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Object Detection Using LiDAR and Camera Fusion in 
Off-road Conditions 
 
Abstract: 
Since the boom in the industry of autonomous vehicles, the need for precise             
environment perception and robust object detection methods has grown. While we are            
making progress with state-of-the-art in 2D object detection with approaches such as            
convolutional neural networks, the challenge remains in efficiently achieving the same           
level of performance in 3D. The reasons for this include limitations of fusing             
multi-modal data and the cost of labelling different modalities for training such            
networks. Whether we use a stereo camera to perceive scene’s ranging information or             
use time of flight ranging sensors such as LiDAR, ​the existing pipelines for object              
detection in point clouds have certain bottlenecks and latency issues which tend to             
affect the accuracy of detection in real time speed. Moreover, ​these existing methods are              
primarily implemented and tested over urban cityscapes. 
This thesis presents a fusion based approach for detecting objects in 3D by projecting              
the proposed 2D regions of interest (object’s bounding boxes) or masks (semantically            
segmented images) to point clouds and applies outlier filtering techniques to filter out             
target object points in projected regions of interest. Additionally, we compare it with             
human detection using thermal image thresholding and filtering. Lastly, we performed           
rigorous benchmarks over the off-road environments to identify potential bottlenecks          
and to find a combination of pipeline parameters that can maximize the accuracy and              
performance of real-time object detection in 3D point clouds. 
 
Keywords: 
Object detection, sensor fusion, LiDAR, camera, frustum, off-road scenarios, ROS. 
 
CERCS: ​P170 Computer science, numerical analysis, systems, control  
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Objektituvastus maastikul kasutades lidarit ja kaamerat 
 
Lühikokkuvõte: 
Seoses hüppelise huvi kasvuga autonoomsete sõidukite vastu viimastel aastatel on          
suurenenud ka vajadus täpsemate ja töökindlamate objektituvastuse meetodite järele.         
Kuigi tänu konvolutsioonilistele närvivõrkudele on palju edu saavutatud 2D         
objektituvastuses, siis võrreldavate tulemuste saavutamine 3D maailmas on seni jäänud          
unistuseks. Põhjuseks on mitmesugused probleemid eri modaalsusega sensorite        
andmevoogude ühitamisel, samuti on 3D maailmas märgendatud andmestike loomine         
aeganõudvam ja kallim. Sõltumata sellest, kas kasutame objektide kauguse hindamiseks          
stereo kaamerat või lidarit, kaasnevad andmevoogude ühitamisega ajastusprobleemid,        
mis raskendavad selliste lahenduste kasutamist reaalajas. Lisaks on enamus         
olemasolevaid lahendusi eelkõige välja töötatud ja testitud linnakeskkonnas liikumiseks. 
 
Töös pakutakse välja meetod 3D objektituvastuseks, mis põhineb 2D objektituvastuse          
tulemuste (objekte ümbritsevad kastid või segmenteerimise maskid) projitseerimisel 3D         
punktipilve ning saadud punktipilve filtreerimisel klasterdamismeetoditega. Tulemusi       
võrreldakse lihtsa termokaamera piltide filtreerimisel põhineva lahendusega.       
Täiendavalt viiakse läbi põhjalikud eksperimendid parimate algoritmi parameetrite        
leidmiseks objektituvastuseks maastikul, saavutamaks suurimat võimalikku täpsust       
reaalajas. 
 
Võtmesõnad: 
Objektituvastus, sensorite ühitamine, lidar, kaamera, maastikukeskkond, ROS. 
 
CERCS: ​ P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine 
(automaatjuhtimisteooria)  
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List of Abbreviations 
 

Abbreviation Explanation 

SAE Society of Automation Engineers 

ROS Robot Operating System 

UGV Unmanned Ground Vehicle 

LiDAR Light Detection and Ranging 

RANSAC Random sample consensus 

SVM Support Vector Machine 

HOG Histogram of Oriented Gradients 

CNN Convolutional Neural Network 

R-CNN Region Convolutional Neural Network 

FOV Field of View 

DBSCAN Density-based spatial clustering of applications with noise 

GPS Global Positioning System 

GNSS Global Navigation Satellite System 

RPN Region Proposal Network 
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1 Introduction 

1.1 Motivation and Background 
Development of a fully autonomous vehicle where an intelligent agent can fully            
perceive the environment and execute control decisions in real-time is among one of the              
most challenging tasks for AI researchers. In fact, this research domain can be             
subdivided into different categories of computer science and robotics, such as computer            
vision, machine learning, deep learning, sensor simulation etc. The development          
architecture of an autonomous vehicle is divided into different submodules which work            
in a closed loop. These modules are environment perception, vehicle localization, path            
planning and motion control (Figure 1.1). 

Figure 1.1.​ The basic framework of an autonomous vehicle [1].  
 

The main focus of this thesis is the perception module. The perception module detects              
objects surrounding the vehicle e.g humans, vehicles, trees, buildings etc and might also             
include object tracking as well. Our research revolves specifically around detecting           
humans in real-time using data from multiple modalities e.g. camera and ranging            
sensors in off-road scenarios. The top priority of a driverless vehicles is to reduce              
human error to ensure safety of humans [2], so we consider this as a benchmarking               
parameter in this thesis, mainly because even small errors in detection can cause             
fatalities. 
When it comes to detection, computer vision based approaches are very popular            
nowadays. In recent years the emergence of fusion-based methods in multi-modal           
systems became useful in different applications such as environment mapping [3] and            
autonomous driving [4]. Using a combination of cameras with different ranging sensors            
(such as LiDAR) is a way for an autonomous vehicle to detect objects with distance               
information. A camera gives us high-quality scene image and a ranging sensor provides             
depth or distance information of the environment. Single sensor data is often not enough              
for the complete perception of the surrounding environment of an autonomous vehicle            
mainly because of the limitations of each sensor [5]. Multi-modality (data from multiple             
sensors) comes into play for perceiving different attributes of the environment to make             
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precise control decisions. On the other hand, multi-modal data has its own limitations             
[6] which will be discussed in later chapters.  
Instead of considering the problem of autonomy of a vehicle, in general, we look at it                
from the perspective of the levels of autonomy. The Society of Automotive Engineers             
(SAE) has defined a very useful classification system for different levels of driving             
automation [7]. These levels are listed in Table 1.1 below. 
 

Table 1.1.​ SAE levels of driving automation summary  See [7, p. 17]. 
 

SAE 
Level 

 
Name 

 
Description 

 
Execution 

 
Environment 
Monitoring 

Fallback 
performance 
of dynamic 

task 

 
Driving 
Modes 

Human driver monitors driving environment  

0 No Automation Full-time performance by 
human overall dynamic tasks 

Human Driver  
 
 
 

Human Driver 
 

 
 
 
 

Human Driver 

 N/A 

1 Driver Assistance Driving mode specific 
execution by a driver assistance 
with an expectation that human 
driver will perform all 
remaining aspects of dynamic 
tasks 

Human Driver 
and System 

 
 

Some 
driving 
modes 

2 Partial 
Automation 

Driving mode specific 
execution by one or more driver 
assistance with an expectation 
that human driver will perform 
all remaining aspects of 
dynamic tasks 

System 

Automated driving system monitors the driving environment 

3 Conditional 
Automation 

Driving mode specific 
performance by an automated 
driver system with the 
expectation that a human driver 
will respond appropriately to a 
request to intervene 

 
 
 
 
 
 
 
 
 

System 

 
 
 
 
 

 
 
 
 

System 

 
 

Human Driver 

 
 

Some 
driving 
modes 

4 High Automation Driving mode specific 
performance by an automated 
driver system even if a human 
driver does not respond 
appropriately to a request to 
intervene 

 
 
 
 

System 

 
 

Many 
driving 
modes 

5 Full Automation Full-time performance of an 
automated driving system of all 
aspects of a dynamic driving 
task in all environmental 
conditions. 

 
All 

driving 
modes 

 
Audi claims to have reached to the level 3 of the classification table [8] i.e. able to                 
drive autonomously in good conditions on highways and with light traffic in the city,              
while requiring safety driver to be alert at all times. Even though achieving level 3 is a                 
considerable advancement in the automotive industry, we still lack in achieving the            
same level of autonomy in off-road scenarios i.e. these advancements are applicable            
only in well structured urban environments. There are several reasons for this: 

● Off-road scenarios, in general, don’t have any structural aspect to the           
environment i.e. there are no lane markers and road signs to assist the vehicle.              
The terrain is uneven compared to the roads in an urban environment and there              
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is no clear distinction between drivable and non-drivable areas i.e. it is fine to              
drive through bushes sometimes.  

● There is no fixed point of reference for vehicle localization (trees and bushes             
move slightly all the time compared to buildings in urban scenar​ios which stay             
still). 

● The scarcity of off-road datasets. 

1.2 Problem Statement 
Our work is primarily focusing on object detection in off-road scenarios. Another 
challenge is to identify potential bottlenecks in our pipeline and tweak the environment 
parameters to maximize the performance gain of the detection. 
 
There are two core questions which we will address in this study: 

1. How well can we detect humans in real-time using mature 2D object detection 
methods to assist locating humans in 3D in off-road scenarios? 

2. What are the best parameters for stable and robust benchmarking of object 
detection using Robotic Operating System (ROS)? 

In this thesis, a real-time model is defined as a minimum of 10 frames per second. 
 
This study is a part of a collaborative project “Applied research on system of sensors               
and software algorithms for safety and driver assistance on remotely operated ground            
vehicles for off-road applications” with Milrem Robotics. The aim of this research is to              
develop a baseline for fast and robust object detection in off-road scenarios for an              
unmanned ground vehicle (UGV). The main objective is to maximize the performance            
of 3D object detection using existing state-of-the-art 2D detection methods with camera            
and LiDAR fusion. Inspired from frustum pointnets [9] method, which currently ranks            
at the 4th position for detecting pedestrians in KITTI dataset [10], we develop simple              
3D object detection pipeline for detecting humans in off-road scenarios. This thesis also             
addresses the issues related to latency and stability of benchmarking results in the             
perception module faced specifically while working with ROS. For this, we perform            
extensive benchmarking over various parameters to give conclusive results and to           
maximize the performance of our detection pipeline. 

1.3 Structure 
We divide this work into the following chapters: 
 

● Chapter-2: Overview of the sensors involved in the object detection process           
and their limitations. Camera-LiDAR calibration and fusion challenges. 

● Chapter-3: Literature review of the existing approaches for object detection          
using cameras and LiDARs. 

● Chapter-4: An overview of the chosen datasets. Architecture and flow of our            
perception module pipeline in ROS. A comparison of baselines with detection           
pipeline and a description of benchmarking setup with parameters involved. 

● Chapter-5: Benchmarking results of our methodology over different datasets         
and detection methods used. 
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● Chapter-6: In the last chapter we conclude our work with a summary of our              
module design, discuss limitations of it and possible future improvements. 
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2 Sensor fundamentals 
 
This chapter gives a brief overview of the sensors used in this project, their working               
principles as well as their limitations under which our detection pipeline is built upon.  

2.1  Camera and Ranging Sensors 

2.1.1 Camera 
Optical sensors are very common for data acquisition among different available sensors.            
Cameras give a high-resolution 2D understanding of the environment depending on the            
type of camera (RGB, thermal etc.). Various computer vision based approaches can be             
applied to images taken from both thermal and RGB cameras but choosing the right              
type of camera depends on the use case. For example, detecting humans in low light               
situations is comparatively difficult from an RGB image than from a thermal image             
(Figure 2.1). 

Figure 2.1:​ RGB vs Thermal in a low light scene [11].  
 
Our study involves working with both RGB and thermal cameras. Thermal imagery can             
be used to detect people in a wide range of environmental conditions and can have               
performance gains over RGB [12]. RGB cameras work with visible reflected light over             
three channels (red, green and blue) which makes it dependent to day and night light               
conditions. On the other hand, RGB images have an advantage over thermal imagery in              
resolving ambiguous situations such as tracking people in occlusions [13]. This makes            
RGB a better choice for object tracking as RGB channels have more information about              
the object compared to a single channel thermal image. Table 2.1 summarizes the pros              
and cons of RGB and thermal cameras. 
 

Table 2.1:​ RGB vs thermal pros and cons [13]. 
Camera Type Pros Cons 

 
Thermal 

Easier segmentation 
Independent of light 
 

Re-identification difficult 
Expensive 
Fair resolution 
False information due to infrared reflectivity 
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RGB 

Re-identification possible 
Cheap sensor 
High resolution 

Sensitive to light 
Privacy issues 
Shadows 

2.1.1.1 Camera as a ranging sensor: 
The real-world scenes are three-dimensional i.e. the depth information of the scene is             
crucial for object detection. A camera works on the principle of pinhole camera model              
where the light rays pass through an aperture (hole) and the image of 3D environment is                
inversely projected on an image plane (Figure 2.2). The parameters of pinhole model             
are determined by (intrinsic) camera matrix that encodes focal length and sensor size of              
the camera. Furthermore, to fuse the output of two sensors placed at a certain distance in                
world space, the sensors undergo through a procedure of calculating external (extrinsic)            
parameters. This process of determining the extrinsic and intrinsic camera parameters is            
called calibration.  

 
Figure 2.2.​ Pinhole camera model [14]. 

 
Cameras can be categorized into monocular and stereo, where stereo vision is used to              
perceive depth or range of the scene using two cameras similar to the way humans               
perceive through stereoscopic vision the distance of the objects in the world. 

Figure 2.3.​ Ideal stereoscopic geometry [15]​. 
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In practice the stereo imaging for sensing range information in robotics has difficulties             
[16]. The main problem for stereo methods is the reliable matching of image pixels for               
the same object (point P in Figure 2.3) i.e. the depth information is prone to errors and                 
less accurate. Also, the constraint of lighting conditions applies in stereo vision too. On              
the other hand, if mapped accurately, the stereo vision theoretically gives a            
high-resolution depth mapping up to infinite range - something no other range sensor             
gives at the moment [16]. The performance of camera sensor, in general, varies with use               
case scenarios and properties. Figure 2.4 shows a performance chart of camera sensor. 

Figure 2.4.​ Camera vision performance chart with different use-cases on a scale of 0 to 
5 (where 5 is the best performance) [17]. 

2.1.2 LiDAR 
LiDAR (LIght Detection And Ranging) is a sensor based on time of flight principle and               
is very recently introduced compared to the camera. Time of flight is a method of               
measuring the distance of an object from the sensor. This is done in four steps: 

1. emit signal (Laser) pulse from the sensor, 
2. catch reflected laser back to the pulse source, 
3. measure the time taken by the laser pulse to come back, 
4. lastly, calculate distance using the distance formula. 

 
Figure 2.5.​ Measuring principle of LiDAR [18]. 
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Another well known ranging sensor built on top of time of flight principle is radar               
(RAdio Detection And Ranging) which uses radio wave as a signal carrier whereas             
LiDAR uses light as a signal carrier (hence the rhyming name LiDAR). The output of               
LiDAR is a sequence of points consisting of four values: distance, horizontal/vertical            
angles and reflectivity [18]. The reflectivity of a surface depends on its texture, material              
and color. One of the most common ways to represent LiDAR data is point cloud due to                 
a wide variety of available open source libraries. In point cloud format the data is               
represented in the form cartesian coordinate system i.e. x, y and z. Figure 2.6 shows an                
example frame of point cloud in urban environment 

Figure 2.6.​ Velodyne 64 beam lidar scan [19]. 
 

In our study, we will be working on point-clouds retrieved from 32- and 16-beam              
Velodyne rotating LiDARs. A rotating multi-beam LiDAR provides a 360-degree field           
of view of the scene with a vertical resolution equal to the number of the beams, while                 
the horizontal resolution depends on the speed of rotation. Almost all the LiDARs             
available today in the commercial market operate in near-infrared light spectrum thus            
their output power is limited for eye safety constraints.  
LiDARs are typically less affected by weather conditions when compared to cameras            
however they lack the ability to capture the textures of the scene objects (Figure 2.7).  

 
Figure 2.7.​ LiDAR performance chart with different use-cases on a scale of 0 to 5 

(where 5 is the best performance) [17]. 
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Additionally, a single attribute of dimension and shape cannot give accurate results in             
object classification. Moreover, point-clouds are sparse i.e. there is always a level of             
uncertainty between the scanned beams, especially for far away points. More recent            
advancement in LiDAR technology is Flash LiDARs which can produce a           
high-resolution object detail similar to that of cameras. These LiDARs were not used in              
the project. 

2.2 Extrinsic Calibration and Sensor Fusion 
At this point, we can already draw a distinct conclusion that we cannot completely rely               
on one vision sensor in order to do accurate and robust object detection due to the                
limitations of each sensor. The following table summarizes the comparisons of the            
sensor technologies discussed previously. 
 

Table 2.2.​ A comparison of vision sensors adapted from [20]. 
Sensor Principle Computational 

Complexity 
Characteristics 

 
Camera 

Ambient visible light 
intensity 

Moderate High resolution, high vertical FOV, affected 
by lighting conditions 

 
Stereo 
camera 

Multiple cameras for 
binocular vision 

High Similar to cameras with the addition of depth 
information, depth accuracy up to 50m 

3D 
LiDAR 

Measure distance & 
reflectance from 600-100 
nm laser signal 

Low Sparse, range up to 200m, 360 surround view 
using a single mounting system. 

 
Considering the characteristics of each sensor, i.e. if we get a high-resolution image of              
the environment from the camera and accurate depth information from LiDAR, fusing            
the two modalities can exploit their complementary strengths. In this context, to            
combine two different data modalities, we find the correspondence between the           
underlying data points so that we can transform from one modality to another.  
 
In this work, the LiDAR and cameras are rigidly connected, i.e. to find correspondence              
between them a transformation matrix is needed to convert points from LiDAR            
coordinate system to camera coordinate system.. This step is often referred to as             
LiDAR-Camera extrinsic calibration and it requires the camera intrinsics that was           
explained earlier in this chapter. There are different methods for extrinsic calibration of             
LiDAR and camera but the one which is commonly used is by taking planar              
checkerboard pattern as a fiducial target. Each LiDAR point has an intensity value             
which helps to pinpoint the corners of the checkerboard squares in LiDAR data. The              
next step is to convert the LiDAR point cloud into a 2D image plane using camera                
projection model. After obtaining a 2D image from 3D point cloud a point to point               
correspondence of 2D LiDAR intensity image and the camera image is found. For this              
purpose, an intensity image of interpolated LiDAR points is matched with an            
automatically detected checkerboard pattern in camera (Figure 2.8). This         
correspondence is used to calculate the transformation matrix between LiDAR and           
camera using a RANSAC algorithm [21]. Once the correspondence is found we get a              
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transformation matrix for converting between LiDAR and camera coordinate system.          
Figure 2.9 shows an example of projected camera image on LiDAR point cloud. 

Figure 2.8.​ Correspondence between the camera image and intensity image (LiDAR) 
on a planar checkerboard pattern [3]. 

 

 
Figure 2.9.​ An example of our fusion node on FieldSAFE dataset [22], on left is the 

camera image and on right is the fused image with LiDAR points colored according to 
the corresponding pixels. 

 
In the end, the main purpose of fusion in this study is to propagate the detection results                 
from one modality to another thus achieving 3D object detection from the predictions             
obtained from state-of-the-art 2D object detection methods. 

2.3 Data Fusion Challenges 
Multi-modal data streams are different from each other in terms of data format,             
geometrical alignment and spatial resolution. 
LiDAR data has an element of sparsity while imaging output is dense i.e. of high               
resolution. While LiDAR and camera extrinsic calibration is a result of a rigid body              
transformation as discussed previously, the transformation does not solve issues          
regarding the uncertainty of sensor data. In order to make efficient use of data fusion by                
heterogeneous sensors like camera and LiDAR, the sensors must be aligned in three             
ways: 
 

● Resolution-wise: Both modalities should have similar spatial density or         
resolution. The LiDAR points are always more sparse than camera images, also            
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the far away LiDAR points are less dense than near points. This makes the              
resolution gap more for far away objects than near. (Figure 2.10). 

 
Figure 2.10:​ An illustration of spatial alignment problem where red dots represent 

LiDAR points and yellow highlighted area shows the resolution gap between LiDAR 
and camera which varies when human is near or far from LiDAR. 

 
● Spatially: A pair of data points from both modalities correspond to a single             

point in world space (Figure 2.11). 

Figure 2.11:​ An illustration of spatial alignment problem. Red dots represent LiDAR 
points and human figure represents the camera output. On the left the LiDAR and 

camera are not horizontally aligned, on the right they are correctly aligned. 
 

● Temporally: ​Two frames of different modalities showing a specific scene must           
have the same time-stamps  (Figure 2.12). 

16 



 

Figure 2.12:​ An illustration of temporal alignment problem where LiDAR points are 
perfectly aligned when human is standing and unaligned while human is 

walking/running due to delay in the acquisition. 
 
 
Here, spatial alignment can be perfected with the efficient extrinsic calibration of the             
sensors, whereas resolution-wise alignment problem is often formulated as         
regression-based missing value prediction by interpolation on the measured data points           
[23]. Lastly, the temporal alignment problem is mainly caused in motion due to the long               
acquisition time and can be solved using time synchronization methods, i.e. triggering            
all sensors on common timing signals.  
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3 Related Work 
Reliable object detection has been a core topic in the field of mobile robotics and               
computer vision. The research in object detection methods using camera and LiDAR            
fusion (specifically pedestrian detection) has seen considerable progress over the last           
decade. Most of the methodologies for 3D object detection rely on state-of-the-art 2D             
object detectors. For this reason, this chapter is divided into two sections: An overview              
of 2D object detectors followed by 3D detection approaches. 

3.1 2D Object Detectors 
Classical object detection methods had been popular among researchers before current           
deep learning based object detectors. [24] used Histogram of Oriented Gradients (HOG)            
to train an SVM classifier on KITTI dataset to extract feature-maps from RGB and              
depth images for pedestrian detection. Similarly [25] used multiple HOG detectors for            
detection and tracking of people using RGB-D data. 
Since deep learning approaches took over as current state-of-the-art object detectors for            
imaging, researchers have been trying to exploit different network architectures for           
multi-modal perception in autonomous driving. Considering only RGB camera images,          
it is worth mentioning that convolutional neural networks (CNN) [26] have emerged as             
efficient algorithms for object detection. Object classification, detection and localization          
are mostly addressed by training a CNN to generate semantic segmentation or bounding             
boxes around predicted objects. Semantic segmentation makes predictions inferring         
labels for every pixel in the image thus giving a fine-grained understanding of the              
environment but is limited in giving instance level information of same classes. [27]             
introduced a flavour of CNNs named Faster-RCNN (an improved version of           
Fast-RCNN [28]), which is a region proposal network that predicts bounds and scores             
for multiple objects in an image. Faster-RCNN takes detection as a classification            
problem by generating object proposals before being sent to the classification head of             
the network. Mask-RCNN [29] is an extension to Faster-RCNN that predicts instance            
segmentation i.e. acquiring pixel level labels of each instance of the same classes.             
Mask-RCNN works in two stages i.e. Faster-RCNN for generating bounding boxes as            
ROI (Regions of Interest) and a second stage to generate segmentation mask inside             
bounding boxes of the predicted objects. Another category of 2D detectors poses            
detection as a regression problem. The most well-known is YOLO [30] which is a              
single neural network that predicts bounding boxes and class probabilities for different            
regions of an image. YOLO is comparatively faster than previously mentioned networks            
because it makes predictions with a single network evaluation, unlike Faster-RCNN and            
Mask-RCNN which work in multiple passes. 
The speed dominance of YOLO over other existing methods makes it a perfect             
candidate for real-time object detection on camera images in our human detection            
pipeline. 
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3.2 3D Detection Approaches 
Despite good performance, previously mentioned 2D object detectors are difficult to           
adapt for 3D object detection. Researchers have approached 3D object detection in            
various ways.  
Image-based methods ​[31], [32] work on RGB images only i.e. they take shape or              
occlusions as priors and estimate 3D bounding boxes from 2D. A similar category of              
detectors includes handcrafted features or priors for proposal generation based methods           
that estimate the geometry shape of the objects [33]. 
Clustering based approaches perform ground removal in LiDAR space. [20] extracted           
ground from LiDAR points and estimated 3D bounding boxes from candidate clusters.            
[34] applied radially bounded nearest neighbour clustering of 3D LiDAR points for            
object detection as well as tracking in real-time. Clustering whole point cloud is very              
time consuming, computationally expensive and may not be efficient in real time. [35]             
downsampled the point cloud and made pedestrian detection more robust by adding            
information from projected proposed 3D human clusters into classification scores. [36]           
used a similar clustering based method by fusing LiDAR points with mosaiced images             
to extend the camera field of view to detect moving objects.  
Monocular based proposal generation approaches leverage 2D detection methods by          
proposing regions of interest on the camera image. They became trendy from [37].             
Frustum PointNets [9] is an inspiration of a similar approach where 2D region of              
interests are projected to 3D LiDAR space making 3D frustum proposals where a             
frustum represents 3D LiDAR modelled space that appear inside 2D bounding box on             
screen (often referred to as view frustum in computer graphics consisting a clipped 3D              
tilted pyramid with two parallel near and far planes). Proposed frustums, in the end, are               
segmented for bounding box regression using PointNets [38]. 
Bird’s eye view-based approaches project LiDAR points to top-down view to train RPN             
(Region Proposal Network) over feature maps extracted from bird’s eye view, LiDAR            
front view and camera images [39]​, [40]​. [41] transformed feature maps extracted from             
camera image into top-down view image feature maps thus implicitly learning the depth             
of the image. Despite being ranked among one of the best approaches on KITTI dataset               
for detecting cars, these methods are not efficient in detecting smaller objects such as              
pedestrians etc. 
3D based methods work only with single modality i.e. LiDAR data and are recent to               
compared to other approaches. [42] train a 3D object classifier using SVM on             
hand-crafted features of a point-cloud. [43] is an extension to the previous approach by              
replacing SVM with CNN. A more recent approach is voxelization of point clouds to              
train a generic 3D detection network thus removing the need for manual feature             
engineering [44]​, [45]​. Depth based 3D bounding box prediction methods take top-down            
view of LiDAR data as a 2D image, project point cloud to the front view, obtaining a                 
2D point map then apply a fully convolutional network on the 2D point map and predict                
3D bounding boxes from the convolutional feature maps [46]. 
This thesis combines two approaches discussed above, first 2D regions of interests are             
proposed the same way as they are proposed in Frustum PointNets [9] leveraging a              
mature 2D object detector. These regions are extruded to 3D LiDAR space but instead              
of filtering LiDAR points using PointNets we cluster them thus reducing the            
computational cost as clustering is cheaper than running full-blown neural network.           
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Furthermore, as we only cluster points lying inside the proposed extruded frustums, this             
also makes it computationally efficient instead of clustering whole point clouds which            
many clustering based approaches do.  
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4 Detection Pipeline 
This chapter describes the specifications of the datasets used, followed by an overview             
of complete detection pipeline algorithm in ROS. 

4.1  Dataset description 
The detection methods discussed previously have their pros and cons depending on            
various factors such as labelling cost, real-time speed, dataset category etc. KITTI [10]             
benchmark ranking gives us a good in-depth guideline of different detection approaches            
but limits us with only urban scenarios. Here we take data as a specification approach               
and trim down the search for both 2D and 3D detection methods on the basis of off-road                 
scenarios. 

4.1.1 FieldSAFE Dataset 
One of the key factors in environment perception is the type and specification of the               
dataset. There are a very limited number of available off-road datasets. Here we choose              
FieldSAFE [22] dataset which is mainly purposed for obstacle detection in agriculture            
scenarios and is, therefore, the closest match to off-road scenarios we are aiming for.              
The specifications of different sensor modalities in FieldSAFE dataset are summarized           
in Table 4.1. 
 

Table 4.1.​ FieldSAFE dataset sensing modalities [22]. 
 

Sensor 
 

Model 
 

Resolution 
FOV in 
degrees 

Range in 
meters 

Data-rate / fps 

Stereo 
Camera 

Multisense S21 
CMV2000 

1024 x 544 85 x 50 1.5-50 10 

Web 
camera 

Logitech HD Pro 
C920 

1920 x 1080 70 x 43 n/a 20 

360 
camera 

Giroptic 360cam 2048 x 833 360 x 292 n/a 30 

Thermal 
camera 

Flir A65, 13mm 
lens 

640 x 512 45 x 37 n/a 30 

LiDAR Velodyne 
HDL-32E 

2172 x 32 360 x 40 1-100 10 

Radar Delphi ESR 16 targets/frame 
16 targets/frame 

90 x 4.2 
20 x 4.2 

0-60 
0-174 

20 
20 

 
The FieldSAFE dataset comprises of almost two hours of raw multi-modal sensor data             
in grass field where all the sensors are mounted on a ploughing machine attached to a                
moving tractor. There are humans as dynamic obstacles which move around the field             
doing various poses while the sensors are recording the data. One of the pros of working                
with FieldSAFE dataset is the availability of almost 10 minutes of 3D human ground              
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truth coordinates which saves us the time to manually label human locations in 3D.              
Figure 4.1 shows an example of the modalities we used from FieldSAFE dataset. 
 

 

         
   (a)           (b) 

(c) 
 

Figure 4.1.​ An example of FieldSAFE dataset multiple modalities where (a) shows 
stereo-left camera image, (b) shows the thermal image output for the same frame and (c) 

represents LiDAR point-cloud with red cylinders showing 3D human ground-truth 
locations 

4.1.2 Milrem Robotics Dataset 
We intend to deploy the detection pipeline of human detection on Milrem Robotics             
UGV, called Themis. The purpose of initially working with FieldSAFE dataset was to             
refine our perception module and then perform benchmarks over Milrem datasets to            
compare the results. Table 4.2 shows sensor specifications in Milrem dataset. 
 

Table 4.2.​ Milrem dataset sensing modalities. 
 

Sensor 
 

Model 
No. of 

sensors 
 

Resolution 
/points 

FOV in 
degrees 

Range in 
meters 

Datarate / fps 

Camera SF332X-10X-      
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NVIDIA 2 
Mega Camera 

 

2 1920x1208 120x60 n/a 30 

LiDAR Velodyne 
LiDAR 
VLP-16 
PUCK 

2 300,000 points, 
16 beams 

360 x 30 100 20 

 
 

 
 

Figure 4.2.​  An example of Milrem dataset modalities where on left is the LiDAR 
point-cloud and on right is the corresponding frame output of RGB camera image. 

 
Milrem dataset comprises of almost 10 minutes of raw multi-modal sensor data in             
snowy roads, snowy terrain with trees (Figure 4.2) where all the sensors are mounted on               
a UGV. There are humans as dynamic obstacles which move around the UGV and do               
different poses similar to what we have in FieldSAFE but this dataset has only limited               
amount of  human ground truth locations (50 frames). 

4.2  Detection Algorithm 

 
Figure 4.3.​ ROS detection pipeline. 

 
The detection pipeline (Figure 4.3) can be divided into the following main steps: 

4.2.1 Preprocessing 
Before using raw images to generate region proposals, the images are preprocessed if             
required, e.g. images are rectified to remove lens distortion. Additionally, in case of             
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FieldSAFE dataset, thermal images were converted from 16-bit to 8-bit format and            
flipped in x, y-axis because of incorrect orientation. 

4.2.2 2D region proposals 
Once we get undistorted images the first step is to propose 2D regions on images. There                
are two ways of doing it: 
 

● Bounding boxes 
● Object masks 

 
As discussed in the previous chapter that at this stage we need a mature 2D object                
detector. In our pipeline, we used bounding box based region proposals and tried two              
pre-trained neural networks i.e. YOLO v2 and v3 for generating 2D region proposals.             
Figure 4.4 shows an example of predicted bounding boxes from YOLO v3. 

 
Figure 4.4.​  An example of 2D bounding boxes proposed by YOLO v3 on FieldSAFE 

stereo left RGB camera image. Here, the bounding boxes are stretched horizontally and 
contracted vertically because of the reasons explained in section 4.4.1. 

4.2.3 Projection, Fusion & Frustum proposals 
While the bounding box proposals are generated from camera images, at the time of raw               
image acquisition, the LiDAR point cloud data is also acquired in parallel. First, the              
LiDAR points are transformed from LiDAR coordinate system to camera coordinate           
system using the transform acquired through extrinsic calibration (discussed in chapter           
2). Then, using projection matrix extracted from camera information, the point-cloud           
with all the points having z value (forward-backward direction) greater than 0 are             
projected to an image plane of the same camera to which it is intended to be fused                 
(Figure 4.5). The reason for removing points with z less than 0 is to get rid of the                  
unnecessary transformations of LiDAR points which lie behind the camera plane. After            
projection of point-cloud data on the image plane, the next thing is to perform two-step               
filtering i.e. first filter out all the LiDAR points which exceed image height and width               
giving us only those LiDAR points which have correspondence with camera image and             
then filter all LiDAR points which lie inside proposed regions.  
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Figure 4.5.​  Projection of LiDAR points to camera image plane. 
 

Once we get the filtered points which lie inside 2D region proposals, we implicitly get               
frustum proposals i.e. all filtered points after extrusion makes 3D frustums (Figure 4.6)             
of the regions where the humans are most likely to be found considering we have               
accurate prediction by the 2D detector. 
 

 
 

Figure 4.6.​  An illustration of extruded filtered LiDAR points as proposed frustum, 
where yellow pixels in LiDAR show human but is cluttered by background points. 

4.2.4 Filtering & Clustering 
The frustum proposals acquired in the previous step have LiDAR points which            
happened to lie inside proposed frustums but are not actually part of human figures. If               
we would average over coordinates of all these points to get human location, it would be                
inaccurate due to the scattering of points in the background. In order to localize the               
prediction of human in proposed frustums, first, we filter the frustums i.e. consider only              
those frustum points which lie inside a specified benchmark radius e.g. 30 meters             
around the UGV. This removes all the points which are too far away and yet marked as                 
human due to bounding box filtering. Even after filtering the points like this, human              
location can still be ambiguous in scenarios where human is near the vehicle and              
background points are spread up to the benchmarking radius. Figure 4.6 demonstrates            
such a scenario where human is near to the vehicle and has cluttered background points               
in its frustum. 
This problem can be addressed in many ways such as calculating the point density of               
the top-down 2D LiDAR points per frustum, as human or any proposed object will have               
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dense points around it in a top-down view. We addressed this problem using DBSCAN              
[47] algorithm. The idea here is to cluster remaining frustum points according to the              
distance between the points in top-down view.  
Once we cluster the points inside a frustum we still have to find the candidate human                
cluster because there can be zero or many clusters inside one proposed frustum. At this               
point, we take the nearest cluster as human candidate (Figure 4.7) for safety reasons.              
This choice is a bit prone to foreground occluder errors where other objects can              
sometimes be falsely predicted as humans i.e. in scenarios where humans are partially             
occluded by some other object. But for safety purposes, a sudden halt of the UGV is                
preferable to fatalities. After human candidate cluster is filtered, the candidate cluster            
points are averaged to make cluster centers of the human predictions (Figure 4.8, Figure              
4.9). 

 
Figure 4.7.​  An illustration of clustering results using DBSCAN where green cylinders 

are human ground truth and white pixels are clustered human points.  

 
Figure 4.8​  A Top-down plot of figure 4.7 with red dots representing averaged cluster 

centers and green circles are human ground truth scaled to the tolerance in meters. 
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Figure 4.9.​  Human predictions on averaged cluster centers in 3D, where light-blue 

cylinders represent predictions and green cylinders represent ground-truth. 

4.3  Baseline Algorithms (Mask-based) 
Our detection pipeline is a follow-up of some baseline approaches which use object             
masks as 2D proposed regions instead of 2D bounding boxes. The initial stage involved              
working with thermal images and segmentation images. Additionally, YOLO         
predictions were also used as 2D masks. The detection flow is very similar to our               
current pipeline with the exclusion of frustum proposals. 
 

 
Figure 4.10.​  Baseline detection methods. 

 
Figure 4.10 shows that we get the object mask either from a thermal image or from an                 
RGB camera image segmentation result. This sub-divides the object mask retrieval into            
two workflows. 
4.3.1 Thermal Thresholded Masks 
In this workflow raw image from thermal camera is taken and preprocessed as             
explained earlier in this chapter, Additionally, the image is scaled into min and max              
range calculated over all thermal images as min-max per image can lead to different              
ranges of thresholding thus making it difficult to have consistent parameters of            
thresholding. 
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Thermal input      Simple Adaptive mean 

 
        ​Adaptive gaussian     Otsu     Hybrid 

 
Figure 4.11.​  An example of thermal image thresholding methods used. 

 
We used a simple thresholding that checks if a pixel has a value greater than a threshold                 
and assigns it a value of 255 (white), otherwise assigns the value of 0 (black) thus                
generating a masked image (Figure 4.11) [48]. We also experimented with adaptive            
thresholding methods shown in Fig 4.11, but these did not work better than simple fixed               
thresholding. 

4.3.2 Segmentation Masks 
Thermal camera images are useful in low-light conditions but are very much affected by              
varying temperature of the environment. In this workflow, we tested ICNet [49] and             
Deeplab [50] segmentation networks to propose 2D regions as object masks. Deeplab            
Xception (Figure 4.12) gave the best performance among them. 

Figure 4.12:​  An example of human masks predicted from Deeplab Xception where red 
regions show human predictions. 
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4.3.3 Mask-based YOLO 
Although a perfect segmentation can give precise human masks but tackling the            
alignment problem in 2D masks is tricky. In this step, we used YOLO bounding box to                
create 2D masks instead of segmentation masks. This method is very close to the main               
algorithm i.e. in this case creating object masks loses instance information while            
frustums in main algorithm retain instance information of each bounding box. 
 

 
Figure 4.13:​  An example of human bounding box masks predicted from YOLO v3 

where on left is the RGB image and on the right is the predicted human bounding 
masks. 

4.3.4 Clustering Mask Proposals 
In contrast to frustum based approach which uses nearest cluster as human, we consider              
every cluster in baselines as human, the reason being no information of predicted human              
count from the 2D mask. Clustering parameters (discussed in later sections) help to             
discard clusters which lie below a certain minimum size threshold. The remaining            
clusters are averaged to acquire a cluster center for each cluster. These cluster centers              
represent the predicted location of the human. Even after filtering clusters, we are still              
left with a considerable amount of false positives in our predictions thus reducing the              
performance of detection. Figure 4.14 shows an example of 2 false predictions against             
one human ground truth due to mask based clustering. 
 

 
Figure 4.14:​  An example of mask based clustering from top-down view on FieldSAFE 

dataset where on left is the projected mask points and on right is the predicted human 
cluster centers. Here red cylinder represent human ground truth and purple cylinders 

represent predicted human cluster centers. 
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4.4 Detection Pipeline vs Baselines 

4.4.1 Mask vs Bounding boxes 
Segmentation networks are comparatively slower than bounding box based 2D detectors           
but can give pixel level labels per object. The question of choosing segmentation             
networks depends on the use case scenario i.e. are pixel level labels even required or we                
can settle with bounding boxes to have certain regions marked as humans? Additionally,             
we have to take in account the temporal alignment problem discussed in previous             
chapters i.e. what if the projected human object mask doesn’t align properly with             
corresponding LiDAR points (Figure 2.10, Figure 2.12)?  

The experiments showed that object masks did not give benefit over bounding boxes.             
The reason is that because of imperfect time alignment, the object masks may miss the               
person entirely or misplace them. Extending bounding box horizontally improved the           
results (Figure 4.15). On the other hand reducing the bounding box vertically decreased             
the number of mis-placements due to ground points, picked up by the nearest cluster              
heuristic. 

Figure 4.15.​  Scaling of 2D bounding box helped with misaligned human LiDAR points 
due to temporal lag while walking. 

 

4.4.2 Instance vs Without Instance Information 
Having no instance information with masks affects the clustering computation i.e. all            
clusters are considered as humans and there is no instance information to separate them.              
Without instance information, we cannot get a definite count of how many humans are              
detected and must rely on minimum number of points in cluster to filter out human               
clusters. We could have used instance segmentation masks using Mask-RCNN but as            
discussed in previous chapter, Mask-RCNN doesn’t fit into our pipeline as a real-time             
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model due to a low speed of 5 frames per second. Even if we could tune the speed of                   
Mask-RCNN, there would still be the misalignment problem between 2D instance mask            
and LiDAR human points as described in the previous section.  
Here, bounding box based method with instance information gives the best combination            
of all. The scaled extruded bounding boxes, firstly, help to resolve misalignments as             
discussed above, secondly, they already tell how many humans should be expected in             
3D predictions. This reduces clustering cost i.e. instead of clustering all points at once,              
we cluster each frustum separately to find one candidate human cluster from each             
frustum. Moreover, these methods are faster than instance segmentation based          
approaches. 

4.5 Stable Benchmarking and ROS 
ROS is publish-subscribe architecture in which multiple nodes behave as subscribers           
and publishers to pass processed information to each other as messages. It is one of the                
mainstream robotics middlewares used to work with sensors and low-level device           
control. The detection pipeline explained in the previous section is built on top of it. 
 
ROS provides a feature to record real-time sensor data and store it into a BAG file.                
Every message in BAG file has a time-stamp that tells ROS when to publish a message                
during playback. This helps to achieve a consistent playback of the recorded streams.             
ROS libraries use computer’s clock as source time but for playback of logged data, it is                
desirable to use simulated clock which helps to slow or accelerate time over system’s              
clock [51]. Although, each message in the BAG file has defined time-stamps, the             
benchmarking of the pipeline parameters for both FieldSAFE and Milrem datasets           
showed inconsistent results. Following can be the potential causes of such           
inconsistency: 
 

● Random delays in data acquisition from BAG file during playback. 
● Random delays in processing (algorithm computation) even at lower BAG          

speed. 
● Inherent asynchronous nature of ROS architecture. 

 
ROS has its own Time Synchronization message filter that helps to alleviate such             
inconsistency problems by making sure that multiple messages arrive in a           
time-synchronized way to a particular node. In our case, we used time synchronizer             
while extracting data for benchmarking the 3D predictions i.e. the LiDAR point clouds,             
camera images, ground truth and human prediction locations are retrieved          
simultaneously. 

4.5.1 External Setup 
While time synchronization somewhat helps in solving the inconsistency problem          
during playback of the BAG file, yet the results still differ in each benchmark run on the                 
same BAG. A better solution here is to perform benchmarking externally i.e.            
independent of ROS environment. But even then, we are still dependent on using ROS              
environment for extraction of sensor modalities and ground-truth of each frame into            
some files that can later be read by external benchmarking scripts. 
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Figure 4.16.​  External Benchmarking Setup 

 
For this, we created an external setup for benchmarking as shown in Figure 4.16. Here               
instead of acquiring predictions within ROS, we extract the intended modalities along            
with ground truth on a very slow playback rate to get less variance in extracted frames.                
The data is extracted into 3 formats per frame i.e. PCD files for LiDAR point-cloud,               
PNG for camera images (stereo or thermal) and NPZ for packing human ground truth              
locations and transformation matrices to transform between two modalities. Once we           
extract a dataset from ROS, all the benchmarking is performed on this dataset. This              
gives consistency in human predictions thus making a reliable benchmarking pipeline           
outside of ROS.  

4.6  Parameter Description 
The main purpose of making a stable benchmarking setup is to fine tune the pipeline               
parameters which affect the performance of 3D detection. These parameters are           
categorized into three main categories which are as follows: 

4.6.1 ROS parameters 
ROS parameters come into play during the extraction of the dataset. Tuning these             
parameters stabilizes the extraction of multiple datasets of the same BAG. There are two              
ROS parameters which affect the stability. 

4.6.1.1 Play rate 
The play rate controls the playback speed of the BAG file during dataset extraction. For               
example play rate 2 means multiplying the publishing frequency of each message inside             
the bag with 2 i.e. doubling the speed of playback. 

4.6.1.2 Time Synchronization method 
Time synchronization as discussed earlier helps to synchronize the sensor messages           
coming from different modalities on the basis of their time-stamps. Table 4.3            
summarizes the synchronization methods used. 
 

 

32 



 

 
Table 4.3.​ Time synchronization methods. 

Method Type Description 

Approximate ROS Time 
Synchronizer 

Synchronizes message callbacks by parameter called ​slop​. The slop         
value tells how much difference between the two message timestamps          
is tolerable. Additionally, it also has ​queue_size ​parameter that tells          
how many messages can be queued from each source for timestamp           
comparison. 

 
Naive Cache 

 
Custom 

Proceed when all messages are available to process i.e. there is no            
boundness on time stamp. Here we cache and use the last frame of             
previously received messages until a fresh frame is received. 

 
 
Naive Least 
Frequent 

 
 

Custom 

Proceed when all messages are available to process i.e. there is no            
boundness on time. Here we discard a frame once it is processed and             
wait until all messages are available to process. All frame checks are            
done inside the callback of the sensor modality with the ​lowest           
frequency. 

 
 
Naive Most 
Frequent 

 
 

Custom 

Proceed when all messages are available to process i.e. there is no            
boundness on time. Here we discard a frame once it is processed and             
wait until all messages are available to process. All frame checks are            
done inside the callback of the sensor modality with the ​highest           
frequency. 

4.6.2 Benchmarking parameters 
Benchmarking parameters define the boundaries of radii during the evaluation of           
results. There are two benchmarking parameters in our pipeline: 

1. Benchmarking Radius: ​Refers to the radius in meters with origin at LiDAR,            
inside which we evaluate our benchmarking results. This is motivated by the fact             
that sensor accuracy degrades over a distance, but we are actually not interested             
in detecting infinitely far objects. It is important to detect the objects that are              
within braking distance of the UGV. 

2. Tolerance: ​Refers to the radius in meters with origin at ground truth human             
location in LiDAR frame. This tells how much distance is tolerable between 3D             
human ground truth and nearby human prediction. This is partly motivated by            
the fact that our benchmarking datasets (especially FieldSAFE) do not have           
perfect ground truth and certain amount of prediction errors are expected. 

4.6.3 Algorithm parameters 
Algorithm parameters define values which affect the performance of localizing human           
predictions in 3D. Table 4.4 summarizes the algorithm parameters with their usage in             
detection pipeline. 

Table 4.4.​ Summary of algorithm parameters. 
Parameter Algorithm Usage in 

Modality 
Description 

Method 2D Detection RGB and Thermal 
Image 

2D detection methods include, YOLOv2, YOLOv3, 
Deeplab Xception,  Deeplab_Mobilnet, and 
thresholding. Where thermal images are only used for 
thresholding.  

Epsilon DBSCAN LiDAR The maximum distance in meters between two points 
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point-cloud so that they can be considered in the same cluster. 

Min 
Samples 

DBSCAN LiDAR 
point-cloud 

Min number of points required to make a cluster. 

Scale_X YOLO RGB Image Scaling factor along the width of the predicted YOLO 
bounding box. 

Scale_Y YOLO RGB Image Scaling factor along the height of predicted YOLO 
bounding box. 

Thermal 
Threshold 

Filtering Thermal Image Pixel threshold value between 0-255 for filtering 8-bit 
thermal image. 

4.7 Evaluation Metrics 

The benchmarking we performed uses ​Precision​, ​Recall​, and ​F1-Score ​as evaluation           
metrics​. ​Before explaining these metrics one should understand the underlying concepts           
of the following: 
 

● True positives (TP)​: A total count of predictions which lie inside the tolerance             
radius of the intended human ground truth points. 

● False positives (FP): A total count of predictions which lie outside the tolerance             
radius of human ground truth points 

● False negatives (FN): ​A total count of the human ground truth points which had              
no predictions around them. 
 

The definitions of precision, recall and f1-score are as follows: 
 

● Precision =  TP / (TP  +  FP) 
● Recall =  TP / (TP  +  FN ) 
● F1-Score =  2 * (Precision * Recall) / (Precision + Recall) 

 
Where precision is the ratio of correctly predicted humans to the total number of              
predicted humans or in other words it tells how much can we rely on the predictions                
made (to be actually humans). Recall is the ratio of correctly predicted humans over              
actual number of humans or in other words this helps to identity how often actual               
humans are correctly predicted. Lastly, F1-score is the weighted average of Precision            
and Recall. F1-Score gives balanced weightage to both precision and recall. We could             
also incorporate F2 score to emphasize more on recall. This is due to the fact that the                 
safety of humans is more important than mispredictions which were not actually            
humans. In other words we don’t want to miss any humans from the environment i.e.               
the FN count should be least compared to FP. At the same time the precision shouldn’t                
be too bad either because we don’t want the UGV to halt too much because of many                 
wrong human predictions. For now, we keep F1-score only to evaluate or detection             
pipeline. 
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5 Benchmarking and Performance Analysis 
This chapter summarizes the benchmarking results on different pipeline parameters and           
analyses them for performance optimization. 

5.1  Benchmarking Results 
Similar to the previous section, the results of benchmarking human detection over            
pipeline parameters are divided into different categories depending on the type of            
parameters. In this section, we first summarize the main results showing the best             
parameters over the main algorithm vs baselines and then summarize the benchmarking            
results of each parameter with their performance impact analysis. 

5.1.1  Dataset Benchmarks 
This section shows the final benchmark results performed with the best parameters on             
both FieldSAFE and Milrem dataset. FieldSAFE dataset (5041 frames) was split into            
50% test and 50% validation, the validation set was used for parameter tuning and test               
set for final results. To add diversity in validation and test split, we divided the complete                
dataset into 4 splits and chose split 1 and 3 as validation set whereas split 2 and 4 as the                    
test set. Milrem dataset only had ground truth available for 50 frames. We did not split                
it, because parameter tuning was done on FieldSAFE anyway. 

5.1.1.1 FieldSAFE 
Table 5.1:​ Benchmark on FieldSAFE Validation Set (2520 frames)​. 

Method Camera Min 
Samples 

Epsilon Precision Recall F1-score 

YOLO v2 
Frustum 

Stereo left 2 0.2 78.1% 48.3% 59.7% 

YOLO v3 
Frustum 

Stereo left 2 0.2 87.9% 59.7% 71.1% 

 
Table 5.2.​ Benchmark on FieldSAFE Test Set (2521 frames)​. 

Method Camera Min 
Samples 

Epsilon Precision Recall F1-score 

YOLO v2 
Frustum 

Stereo left 2 0.2 82.4% 35.9% 50.% 

YOLO v3 
Frustum 

Stereo left 2 0.2 91.6% 47.8% 62.9% 

 
Table 5.1 and 5.2 shows final benchmark results on FieldSAFE validation and test sets              
over the best parameters listed in the next section. The results show that YOLO v3               
outperformed its predecessor v2 which is expected as v3 is considerably better in             
performance [52]. The precision in both validation and test set is greater than recall              
because YOLO is mostly missing humans in 2D images rather than giving more false              
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predictions. Essentially, 3D prediction results imitate 2D predictions. Here, validation          
set has better evaluation results than test set. One of the main reason for this could be                 
that the parameters were tuned too much on validation set thus leading to some              
overfitting, but on the other hand there is some slight shift in dataset too i.e. validation                
and test set doesn’t have similar number of human ground truth distribution and poses.              
Additionally, YOLO is not good in recognizing humans lying on the ground or doing              
uncommon arbitrary poses. The test set had comparatively more such cases than            
validation set. 

5.1.1.2 Milrem 
Table 5.3.​ Benchmark on Milrem extract with 50 frames​. 

Method Camera Min 
Samples 

Epsilon Precision Recall F1-score 

YOLO v2 
Frustum 

Mono RGB 2 0.2 89.7% 71.7% 79.7% 

YOLO v3 
Frustum 

Mono RGB 2 0.2 95.9% 81.4% 88.1% 

 
Table 5.3 shows benchmark results on Milrem dataset using frustum based detection            
with the best parameters. The results are comparatively better than FieldSAFE mainly            
because the humans were very close to the UGV and therefore easily detected. Also the               
results might be bit optimistic because of  small number of benchmarked frames. 

5.1.2  Frustum Based Detection vs Baselines 
In this section, we summarize the results on the best parameters over both main              
algorithm and baselines on FieldSAFE example extracted dataset. The best-fixed          
parameters used during benchmarking are as follows: 

● Time Sync Method:​ Naive most frequent 
● Play rate:​ 0.2 
● Scale_X (Frustum): ​1.5 
● Scale_Y (Frustum): ​0.5 
● Benchmarking Radius:​ 30 
● Tolerance:​ 2 
● Thermal Threshold:​ 160 

Some parameters are specific to the type of detection methods e.g. Scale_X and             
Scale_Y are only used in frustum based detection methods, whereas thermal threshold is             
only applicable while filtering thermal images. The extracted datasets contain ​387           
stereo left and ​597 thermal camera images. Due to time constraints, the comparison with              
baselines is made on a smaller version of FieldSAFE dataset. 
 

Table 5.4.​ Main algorithm vs baselines with their best parameters on FieldSAFE 
dataset. 

Method Camera Min 
Samples 

Epsilon  Precision Recall F1-score 

YOLO v3 
Frustum 

Stereo left 2 0.2 96.7% 73.7% 83.7% 
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YOLO v2 
Frustum 

Stereo left 2 0.2 77.1% 59.3% 67.1% 

Yolo v3 Stereo left 11 0.3 97.3% 39.3% 56.0% 

Yolo v2 Stereo left 11 0.3 60.6% 49.2% 54.3% 

Deeplab 
Mobilenet 

Stereo left 11 0.3 22.8% 45.8% 30.4% 

Deeplab 
Xception 

Stereo left 10 0.3 55.1% 49.4% 52.1% 

Thermal 
Thresholding* 

(different 
extract) 

Thermal 2 0.4 47.2% 69.4% 56.2% 

 
Table 5.4 summarizes the detection results with best parameters over FieldSAFE           
example dataset. The highlighted methods in the above table are part of our frustum              
based main detection pipeline where YOLO v3 and v2 are used as 2D region proposal               
networks to generate 3D frustum proposals. YOLO v3 frustum based detection           
outperformed all other baseline methods in F1-score which is our main evaluation            
metric (Figure 5.1). Overall, instance based methods (frustums) work better than other            
mask based methods. Also, bounding boxes from YOLO v2/v3 gave better performance            
than pure object masks from Deeplab Xception and Mobilenet. 

Figure 5.1.​ Human detection F1-score performance comparison chart of frustum based 
detection vs baseline approaches on example FieldSAFE extracted datasets. 

5.1.3  Algorithm Parameters (FieldSAFE) 
In this section, we summarize the benchmarking results to fine-tune algorithm           
parameters and discuss how tuning algorithm parameters improves detection         
performance. 
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5.1.3.1 Epsilon and Min Samples 
Table 5.4 shows performance impact while tuning min samples and epsilon clustering            
parameters over simple YOLO v3 method on smaller version of FieldSAFE dataset. 
 

Table 5.4.​ Epsilon and Min Sample detection performance impact. 
Epsilon Min 

Samples 
Precision Recall F1-score 

0.4 4 98.1% 69.6% 81.4% 

0.4 3 97.7% 72.3% 83.1% 

0.4 2 96.9% 73.8% 83.8% 

 

0.3 4 98.1% 69.6% 81.4% 

0.3 3 97.7% 72.3% 83.1% 

0.3 2 96.9% 73.8% 83.8% 

 

0.2 4 98.1% 69.6% 81.4% 

0.2 3 97.7% 72.3% 83.1% 

0.2 2 96.9% 73.8% 83.8% 

 

0.1 4 97.9% 49.5% 65.7% 

0.1 3 98.0% 68.4% 80.6% 

0.1 2 96.8% 72.2% 82.7% 

 

● Increasing min samples helps if the detected object is near the LiDAR as we get               
dense LiDAR points near the point-cloud origin. The farther we go the less             
nearby points we get due to sparsity of LiDAR points. A higher min samples              
value will miss far away humans while a very low value will increase the              
number of false positives near LiDAR origin. In other words, increasing min            
samples increases precision at the expense of recall while decreasing min           
samples increases recall, at the expense of precision. 

● Epsilon value shows quite the opposite behaviour to that of min samples. A             
higher epsilon value increases the number of false positives in nearby detection            
but epsilon shows consistent results when its value is greater than or equal to 0.2               
with min samples 2. On the other hand, a very low epsilon value may miss far                
away human points to be counted in the same cluster. 

● In general, min Samples and epsilon are affected by the distance of the object as               
point cloud gets denser in near LiDAR beams. 
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5.1.3.2 Bounding Box Scale 
Bounding box scale x and y are interestingly one of the main parameters that boost our                
detection performance. As discussed in the previous chapters, the major problem with            
2D driven 3D detection is the alignment of the modalities. Most of the temporal              
alignment problems between LiDAR and camera are caused during the motion of an             
object. It is practically illogical for humans to move along the vertical axis of the               
camera image i.e. they move along horizontally (left-right or right-left) in front of a              
vehicle. This means that we mostly suffer from temporal misalignment in the horizontal             
axis of the LiDAR. To detect misaligned human points in 3D we scale up the width of                 
the proposed frustum by increasing the x scale of the predicted 2D bounding box to               
some factor. Additionally, we reduce y scale of the 2D bounding box to reduce the               
height of 3D frustum which avoids misclassification of ground points as humans. 
 

Table 5.5.​ Bounding box scaling performance impact. 
Scale_X Scale_Y Precision Recall F1-score 

1 1 94.8% 72.9% 82.4% 

1.2 0.8 96.1% 73.6% 83.3% 

1.5 0.5 96.9% 73.8% 83.8% 

 
Table 5.5 shows benchmarking results on bounding box scaling parameters on an            
example FieldSAFE extracted dataset with 387 stereo-left images. 

5.1.4  Benchmarking Parameters 
This section summarizes the performance impact over LiDAR Benchmarking radius and           
GPS error tolerance. 

Table 5.6.​ Benchmarking parameters performance impact onFieldSAFE dataset using 
YOLOv3 (387 images). 

Benchmark 
radius 

Tolerance Precision Recall F1-score 

10 4 96.2% 100.0% 98.0% 

10 3 95.2% 100.0% 97.6% 

10 2 93.5% 100.0% 96.7% 

10 1 91.3% 100.0% 95.5% 

20 4 98.8% 84.1% 90.9% 

20 3 98.6% 83.0% 90.1% 

20 2 98.6% 81.9% 89.5% 

20 1 85.8% 74.1% 79.6% 

30 4 99.2% 76.2% 86.2% 
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30 3 99.2% 75.7% 85.9% 

30 2 96.9% 73.8% 83.8% 

30 1 66.2% 51.6% 58.0% 

40 4 98.9% 66.2% 79.3% 

40 3 98.9% 66.1% 79.3% 

40 2 90.3% 60.6% 72.5% 

40 1 55.7% 37.4% 44.8% 

50 4 98.3% 56.1% 71.5% 

50 3 97.3% 55.6% 70.7% 

50 2 87.3% 49.8% 63.4% 

50 1 52.6% 30.1% 38.3% 

 
The benchmarking parameters are not something to fine tune for improving detection            
performance, in fact, they define boundaries to our benchmarking evaluations. In our            
detection pipeline, we kept benchmarking radius to be 30 meters which should be             
enough for the UGV to come to full stop. This makes it a safety parameter instead of a                  
performance booster. The tolerance value here compensates for FieldSAFE GPS ground           
truth errors i.e. we estimated the maximum discrepancy between LiDAR and GPS            
human location to be 2 meters. In case of Milrem dataset, we had perfect ground truth                
inside LiDAR point cloud so the tolerance value is comparatively kept lower on it i.e.               
0.8 meters. Table 5.6 shows the potential impact of changing these parameters i.e. as              
benchmark radius gets smaller the LiDAR beams get denser and so average precision             
and average recall is boosted on the contrary reducing tolerance value decreases            
performance. 

5.1.5  ROS Parameters 
This section shows the results of benchmarking tests performed on FieldSAFE dataset            
over ROS parameters. 

5.1.5.1 Play rate 
Table 5.7.​ Play rate performance impact benchmarks over 5 runs (using Approx Time 

Sync) 
Play rate Best F1-score Mean F1-score Standard deviation of 

F1-score 

0.5 76.6% 45.28% 0.2861 

0.4 75.7% 70.56% 0.0792 

0.3 77.9% 77.26% 0.0088 

0.2 77.8% 77.42% 0.0024 
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0.1 66.8% 64.42% 0.0203 

 
Following conclusions can be drawn from the results in Table 5.7: 

● Reducing play rate gives more stable results in benchmarking 
● 0.1, in this case, is an outlier i.e. the standard deviation is higher than previous               

play rates. 

5.1.5.2 Time Synchronization 
Table 5.8.​ Slop (Approx. Time Sync) performance impact benchmarks. 
Slop Precision Recall F1-score No. of Frames 

0.07 74.9% 53.6% 62.5% 388/390 

0.06 89.9% 60.8% 72.5% 388/390 

0.05 93.7% 65.9% 77.4% 386/390 

0.04 92.0% 61.6% 73.8% 296/390 

0.03 95.6% 53.6% 62.5% 219/390 

 
Following conclusions can be drawn from the results in Table 5.8: 

● Reducing slop gives better-benchmarking results but extracted frame count also          
decreases due to less tolerance for time synchronization error. 

● Increasing slop value gives more frames but due to an increase in error             
tolerance,  results get worse with it. 

● For slop, a value which is lower and gives max frame count should be              
considered which in this case is 0.05 but these results may vary with datasets. 

 
Table 5.9.​ Time Sync Methods performance impact benchmarks over 5 runs. 

Method Best F1-score Mean F1-score Standard 
deviation of 

F1-score 

Average No. of 
Frames 

Approx. Time 
Sync 

77.8% 77.42% 0.0024 388/390 

Naive Cache 79.8% 73.9% 0.0760 388/390 

Naive Least 
Frequent 

54.5% 52.65% 0.0021 360/390 

Naive Most 
Frequent 

83.0% 81.26% 0.0202 387/390 

 
Following conclusions can be drawn from the results in Table 5.9: 

● Naive approaches give comparatively better results than Approx. Time         
Synchronizer. Approximate time synchronization synchronizes messages w.r.t.       
to timestamps and should have performed better than naive approaches. But the            
benchmarking results show that naive approaches tend to be more stable. Any            
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time synchronization method in ROS would work better if the messages are            
synchronized on hardware level. In FieldSAFE dataset, the trigger signals for           
thermal and stereo camera were generated from a pulse-per-second signal from           
an internal GNSS in the LiDAR, which allowed exact timestamps for all three             
sensors [22]. Surprisingly this did not seem to help time synchronization. 

● Naive least frequent method is unreliable i.e. depends on how quickly all the             
messages are processed.  

● Naive least frequent skips a lot of frames. 
● Naive most frequent gives the best performance among all available methods.  

5.2  Error Analysis 
In this section, we summarize frame by frame analysis on Milrem dataset to find ​the               
cause of possible errors or misdetection in each frame. 
 

Table 5.9.​ Error analysis on 50 frames of Milrem dataset. 
 Occlusion 2D 2D Detection Misalignment Occlusion 3D Nearest Cluster 

Error Count 11 13 0 6 2 

Percentage of 
Errors 

34.3% 40.6% 0% 18.7% 6.2% 

 
Where the error causes in Table 5.9 are defined as follows: 

● 2D occlusion: ​Object not detected because behind another object. 
● 2D detection:​ Object not detected by YOLO. 
● Misalignment: ​Object not detected due to temporal or spatial misalignment. 
● 3D occlusion: Two objects were detected in 2D, but because one was partly             

behind the other, the object positioned nearer was picked and the other was             
missed. 

● Nearest cluster: Our clustering approach picks the closest cluster, sometimes          
there are enough points on the ground to form a cluster which makes human              
predictions closer than the actual human position. 

5.2.1  2D Misdetection causes 

Table 5.9 shows that most of the misdetections in 3D are caused by 2D misdetections.               
Therefore we additionally analyzed the main causes of 2D misdetections and found            
following reasons: 

 
● Blending with the background (forest) (Figure 5.2) 
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Figure 5.2:​ An example of 2D mis-detection possibly due to cloth color blending with 

the background, where blue bounding boxes represent ground truth and green boxes 
represent 2D predictions. 

 
● Unrecognized poses (Figure 5.3) 

Figure 5.3.​ An example of 2D mis-detection due to human pose, where blue bounding 
boxes represent ground truth and green boxes represent 2D predictions. 

 
● Random miss detection (Figure 5.4) 
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Figure 5.4:​ An example of random 2D mis-detection, where blue bounding boxes 
represent ground truth and green boxes represent 2D predictions. 

 
For 2D driven 3D detection, we need to improve 2D detector to get rid of most the                 
detection errors in 3D. At this point, we can safely exclude 2D and 3D occlusions from                
errors as we only intend to detect the humans which are not occluded by something.               
Lastly, the nearest cluster approach contributes very less to the total number of errors,              
which is one of the main things we wanted to analyze. We could apply some ground                
removal techniques before clustering the proposed 3D frustums to solve this type of             
errors. 
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6 Conclusions and Future Work 
In this study, we experimented with state-of-the-art 2D object detection methods to            
achieve 2D driven 3D object detection. We summarized a frustum based approach to             
detect humans in off-road scenarios and discussed potential impact of various           
parameters to increase 3D detection efficiency. The results we gathered answers two            
core questions of our problem statement i.e. 

● Leveraging mature 2D detection approaches can give decent 3D detection results           
in off-road scenarios provided we account for the alignment problems. 

● Benchmarking inside ROS is unstable. This study demonstrated a potential          
solution i.e. an external setup that works in parallel with detection pipeline but is              
independent of ROS environment. Additionally, tuning pipeline parameters        
w.r.t. the use-case scenarios increases the performance of 3D detection. 

 
Off-road scenarios are complex because detecting a perfect structure of small objects,            
e.g. humans in 3D, is often quite difficult. In this study, we reduced the complexity of                
this problem by detecting even a few 3D points in the proposed frustums. While we               
tuned the pipeline parameters in accordance with human detection, we cannot           
completely rely on these parameters generally. For example, if we want to predict             
bigger objects such as trees, cars etc we cannot just use the predicted centers of the                
clusters. We need to predict complete 3D bounding of the object. In case of moving               
obstacles such as cars, we might need to predict the orientation of the 3D bounding box                
too. For such cases, replacing frustum clustering with a neural network, similar to what              
Frustum PointNets [9], would be more appropriate. 
One of the main advantages of using frustum based detection pipeline is that we can               
replace the 2D detection method with a much better version in the future. We could               
deploy a detection network that proposes 2D bounding boxes over thermal images thus             
giving 3D frustums from thermal image only or possibly apply some scoring technique             
that fuses both thermal and RGB images and gives fused proposed frustums for more              
better detection. We can also modify the clustering of proposed frustums to do ground              
removal inside frustums which would help to resolve nearest cluster misdetections           
discussed earlier. Additionally, while stabilizing the benchmarking setup, we deduced          
that speeding up the underlying algorithms can help to increase detection performance            
on naive time synchronization methods. A modular and simple structure of our            
detection pipeline makes it easy to adapt for future improvements. 
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