40 1 55.7% 37.4% 44.8%

50 4 98.3% 56.1% 71.5%

50 3 97.3% 55.6% 70.7%

50 2 87.3% 49.8% 63.4%

50 1 52.6% 30.1% 38.3%

The benchmarking parameters are not something to fine tune for improving detection
performance, in fact, they define boundaries to our benchmarking evaluations. In our
detection pipeline, we kept benchmarking radius to be 30 meters which should be
enough for the UGV to come to full stop. This makes it a safety parameter instead of a
performance booster. The tolerance value here compensates for FieldSAFE GPS ground
truth errors i.e. we estimated the maximum discrepancy between LiDAR and GPS
human location to be 2 meters. In case of Milrem dataset, we had perfect ground truth
inside LiDAR point cloud so the tolerance value is comparatively kept lower on it i.e.
0.8 meters. Table 5.6 shows the potential impact of changing these parameters i.e. as
benchmark radius gets smaller the LiDAR beams get denser and so average precision
and average recall is boosted on the contrary reducing tolerance value decreases
performance.

5.1.5 ROS Parameters
This section shows the results of benchmarking tests performed on FieldSAFE dataset
over ROS parameters.

5.1.5.1 Play rate
Table 5.7.​ Play rate performance impact benchmarks over 5 runs (using Approx Time

Sync)
Play rate Best F1-score Mean F1-score Standard deviation of

F1-score

0.5 76.6% 45.28% 0.2861

0.4 75.7% 70.56% 0.0792

0.3 77.9% 77.26% 0.0088

0.2 77.8% 77.42% 0.0024

40

0.1 66.8% 64.42% 0.0203

Following conclusions can be drawn from the results in Table 5.7:

● Reducing play rate gives more stable results in benchmarking
● 0.1, in this case, is an outlier i.e. the standard deviation is higher than previous

play rates.

5.1.5.2 Time Synchronization
Table 5.8.​ Slop (Approx. Time Sync) performance impact benchmarks.
Slop Precision Recall F1-score No. of Frames

0.07 74.9% 53.6% 62.5% 388/390

0.06 89.9% 60.8% 72.5% 388/390

0.05 93.7% 65.9% 77.4% 386/390

0.04 92.0% 61.6% 73.8% 296/390

0.03 95.6% 53.6% 62.5% 219/390

Following conclusions can be drawn from the results in Table 5.8:

● Reducing slop gives better-benchmarking results but extracted frame count also
decreases due to less tolerance for time synchronization error.

● Increasing slop value gives more frames but due to an increase in error
tolerance, results get worse with it.

● For slop, a value which is lower and gives max frame count should be
considered which in this case is 0.05 but these results may vary with datasets.

Table 5.9.​ Time Sync Methods performance impact benchmarks over 5 runs.

Method Best F1-score Mean F1-score Standard
deviation of

F1-score

Average No. of
Frames

Approx. Time
Sync

77.8% 77.42% 0.0024 388/390

Naive Cache 79.8% 73.9% 0.0760 388/390

Naive Least
Frequent

54.5% 52.65% 0.0021 360/390

Naive Most
Frequent

83.0% 81.26% 0.0202 387/390

Following conclusions can be drawn from the results in Table 5.9:

● Naive approaches give comparatively better results than Approx. Time
Synchronizer. Approximate time synchronization synchronizes messages w.r.t.
to timestamps and should have performed better than naive approaches. But the
benchmarking results show that naive approaches tend to be more stable. Any

41

time synchronization method in ROS would work better if the messages are
synchronized on hardware level. In FieldSAFE dataset, the trigger signals for
thermal and stereo camera were generated from a pulse-per-second signal from
an internal GNSS in the LiDAR, which allowed exact timestamps for all three
sensors [22]. Surprisingly this did not seem to help time synchronization.

● Naive least frequent method is unreliable i.e. depends on how quickly all the
messages are processed.

● Naive least frequent skips a lot of frames.
● Naive most frequent gives the best performance among all available methods.

5.2 Error Analysis
In this section, we summarize frame by frame analysis on Milrem dataset to find ​the
cause of possible errors or misdetection in each frame.

Table 5.9.​ Error analysis on 50 frames of Milrem dataset.
 Occlusion 2D 2D Detection Misalignment Occlusion 3D Nearest Cluster

Error Count 11 13 0 6 2

Percentage of
Errors

34.3% 40.6% 0% 18.7% 6.2%

Where the error causes in Table 5.9 are defined as follows:

● 2D occlusion: ​Object not detected because behind another object.
● 2D detection:​ Object not detected by YOLO.
● Misalignment: ​Object not detected due to temporal or spatial misalignment.
● 3D occlusion: Two objects were detected in 2D, but because one was partly

behind the other, the object positioned nearer was picked and the other was
missed.

● Nearest cluster: Our clustering approach picks the closest cluster, sometimes
there are enough points on the ground to form a cluster which makes human
predictions closer than the actual human position.

5.2.1 2D Misdetection causes

Table 5.9 shows that most of the misdetections in 3D are caused by 2D misdetections.
Therefore we additionally analyzed the main causes of 2D misdetections and found
following reasons:

● Blending with the background (forest) (Figure 5.2)

42

Figure 5.2:​ An example of 2D mis-detection possibly due to cloth color blending with

the background, where blue bounding boxes represent ground truth and green boxes
represent 2D predictions.

● Unrecognized poses (Figure 5.3)

Figure 5.3.​ An example of 2D mis-detection due to human pose, where blue bounding
boxes represent ground truth and green boxes represent 2D predictions.

● Random miss detection (Figure 5.4)

43

Figure 5.4:​ An example of random 2D mis-detection, where blue bounding boxes
represent ground truth and green boxes represent 2D predictions.

For 2D driven 3D detection, we need to improve 2D detector to get rid of most the
detection errors in 3D. At this point, we can safely exclude 2D and 3D occlusions from
errors as we only intend to detect the humans which are not occluded by something.
Lastly, the nearest cluster approach contributes very less to the total number of errors,
which is one of the main things we wanted to analyze. We could apply some ground
removal techniques before clustering the proposed 3D frustums to solve this type of
errors.

44

6 Conclusions and Future Work
In this study, we experimented with state-of-the-art 2D object detection methods to
achieve 2D driven 3D object detection. We summarized a frustum based approach to
detect humans in off-road scenarios and discussed potential impact of various
parameters to increase 3D detection efficiency. The results we gathered answers two
core questions of our problem statement i.e.

● Leveraging mature 2D detection approaches can give decent 3D detection results
in off-road scenarios provided we account for the alignment problems.

● Benchmarking inside ROS is unstable. This study demonstrated a potential
solution i.e. an external setup that works in parallel with detection pipeline but is
independent of ROS environment. Additionally, tuning pipeline parameters
w.r.t. the use-case scenarios increases the performance of 3D detection.

Off-road scenarios are complex because detecting a perfect structure of small objects,
e.g. humans in 3D, is often quite difficult. In this study, we reduced the complexity of
this problem by detecting even a few 3D points in the proposed frustums. While we
tuned the pipeline parameters in accordance with human detection, we cannot
completely rely on these parameters generally. For example, if we want to predict
bigger objects such as trees, cars etc we cannot just use the predicted centers of the
clusters. We need to predict complete 3D bounding of the object. In case of moving
obstacles such as cars, we might need to predict the orientation of the 3D bounding box
too. For such cases, replacing frustum clustering with a neural network, similar to what
Frustum PointNets [9], would be more appropriate.
One of the main advantages of using frustum based detection pipeline is that we can
replace the 2D detection method with a much better version in the future. We could
deploy a detection network that proposes 2D bounding boxes over thermal images thus
giving 3D frustums from thermal image only or possibly apply some scoring technique
that fuses both thermal and RGB images and gives fused proposed frustums for more
better detection. We can also modify the clustering of proposed frustums to do ground
removal inside frustums which would help to resolve nearest cluster misdetections
discussed earlier. Additionally, while stabilizing the benchmarking setup, we deduced
that speeding up the underlying algorithms can help to increase detection performance
on naive time synchronization methods. A modular and simple structure of our
detection pipeline makes it easy to adapt for future improvements.

45

7 References
[1] H. Cheng, ​Autonomous Intelligent Vehicles: Theory, Algorithms, and

Implementation​. Springer Science & Business Media, 2011.
[2] T. S. Combs, L. S. Sandt, M. P. Clamann, and N. C. McDonald, “Automated

Vehicles and Pedestrian Safety: Exploring the Promise and Limits of Pedestrian
Detection,” ​Am. J. Prev. Med.​, vol. 56, no. 1, pp. 1–7, Jan. 2019.

[3] J. Li, “Fusion of LiDAR 3D points cloud with 2D digital camera image,” ​Oakland
University: Rochester, MI, USA​, 2015.

[4] F. Zhang, D. Clarke, and A. Knoll, “Vehicle detection based on LiDAR and
camera fusion,” in ​17th International IEEE Conference on Intelligent
Transportation Systems (ITSC)​, 2014, pp. 1620–1625.

[5] N. Aranjuelo, L. Unzueta, I. Arganda-Carreras, and O. Otaegui, “Multimodal Deep
Learning for Advanced Driving Systems,” in ​Articulated Motion and Deformable
Objects​, 2018, pp. 95–105.

[6] D. Lahat, T. Adali, and C. Jutten, “Multimodal Data Fusion: An Overview of
Methods, Challenges, and Prospects,” ​Proc. IEEE​, vol. 103, no. 9, pp. 1449–1477,
Sep. 2015.

[7] O.-R. A. D. (orad) Committee and On-Road Automated Driving (ORAD)
committee, “Taxonomy and Definitions for Terms Related to On-Road Motor
Vehicle Automated Driving Systems.” .

[8] “TechDay piloted driving – The traffic jam pilot in the new Audi A8,” ​Audi
MediaCenter​. [Online]. Available:
https://www.audi-mediacenter.com/en/techday-piloted-driving-the-traffic-jam-pilot
-in-the-new-audi-a8-9276​. [Accessed: 12-May-2019].

[9] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum PointNets for 3D
Object Detection from RGB-D Data,” ​2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition​. 2018.

[10] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI
dataset,” ​The International Journal of Robotics Research​, vol. 32, no. 11. pp.
1231–1237, 2013.

[11] Kamarul A, ​Thermal Infrared vs RGB​. Youtube, 2015.
[12] J. W. Davis and V. Sharma, “Robust detection of people in thermal imagery,”

Proceedings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004.​ 2004.

[13] S. Z. Nielsen, R. Gade, T. B. Moeslund, and H. Skov-Petersen, “Taking the
Temperature of Pedestrian Movement in Public Spaces,” ​Transportation Research
Procedia​, vol. 2. pp. 660–668, 2014.

[14] “What Is Camera Calibration? - MATLAB & Simulink - MathWorks China.”
[Online]. Available:
https://ww2.mathworks.cn/help/vision/ug/camera-calibration.html?lang=en&s_tid=
gn_loc_drop​. [Accessed: 03-May-2019].

[15] “Stereo Vision Based Depth Estimation Algorithm In Uncalibrated Rectification.”
[Online]. Available:
https://pdfs.semanticscholar.org/32e9/d2bfe7d347662591cfb92c8309e62ea7fe51.p
df?_ga=2.124916426.197756512.1556227394-672891054.1556227394​.
[Accessed: 26-Apr-2019].

46

https://www.audi-mediacenter.com/en/techday-piloted-driving-the-traffic-jam-pilot-in-the-new-audi-a8-9276
https://www.audi-mediacenter.com/en/techday-piloted-driving-the-traffic-jam-pilot-in-the-new-audi-a8-9276
https://ww2.mathworks.cn/help/vision/ug/camera-calibration.html?lang=en&s_tid=gn_loc_drop
https://ww2.mathworks.cn/help/vision/ug/camera-calibration.html?lang=en&s_tid=gn_loc_drop
https://pdfs.semanticscholar.org/32e9/d2bfe7d347662591cfb92c8309e62ea7fe51.pdf?_ga=2.124916426.197756512.1556227394-672891054.1556227394
https://pdfs.semanticscholar.org/32e9/d2bfe7d347662591cfb92c8309e62ea7fe51.pdf?_ga=2.124916426.197756512.1556227394-672891054.1556227394

[16] R. B. Fisher and K. Konolige, “Range Sensors,” ​Springer Handbook of Robotics​.
pp. 521–542, 2008.

[17] M. Barnard, “Tesla & Google Disagree About LIDAR -- Which Is Right? |
CleanTechnica,” ​CleanTechnica​, 29-Jul-2016. [Online]. Available:
https://cleantechnica.com/2016/07/29/tesla-google-disagree-lidar-right/​. [Accessed:
10-May-2019].

[18] R. C. Gonzalez and R. E. Woods, ​Digital Image Processing, Global Edition​.
Pearson, 2017.

[19] W. Cunningham, “How lasers map the world for self-driving cars - Roadshow,”
Roadshow​, 19-Dec-2016. [Online]. Available:
https://www.cnet.com/roadshow/news/how-lasers-map-the-world-for-self-driving-
cars/​. [Accessed: 03-May-2019].

[20] A. Arya Senna Abdul Rachman, “3D-LIDAR Multi Object Tracking for
Autonomous Driving: Multi-target Detection and Tracking under Urban Road
Uncertainties,” 2017.

[21] R. Hartley and A. Zisserman, “The Background: Projective Geometry,
Transformations and Estimation,” ​Multiple View Geometry in Computer Vision​.
pp. 23–24.

[22] M. F. Kragh ​et al.​, “FieldSAFE: Dataset for Obstacle Detection in Agriculture,”
Sensors ​, vol. 17, no. 11, Nov. 2017.

[23] V. De Silva, J. Roche, and A. Kondoz, “Fusion of LiDAR and camera sensor data
for environment sensing in driverless vehicles,” 2018.

[24] C. Premebida, J. Carreira, J. Batista, and U. Nunes, “Pedestrian detection
combining RGB and dense LIDAR data,” in ​2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems​, 2014, pp. 4112–4117.

[25] W. Choi, C. Pantofaru, and S. Savarese, “Detecting and tracking people using an
RGB-D camera via multiple detector fusion,” in ​2011 IEEE International
Conference on Computer Vision Workshops (ICCV Workshops)​, 2011, pp.
1076–1083.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” ​Communications of the ACM​, vol. 60, no. 6. pp.
84–90, 2017.

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” ​arXiv [cs.CV]​, 04-Jun-2015.

[28] R. Girshick, “Fast r-cnn,” in ​Proceedings of the IEEE international conference on
computer vision​, 2015, pp. 1440–1448.

[29] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” ​IEEE Trans.
Pattern Anal. Mach. Intell.​, Jun. 2018.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once:
Unified, Real-Time Object Detection,” ​arXiv [cs.CV]​, 08-Jun-2015.

[31] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding box
estimation using deep learning and geometry,” in ​Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition​, 2017, pp. 7074–7082.

[32] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Data-driven 3d voxel patterns for
object category recognition,” in ​Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition​, 2015, pp. 1903–1911.

[33] T. He and S. Soatto, “Mono3D++: Monocular 3D Vehicle Detection with
Two-Scale 3D Hypotheses and Task Priors,” ​arXiv [cs.CV]​, 11-Jan-2019.

47

https://cleantechnica.com/2016/07/29/tesla-google-disagree-lidar-right/
https://www.cnet.com/roadshow/news/how-lasers-map-the-world-for-self-driving-cars/
https://www.cnet.com/roadshow/news/how-lasers-map-the-world-for-self-driving-cars/

[34] Z. Luo, S. Habibi, and M. V. Mohrenschildt, “LiDAR based real time multiple
vehicle detection and tracking,” ​International Journal of Computer, Electrical,
Automation, Control and Information Engineering​, vol. 10, no. 6, 2016.

[35] D. Matti, H. K. Ekenel, and J.-P. Thiran, “Combining LiDAR Space Clustering and
Convolutional Neural Networks for Pedestrian Detection,” ​arXiv [cs.CV]​,
17-Oct-2017.

[36] I. Malysheva and Others, “Large-scale multimodal sensor fusion and object
detection,” 2017.

[37] J. Lahoud and B. Ghanem, “2d-driven 3d object detection in rgb-d images,” in
Proceedings of the IEEE International Conference on Computer Vision​, 2017, pp.
4622–4630.

[38] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation,” 02-Dec-2016.

[39] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-View 3D Object Detection
Network for Autonomous Driving,” ​arXiv [cs.CV]​, 23-Nov-2016.

[40] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander, “Joint 3D Proposal
Generation and Object Detection from View Aggregation,” ​arXiv [cs.CV]​,
06-Dec-2017.

[41] E. Schröder, M. Mählisch, J. Vitay, and F. Hamker, “Fusion of Camera and Lidar
Data for Object Detection using Neural Networks.”

[42] D. Z. Wang and I. Posner, “Voting for Voting in Online Point Cloud Object
Detection,” in ​Robotics: Science and Systems​, 2015, vol. 1, pp. 10–15607.

[43] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN: Octree-based
Convolutional Neural Networks for 3D Shape Analysis,” ​ACM Trans. Graph.​, vol.
36, no. 4, pp. 72:1–72:11, Jul. 2017.

[44] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d
object detection,” in ​Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition​, 2018, pp. 4490–4499.

[45] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, “Vote3Deep: Fast
object detection in 3D point clouds using efficient convolutional neural networks,”
in ​2017 IEEE International Conference on Robotics and Automation (ICRA)​, 2017,
pp. 1355–1361.

[46] B. Li, T. Zhang, and T. Xia, “Vehicle Detection from 3D Lidar Using Fully
Convolutional Network,” ​arXiv [cs.CV]​, 29-Aug-2016.

[47] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, and Others, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in ​Kdd​, 1996, vol.
96, pp. 226–231.

[48] “OpenCV: Image Thresholding.” [Online]. Available:
https://docs.opencv.org/3.4.0/d7/d4d/tutorial_py_thresholding.html​. [Accessed:
27-Apr-2019].

[49] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for Real-Time Semantic
Segmentation on High-Resolution Images,” ​arXiv [cs.CV]​, 27-Apr-2017.

[50] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” in
Proceedings of the European Conference on Computer Vision (ECCV)​, 2018, pp.
801–818.

[51] “Clock - ROS Wiki.” [Online]. Available: ​http://wiki.ros.org/Clock​. [Accessed:
29-Apr-2019].

48

https://docs.opencv.org/3.4.0/d7/d4d/tutorial_py_thresholding.html
http://wiki.ros.org/Clock

[52] “YOLOv3.” [Online]. Available:
https://pjreddie.com/media/files/papers/YOLOv3.pdf​. [Accessed: 10-May-2019].

49

https://pjreddie.com/media/files/papers/YOLOv3.pdf

Appendix

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Mahir Gulzar

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to
reproduce, for the purpose of preservation, including for adding to the DSpace digital
archives until the expiry of the term of copyright,

Object Detection Using LiDAR and Camera Fusion in Off-road Conditions​,

supervised by ​Tambet Matiisen

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to
the public via the web environment of the University of Tartu, including via the DSpace
digital archives, under the Creative Commons licence CC BY NC ND 3.0, which
allows, by giving appropriate credit to the author, to reproduce, distribute the work and
communicate it to the public, and prohibits the creation of derivative works and any
commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection legislation.

Mahir Gulzar
16/05/2019

50

