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ABSTRACT OF DISSERTATION

NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH
ESTIMATION FROM IMAGES

This dissertation addresses the problem of inferring scene depth information from a
collection of calibrated images taken from different viewpoints via stereo matching.
Although it has been heavily investigated for decades, depth from stereo remains a
long-standing challenge and popular research topic for several reasons. First of all,
in order to be of practical use for many real-time applications such as autonomous
driving, accurate depth estimation in real-time is of great importance and one of the
core challenges in stereo. Second, for applications such as 3D reconstruction and
view synthesis, high-quality depth estimation is crucial to achieve photo realistic re-
sults. However, due to the matching ambiguities, accurate dense depth estimates
are difficult to achieve. Last but not least, most stereo algorithms rely on identifi-
cation of corresponding points among images and only work effectively when scenes
are Lambertian. For non-Lambertian surfaces, the “brightness constancy” assump-
tion is no longer valid. This dissertation contributes three novel stereo algorithms
that are motivated by the specific requirements and limitations imposed by different
applications.

In addressing high speed depth estimation from images, we present a stereo al-
gorithm that achieves high quality results while maintaining real-time performance.
We introduce an adaptive aggregation step in a dynamic-programming framework.
Matching costs are aggregated in the vertical direction using a computationally ex-
pensive weighting scheme based on color and distance proximity. We utilize the vector
processing capability and parallelism in commodity graphics hardware to speed up
this process over two orders of magnitude.

In addressing high accuracy depth estimation, we present a stereo model that
makes use of constraints from points with known depths - the Ground Control Points
(GCPs) as referred to in stereo literature. Our formulation explicitly models the in-
fluences of GCPs in a Markov Random Field. A novel regularization prior is naturally
integrated into a global inference framework in a principled way using the Bayes rule.
Our probabilistic framework allows GCPs to be obtained from various modalities and
provides a natural way to integrate information from various sensors.



In addressing non-Lambertian reflectance, we introduce a new invariant for stereo
correspondence which allows completely arbitrary scene reflectance (bidirectional re-
flectance distribution functions - BRDFs). This invariant can be used to formulate
a rank constraint on stereo matching when the scene is observed by several lighting
configurations in which only the lighting intensity varies.

KEYWORDS: Stereo Matching, Bilateral Filtering, Dynamic Programming, Global
Optimization, Light Transport Constancy
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Chapter 1 Introduction

Recovering the 3D shape of a scene from one or multiple images has long been a topic

of research in computer vision and photogrammetry. This problem is known as shape-

from-X, where X can be shading, motion, texture, silhouettes, and focus/defocus etc.

Solving this problem opens many applications, ranging from CAD-based industrial

manufacturing, scene understanding to 3D modeling. The methodology addressed

in this dissertation belongs to a discipline that is called Stereo Matching. With

the assumption of scene rigidity1 and known camera geometry, a stereo matching

algorithm aims at estimating three-dimensional scene structure from a collection of

images taken from distinct viewpoints.

Stereo algorithms rely on the ability to establish correspondences of points of the

scene across different images. Two image points match if they result from the pro-

jection of the same 3D point in the scene. Correspondences are usually obtained by

putting assumptions on the reflectance properties of the scene. The most common as-

sumption is that the scene is Lambertian, without specularities, reflective surfaces, or

transparency. Under this Lambertian or brightness constancy assumption, locations

in the scene will appear equally bright from any viewing direction, and therefore cor-

respondences can be established via feature- or area-based matching. Equally impor-

tant is the knowledge about the camera positions and orientations in 3D. The known

camera configuration provides a powerful epipolar geometry constraint for matching.

1scene rigidity means that either the images have to be taken at the same time instant from
multiple cameras or the objects in the scene are stationary.
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Once a correspondence is established, one can apply the well-studied theory of multi-

view geometry [7] to reconstruct a point’s location in 3D. The desired output of a

stereo algorithm is a dense disparity map2, specifying the relative displacement of

matching points between images. By dense, we mean a disparity estimate is assigned

for every pixel of a reference frame chosen from the multiple input images.

Depth from stereo has traditionally been, and continues to be one of the most

actively researched topics in in the computer vision community. Although multiple

methods exist for acquiring 3D information, stereo is becoming the technology of

choice for range sensing by a wide variety of applications because by using passive

cameras stereo systems are economic in size, weight and cost. Additional advantages

of using stereo to infer scene depth include that the setup can be adapted to work

in both indoor and outdoor environments and the process can be easily automated.

Stereo vision is therefore highly important in various fields. Traditional applications

of stereo include industrial inspection, people tracking, aerial surveys, cartography,

mobile robotics navigation, etc. More recently, the advances in stereo algorithms allow

stereo to be applied to many new areas such as detailed 3D urban modeling [8], scene

parsing and segmentation [9], teleconferencing [10] and image-based rendering [11].

1.1 Motivation and Contributions

The research presented in this dissertation aims to make depth from stereo more accu-

rate and feasible for demanding applications that require precise, reliable, and dense

2Disparity refers to the difference in image location between corresponding pixels in the two
images, which is projectively related to the depth of the feature in the scene.
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depth estimates. Towards this goal, we address three key challenges for estimating

dense scene structure using stereo matching and contribute several novel algorithms

that are motivated by the specific requirements and limitations imposed by different

types of application.

First, we address the difficulty of acquiring high-quality depth estimates in real-

time. As a result of the public available Middlebury benchmark [1], recent stereo

research has significantly advanced the state-of-the-art in terms of depth quality.

However, in terms of speed, top algorithms typically take several seconds or minutes

to compute a disparity map [12, 13]. Excessively long computation time needed to

match stereo images is one of the obstacles on the way to the practical application

of stereo techniques. There are demanding applications, such as automotive driver

assistance and augmented reality, in which reliable dense depth estimates at video

frame rate is crucial. For real-time stereo, the options are rather limited that in

general only correlation based [14] and scanline optimizations based approaches [15]

are feasible. Most local approaches, although being fast, are quite fragile and prone

to have difficulties within textureless regions or near occlusion boundaries. Scanline

optimization utilizes dynamic programming (DP) to produce better quality results.

However, as each scanline is optimized independently, erroneous horizontal strokes,

i.e. the “streaking” artifacts, often arise in the disparity maps. In this dissertation,

we present a novel algorithm that achieves high quality depth estimation while main-

taining real-time processing power. The proposed algorithm is simple yet effective.

The key idea is to employ an adaptive cost-volume filtering stage in a DP frame-

work. The per-pixel matching costs are aggregated via a separable implementation
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of the bilateral filtering technique. The separable approximation leads to a signif-

icant reduction in computational complexity compared to the traditional 2D filter

but offers comparable edge-preserving smoothing capability. The cost aggregation

step alleviates the depth inconsistency between image scanlines, which is the typical

problem for conventional DP-based stereo approaches. For computational efficiency,

we utilize the vector processing capability and parallelism in commodity graphics

hardware to speed up the aggregation process over two orders of magnitude. Our

current implementation can achieve over 50 million disparity evaluations per second

(MDE/s)3.

The second challenge that this dissertation addresses is how to resolve the match-

ing ambiguities for applications that require high-accuracy depth estimation. The

stereo correspondence problem is inherently under-constrained. A practical stereo

algorithm has to deal with the problem of matching ambiguity results from sensor

noise in image formation, homogeneous texture regions, delineation of object bound-

aries, and unmatched pixels due to occlusions. Prior constraints are typically needed

to regularize the ill-posed correspondence problem. Two most popular priors are

the spatial smoothness [16] and the segment-based priors [17]. The former encour-

ages neighboring pixels to have similar depth values based on the assumption that

the scene is locally smooth. The segment-based stereo model encodes the assump-

tion that homogeneously textured image regions correspond to planar surfaces in 3D.

Nowadays, nearly all competitive stereo methods use these constraints to decrease

3The number of disparity evaluations per seconds (MDE/s) corresponds to the product of the
number of pixels times the disparity range times the obtained frame-rate and therefore captures the
performance of a stereo algorithm in a single number.
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the ambiguities in the matching process. Nevertheless, it is well-known that segmen-

tation is a double-edged sword. Despite the fact that segment-based methods usually

improve results in large textureless regions, they inevitably introduce errors in tex-

tured areas and do not handle well the situation that the scene contains non-planar

surfaces. Toward this end, we present a novel global stereo formulation that makes

use of constraints from points with known depths, i.e., the Ground Control Points

(GCPs) as referred to in stereo literature [4]. Our formulation explicitly models the

influences of GCPs in a Markov Random Field (MRF). A GCPs-based regulariza-

tion prior is naturally integrated into a global optimization framework in a principled

way using the Bayes rule. Quantitative evaluations demonstrate the effectiveness of

our stereo model for improving reconstruction accuracy. The probabilistic inference

framework makes no specific restriction on the GCP’s acquisition strategy. This nice

property allows the GCPs to be obtained from different sources, e.g., reliably matched

pixels, low resolution range data, user interaction or any combination of these modal-

ities. Therefore our method provides a natural way to integrate the information from

multiple sensors. In this dissertation, we demonstrate that it can be utilized to fuse

measurements from sparse laser scanning and high resolution image data for urban

3D reconstruction.

The third contribution of this dissertation is a new matching invariant for recon-

structing a large class of non-Lambertian surfaces. As mentioned above, nearly all

existing stereo methods rely on the assumption that objects in the scene reflect light

equally in all directions (Lambertian reflectance) and use brightness constancy as a

matching invariant to establish correspondences. Unfortunately, this assumption is
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violated for objects with non-Lambertian (specular reflectance) surfaces because the

appearances of such objects in images can change drastically from one view to an-

other, leading to incorrect matching. In the past, a considerable amount of methods

for overcoming this limitation have been developed, but all require some combination

of calibrated light sources, calibration objects in the scene, or smoothness assump-

tions on the surface reflectance. In this dissertation, we present a new constraint for

stereo, namely, light transport constancy (LTC), which allows completely arbitrary

scene reflectance (BRDFs). Different from the brightness constancy, LTC is based

on the observation that the percentage of light reflected by a particular surface patch

remains constant for a given viewing direction. We show that this invariant can be

used to formulate a rank constraint on multi-view stereo when the scene is observed

in several lighting configurations. In addition, we demonstrate that this multi-view

constraint can be used with as few as two cameras and two lighting configurations.

Compared to previous solutions, LTC does not require precisely configured/calibrated

light source, nor calibration objects in the scene. Importantly, this constraint can be

used to provide BRDF invariance to any existing stereo methods whenever appropri-

ate lighting variations are available.

1.2 Guideline for Reading

This dissertation is divided into two parts. The next two chapters (Chapters 2 and 3)

contain background materials and related work and can be used as a reference on

stereo matching. In particular, Chapter 2 starts with an introduction of existing

image-based depth estimation approaches. Then we provide preliminaries for stereo
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and revisit the taxonomy of stereo algorithms proposed by Scharstein and Szeliski [18]

to review a set of key algorithmic building blocks of stereo algorithms. This chapter

ends with a description of the quality metrics we use in this dissertation for quantita-

tively evaluating the performance of stereo correspondence algorithms. In Chapter 3,

we review existing stereo methods that are most relevant to the stereo algorithms

proposed in this dissertation.

Chapters 4, 5, and 6 contain the core material of this dissertation. Chapter 4

addresses the challenge of inferring dense scene geometry in real-time. Since our al-

gorithm is inspired by the idea of edge-preserving filters, we first review the bilateral

filtering technique and its application in stereo correspondence. We then introduce a

fast separable approximation of the bilateral filtering based cost aggregation approach

that significantly reduces the computational complexity. In addition, we show that

our aggregation scheme can be incorporated into a DP scanline optimization frame-

work for improved reconstruction accuracy. To further improve speed performance,

we utilize the graphics hardware to perform cost aggregation in massive parallelism

and report implementation details. The leverage of GPUs allows depth estimation in

video frame rate. This chapter ends with with experimental results from various data

sets, including static benchmark images and live stereo videos with dynamic scenes.

In Chapter 5 we switch our attention from real-time depth estimation to off-

line but high accuracy stereo algorithms. The main contribution of Chapter 5 is a

new regularization prior for stereo correspondence. We start with the definition our

basic stereo matching model in Section 5.1. We explain in detail the GCPs-based

regularization prior in Section 5.2 and propose an adaptive propagation algorithm
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for modeling the prior likelihood from sparse GCPs. The experimental section covers

two interesting scenarios. First we assume that there is no additional sensors other

than cameras available to provide GCPs and show that GCPs can be computed from

images themselves via stable matching. Furthermore we apply our stereo model to

outdoor 3D reconstruction. In this scenario, low resolution laser range scans serve as

GCPs and are fused with high resolution image data via our stereo model.

Chapter 6 discusses stereo for non-Lambertian scenes. We start with a local

analysis on the scene radiance and arrive at a ratio constraint for BRDF invariant

stereo. This simple constraint can be adopted to design a practical stereo system using

two cameras and a single uncalibrated light source. We later extend our formulation

and derive a series of linear equations that can accommodate an arbitrary number

of cameras and light sources. Based on these equations we introduce a general rank

constraint on multi-view stereo matching regardless of the surface BRDF complexity.

In the experiment section we validate and evaluate our method using an extensive

set of stereo images captured under varying illumination conditions.

Finally, in Chapter 7 we conclude the dissertation with discussions on possible

directions for future developments. In this dissertation, Chapter 4 extends the joint

work with Miao Liao, Minglun Gong, Ruigang Yang, and David Nister, first presented

in 3DPVT 20064. Chapter 5 is an extension of a joint work with Ruigang Yang, first

presented in IEEE CVPR 20115 . Chapter 6 describes a joint work with Ruigang

Yang and James Davis, first presented in IEEE PAMI 20076.

4Third International Symposium on 3D Data Processing, Visualization and Transmission.
5IEEE Computer Vision and Pattern Recognition Conference.
6IEEE Transactions on Pattern Analysis and Machine Intelligence.
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Chapter 2 Background

The purpose of this chapter is to provide background material about stereo matching.

We first discuss methods relating to the problem of depth estimation from digital

images. We then give a brief review of stereo and outline a framework for stereo

from which most of the stereo algorithms are constructed. This chapter ends with

a description of the quality metrics we use in this dissertation for evaluating the

performance of stereo algorithms. Much of the discussion in this chapter is at a

general level and may safely be skipped for readers who are familiar with stereo.

2.1 Depth Estimation from Images

Over the last century, a vast number of depth acquisition methods have been de-

veloped. These methods vary significantly in terms of their specialties, capabilities

and hardware requirements. In this section, we briefly review existing methods that

attempt to infer 3D structure from photographs taken by one or multiple cameras.

These methods can be further divided into passive and active methods, depending on

whether the images are captured under natural or controlled lighting environments.

2.1.1 Passive Methods

Passive methods recovery 3D shape from images taken under natural lighting condi-

tions and do not interfere with the reconstructed object. In other words, no other

device besides camera(s) is required. The majority of these methods are based on the
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principle of multi-view triangulation. Based on this principle, a point’s 3D position

can be reconstructed by intersecting the lines of sight of the corresponding pixels in

multiple images. Two fundamental 3D reconstruction approaches in computer vision,

structure from motion and multi-view stereo, belong to this class.

Structure from Motion. Given a set of image features together with their cor-

respondences across views, structure from motion (SFM) aims at recovering both

camera motion and the 3D positions of these feature points. Hartley and Zisser-

man [7] provide a comprehensive overview of existing methods and explain how to

and implement the SFM algorithms. Nister in [19] describes a complete SFM system

and applies it to automatic 3D reconstruction with a hand-held video camera. Re-

cent work in SFM [20,21] addresses the problem of handling non-rigid scenes, which

gives a high degree of flexibility and allows an extended range of applications to be

fulfilled. A typical difficulty in SFM is that pixel correspondences can only be estab-

lished stably for salient image features [22]. Therefore, SFM often produce sparse 3D

estimates only.

Passive Stereo. Passive stereo assumes the camera configurations are known and

seeks to compute pixel correspondence for dense 3D reconstruction. Several excellent

surveys of recent advances in this field can be found in [18, 23, 24]. The limita-

tion of stereo comes from the fact that they rely on image-to-image correspondence.

Correspondence-based stereo methods perform well when the scene is Lambertian

and contains rich texture in the albedos. But they usually fail for scenes that are

non-Lambertian or Lambertian with little texture. Modern stereo methods resolve

matching ambiguities by assuming smoothness or planar prior model [17] for the
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underlying 3D shape. Nevertheless, obtaining precise and robust depth estimates

remains a very active and challenging area of research. Since stereo is the main fo-

cus of this dissertation, Sections 2.2 and 2.3 will provide more detailed background

materials.

In addition to multi-view triangulation based methods, there are passive methods

that attempt to infer depth from a single image. Single view depth estimation is

difficult without prior constraints because depth typically remains ambiguous given

only image features. There are semi-automatic methods leveraged by user interac-

tions [25–27]. This class of methods reconstruct a 3D surface that satisfies a sparse

set of user-specified constraints, e.g. surface normals, silhouettes and depth. An ex-

ample of automatic methods is shape from texture (SFT), which reconstructs depth

via monocular cues such as texture variations and gradients [28–30]. The limitation

of SFT is that it generally assumes uniform texture distribution and would perform

poorly on unconstrained or highly textured scenes. Recently, data driven and ma-

chine learning based single view reconstruction has been successfully demonstrated

for outdoor scenes [31–33]. The performance of these methods depends largely on the

training data. For instance, they would fail on unseen objects or environments that

do not belong to any of the training images.

2.1.2 Active Methods

Active methods reconstruct 3D shapes by emitting radiance towards the object and

then measure its reflected part. A large body of literature in this field uses lights as

energy waves. These methods differ in the way they control the lights and the way
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they reconstruct shapes from the returned signals.

Shape-from-Shading. Shape-from-Shading (SFS) deals with the recovery of shape

from a gradual variation of shading in the image [34–36]. Given one gray level im-

age and known light direction, the surface shape at each pixel can be recovered by

studying the image formation process [37]. Since developed, most work in SFS makes

simplified assumption, that is the reconstructed surface is Lambertian and with con-

stant or known albedo [38–41]. Several extensions have been proposed to address this

limitation [42–45]. Nevertheless, satisfactory results are still hard to achieve on real

images with arbitrary surface BRDFs [46].

Photometric Stereo. Photometric stereo recovers the shape and albedo of an

object using multiple images among which camera position is fixed, and only the

light directions vary [47]. It then computes the surface orientation for each pixel

based on its shading variation under different lighting conditions. The surface shape

can be generated by integrating over the estimated surface normal. Although multiple

lighting variations lead to accurate results, traditional methods follow the same image

formation assumption as made in SFS [47]. As a result, most work cannot well handle

non-Lambertian surfaces. There exist methods to address this limitation. Some

approaches require extra constraints on the number and positions of light sources

and allow only a class of diffuse non-Lambertian surfaces to be handled [48, 49].

Some require a calibration object with BRDF similar to the unknown scene as a

prior knowledge [50].

Active Stereo. Active stereo addresses the difficulty of matching low texture areas in

passive stereo by projecting a high contrast pattern onto the scene [51]. This idea in-
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troduces synthetic textures over the surface without physically touching it. Recently,

Spacetime stereo [52, 53] formulates stereo matching in the presence of illumination

variation and achieves excellent results. There are also active stereo methods pro-

posed to handle non-Lambertian objects. For example Helmholtz stereopsis allows

matching of arbitrary BRDFs and uses reflectance function reciprocity as an invari-

ant [54, 55]. By collocating point light sources with each camera, it is possible to

record reciprocal pairs using two different lighting conditions. However, this method

assumes the light sources to be collocated with the optical center of each camera and

requires an extra calibration procedure.

Active Shape-from-Focus/Defocus. Traditional Shape-from-Focus /Defocus al-

gorithms collect images at multiple lens settings and define metrics that evaluate

sharpness or the amount of blurring over a small spatial area surrounding the pixel [56–

59]. Most of these methods follow the equalfocal assumption, i.e., the surface depth

is constant within that area, therefore suffer from poor performance near depth dis-

continuities. To address this issue, Hasinoff et al. [60] and Zhang et al. [61] have

presented new methods which allow per-pixel focus/defocus analysis to be applied

and can achieve sharper, more accurate geometric details. Since nearly all Shape-

from-Focus/Defocus methods have difficulty dealing with textureless regions due to

focus ambiguity, illumination patterns are usually projected to provide synthetic scene

textures at the expenses of light source calibration [61,62].
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Figure 2.1: The pinhole camera model. An image of a 3D object is formed by
perspective projection: each ray of light passes through a common center of projection
and intersects the image plane.

2.2 Preliminaries

For readers not familiar with computer vision, we now provide a brief overview of

stereo. For interested readers who wish to learn more about the field, a number of

books on computer vision are available for a more detailed discussion [7, 11, 19,63].

2.2.1 Image Formation

Throughout this dissertation, we use perspective projection as our geometric model

of image formation. In detail, an image is formed by projecting each 3D scene point

along a straight line through the center of projection onto a 2D image plane. This

model is commonly referred to as the pinhole camera model (see Figure 2.1): light

from a scene passes through a pinhole and projects an inverted image of the scene
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on the opposite side of an opaque box. The pinhole camera model describes the

mathematical relationship between the coordinates of a 3D point and its projection

onto the 2D image plane of a pinhole camera, where the camera aperture is a point

and there are no lenses used to focus light. In the computer vision community,

the pinhole model is a widely adopted camera model because it resembles closely

the image formation process of a real camera. The principal difference is that real

cameras have a lens instead of a point. Therefore, radial distortions introduced by the

lens are not accounted for by the simple pinhole model. Fortunately, lens distortion

can be corrected by an image transformation process as described in [7].It also does

not take into account blurring of unfocused objects caused by lenses and finite sized

apertures.

When working with perspective projection for computer vision it is customary

and convenient to use homogeneous coordinates. Mathematically, each point in ho-

mogeneous coordinates is extended by a dummy coordinate w 6= 0 that maps the

point to a line through the origin in a space whose dimension is one higher than that

of the original space [64]. For example, a 2D image point (x, y) and a 3D scene point

(X, Y, Z) are represented by the set of vectors [wx wy w]T and [wX wY wZ w]T ,

respectively. Homogeneous coordinates allow us to express perspective projection of

a 3D scene point onto a 2D image plane using the following linear equation: [u v

w]T=P[X Y Z 1]T . In this equation, (X, Y, Z) is the coordinate of a scene point in

an arbitrary 3D coordinate system, and (x, y) = (u/w, v/w) is the coordinate of its

projection in an image coordinate system. P is a 3×4 projective matrix that encodes

both the intrinsic and extrinsic camera parameters. The intrinsic parameters encom-
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pass the position of the origin of the image plane (principal point), focal lengths and

the skew coefficient between the two axis, while the extrinsic parameters denote the

coordinate system transformations from world to camera coordinates, i.e., specifying

the position of the center of projection and the camera’s orientation in world coordi-

nates. The discussion in this dissertation assumes calibrated cameras, i.e., both the

intrinsic and extrinsic parameters are known a priori. Automatic camera calibration

is a mature topic in the literature of computer vision. We refer interested readers

to [7, 19,65] for a comprehensive treatment of auto-calibration.

2.2.2 The Correspondence Problem

Solving the correspondence problem, i.e., for each point in a reference frame locating

its corresponding matching points in other images, is the core problem of multi-view

stereo. Most researchers implicitly assume the scene is composed of Lambertian

objects and rely on the brightness constancy (corresponding points have the same

intensity observed from different viewpoints) as the matching criteria to establish

correspondences. Obviously, this Lambertian or intensity-consistent assumption does

not hold for real-world scenes, and specularities, reflections, or transparency typically

yield problems to stereo algorithms. Even when the Lambertian assumption holds,

stereo correspondence remains a difficult vision problem for the following reasons.

• Noise. There are always uncertain intensity values due to light variations,

image blurring, and sensor noise introduced by the image formation process.

• Repetitive patterns and textureless regions. The intensity-consistency

constraint is no longer valid for scenes that contain repetitive patterns or textureless
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regions.

• Depth discontinuities. Preserving sharp depth discontinuities along object

boundaries is especially important for some applications such as view synthesis and

3D reconstruction.

•Occlusions. Partially occluded pixels (i.e., points visible from only one camera)

should not be matched with pixels in the other view. Correctly identifying and

handling occluded points is important for high-quality depth estimation.

Traditionally, there are two common approaches, namely feature- and area-based

stereo algorithms, to alleviate the matching ambiguities. Feature-based approaches

only attempt to establish correspondences for distinct feature points that can be

matched unambiguously [22, 66, 67]. While salient features can be matched stably,

these approaches have the drawback of yielding only sparse or semi-dense depth es-

timates. Area-based approaches consider larger image regions that contain richer

information than individual pixels to yield more stable matches. As for the match-

ing function employed, this is typically based on the dissimilarity between the two

vectors representing the support regions (typically a squared window) in the stereo

images, e.g., the Sum of Absolute Differences (SAD) or Sum of Squared Differences

(SSD). The major problem of area-based approaches is they commonly assume that

pixels within the support region have the same disparity, which is not necessarily

valid for pixels near depth discontinuities or non-frontal-parallel surfaces. Therefore,

improper choice of the size and shape of the matching window leads to poor depth

estimates. More detailed discussion about area-based approaches will be later given

in Section 2.3.
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Figure 2.2: Epipolar geometry: The 3D point P , the optical centers O and O′ of the
two cameras, and the two images p and p′ of P all lie in the same plane.

2.2.3 Binocular Stereo Geometry

So far we have discussed how image correspondences can be established. We now

turn to the question of where to search for potential matches. Consider the images

p and p′ of a 3D point P observed by two cameras with optical centers O and O′,

respectively. As illustrated in Figure 2.2, these five points belong to the epipolar

plane Π defined by the two intersecting rays OP and O′P . In particular, the point p′

lies on the line l′ where Π and the image plane I ′ of the second camera intersect. The

line l′ is the epipolar line associated with the point p, and it passes through the point

e′ where the baseline OO′ intersects I ′. Likewise, the point p lies on the epipolar line

l associated with the point p′, and the line l passes through the intersection e of the

baseline with the image plane I.

The points e and e′ are called the epipoles of the two cameras. The epipole e′ is the

projection of the center of projection O of the first camera in the image observed by

the second camera and vice versa. As can be seen, if p and p′ are images of the same

point, then p′ must lie on the epipolar line associated with p. This epipolar constraint

plays a fundamental role in stereo matching because the search of correspondences
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Figure 2.3: Stereo geometry: The figure shows a top-down view of two identical
parallel cameras with focal length f and camera baseline b. The disparity of a scene
point P of depth Z is d = x− x′ = −fb/Z.

can be restricted to a line instead of the whole image space, greatly limiting the

search range. Given a pair of calibrated cameras, the epipolar geometry can easily

be computed from the explicit camera configurations [7,63]. P ’s position can also be

reconstructed from p and p′ via triangulation.

A simple epipolar geometry as depicted in Figure 2.3 results from two identical,

parallel cameras whose image planes coincide and whose x-axes are parallel to the

camera baseline. In this scenario, corresponding epipolar lines are image scanlines

and matched pixels p and p′ must have identical y-coordinates. This special camera

configuration greatly simplifies the correspondence problem since the explicit com-

putation of epipolar lines is no longer required. In addition, for area-based stereo

matching approaches two rectangular image regions can be compared directly with-

out the need of image warping or interpolation. Due to these advantages, most stereo

19



Figure 2.4: A stereo rig with two parallel cameras that satisfy the simple epipolar
geometry.

systems adopt this camera configuration. One way of manually achieving the simple

stereo geometry is to carefully mount and adjust the cameras so that they are perfectly

parallel. An example stereo rig with parallel camera setup is shown in Figure 2.4. For

cameras that are not perfectly aligned, fortunately, there is a process called rectifica-

tion that can transform the two input images so that their epipolar lines are aligned

horizontally. Rectification of stereo images can be achieved by applying image warp-

ing using two 3× 3 homographies computed from the camera parameters [68–70]. A

pair of stereo images before and after rectification is shown in Figure 2.5.

Given two rectified images and a pair of corresponding points p(x, y) and p′(x′, y′),

the correspondence can be expressed as a disparity value d. The disparity between

points p and p′ is defined as the difference of their horizontal image coordinates as

d = x − x′. Note that y ≡ y′ since corresponding pixels must be on the same

scanline for rectified images. Throughout this dissertation, unless specifically stated,

we define the output of a stereo algorithm to be a dense disparity map that records

the disparity value for every pixel in the reference image. In the following, when there
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Figure 2.5: A pair of stereo images before and after rectification. The top two are
the original images, while the bottom two are the rectified images. Note that the
corresponding features are on the same scanline after rectification.

is no confusion we will omit (x, y) and write d = p− p′ for conciseness and notation

clarity.

In Figure 2.3, we illustrate how the disparity of a pixel is related to its scene

depth for two parallel cameras with the simple epipolar geometry. Given the 3D point

P (X, Y, Z) and its 2D projections p(x, y) and p′(x′, y′), we can derive equations (2.1)

from the relationship of similar triangles as

x

f
=
X

Z
and

x′

f
=
X + b

Z
, (2.1)

where constants f and b denote the camera focal length and baseline, respectively.

The disparity d = x− x′ of p is therefore d = −fb
Z

and is proportional to focal length

and baseline, and inversely proportional to its depth Z.
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2.3 A Framework for Stereo Algorithms

Following the taxonomy and evaluation of dense stereo matching algorithms presented

by Scharstein and Szeliski [18], stereo algorithms generally perform (subsets of) the

following four steps:

1. Matching cost computation;

2. Cost aggregation;

3. Disparity computation and optimization; and,

4. Disparity refinement.

In this section, we briefly review these key building blocks from which most existing

stereo methods are constructed.

2.3.1 Matching cost computation

To establish pixel correspondences, all stereo algorithms must have a cost criteria to

measure the similarity between pixels. A matching cost is therefore a value indicat-

ing how likely two pixels correspond to the same scene point. Popular pixel-based

matching costs include absolute differences (AD), squared differences (SD), sampling-

insensitive calculation of Birchfield and Tomasi (BT) [71], and their truncated vari-

ants, both on gray and color images.

Besides the above methods, there are filter based cost functions that are designed

to compensate global intensity changes (e.g., due to gain and exposure differences, im-

age noise, different camera settings, etc.). Typically the input images are filtered with
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certain types of filter and then the transformed images are matched using common cri-

teria, e.g., AD and SD. Popular filters include Laplacian of Gaussian (LoG) [72], rank

filter [73] and mean filter. Normalized cross correlation (NCC) is another method

for measuring the pixel dissimilarity. The normalization within a rectangular area

effectively compensates variations in gain and bias. The main drawback of NCC is

that it tends to blur depth discontinuities more than many other matching costs. A

comprehensive evaluation of several matching costs can be found in [74].

2.3.2 Cost Aggregation

The pixel-based matching costs are usually ambiguous because the information avail-

able at a single pixel is not enough for finding an unambiguous match. To reduce

matching ambiguities, local area-based methods aggregate the matching cost by sum-

ming over a support region. A support region is typically a squared window centered

on the current pixel of interest. Conventional 2D aggregation methods smooth the

cost volume by computing the weighted average using the box or Gaussian filters [75].

An advantage of using linear filters for cost aggregation is that the 2D convolution

process is separable and very fast implementations can be achieved. In terms of draw-

back, these methods tend to blur object boundaries with the fixed size window. To

avoid the “fattening artifacts” near depth discontinuities, shiftable windows [4, 76],

windows with adaptive sizes [77–79] or adaptive weights [3, 80, 81] have been devel-

oped. We refer readers to two recent survey papers [14, 82] for the state-of-the-art

cost aggregation methods and their performances .
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2.3.3 Disparity Computation and Optimization

In general, stereo algorithms can be categorized into two major classes: local meth-

ods and global methods. In local methods, the per-pixel disparity is simply selected

by a local “winner-takes-all” (WTA) strategy, i.e., the disparity associated with the

minimum aggregated cost at each pixel is chosen. Therefore, a local method’s ac-

curacy performance depends largely on the matching cost computation and the cost

aggregation stages. Local methods can be every efficient (computationally feasible for

real-time implementations), but accuracy-wise they are sensitive to sensor noise and

locally ambiguous regions (textureless areas, occlusion boundaries, etc.) in images

because only local information from a small number of pixels surrounding the pixel

of interest is utilized to make the decision.

In contrast, global methods make explicit assumptions about the scene depth field

and are usually formulated in an energy-minimization framework. The most widely

used assumption is that the scene is locally smooth (except for object boundaries)

and neighboring pixels should have very similar disparities. This constraint is referred

to as the “smoothness constraint” in the stereo literature. The standard and classical

global stereo formulation aims to find an optimal disparity assignment function f(p)

that minimizes the following cost function

E(f) = Edata(f) + Esmooth(f), (2.2)

where the first term, the data energy, Edata(f) comes from the matching costs and

penalizes disparity assignments that are inconsistent with the observed image data,

whereas the second term, the smoothness energy Esmooth(f), encourages neighboring
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pixels to have similar disparities based on the assumption that the scene is piecewise

smooth. To make the optimization computationally tractable, the smoothness energy

is often defined to measure the differences only between neighboring pixels disparities,

e.g., using the common Potts model [83] or the truncated linear model [84]. Once

the global energy has been defined, the lowest energy corresponding to the optimal

disparity assignment can be approximately achieved using the methods surveyed by

Szeliski et al. [85]. Among these energy minimization approaches, Belief Propagation

(BP) [84,86] and Graph Cuts (GC) [16,87] are particular favored by stereo researchers.

Recent literature shows that BP- and GC-based stereo methods can produce the state-

of-the-art results in terms of reconstruction accuracy [2, 12, 13, 88]. Global methods

are less sensitive to the problems suffered by local methods since prior constraints

provide regularization for regions difficult to match. However, global methods are

usually more computationally expensive than local methods.

A different class of global optimization algorithms are those based on dynamic

programming (DP) [4, 89, 90]. Unlike DP or GC which approximate the global min-

imum of the cost function defined in 2.2 over the 2D pixel grid, DP finds the global

minimum of 2.2 for each image scanline independently in polynomial time. The main

problem with DP is the difficulty of enforcing disparity consistency between scanlines.

2.3.4 Disparity Refinement

Most stereo algorithms estimate disparities in the discretized integer space. While in-

teger disparities may be sufficient for applications such as segmentation and tracking,

for view synthesis or 3D reconstruction, such quantized disparity maps usually result
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in unappealing visual artifacts. To overcome this limitation, many stereo algorithms

utilize a sub-pixel refinement stage to refine the initial integer disparities. A simple

yet effective solution to increase depth resolution is to fit a parabolic curve to the

matching costs at discrete disparity levels [91,92]. In addition to sub-pixel refinement,

there are other disparity post-processing schemes available. For example, occlusion

regions are usually detected using left-right consistency check [92,93] and unmatched

pixels can be filled via interpolation or depth completion algorithms [64,94]. Median

filer can also be used to remove small isolated mismatches. Due to the low computa-

tional complexity and the edge-preserving property, median filer based refinement is

particularly favored by real-time stereo algorithms [14,80].

2.4 Stereo Quality Measures

Because there are so many algorithms for stereo correspondences, stereo images with

“ground truth” disparity maps and meaningful quantitative evaluation are critical

to assess the performances of existing methods and gauge the progress of stereo

matching. Scharstein and Szeliski [18] provided a very comprehensive quantitative

evaluation of binocular stereo algorithms and publicized several benchmark sequences

with ground truth [5, 18, 74, 95]. They also set up a web site to allow researchers to

run algorithms on the benchmark data and report their comparative results online

at [1].

Figure 2.4 shows the reference image and the ground truth disparities for each of

the four benchmark stereo pairs used for quantitative evaluation. Of the four bench-

mark sequences, “Tsukuba” was originally from the University of Tsukuba [96]. The
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Figure 2.6: Reference images of “Tsukuba”, “Venus”, “Teddy” and “Cones” stereo
pairs and their ground truth disparity maps.

scene contains several frontal-parallel planar surfaces and the ground truth disparities

were manually labeled by hand. “Venus” was first introduced by [18] and the scene

consists of piecewise (slanted) planar surfaces. The ground truth disparity map of

“Venus” was computed using the affine motion estimation technique [97] designed

for piecewise planar scenes. “Teddy” and “Cones” are image pairs with more com-

plicated scene structures. Difficulties posed to the stereo algorithms include a large

disparity range, complex surface shapes, textureless areas, narrow occluding objects,

etc. The ground truth disparity measurements of these two sequences were acquired

by coded structured light technique described in [5].

The reconstruction accuracy is measured by the percentages of bad matching

(where the absolute disparity error is greater than 1 pixel). The error statistics

accounts for three pixel categories:

• nonocc - Pixels in non-occluded areas.

• all - Pixels in non-occluded and half-occluded areas.
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• disc - Pixels that near the occluded regions.

Throughout this dissertation, we mainly use these four benchmark data sets to-

gether with the online evaluation system [1] to quantitatively gauge the quality of

our proposed algorithms.
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Chapter 3 Related Work

This dissertation is related to a sizable body of literature on stereo vision and an

exhaustive discussion of related work in stereo is beyond the scope of this disserta-

tion. The interested readers are referred to two excellent surveys by Scharstein and

Szeliski [5], and Brown et al. [23]. For general yet slightly dated surveys of the stereo

literature, see Dhond and Aggarwal [98], and Barnard and Fischler [99]. In the rest

of this chapter we discuss stereo methods that are relevant to the methods presented

later in this dissertation (Chapters 4, 5, and 6).

3.1 Real-Time and Near Real-Time Stereo

This section focus on reviewing the progression of real-time stereo implementations

over the past decade. A summary of earlier real-time stereo systems and their com-

parative performances can be found in [23].

Local methods establish pixel correspondences by measuring the similarity be-

tween image regions and usually have very efficient implementations [23, 82]. Repre-

sentative early real-time local methods include [100,101]. A plane-sweep approach [102]

is adopted to effectively use the graphics hardware to warp and process images. The

central problem of local correlation-based algorithms is how to determine the size and

shape of the aggregation window. For accurate depth estimation, a window must be

large enough to cover sufficient intensity variations while small enough to avoid cross-

ing depth discontinuities. This inherent ambiguity causes problems such as incorrect
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disparities in textureless regions and blurred occlusion boundaries. In order to resolve

these dilemmas, there has been work on varying window size and shape [79,103–106].

The basic idea is to evaluate a variety of windows with distinct sizes or shapes and

select the one with the optimal matching cost. Although performing better than fixed

window methods, in terms of accuracy variable window approaches are in general less

powerful than global methods.

Recently, Yoon and Kweon present a new correspondence search algorithm [3] that

yields high-quality results that are comparable to those obtained by global methods.

The success of [3] lies in the use of joint bilateral filter for cost-volume filtering. The

most attractive property of [3] is that a large window can be used to aggregate infor-

mation without over-blurring occlusion boundaries. On the other hand, [3]’s bilateral

filtering technique is computationally very demanding. Its execution time is com-

parable to that required by global methods, diminishing the efficiency advantage of

local approaches. For this reason, several “adaptive weights” based approaches have

been proposed, aiming at improving [3]’s speed performance. Mattoccia et al. [81]

suggest a block-based aggregation strategy that can obtain a disparity map at a few

seconds. Gupta and Cho introduce an adaptive binary window approach [107]. While

strong results are demonstrated, their algorithm takes 0.46 second for a 384 × 288

image with 16 disparity candidates. Yu et al. develop a high performance stereo

system using “exponential step size adaptive weight (ESAW)” technique [108]. Their

approach demonstrates high data parallelism and can be efficiently mapped to GPU

platform. Richardt et al. [109] present an approximate but real-time implementation

of the bilateral filtering aggregation method. However, due to the large amount of
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memory required for processing full-color images, the support weights are computed

using grayscale intensities rather than three-channel color vectors, giving poor re-

sults near object boundaries. Rhemann et al. [110] present a filter-framework which

achieves high-quality disparity maps efficiently. Their approach is based on the re-

cently proposed guided filter [111], which has the edge-preserving property and a

runtime independent of the filter size.

Besides from local methods, efficient global stereo algorithms have also been de-

veloped. Among the various energy minimization techniques [85], dynamic program-

ming (DP) is of particular interest for real-time systems due to its low computational

complexity. Sun [91] proposes an early DP-based stereo algorithm that executes

near real-time. The image is divided into nonuniform rectangular subregions to re-

duce disparity search range. Gong and Yang present a stereo algorithm based on

reliability-based DP [112]. Their algorithm can be implemented on the GPU and

yields near real-time performance. By using a coarse-to-fine scheme and MMX in-

structions, Forstmann et al. [15] present an accelerated DP algorithm whose imple-

mentation achieves about 100 MDE/s on an AMD AthlonXP 2800+ 2.2G processor.

Traditional DP algorithms optimize the disparity assignments on a scanline by scan-

line basis. The inter-scanline consistency is not enforced. A number of approaches

have been proposed to address this limitation [113–115]. For example, Kim et al. [113]

introduce a two-pass DP scheme that performs optimization both along and across

the scanline; Lei et al. [115] optimize a global energy function defined on a 2D tree

structure whose nodes are over-segmented image regions. Unfortunately, these ad-

vanced approaches in general involve more computational cost and are typically too
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slow for real-time applications. In addition to DP, Yang et al. [116] propose a near

real-time GPU implementation of the hierarchical belief propagation algorithm [84].

It produces better accuracy than fast DP-based algorithms but runs slower at about

17 MDE/s. Yu et al. [108] further invent a real-time “exponential step size message

propagation (ESMP)” algorithm. As an extension of the aforementioned ESAW tech-

nique, by incorporating the smoothness prior commonly used in global stereo, ESMP

improves the accuracy at the cost of lower speed in comparison with ESAW.

3.2 Regularization Priors for Global Stereo

Over the last decade, dense stereo has made considerable progress, in part because the

problem can be cast in a global optimization framework for which there exist powerful

inference algorithms such as graph cuts and belief propagation that can efficiently

find good minima of the cost function. According to the widely used Middlebury

benchmark [1], almost all top-performing stereo methods are formulated as an energy

minimization problem and rely on belief propagation or graph cuts. These global

methods give substantially more accurate results than were previously possible. In

contrast to local methods, global methods allow us to utilize the prior constraints

that encode the assumptions on scene structures to regularize the ill-posed matching

problem. In this section we review several most widely used prior constraints used

by global stereo methods for high-accuracy depth estimation.

The most conventional regularization prior used by early global methods [117,118]

to produce piecewise smooth disparity maps is the first-order smoothness prior, e.g.,

the Potts model [83] or the truncated linear model [84], which encourages neighbor-
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ing pixels to have similar disparities and thus favors low-curvature fronto-parallel

surfaces. However, even in man-made scenes, the fronto-parallel assumption is not

always valid. To overcome this limitation, the usage of second-order (penalizing large

second derivatives of depth or disparity) smoothness priors were proposed. Ogale

and Aloimonos [119] propose a “slanted scanline” algorithm, in which straight, 3D

line segments are fitted to image scanlines using an optimization method. Their

method, similar to dynamic programming, does not enforce inter-scanline consis-

tency. Recently, Woodford et al. [88] show that second-order smoothness priors can

be incorporated into graph cuts based stereo reconstruction. The authors introduce

an effective optimization energy functions with triple cliques for second-order prior

terms.

Methods based on second-order priors produce excellent results. However, they

favor piecewise planar surfaces, which are not ideal for dealing with curved surfaces.

Li and Zucker [120] introduce priors on slanted and curved surfaces, encouraging the

second and third derivatives of disparity to be zero. This allows for curved surfaces in

the solution and significantly improves on the piecewise planar assumption . However,

the algorithm requires the surface normals to be pre-computed and in fact optimizes

a first-order prior on the normals, rather than a second-order prior on the disparities.

The other popular regularization prior that used to improve the stereo reconstruc-

tion accuracy is the segment-based prior proposed by Birchfield and Tomasi [121] and

Tao et al. [17]. Tao et al. in [17] assume that each color segment corresponds to a

planar surface in 3D, and this key idea has inspired many stereo researchers and form

the basis for most top-performing stereo algorithms. For instance, as of November

33



2012, almost all of the top performing stereo methods listed by the Middlebury bench-

mark [1] use color segmentation, either explicitly or indirectly, to estimate disparity

maps [12,13,122,123]. Although segment-based priors usually improve disparity esti-

mates in textureless areas, they inevitably introduce errors in heavily textured regions

and do not handle well the situation that the scene contains high-curvature details.

In order to overcome the limitations of segment-based approaches, Smith et al. in [2]

propose a nonparametric smoothness prior that correlates pixels with similar features

in a large neighborhood. Gallup et al. [124] introduce a binary classification procedure

to classify the scene into planar and non-planar and then employ different algorithms

for different image regions. The new regularization prior we propose in Chapter 5 is

derived from measured or reliably matched control points. Our regularization term

models the influence from control points in the global inference stage and allows stereo

algorithm to better handle problematic regions such as textureless areas and occlusion

boundaries. A nice feature of our method is that it does not require hard color seg-

mentation, plane fitting, or local surface normals to be pre-computed. Experiments

show that our method is comparable to [2] in terms of accuracy while superior to [2]

for efficiency. And unlike [124], our method is not limited to handling urban scenes

and does not need training images.

By using ground control points (GCPs) as constraints, our work also relates to

semi-dense stereo methods. In the stereo literature, GCPs are referred to as the high

confidence matches, started by the work of [4]. Due to the inherent ambiguities of

stereo correspondence, instead of computing dense disparity maps, there are tech-

niques invented to find unambiguous components to generate semi-dense disparity
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maps [66, 67, 125,126]. Many of these approaches require GCPs obtained via feature

correspondences as seeds to start the matching process. New matches are added in a

progressive manner until certain termination criteria is met. Wei et al. combined the

progressive scheme with region-based approaches to produce dense matching [127].

In contrast, our method is both dense and global. The Bayesian inference framework

does not require iterative region growing or hard image segmentation.

GCPs have also been used by dynamic programming based stereo methods as hard

constraints. Bobick et al. incorporated GCPs into a DP framework by forcing DP to

choose a path through the GCPs [4]. Different from their one dimensional scanline

optimization model, by incorporating GCPs into a global inference framework, our

method is able achieve full frame optimization. Furthermore, instead of treating

GCPs as hard constraints, our formulation models GCPs as soft constraints and does

not require all GCPs to be perfect. In [76, 128], GCPs are used in preprocessing

stages to restrict the disparity search ranges. In contrast, our method makes no hard

constraint on the disparity search ranges.

3.3 Stereo Beyond Lambert

All stereo depth recovery methods make explicit or implicit assumptions about which

image features are held constant. The primary differences arise from the choice of

invariant. A number of possible invariants that allow stereo matching for Lambertian

scenes have been explored [74]. In this section, we review constraints employed by

stereo matching techniques for non-Lambertian surfaces.

Stereo matching of specular surfaces has most commonly been approached by
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treating specularities as outliers to the brightness constancy invariant, which should

be detected and either removed or avoided [129–133]. An alternate approach treats

surfaces as diffuse-plus-specular and formulates a mult-iview constraint that all ob-

servations must lie on a line in color space [134]. Unfortunately, all of these methods

limit the range of surface BRDFs to those which can be represented as a simple

combination of diffuse and specular terms. The light transport constancy invariant

presented in this work allows stereo matching of surfaces with completely arbitrary

BRDF.

Jin et al. show that a multi-view rank constraint on reflectance complexity is

implied by a diffuse-plus-specular surface model and use this constraint to reconstruct

non-Lambertian surfaces [135]. Although the method proposed in this‘dissertation

also formulates a rank constraint, we rely on a different matching invariant and allow

for truly arbitrary surface BRDFs at each scene point.

Helmholtz stereopsis [136–139] allows matching of arbitrary BRDFs using reci-

procity. That is, R(xi, θA, θB) = R(xi, θB, θA). By collocating point light sources

with each camera it is possible to record reciprocal pairs using two different lighting

conditions, such that image A is illuminated by light B, and image B is illuminated

by light A. Due to reciprocity, the reflected light to cameras A and B will be equal.

Unfortunately, this method requires the light sources be collocated with the optical

center of each camera. Although acceptable results are possible by simply placing the

light nearby, a proper implementation requires calibrated optics to ensure collocation.

The method presented in this dissertation makes use of a different property and does

not require the position of light sources to be precisely calibrated or even known.
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Orientation constancy has been used to allow reconstruction of scenes with arbi-

trary BRDF in both photometric stereo and multi-view stereo configurations [140,

141]. Although very accurate results are possible, these methods require a known cal-

ibration object with BRDF similar to the unknown scene, as well as distant cameras

and light sources. In contrast, this work does not require a known object and allows

for arbitrarily located light and camera positions.

Unlike many previous approaches that make use of geometric illumination changes,

our formulation requires radiometric illumination variations, i.e., rather than chang-

ing position, the light sources in our work change only their intensities. Prior ap-

proaches using radiometric variations include structured light (e.g. [5, 142]), and the

more general space-time stereo framework [143, 144]. Image intensity ratios are also

a well studied method for recovering depth which are often formulated as using ra-

diometric variation [145,146].

It is argued in [147] that image ratios are only applicable to diffuse surfaces. Our

method is fundamentally different from that work in that we assume radiometric vari-

ations only while the derivation in [147] is based on an illumination distribution which

includes geometric variation. Experimental results demonstrate that using radiomet-

ric variation, scenes with arbitrary surface BRDFs can be effectively reconstructed

using image ratios.

The invariant proposed by this dissertation, named light transport constancy,

has not previously been explored for stereo matching. However, in the case of laser

scanning, it was explicitly identified and articulated by Curless and Levoy [148]. In

addition, it has implicitly been used in other domains. Magda et al. capture hundreds
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of images illuminated by precisely calibrated light source positions on two concentric

spheres surrounding an object. The two sampled representations of the incoming

illumination field can then be aligned to find the depth of a given scene point [136].
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Chapter 4 Real-Time Stereo Using Approximated Joint Bilateral

Filtering and Dynamic Programming

In this chapter, we present a stereo algorithm that is capable of estimating scene depth

information with high accuracy and in real-time. The rest of this chapter is organized

as follows: Section 4.1 gives a high level overview of our approach. Section 4.2 contains

background material about bilateral filter and its application in stereo correspondence

problem. In Section 4.3, we present a precise description of our proposed algorithm

followed by Section 4.4, which is about specific GPU implementation issues. We

evaluate our algorithm with experiments in Section 4.5 and summarize this chapter

in Section 4.6.

4.1 Algorithm Overview

Our algorithm is inspired by the idea of cost-volume filtering via edge-preserving

filters, started from [3, 149], which introduce cost aggregation schemes that use a

fix-sized window with per-pixel varying support weight. The support weights are

computed based on the color similarity and geometric distance to the center pixel

of interest. In fact, taking both geometric distance and photometric similarity of

neighboring pixels into account to construct the filter kernel is the key idea behind

bilateral filtering [150]. Although bilateral filter based aggregation methods have

proven to be effective, their applications in real-time stereo are limited by their speed.

It is nonlinear and its computational complexity grows quadratically with the kernel
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size. Brute-force implementations are on the order of minutes for generating a small

depth map [3].

In this chapter, we first attempt to reformulate [3]’s aggregation algorithm us-

ing a fast separable implementation of the bilateral filter. In the first pass the raw

cost-volume is bilaterally filtered in the horizontal direction using a 1D kernel and

the intermediate matching costs are bilaterally filtered subsequently in the vertical

direction. The separable approximation reduces the complexity of the aggregation ap-

proach from O(|I|N`2) to O(|I|N`), where |I| and N are the image size and disparity

search range respectively and ` is the kernel width of a square window. Our ap-

proximation, which is an effective trade-off between speed and accuracy, leads to fast

cost-volume filtering and satisfactory results. Motivated by its suitability for hard-

ware implementation, we propose a GPU implementation which further improves the

speed by one or two orders of magnitude.

In addition to the GPU-based local WTA solution, we further incorporate our

two-pass aggregation scheme into a DP scanline optimization framework for improved

reconstruction accuracy. We found that changing the window shapes from conven-

tional squares to vertical rectangles allows robust performance near depth discontinu-

ities and effectively alleviates DP’s scanline inconsistency artifacts. The aggregated

cost-volume is transferred back from the GPU to CPU memory for DP optimization.

Thus our approach not only makes use of both CPU and GPU in parallel, but also

makes each part do what it is best for: the graphics hardware performs cost aggrega-

tion in massive parallelism, and the CPU carries out DP that requires more flexible

looping and branching capability. The current implementation is capable of running
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at video frame rate. In terms of accuracy, quantitative evaluation using data sets

with ground truth disparities shows that our approach is among the state-of-the-art

real-time stereo algorithms. Combined with its high speed capability, our algorithm

is suitable for many real-time applications that require high quality depth data. This

stereo formulation that built on fast approximate bilateral cost-volume smoothing

and dynamic programming optimization is the main contribution of this chapter.

4.2 Bilateral Filter and Its Application in Cost Aggregation

Before describing our proposed stereo algorithm, we start with a brief description of

bilateral filtering and Yoon and Kweon’s adaptive weights stereo algorithm [3].

The bilateral filter is a filtering technique to smooth an image while preserving

edges [150]. One of its variants, the joint bilateral filter [151], smoothes an image

with respect to edges in a different image. Its basic formulation is very similar to

Gaussian convolution: each pixel is replaced by a weighted average of its neighbors.

The core difference is that the bilateral filter takes into account the dissimilarity in

pixel values with the neighbors while constructing the blur kernel. More formally,

given an image I and a central pixel p ∈ I (we use the notation Ip for the pixel value

at position p), the support weight w(p, q) of p’s neighbor q is written as:

w(p, q) = exp(−‖Ip − Iq‖
σc

− ‖p− q‖
σg

), (4.1)

where ‖Ip − Iq‖ and ‖p − q‖ represent the color dissimilarity (Euclidean distance

between pixel values) and the spatial distance between p and q, respectively. The

bilateral filter is controlled by two parameters σc and σg. These two values respectively
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control the influence from intensity/color similarity and spatial proximity. An image

filtered by a bilateral filter BF (·) is defined by

BF (I)p =

∑
q∈Ωp

w(p, q) · Iq∑
q∈Ωp

w(p, q)
, (4.2)

where Ωp denotes the set of all pixels in the support region and the normalization

factor
∑

q∈Ωp
w(p, q) ensures support weights sum to one. More interesting properties,

implementation details, and applications of bilateral filtering can be found in [152].

Yoon and Kweon [3] utilize the bilateral filtering as an aid in local WTA stereo.

Given a pair of stereo images {I, I ′}, the raw matching cost between pixels is written

as C̃(p, d) where p represents the pixel location in the reference view I and d is a

disparity hypothesis. In [3] the final cost-volume is computed as a weighted average

of raw matching costs

C(p, d) =

∑
q∈Ωp,q′∈Ω′

p
w(p, q)w(p′, q′)C̃(q, d)∑

q∈Ωp,q′∈Ω′
p
w(p, q)w(p′, q′)

, (4.3)

where p′ = p− d represents p′s corresponding pixel in I ′ given disparity d.

Note that unlike conventional bilateral filtering, equation (4.3) takes into account

the support weights in both stereo images. According to the authors’ explanation and

our experimental observations, combining the support weights in both windows helps

to improve correspondence search, especially for pixels near occlusion boundaries.

In terms of speed, the proposed method however is computationally more expensive

than other window-based local stereo algorithms. The reported running time for the

benchmark “Tsukuba” image with a 35× 35 support window is about one minute on

an AMD AthlonXP 2700+ 2.17G processor.
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4.3 Algorithm Description

In this section, we present the proposed stereo formulation. Given multiple images

taken from different viewpoints, the goal of a stereo algorithm is to establish pixel

correspondences across images. For the scope of this chapter, we focus on dense two-

frame stereo and assume the input stereo images {I, I ′} are rectified, i.e., the epipolar

lines are aligned with corresponding scanlines.

Following the taxonomy in [18], our algorithm consists of three major steps: 1)

matching cost computation; 2) adaptive cost-volume filtering; and 3) disparity opti-

mization via DP. Details about each module are presented below. Besides from these

key components, in all experiments, a 3× 3 median filter based disparity refinement

step is employed to remove isolated noises from disparity maps.

4.3.1 Matching Cost Computation

The matching cost computation step initializes the cost-volume C̃(p, d) by computing

raw pixel-wise matching costs. Using the brightness constancy constraint, pixels that

correspond between the left and right images should have similar intensities. Thus

we adopt the widely used absolute difference (AD) dissimilarity function to measure

the difference between two corresponding pixels:

C̃(p, d) = min(

∑
c∈{R,G,B} |Icp − Icp−d|

3
, Cmax), (4.4)

where the parameter Cmax (0 < Cmax ≤ 255) is a truncation value. The truncation

is necessary to make the matching costs robust to occlusion and non-lambertian
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objects that violate the brightness constancy assumption. For every pixel p(x, y) ∈

I, we loop through all disparity hypotheses to calculate their matching costs using

equation (4.4). In the end, we obtain the initial cost volume C̃, which is a three-

dimensional array that can be indexed by x, y, and d.

4.3.2 Fast Adaptive Cost-Volume Filtering

We modify [3]’s approach as our baseline cost aggregation algorithm. Two major

changes are: 1) In Yoon and Kweon’s work, the similarity between two pixels within

the support window is measured in the CIELab color space. Our approach however

measures the color proximity in the RGB color space for simplicity and efficiency; 2)

Inspired by [109], we reformulate equation (4.1) as

w(p, q) = exp(−‖Ip − Iq‖
σc

)

√
exp(−‖p− q‖

σg
), (4.5)

where the square root is applied to the geometric proximity weight, so that w(p, q) ·

w(p′, q′) in equation (4.3) involves the proximity weight only once. In our baseline

implementation we employ a 35 × 35 support window. The running time for the

“Tsukuba” sequence is about 25 seconds on an Intel Xeon 2.66GHz processor with

our not fully optimized implementation.

As can be seen, the full-kernel implementation of the bilateral cost-volume filter-

ing is computationally expensive because the pixel-wise support weights need to be

recomputed for every pixel. Unfortunately, unlike separable box and gaussian filters

which have very fast implementations, bilateral filter is not separable in theory due

to the color dependent term in equation (4.5). Nevertheless, in order to address the
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crucial runtime issue, Pham and van Vliet [153] attempt to approximate the full-

kernel bilateral filter using two separate 1D kernels. Their separable implementation

is applied to video enhancement and compression. Ansar et al. [149] first apply bi-

lateral filtering to stereo and conclude that a separable approximation is adequate.

However, no thorough analysis or comparison is proposed and the performance of this

acceleration in stereo correspondence remains unclear.

In this section we revisit the separable approximation and attempt to speedup the

bilateral aggregation using a two-pass implementation: a 1D bilateral filter is applied

to smooth the cost-volume along the first dimension (either horizontal or vertical)

and the intermediate results are filtered in the subsequent dimension. In essence, this

simplified approach reformulates equation (4.3) as

Ctmp(p, d) =

∑u=x+ `
2

u=x− `
2

w(p(x, y), q(u, y))w(p′, q′)C̃(q, d)∑u=x+ `
2

u=x− `
2

w(p(x, y), q(u, y))w(p′, q′)
(4.6)

C(p, d) =

∑v=y+ `
2

v=y− `
2

w(p(x, y), q(x, v))w(p′, q′)Ctmp(q, d)∑v=y+ `
2

v=y− `
2

w(p(x, y), q(x, v))w(p′, q′)
, (4.7)

where Ctmp is a temporary buffer to store the matching costs obtained from the first

pass.

As aforementioned, this separable implementation does not produce exactly the

same results as the full-kernel filtering because of the non-separability of w(·, ·) in

equation (4.3). Figure 4.1 shows both the original and approximated support weights

for several selected pixels in the “Tsukuba” image. In most cases, especially for

uniform areas and axis-aligned edges, the original support weights are very similar

to their approximated counterparts. For the rightmost patch which contains two
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Figure 4.1: A comparison of full-kernel with approximated support weights. (top
row) close-up views at several pixel locations in the “Tsukuba” image. The blue
square marks the center pixel of interest. (second row) the original 35 × 35 support
weights. (third row) the corresponding support weights computed using our two-pass
approximation.

diagonal line structures, our approach still tends to assign higher weights to pixels that

are closer or with similar color but spatially the support weights attenuate much faster

compared to the original 2D kernel. In this scenario where there are thin diagonal

structures, our approximation is similar to a full-kernel with a smaller support region.

In Figure 4.2 we further provide visual and quantitative comparisons of the achieved

disparity maps. Compared to the full-kernel filtering, the separable bilateral smooth-

ing still performs edge-preserving cost aggregation effectively. While visually similar

disparity maps can be obtained, as expected, quantitative evaluation with ground

truth data confirms that the two-pass approximation yields slightly less accurate re-
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Figure 4.2: Disparity maps for the Middlebury benchmark data generated from (top
row) full-kernel (35 × 35) bilateral cost aggregation and (bottom row) the separa-
ble two-pass approximation, respectively. Identical parameter settings are used to
generate these results. Error disparity percentages are measured in non-occluded
areas.

sults, especially for textured regions. It is worth noting that neither implementation

achieves the accuracy numbers reported in [3]. We believe this is mainly due to the

left-right consistency check and occlusion filling post-processing steps adopted by [3].

Similar observation and conclusion can also be found in [109]. In terms of speed, this

two-pass acceleration dramatically speeds up the computation, reducing the com-

plexity per disparity estimation from O(`2) to O(`). For instance, for the “Tsukuba”

image our result is generated in 1.9 seconds while the full-kernel approach takes about

32 seconds (kernel width ` = 35). On the other hand, the downside of this approx-

imation is that its resultant disparity maps are less smooth than the brute-force

implementation and there is no formal characterization of their differences in accu-

racy. As a consequence, this two-pass aggregation scheme produces an interesting

trade-off between accuracy and speed.
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4.3.3 Disparity Optimization via DP

In this section, DP is performed for disparity optimization. As an early framework

introduced for the stereo correspondence problem, DP is still one of the most popular

techniques for its 1D optimization capability and high efficiency.

DP-based algorithms formulate stereo correspondence as a least-cost path find-

ing problem. Given an image scanline Sy = {p(·, y)}, DP finds an optimal path

through a 2D slice C(·, y, ·) of the 3D cost-volume. The optimal path is equivalent

to a disparity assignment function f(p) that minimizes the global cost function de-

fined in 2.2. In this chapter, Edata(f) =
∑

p∈Sy
C(p, f(p)) comes directly from the

aggregated matching costs. Esmooth(f) is defined as

Esmooth(f) = λs ·
∑
p∈Sy

∑
q∈ξp

max(exp(−|Ip − Iq|
2

σs
), ε) ·min(|f(p)− f(q)|, τ), (4.8)

where λs is the rate of increase in the smoothness cost; ξp(x,y)={p(x-1,y),p(x+1,y)}

and exp(−|Ip−Iq|2/σs) is a monotonically decreasing function of intensity differences

that lowers smoothness penalty costs at high intensity gradients; parameters σs and

ε control the sharpness and lower bound of the exponential function, respectively.

In order to allow for sharp depth edges, the smoothness cost stops growing after

the disparity difference becomes large. Parameter τ controls the upper bound of

discontinuity penalty between neighboring pixels.

Energy functions with the form defined in equation (2.2) can be minimized by

DP. For each scanline Sy in the reference view we construct a cost matrix M and an

ancestor matrix A. Both M and A have N ×W entries, where N and W represent

the disparity range and image width, respectively. Each entry is a potential place
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Algorithm 1 Three-state DP for optimal path extraction

for d = 0 to N − 1 do
M(d, 0) = C(0, y, d);

end for
for x = 1 to W − 1 do

compute the smoothness cost λ between (x− 1, y) and (x, y) based on equation
(4.8);
nvocc = 0;
for d = N − 1 to 0 do
cmin0 = C(x, y, d) +M(d, x− 1); //match state
cmin1 = C(x, y, d) +M(d− 1, x− 1) + λ; //diagonal occlusion
cmin2 = M(d+ 1, x) + (nvocc < τ ? λ : 0); //vertical occlusion
M(d, x) = min(cmin0, cmin1, cmin2);
if(M(d, x) == cmin0) A(d, x) = (d, x− 1); nvocc = 0;
if(M(d, x) == cmin1) A(d, x) = (d− 1, x− 1); nvocc = 0;
if(M(d, x) == cmin2) A(d, x) = A(d+ 1, x); nvocc = nvocc+ 1;

end for
end for

along the path. We traverse M from left-to-right updating the entries in M and

A. The complexity of the brute-force implementation is O(WN2) per-scanline since

updating M(d, x) requires considering N previous entries M(0, x − 1) . . .M(N −

1, x−1). Inspired by [4,90], we impose the common occlusion and monotonic ordering

constraints [154] and employ the three-state (horizontal match, diagonal occlusion and

vertical occlusion states) scanline optimization algorithm as outlined in Algorithm 1

to construct the optimum path. By assuming the ordering rule, three instead of N

potential moves need to be considered, which greatly reduces the complexity of the

pathfinding problem. After the rightmost column is filled, the optimum path can be

extracted via back-tracking [90]. This DP process is repeated over all the scanlines

to generate a dense disparity map.

49



(a) Gaussian 1×1 (b) Gaussian 5×1 (c) Gaussian 17×1 (d) Bilateral 35×1

2.09% error 2.17% error 3.65% error 1.41% error

Figure 4.3: Comparison of cost-volume smoothing with Gaussian and bilateral fil-
tering. Disparity maps are computed using DP after aggregation. Top row (a)-(c):
disparity maps from ` × 1 support window with Gaussian weights, where (a) ` = 1,
(b) ` = 5, and (c) ` = 17, respectively. Disparity (d) is obtained from 35× 1 bilateral
filtering aggregation. Quantitative error rates in non-occluded regions (bad pixels
labeled in black) are given in the bottom row.

Vertical aggregation Global approaches usually use the raw pixel-wise matching

costs and skip the aggregation step [18]. In this chapter, we present a novel stereo

formulation that combines the strengths of the edge-preserving cost-volume smooth-

ing and the DP optimization framework to achieve high accuracy depth estimation.

Motivated by DP’s well-known difficulty of enforcing inter-scanline consistency (re-

sulting in horizontal “streaks” in the estimated disparity maps), we enforce vertical

smoothness by constructing the data term with an approximated `y × `x rectangular

aggregation window, where `y ≥ `x guarantees the dominant aggregation direction is

orthogonal to image scanlines.

Figure 4.3.3 illustrates the effects of combining vertical smoothing and DP. With a

5× 1 gaussian filter, noise and “streaking” artifacts are somewhat reduced compared

to performing DP optimization alone (no aggregation applied). However, pixels near
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occlusion boundaries tend to be blurred and thin structures are not very well preserved

(lamp bar in Figure 4.3.3 (b)). Similar observation is reported in [15] in which the

costs from the previous scanline is aggregated. With a large 17×1 gaussian kernel, the

overall disparity map is smoothed at the cost of occlusion boundaries being heavily

blurred. In contrast, using a large 1D vertical bilateral filter can preserve sharp

occlusion boundaries, suppress noise and enforce scanline consistency in the disparity

map.

4.4 Acceleration using Graphics Hardware

To achieve real-time performance, we take advantage of GPU’s massively data par-

allel architectures and implement the matching cost computation and cost-volume

smoothing steps on graphics hardware to enhance computational speed of our algo-

rithm.

In the matching cost computation stage, the input stereo images are stored as

two textures. For each disparity hypothesis d, we draw a 2D rectangle aligned with

two input textures, one of them being shifted horizontally by d pixels. We use the

pixel shader, a programmable unit in the graphics hardware [155], to compute the

per-pixel absolute difference and the results are written to an output texture. Since

the graphics hardware is most efficient at processing four-channel (RGB + alpha)

color images, we compute four disparity hypotheses at a time and store the absolute-

difference images in different channels. To search over N disparity hypothesis, dN/4e

rendering passes are needed.

Similar to existing real-time stereo GPU implementations [14,112], the matching
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costs obtained are stored as 8-bit integers in GPU memory instead of floating points

for lower computational overhead. Representing matching costs with 8 bits makes

accurate disparity estimation more challenging since small cost differences cannot be

presented due to the limited precision. In our GPU implementation the matching

costs in (4.4) are truncated and scaled to make better use of the range of a single

byte as

C̃(p, d) = min(

∑
c∈{R,G,B} |Icp − Icp−d|

3
, Cmax)×

255

Cmax
. (4.9)

After truncating and scaling, The resultant 3D cost-volume is stored as a stack

of 2D images. Four adjacent disparity hypotheses are packed into one color image to

utilize the vector processing capacity of GPU. The color images are tiled together to

form a large matching cost texture. An example is shown in figure 4.4.

For the cost aggregation step, we first compute the per-pixel adaptive weights

for both images. Similar to the cost computation process, we shift the image over

itself to compute the pixel-wise weights according to equation (4.1) and store them

in textures. The 1D kernel width is always set to a multiple of four to facilitate the

four-vector processing capability on GPU. After computing the weights for bilateral

filters, we can step through the cost-volume to compute the weighted average. A

fairly complex pixel shader program is implemented to index into both the matching

cost textures and weighting textures to calculate the final cost. Aggregating over N

disparity hypotheses with an approximated `y × `x bilateral filtering kernel requires

dN · (`y + `x)/16e rendering passes in our implementation.

The advantage of using graphics hardware mainly comes from the parallelism
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Figure 4.4: The texture used to store matching costs. The four color channels of
a single pixel in the texture store the matching costs of a pixel under four different
disparity hypotheses.

inherent in today’s GPU. The latest generation has up to 24 pixel shader units. Both

cost computation and aggregation are regular per-pixel operations that can benefit

most from GPU’s parallel architecture. The smoothed cost-volume can be used by a

WTA selection scheme on GPU (as in [14]), or it can be read back to CPU memory

for CPU processing using DP. It should be noted that it is possible to implement the

entire DP optimization process on GPU. However, as reported in [112], a GPU-based

DP implementation is actually slower than its CPU counterpart. This is mainly due

to the significant number of rendering passes needed and the lack of true branching

capability on GPU [112]. Therefore we adopted a co-operative approach, using the

GPU to compute the cost volume and the CPU to carry out DP. With the new PCI-

Express interface between CPU and GPU, the communication bandwidth is huge

(full-duplex at 4GB/second), removing a long-existing bottleneck between GPU and

CPU.
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4.5 Experiments

4.5.1 Static Images

The main parameters in our algorithm can be divided into three sets: 1) truncation

value {Cmax} for matching cost computation; 2) four parameters {σc, σg, `x, `y} for

cost aggregation; and 3) {σs, ε, λs, τ} for disparity selection using DP. Following the

experimental observations in [14], Cmax is set to 25 throughout. Parameters σc and

σg are color and spatial bandwidths for the bilateral filtering, respectively. Figure 4.5

(a) shows the performance of two-pass aggregation for the “Tsukuba” and “Teddy”

images as a function of σc. In this experiment, we keep the width of the support

window and σg constant, `x = `y = 35, σg = 17.5 (radius of the support window),

and use WTA to select the disparities. Note that besides from error rates in non-

occluded areas, we also plot error percentages for pixels near depth discontinuities to

assess the parameter’s edge-preserving performance. In our experiments, we set σc

to 20 for all test images according to the results learned from this plot.

Among the four DP parameters, σs, ε and τ are less sensitive and we empirically

set σs = 400, ε = 0.4 and τ = 2. To determine λs, namely the rate of increase in the

smoothness cost, we set `y = 35, `x = 1 and plot the error rates with respect to λs

in figure 4.5 (b). Note that we use truncated and scaled matching costs in equation

(4.9) for these experiments. As can been seen, the optimal λs varies for different

images. Fortunately, λs ∈ [40, 60] typically generates good results. For Middlebury

quantitative evaluation we fix λs = 60.

Finally, we evaluate the effects of cost aggregation using windows with different
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(a) (b)

Figure 4.5: (a) Error rate with respect to the color bandwidth σc for bilateral filtering
(equation (4.1)). Statistics in non-occluded regions (nonocc) and areas near depth
discontinuity boundaries (disc) are both reported. Disparity maps are generated
using “winner-takes-all” and two-pass (35× 35) bilateral aggregation; (b) Error rate
as a function of the smoothness penalty cost λs (equation (4.8)). Disparity maps are
generated using DP and vertical (35× 1) bilateral aggregation.

sizes. In figure 4.6, we fix kernel height `y = 35 and plot the error rates as a function

of width `x. It is worth noticing that since DP performs horizontal optimization,

we let `y ≥ `x to ensure the dominant aggregation direction is orthogonal to image

scanlines. Figure 4.6 suggests that increasing the width of the support window in

general tends to marginally improve the accuracy. When 1 < `x ≤ 35, in three of

the four data sets approximated bilateral filtering achieves better (or comparable)

results compared to the 1D vertical smoothing. And for the “Venus” sequence, the

increase in error is mainly caused by the constant parameter setting λs = 60 adopted

in our experiments, which is considered to be too large for “Venus”. On the other

hand, it also reveals the risk of over-smoothing the results when performing both 2D

aggregation and global optimization.

Using the online system at [1], we compare our method against other relevant
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Figure 4.6: Error rate with respect to different aggregation window sizes. Disparity
maps are generated using DP.

stereo algorithms listed in the Middlebury evaluation table and summarize the re-

sults in table 4.1. With DP optimization, the vertical aggregation window is set to

35 × 1 for the CPU implementation (VAggCPU+DP) or 32 × 1 for the GPU coun-

terpart (VAggGPU+DP). For two-pass bilateral aggregation with WTA disparity

selection, 35× 35 and 32× 32 windows are used by CPU (2PassAggCPU) and GPU

(2PassAggGPU) implementations, respectively. The average percent of bad pixels in

non-occluded regions in the second column is used as the metric by which the table is

sorted. Corresponding disparity maps from our approach are shown in figure 4.7. In

addition to quantitative error percentages, run time comparisons in MDE/s (last col-

umn) are also reported to provide readers with a more clear picture of the compared

algorithms. More detailed runtime analysis is given in Section 4.5.2.

The VAggGPU+DP algorithm outperforms other DP-based real-time or near real-

time solutions [80,112,114,156] in terms of both matching accuracy and speed. There

are two DP-based approaches [115,157] (not listed in table 4.1) that yield better ac-

curacy than ours. However, they both require color segmentation and are typically
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slow for real-time applications. In comparison with [116] which performs full-frame

optimization via BP, our proposed algorithm can achieve much higher throughput at

comparable accuracy. Another near real-time BP-based algorithm [158] relies on color

segmentation and plane fitting. Even through with segmentation and BP components

implemented on a GPU, it is much slower than our approach. Compared to most

edge-preserving filter based local methods [81,107–109,159], our proposed algorithm

achieves better trade-off between accuracy and efficiency. Our algorithm falls behind

a GPU-based local method [110]. Note that [110] refines the final disparity maps

by employing advanced post-processing steps such as mutual consistency check [93]

(required to compute both left and right disparity maps) and hole filling. For results

reported in this chapter, only a 3×3 median filtering is applied to refine the disparity

maps. Incorporating effective and efficient disparity refinement step into our existing

stereo framework is a future research direction. The approximated 2PassAggGPU

approach can produce reasonably accurate disparity maps in real-time. Compared to

VAggGPU+DP, although being less accurate, it has the advantage that the compu-

tations are completely carried out by the GPU, leaving the CPU free to handle other

tasks.

Our GPU implementations (cost aggregation only) attain an average speedup fac-

tor of 245 compared to their CPU counterparts, with some sacrifice in accuracy. The

principal source of accuracy loss is our choice of GPU precision. Although the pixel

shader performs computation in 32-bit floating point numbers, we store the aggre-

gated matching costs in 8-bit textures for lower computational and read-back over-

head. Although this precision problem can be addressed by truncating-then-scaling
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Table 4.1: Accuracy and speed comparison of related stereo algorithms in the Mid-
dlebury online evaluation system [1]. VAggCPU+DP: dynamic programming with
CPU-based vertical bilateral aggregation (35 × 1); VAggGPU+DP: dynamic pro-
gramming with GPU-based vertical bilateral aggregation (32 × 1). 2PassAggCPU:
two pass CPU-based approximated bilateral aggregation (35 × 35); 2PassAggGPU:
two pass GPU-based approximated bilateral aggregation (32× 32).

Non-occ error %
Algorithm

Tsukuba Venus Teddy Cones
Avg. error % MDE/s

CostFilter [110] 1.51 0.20 6.16 2.71 2.65 145.7

PlaneFitBP [158] 0.97 0.17 6.65 4.17 2.99 9.4

VAggCPU+DP 1.57 1.53 6.79 5.53 3.86 2.62

RealtimeBP [116] 1.49 0.77 8.72 4.61 3.90 20.9

FastBilateral [81] 2.38 0.34 9.83 3.10 3.91 0.3

VAggGPU+DP 1.57 1.47 6.93 6.07 4.01 91.7

OptimizedDP [156] 1.97 3.33 6.53 5.17 4.25 19.0

RealtimeABW [107] 1.26 0.33 10.7 4.81 4.28 3.9

RealtimeGPU [80] 2.05 1.92 7.23 6.41 4.40 52.8

2PassAggCPU 1.47 1.40 9.48 5.27 4.41 1.43

ESAW [108] 1.92 1.03 8.48 6.56 4.50 194.8

RealtimeBFV [159] 1.71 0.55 9.90 6.66 4.71 106.9

2PassAggGPU 1.66 1.86 10.3 5.47 4.82 350.1

DCBGrid [109] 5.90 1.35 10.5 5.34 5.77 133.6

ReliabilityDP [112] 1.36 2.35 9.82 12.9 6.61 20.0

the original matching costs obtained, the resulting algorithms are more sensitive to

the selection of the truncation value than corresponding CPU implementations. And

also note that the stereo parameters are tuned for the CPU implementations and may

not be optimal for their GPU counterparts.

4.5.2 Video Sequences of Dynamic Scenes

In addition to performing well on static stereo images, we have applied our method

to stereo videos of dynamic scenes. Even though the videos are processed on a frame

by frame basis without incorporating temporal smoothness constraints, figure 4.8
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Figure 4.7: Disparity maps for the Middlebury benchmark data generated from our
proposed approaches.

shows that combining vertical bilateral aggregation and DP yields more temporally

coherent depth estimation than using either edge-preserving cost-volume filtering [3]

or DP optimization [4].

We also integrated our algorithm into a stereo system with live video input. The

input images are rectified with lens distortion removed. This preprocessing is im-

plemented on the graphics hardware using texture mapping functions. Figure 4.9

shows some live images from our system. Notice the fine structures and clean object

boundaries our approach is able to produce. The speed performance with respect

to different image resolutions and disparity ranges is summarized in table 4.2. Our

GPU-accelerated version is two orders of magnitude faster than its CPU counterpart.

It should be noted that our CPU implementation is not yet optimized at the assembly

level, which could lead to 2-3 times speedup.
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Figure 4.8: Selected disparity maps for a stereo video of dynamic scene (this data
set was publicized by [2]). First row: reference images form frames 1-4 of the scene.
Second row: results obtained using our implementation of Yoon and Kweon’s algo-
rithm [3]. Third row: results from the three-state DP algorithm similar to [4]. Last
row: results from vertical bilateral aggregation (32×1) and DP optimization. A 3×3
median filter is applied to refine the disparity maps for all three approaches. Note
the improved spatial and temporal consistency from our algorithm.

Figure 4.9: Two sample images and their depth maps from our live system on a
2.66GHz PC with a NVIDIA’s GeForce GTX 580 graphics card. We can achieve 71
fps with 320× 240 input images and 16 disparity levels.
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Table 4.2: Real-time Performance. The test system is a 2.66Ghz PC with a GeForce
GTX 580 graphics card from NVIDIA.

Runtime MDE/s
CPU Only GPU AcceleratedImage Size Disp. Range

2PassAggCPU VAggCPU+DP 2PassAggGPU VAggGPU+DP

16 1.38 2.59 292.1 87.2
320× 240

32 1.56 2.90 326.9 91.2
16 1.28 2.42 353.9 92.1

640× 480
32 1.48 2.55 427.6 96.1

4.6 Summary

In this chapter, we present a stereo framework that operates at real-time while still es-

timating high quality depth information for live stereo video sequences. Our proposed

algorithm combines edge-preserving cost-volume filtering and DP optimization. The

use of a color and distance weighted cost aggregation window in the vertical direction

reduces DP’s “streaking” artifacts. Experimental results have shown that it is among

the best performing real-time stereo algorithms in terms of both reconstruction qual-

ity and efficiency. In addition, an approximation for the 2D bilateral aggregation

is developed, which leads to a fully GPU-accelerated implementation to achieve two

orders of speed-up compared to the original approach in [3]. This simplified approach

can produce reasonably accurate disparity maps in real-time.

Looking into the future, optimizing DP using MMX (as in [15]) is likely to further

improve the speed performance. We would also like to investigate the precision issue

on the graphics hardware. Current graphics hardware does provide limited support

for high-precision texture maps, at the cost of performance degradation (the hardware

is optimized to work with 8-bit textures). From an algorithmic standpoint, our DP

implementation enforces the ordering constraint for speed consideration. Thin 3D
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structures (such as the flower stem in Figure 4.9) may disappear if it is far away

from the background. We plan to investigate the use of scanline optimization [18],

which enforces the smoothness constraint directly without employing the ordering

constraint. Another interesting venue to explore is to enforce the temporal consistency

in the video to reduce the flickering artifacts.
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Chapter 5 Global Stereo Matching Leveraged by Sparse Ground Control

Points

In this chapter, we present a novel global stereo model that makes use of constraints

from points with known depths. The rest of this chapter is organized as follows:

Section 5.1 introduces our basic stereo formulation. In Section 5.2, we present our

regularization prior and explain how to compute the prior likelihood given known

control points via an adaptive propagation algorithm. We valid our stereo model

with experiments in Section 5.3. Section 5.4 presents conclusions and planned future

work.

The main contribution of this chapter lies in the use of a new regularization prior

for global stereo matching. We make an assumption that there exists a sparse set

of scene points whose 3D positions are given and propose a Markov Random Field

(MRF) stereo formulation that incorporates priors from such Ground Control Points

(GCPs) [4]. Our motivation comes from the observation that the scene depth field is

piecewise smooth and even a small amount of GCPs can encode rich information on

scene structure. Under this view, we model stereo matching as a maximum a posterior

MRF (MAP-MRF) problem. The GCPs-based constraints are naturally integrated

into an MRF as soft constraints using the Bayes rule. Although the concept of

GCPs has been introduced in early stereo methods, to the best of our knowledge, the

use of punctual depth priors has never been explored in global stereo frameworks.

Quantitative evaluations with ground truth data demonstrate the effectiveness of
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using sparse GCPs to leverage the ill-posed stereo matching problem. Experimental

results show that our formulation clearly improves upon existing methods on the

Middlebury benchmark data set.

5.1 Problem Formulation

In this section, we present the stereo formulation proposed in this chapter. Note that

for notation clarity, our derivation will focus on rectified two-frame stereo. However,

it is relatively easy to generalize our method to handle multi-view stereo, for instance,

computing matching costs via plane-sweep based approach [160], as later shown in

Section 5.3.2.

Given a stereo image pair I = {IL, IR}, where IL, IR are the left and right images,

the goal of stereo matching is to compute the dense disparity map D of one reference

view, say IL. In our stereo model, in addition to the input images, we assume there

exists a sparse set of GCPs, denoted G, on the reference view whose disparities are

known with high confidence. For each pixel p ∈ IL, p ∈ G implies p is a control point

and we use Dp and Gp to denote p’s disparity value from D and G, respectively.

We formulate our stereo model as a MAP-MRF problem. We assume the GCP

acquisition is independent of the image formation process of the stereo pair I. Under

this assumption and using the Bayes’ rule, the posterior probability over D given

I and G can be written as P (D|I,G) ∝ P (I|D)P (G|D)P (D). As maximizing this

posterior is equivalent to minimize its negative log likelihood, our objective is to find

a disparity map D that minimizes a global energy function
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E(D) = − ln(P (I|D))− ln(P (D))− ln(P (G|D))

= Edata(D) + Esmooth(D) + Egcp(D).

(5.1)

The first term, the data energy Edata, comes from the negative log likelihood of

the probability of disparity assignment given the observed image pair, whereas the

second term, the smoothness energy Esmooth, encourages neighboring pixels to have

similar disparities based on the assumption that the scene is locally smooth. The last

term Egcp, which we refer to as the GCP energy, encodes the constraints from sparse

GCPs. In our stereo formulation, Edata(D)+Esmooth(D) is equivalent to the standard

cost function used by existing global stereo methods [18]. The GCP energy, which

plays a regularization role, is the key contribution of this work.

5.1.1 Basic Stereo Model

In the MRF stereo framework, the data energy comes from the negative log likelihood

of the matching costs and measures how well the disparity map D agrees with the

input images. We define the data term as the sum of per-pixel color difference as

Edata(D) =
∑
p∈IL

Φ(p,Dp), (5.2)

where Φ(, ) is a pixel-wise color dissimilarity function between corresponding pixels

given certain disparity value. For rectified two-frame stereo, we use the sampling

insensitive calculation of Birchfield and Tomasi [71] for increased robustness to image

sampling.
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The smoothness energy, under the MRF-based formulation, comes from the neg-

ative log likelihood of the smoothness-based prior. In this chapter, we assume that

pixels form a 2D grid and employ the widely used truncated linear model defined

upon a standard 4-connected neighborhood system N4 as

Esmooth(D) = λs
∑
p∈IL

∑
q∈N4(p)

wpq ·min(∆dpq, T ), (5.3)

where ∆dpq = |Dp − Dq| is the disparity difference between pixels p and q. λs is

the rate of increase in the discontinuity cost and T controls the limit of the cost.

The spatially varying per-pairing weights {wpq} are computed based on the color

differences between neighboring pixels on the reference view as

wpq = max(exp(
−∆cpq
γc

), ε). (5.4)

where ∆cpq is the Euclidean distance between pixels in the RGB color space. Pa-

rameters γc and ε control the sharpness and lower bound of the exponential function,

respectively.

5.2 Regularization using GCPs

The energy terms in Section 5.1.1 forms the basis of many standard MRF stereo

models [86, 117, 118], just to name a few. Although the global formulation can sub-

stantially improve the reconstruction quality over local correlation-based methods,

the capability of standard MRF stereo model is still limited. State-of-the-art stereo

models require additional regularization terms, such as the segmentation-based con-
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straints employed in [12]. What differentiates our formulation from existing MRF

stereo models is the leverage of prior knowledge about the scene structure encoded

in the GCP energy Egcp. In this section, we provide detailed descriptions of the GCP

regularization term proposed in this work.

5.2.1 Adaptive Propagation via Optimization

In order to model the likelihood P (G|D), our basic idea is to predict the disparity

values for non-GCP pixels from sparse control points. In other words, the objective is

to interpolate a dense disparity map from the GCP set G. Without prior assumption

this problem is clearly ill-posed. Inspired by the fact that the scene depth field is

always piecewise smooth, we present an adaptive disparity propagation algorithm

that is built upon a premise that neighboring pixels with similar color should have

similar disparities. Our adaptive propagation algorithm is given as input the reference

image together with the GCP set G and automatically propagate the disparity values

of GCPs to the rest pixels whose disparity values serve as the unknown.

We impose the constraint that two neighboring pixels p and q should have similar

disparity values if their colors are similar by trying to minimize the difference between

the disparity of pixel p and the weighted average of the disparities at p’s neighbors.

A global cost function can be defined as

J(D̃) =
∑
p∈IL

(D̃p −
∑

q∈N8(p) wpqD̃q∑
q∈N8(p) wpq

)2

=
∑
p∈IL

(D̃p −
∑

q∈N8(p)

αpqD̃q)
2,

(5.5)

where N8 is the 8-connected neighborhood system and the function wpq as defined in
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equation (5.4) correlates pixels based on their color similarities. αpq is the pairwise

weighting function that sums to one. Note that similar weighting functions have

been previously employed in [161, 162], where they are usually referred to as affinity

functions.

Note that if we consider D̃ as an one dimensional vector, the quadratic form

J(D̃) = D̃T (L −W )D̃ is exactly the cost function we wish to minimize. Here W is

a N × N (N is the total number of pixels) matrix whose elements are the pairwise

affinities and L is a diagonal matrix whose diagonal elements are the sum of the

affinities {αpq}. In our case L is simply an identity matrix.

Given that the cost function is quadratic, we minimize J(D̃) by solving OJ(D̃) =

0, which leads to the unconstrained system (L −W )D̃ = 0 (any constant vector D̃

is a trivial solution). Now given a set of GCPs with known disparities G, we mini-

mize J(D̃) subject to these additional constraints. The optimal D̃ can be efficiently

computed by solving a system of sparse linear equations Ax = b. Here A is a N ×N

sparse matrix with diagonal entries equal to one, and A(p, q) = (L−W )(p, q) if p 6∈ G

and A(p, q) = 0 otherwise. Likewise, bp = Gp if p ∈ G and bp = 0 otherwise. In this

work we solve the sparse linear systems using the UMFPACK library [163].

5.2.2 Likelihood from Disparity Propagation

After the optimal D̃ is computed, we model the likelihood P (G|D) as

P (G|D) ∝
∏
p∈IL

exp(−Ψ(Dp, D̃p)). (5.6)
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where function Ψ(Dp, D̃p) penalizes disparity assignment that diverges from the in-

terpolated disparities. In this work, our robust penalty function Ψ(x, y) is derived

from the Total Variance model [164] as

Ψ(x, y) = − ln((1− η) exp(
−|x− y|

γd
) + η). (5.7)

Parameters γd and η, respectively, control the sharpness and upper-bound of the

robust function. The GCP regularization term, Egcp, is then modeled as

Egcp(D) = − ln(P (G|D))

∝ λr
∑
p∈IL

Ψ(Dp, D̃p)
(5.8)

where λr is a regularization coefficient that controls the strength of the GCP energy.

After modeling the GCP regularization term, optimal disparity assignment that

minimizes equation (5.1) can be obtained using existing energy minimization tech-

niques surveyed in [85]. In this work, we use graph cuts [165] method to compute the

dense disparity map D.

5.3 Experimental Results

We have evaluated our stereo framework on different benchmark stereo images with

known ground truth data [5, 6, 95], and we show that our formulation quantitatively

improves the reconstruction accuracy. In the experiments we demonstrate that GCPs

used in our algorithm can be obtained in different ways. We first show that by

using consistency check among several local stereo algorithms, GCPs can be reliably
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Table 5.1: GCP densities and outlier percentage for the Middlebury stereo data.
Outlier (%) is the percentage of GCPs whose absolute disparity error is larger than
1 pixel.

Tsukuba Venus Teddy Cones Avg.
density (%) 19.1 15.8 12.1 9.34 14.1
outlier (%) 0.30 0.36 1.00 1.31 0.74

extracted from the stereo images themselves without resorting to additional sensors.

In addition, when sparse GCPs are provided from external sensors, our formulation

is capable of incorporating them to improve passive stereo vision.

5.3.1 Improving Passive Stereo: Computing GCPs from Stereo Images

For many vision applications people intend to recover scene depth based solely on

images without relying on exterior sensors or structured light patterns. In order to

obtain GCPs in this scenario, a straightforward way is to extract GCPs from the

stereo images via feature matching.

In this chapter, we adopt a simple approach to obtain sparse GCPs without re-

sorting to complicate algorithms. Our method is based on a voting strategy and

simply requires a few disparity maps from local methods. In detail, for the reference

image IL we compute three disparity maps via WTA. These disparity maps are: 1)

DBT from the Birchfield and Tomasi matching costs without aggregation; 2) DNCC

from normalized cross correlation using a 5 × 5 image patch; and 3) DAW , which

is computed using the adaptive weight aggregation method [3]. The window size for

DAW is set to 39 × 39. A pixel p ∈ IL is selected as a GCP candidate if p’s WTA

disparities in different disparity maps are consistent (variance smaller than 1 dispar-
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ity) and p is not near any intensity edge (edges detected by Canny edge detector).

To further remove matching outliers, we apply the same procedure to compute a

set of GCP candidates for IR. Finally, GCP candidates that survive the left-right

consistency check [93] are retained as the GCPs. We demonstrate in Figure 5.1 the

resultant GCPs for the Middlebury benchmark data. The GCP densities and outlier

percentages are provided in Table 5.1. As can be seen, the GCPs obtained from our

method are fairly sparse and contain very few outliers.

We experimentally validate the effectiveness of our algorithm using reliably matched

pixels as GCPs. Before reporting our results, we first present parameter settings used

in our experiments. The threshold ε in equation (5.4) is set to 0.3 to prevent the weight

from being too small. When computing wpq in equation (5.5), we instead set ε = 0

for edge-preserving interpolation. The associated color bandwidths γc is set to 3.6 for

equation (5.4) and 1.25 for equation (5.5), respectively. The parameters that control

the shape of the robust function (5.7) are chosen as γd = 2 and η = 0.005. The trun-

cation parameter T used for the discontinuity penalty is set to 2. The regularization

coefficients λs and λr are set to 20 and 8 throughout this experiment.

To evaluate the performance of our approach, we follow the methodology proposed

by Scharstein and Szeliski in [18]. The three disparity maps included in our first

comparison are: 1)D∗, which is the disparity map computed by minimizing the energy

term Edata + Esmooth, without considering the GCP energy; 2) D̃, the interpolated

disparity map using the adaptive propagation method as described in Section 5.2.1;

and 3) the result from our formulation, i.e., the disparity map D that minimizes the

cost function (5.1). Table 5.2 summarizes the percentages of error disparities (where
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the absolute disparity error is greater than 1 pixel). The error statistics accounts

for three pixel categories, classified as non-occluded (nonocc), near discontinuous

(disc), and the entire image (all). Note that we use constant parameters as reported

for the four evaluation stereo pairs. Associated disparity maps are demonstrated in

Figure 5.1.

As can be seen, disparity maps from our formulation outperform others for almost

all categories. In comparison with D∗, the reconstruction accuracy has been signifi-

cantly increased in D. The fact that our cost function (5.1) is built upon the standard

global stereo model with the GCP regularization term incorporated suggests that the

performance gain comes from the GCP constraints/priors. Our evaluation also shows

that even through the GCPs are sparse, the interpolated disparities D̃ from our dis-

parity propagation scheme are quite satisfactory in general. For “Venus”, “Teddy”,

and “Cones” sequences the results are better than the standard graph cuts stereo.

Although D̃ is less accurate for “Tsukuba”, by formulating Egcp as a soft constraint,

the additional GCP energy plays an effective role for regularizing stereo matching for

all data set.

We have also compared our results with those produced by competitive stereo algo-

rithms. Among the five compared methods, “Klaus” [12] is the current top performer

in the Middlebury evaluation table [1]; “Woodford” [88] and “Smith” [2] are recently

invented algorithms that also use novel regularization priors; “SymBP” [122] is one

of the state-of-the-art algorithms that uses segmentation-based constraint as regular-

ization prior. “GC” [117] is the pioneer in the use of energy minimization framework

and graph cuts to solve stereo correspondence. The energy function defined in [117]
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Table 5.2: Comparison of the results on the Middlebury data sets.

Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

D∗ 1.71 3.87 9.02 0.97 2.57 12.0 11.4 20.5 23.0 5.51 15.9 13.0

D̃ 1.92 2.41 9.71 0.46 0.74 3.99 6.58 11.7 16.4 4.87 10.5 12.0
D 0.87 2.54 4.69 0.16 0.53 2.22 6.44 11.5 16.2 3.59 9.49 8.95

is similar to our basic stereo model defined in Section 5.1.1. Quantitative error per-

centages in non-occluded areas for the four evaluation images are shown in Table 5.3.

As can be seen, results from our algorithm are comparable to other state-of-the-art

results. As of April, 2011, our method ranked 8th out of more than 100 published

stereo algorithms listed by the Middlebury evaluation table. It is also worth noting

that among the top ten approaches, only ours does not rely on color segmentation.

In addition to the standard data sets, we have applied our algorithm on a scene

that contains highly curved surfaces. As shown in Figures 5.2 and 5.3, our method

performs equally well on high-curvature areas, in which [122]’s segmentation prior

and [88]’s second order smoothness prior show their limit.

In terms of run time, for the “Teddy” sequence (450× 375 with 60 disparity lev-

els) on a 2.83GHz dual core CPU, detecting GCPs takes about 1.6 minutes (parallel

processing for left/right images using multi-thread technique); solving the system for

the interpolation takes about 10 seconds and the graph-cut optimization takes 24 sec-

onds. The total runtime for “Teddy” is about 130 seconds. The most time consuming

part is the adaptive weight aggregation [3]. However that step can be implemented

on GPU for better speed performance and much faster CPU implementations are also

available.
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(GCPs) (D∗) (D̃) (D)

Figure 5.1: Our results for Middlebury benchmark data. The first column shows
GCPs. Inliers and outliers are shown in blue and red, respectively. D∗ is from
minimizing Edata + Esmooth without incorporating the regularization term Egcp; D̃
is the disparity map from disparity propagation as defined in Section 5.2.1; Our
resultant disparity maps D are shown in the last column.

Table 5.3: Middlebury evaluation of our results compared with those produced by
competitive stereo algorithms. The numbers are the percentage of error disparities
in non-occluded areas.

Tsukuba Venus Teddy Cones Avg. Error Rank
Klaus [12] 1.11 0.10 4.22 2.48 1.98 1
Woodford [88] 2.91 0.24 10.9 5.42 4.88 59
Smith [2] 1.12 2.23 7.25 4.46 3.77 20
GC [117] 1.19 1.64 11.2 5.36 4.84 58
SymBP [122] 0.97 0.16 6.47 4.79 3.09 12
Ours 0.87 0.16 6.44 3.59 2.77 8
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Reference frame Ground truth Ours 2.76% bad

Smith [2] 3.41% bad SymBP [122] 16.1% bad Woodford [88] 25.1% bad

Figure 5.2: Results demonstrating the effectiveness of our method on the Middlebury
“Cloth2” data set [5] with curved surfaces. Red pixels are bad disparities in non-
occluded areas.

5.3.2 Active and Passive Sensing Fusion: Incorporating GCPs from Laser

Scanning

In this experiment we investigate our algorithm using GCPs obtained from laser range

scanning. While active range sensing techniques have been widely used in construc-

tion, survey, and military, the sampling density of these devices is limited since they

usually take only one depth measurement at one time. This limitation is particu-

larly problematic on mobile sensing platform. For example, typical lateral resolution

from airborne LiDAR system is about 1 point per meter while a digital imagery can

easily achieve 10 even 100 points per meter from the same height. In order to pro-

duce high resolution scans, multiple scans are required to handle missing data and

occlusion [6], which is both laborious and time consuming. Alternatively, 2D image

acquisition is a flexible, efficient, and inexpensive operation. In this experiment, we
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Reference frame Ground truth Ours 1.64% bad

Smith [2] 2.01% bad SymBP [122] 4.56% bad Woodford [88] 6.33% bad

Figure 5.3: Results demonstrating the effectiveness of our method on the Middlebury
“Cloth3” data set [5] with curved surfaces. Red pixels are bad disparities in non-
occluded areas.

seek to incorporate low resolution LiDAR data into our stereo framework to improve

the reconstruction accuracy.

For quantitative evaluation on ground truth data, we employ the “Fountain-P11”

multi-view stereo sequence publicized by Strecha et al. [6] as our test data. The range

data is acquired from a time-of-flight laser scanner. In addition to the 3D point clouds,

there are 11 high resolution color images whose camera parameters are provided in

the coordinate system defined by the LiDAR system. In order to simulate sparse

range scans, we downsample the original point clouds with a scale factor 16 using the

nearest-neighbor interpolation and treat resultant sparse 3D points as GCPs for our
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stereo matching algorithm. This implies that only about 1/256 (≈ 0.4%) 3D points

from the original dense scan are preserved.

We select the center frame (frame 5) as our reference view and use 6 of its neigh-

boring frames to compute the matching costs (the Euclidean norm of color differences

in RGB space) using the standard multi-view plane-sweep approach [160]. The color

images are downsampled to 1, 536× 1, 024, which is half of their original size. Given

the scene depth range, we equally quantize the depth space into 360 levels. Due to

memory and speed consideration, we divide the reference image into 4 rectangular

tiles (784 × 528). The width of the overlapping areas between two tiles is 16 pix-

els. We perform graph cuts optimization for each tile independently and merge the

4 depth maps to form a high resolution depth map. For pixels within overlapping

areas their depths are set to the mean of multiple measurements to preserve the

global smoothness. As shown in Figure 5.4, the depth map (c) produced from our

formulation compares favorably to the one from basic MRF stereo model, i.e., using

Edata + Esmooth as cost function. The depth map estimated using GCPs priors pre-

serves both fine structure details and sharp discontinuities near object boundaries.

Quantitative evaluation for this data set can be performed via the online system

maintained by Strecha et al. [6], given a triangle mesh. As depth maps fusion and

model building are not the focuses of this work, instead of fusing multiple depth maps

to form a complete 3D model, we simply construct a triangle mesh from frame 5’s

depth map and upload it to the evaluation system to obtain the error histograms.

Sigma in Figure 5.5 denotes the standard deviation of the depth returned by the laser

range scanner. As can be seen, without using our GCP priors, 34.7% of the depth
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(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 5.4: Results for Fountain-P11 data set [6]. (a) the reference view. (b) ground
truth depth map from LiDAR data, black pixels are missing data. (c)-(d) depth maps
computed with and without the GCP energy, respectively. (e)-(h) zoomed in views
of depth maps and associated mesh rendered in 3D. Notice the fine details preserved
by our algorithm in (e) and (g). This figure is best viewed in color.

Figure 1. Error histograms for depth maps (c) and (d) shown in Figure ??.

3034

Figure 5.5: Error histograms for depth maps (c) and (d) shown in Figure 5.4.

estimates are within the 3 × Sigma range of the ground truth data. Alternatively,

corresponding accuracy numbers have been quantitatively improved to 47% using our

algorithm. Note that for both methods we have applied moderate parameter tuning

to enable a fair comparison.
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Figure 5.6: The conceptual sketch of our mobile scanning unit. It can be vehicle
mounted for continuous mobile scanning. The two semi-transparent circles show the
trajectory of the scanning path.

In addition to quantitative evaluation using ground truth, we also apply our for-

mulation to active and passive sensing fusion for 3D reconstruction of urban envi-

ronment. In particular, the goal of this experiment is to fuse LiDAR data from an

active mobile scanner with image data from a passive video camera to generate high-

quality depth maps for 3D modeling purpose. As illustrated in Figure 5.6, our system

contains the following units: GPS and inertial measurement unit (IMU), laser range

sensor heads, camera imaging units, an integrated power unit, a storage unit, and a

control laptop (not shown in Figure 5.6). The system is designed to be portable and

it can be mounted on a vehicle. As the vehicle moves, the two-side mounted laser

sensors scan in a 360 degree circle. The reason we use two heads is that it can provide

more coverage in a single trip by scanning two helix trajectories. A panoramic camera
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Figure 5.7: The prototype scanner system. The lower images show the panoramic
camera and one of the GPS receivers and the two laser scanners.

is used to allow continuously record color imagery of the scene. All the sensors share

the same control and data storage unit, as well as the GPS/IMU signal so that all

the data can be geo-referenced. Figure 5.7 demonstrates our system prototype.

In order to perform sensing fusion, we first estimate the intrinsic camera model

(focal length, imaging center, and distortion coefficients) using the methods presented

in [65]. Non-linear lens distortion is removed after intrinsic calibration. At run-time,

the scene is simultaneously scanned by the LiDAR scanner and captured by the

video camera. The laser sensor calibration and GPS/IMU initialization are provided

by the hardware venders. After data collection, an off-line extrinsic calibration step

is performed to recover the absolute camera pose of each image under the LiDAR

coordinate system. We develop an interactive camera pose estimation system to
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Figure 5.8: Left column: example video frames captured by the passive video camera.
Right column: corresponding sparse 3D point clouds (GCPs) returned by the laser
scanner.

fulfill the task. The general idea is to firstly recover the camera pose of a reference

frame using a set of manually specified 2D and 3D correspondences1 [166]. Camera

poses of the rest frames can be estimated using the reference camera pose together

with the IMU data [8].

In Figure 5.8 we demonstrate two color images captured by our video camera

together with the corresponding 3D point clouds returned by the laser range sen-

sor. The 3D points are colorized after estimating the camera poses in the LiDAR

coordinate frame. In Figure 5.9 we provide qualitatively comparison of the depth

estimation results from passive stereo and passive-active sensing fusion. In order to

better highlight the differences, 3D mesh models are shown instead of depth maps.

As can been seen, results leveraged by the sparse LiDAR data outperforms passive

12D points are distinct image features such as corners, and the 3D points are the corresponding
3D structures whose positions {X,Y, Z} are defined under the LiDAR coordinate frame.
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stereo algorithms, especially for textureless areas and regions that contain fine struc-

tures. Depth maps and screenshots of colorized 3D dense point clouds after sensing

fusion are shown in Figure 5.10. Before sensing fusion, there are in total 20269 Li-

DAR points in the scenes shown in Figure 5.8 and after fusion the total number of 3D

points raised to 569601, which is about 28 times denser than the raw measurements

returned by the laser sensor.

5.4 Summary

In this chapter we present a global stereo matching framework that utilizes a sparse

set of points with highly reliable depths, i.e., the ground control points (GCPs). While

the concept of GCP has been introduced in early stereo literature, to the best of our

knowledge, it is the first time that it is incorporated in a full frame global optimization

framework. Using the Bayes rule, GCPs are included in an MRF in a principled way.

Our generic formulation allows GCPs to be obtained from various modalities. In this

chapter, we explore two interesting scenarios where 1) GCPs are obtained from stereo

images themselves via stable matching; and 2) GCPs are provided from sparse laser

range scans by exterior sensor. By evaluating our method with ground truth data,

we demonstrate the effectiveness of our algorithm on an extensive set of experimental

results.

Looking towards the future, we will continue our research on using stereo match-

ing to enhance the resolution of laser range data from mobile scanning, which usually

has a much lower resolution than image data. This chapter is primarily of inter-

est to stereo, however, our formulation could potentially be applied to other MRF-
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passive stereo

passive and active sensing fusion

Figure 5.9: 3D models of the scenes shown in Figure 5.8. For the top two models,
depth maps are computed using the standard stereo model. In comparison, the
bottom two are from our proposed sensing fusion framework.
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Figure 5.10: Dense depth maps and 3D point clouds of the scenes shown in Figure 5.8.

formulated labeling problems in computer vision [85].
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Chapter 6 BRDF Invariant Stereo using Light Transport Constancy

In this chapter, we introduce light transport constancy (LTC) as a constraint on stereo

matching. LTC simply asserts that the percentage of light reflected by a particular

surface patch (the BRDF) remains constant for a given viewing direction. This

constraint has not been previously exploited and allows stereo correspondence to be

correctly determined for surfaces with an arbitrarily complex BRDF and does not

require calibrated light sources or objects.

As an intuitive introduction to this constraint, consider the scene configuration in

Figure 6.1. The scene is illuminated by a single point light source, L. A particular

point in the scene, xi, will reflect light to each of cameras C1 and C2 according to:

ECj
(xi) = L(xi)R(xi, θL, θCj

) (6.1)

where ECj
(xi) is the radiance in the direction of Cj from the point xi, L(xi) is the

observed irradiance of point xi, and R(xi, θL, θCj
) is the BRDF at point xi, indexed

by the vectors in the direction of L and Cj. Throughout the text, direction vectors

are written as single variables for notational simplicity (e.g. θL, θCj
) despite the fact

they represent 2D quantities. Also for the sake of simplicity, we do not include the

dependency of wavelength in this exemplary scenario.

The traditional Lambertian assumption is that the reflectance (BRDF) is equal

in the directions of C1 and C2, i.e.,
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Figure 6.1: (Left) The BRDF at x1 determines the percentage of light reflected from
light source L toward each of cameras C1 and C2. (Right) The spatial position of all
components is the same, but the light distribution has been altered by rotating the
light about its light bulb (i.e., steering the light beam to a different place). Although
the incident intensity at x1 has changed, the percentage of light reflected remains
constant.

R(xi, θL, θC1) = R(xi, θL, θC2) (6.2)

Thus we legitimately have EC1(xi) = EC2(xi). However, this relation will not in

general hold true for arbitrary BRDFs.

Light transport constancy assumes that the surface BRDF, R(xi, θL, θCj
), remains

constant under variable illumination. If we vary the lighting conditions so that the

irradiance varies by a factor of k(xi), then the observed reflected radiance, E ′Cj
(xi),

will also vary by a factor of k(xi).

E ′Cj
(xi) = k(xi)L(xi)R(xi, θL, θCj

) (6.3)

Note that in general neither the irradiance nor the change in irradiance will be

equal at different scene points. That is, L(x1) 6= L(x2) and k(x1) 6= k(x2). This is

in contrast to the assumption made in many vision algorithms that the light source
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is a precisely isotropic emitter. Consider the two scene variants in Figure 6.1. The

configuration of components is identical, but the emitted light intensity field has been

changed by rotating the flashlight. The emitted light is not uniform in all directions,

and thus L(x1) 6= L(x2) and k(x1) 6= k(x2).

One thing distinctly worth noticing is that light sources mentioned in this chapter

are geometrically static, i.e. stationary during image acquisition. Illumination varia-

tions simply come from variable radiant intensity distributions, instead of any spatial

position variation of light sources.

Redefining our observation, E ′′Cj
(xi), as the ratio of two different lighting condi-

tions, gives:

E ′′Cj
(xi) =

E ′Cj
(xi)

ECj
(xi)

=
k(xi) · L(xi) ·R(xi, θL, θCj

)

L(xi) ·R(xi, θL, θCj
)

= k(xi) (6.4)

Note that the observations are invariant to camera viewpoint and E ′′C1
(xi) =

E ′′C2
(xi) regardless of the surface BRDF.

The simplified formulation just given is sufficient to design a practical stereo

system which uses two cameras and a single uncalibrated light source. Practically,

this design is easier to implement than existing methods for BRDF invariant stereo,

because it requires fewer known or precisely calibrated scene components.

More important from a theoretical standpoint, the introductory formulation can

be extended to handle incident lighting for which a single constant ki can not explain

the lighting variation. By factoring the incident light field into a number of basis

functions which vary independently, a series of linear equations which relate obser-
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vations to lighting and reflectance can be derived. We can then use light transport

constancy to formulate a rank constraint on multi-view stereo matching, providing

a relation between observations, lighting complexity, and BRDF complexity. One

implication of this relation is that stereo matching can be performed precisely even

when scenes contain arbitrary BRDFs.

This chapter makes several contributions: the derivation of a rank constraint

for stereo using light transport constancy which allows correspondence of arbitrary

surface BRDFs, a practical implementation which is easier to reproduce than existing

methods for BRDF invariant stereo, and an evaluation of our method on several real

scenes to show that it is both practical and effective.

The rest of the chapter is organized as follows. We first develop our light transport

constancy and discuss its variations with different lighting and BRDFs in Section 6.1.

Experimental results are presented in Section 6.2, using several images captured from

scenes with arbitrary BRDFs. Finally we summarize in Section 6.3.

6.1 Light Transport Constancy

Light transport constancy (LTC) can be used to formulate a general constraint on

multi-baseline stereo matching regardless of the surface BRDF complexity, provided

that sufficient illumination variations and viewpoints are available. A point to em-

phasize here is that when we discuss illumination variation in the scope of LTC, we

mean radiometric variations of the light source, i.e., changes in the radiant intensity.

This is fundamentally different from geometric lighting variations, i.e., moving the

light source around, as required in many photometric stereo methods.
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This section first presents the rank constraint in the context of multiple point light

sources, each of which varies independently. We then show how this can be applied

to arbitrary lighting by replacing point lights with arbitrary lighting basis functions.

Finally, we expand the formulation to include the concept of BRDF complexity and

show that simple BRDFs also provide a rank constraint.

6.1.1 LTC as a rank constraint

The simplified derivation in equation (6.4) assumes that the irradiance is due to a

single light source and varies by a single multiplier, ki. We now formally introduce

our radiometric model.

For a single point xi on the display surface, it is illuminated by a point light source

and observed by several cameras. For the sake of simplicity, let us for now assume

the camera have just one channel (e.g., a gray-scale camera).

The irradiance at xi is denoted as D(xi, λ) where λ is the wavelength. Let

R(xi, λ, θL, θCj
) be the spectral reflectance (i.e., BRDF) of xi indexed by the inci-

dent direction θL and viewing direction θCj
. If t(λ) is the spectral response for the

camera, then the irradiance detected by the camera sensor is:

ICj
(xi) =

∫
Λ

D(xi, λ) ·R(xi, λ, θL, θCj
) · t(λ)dλ, (6.5)

where Λ is the camera’s spectrum. Note that strictly speaking, the integration should

include a cosine term to account for the fore-shortening effect. Since we are dealing

with a static scene, it is a per-point scale factor and we consolidate it in the BRDF.

Finally, the measured irradiance ICj
(xi) is converted to a pixel value via a camera
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Figure 6.2: Light reflected toward camera C1 can be explained as a combination of
reflected light from each of Light1 and Light2.

response function. For the scope of this chapter, we assume that the camera has a

linear response, in other words, the camera is measuring relative irradiance directly.

To deal with cameras with non-linear responses, standard radiometric calibration

procedures (e.g. [167,168]) should be applied to correct the pixel values.

If we change only the intensity of D(xi, λ) by a scale factor k(xi) and keep every-

thing else fixed, ICj
(xi) will be modulated by k(xi) according to equation (6.5) and

our assumption of linear camera response. This concurs with our intuitive introduc-

tion in equation (6.4). We now expand to derive a series of linear equations that can

accommodate an arbitrary number of light sources. These equations are the basis for

a rank constraint on stereo matching.

Figure 6.2 shows a scene observed from multiple cameras and illuminated by

multiple light sources. We can explain the perceived irradiance from a particular

scene point, xi, in the direction of a particular camera, Cj, as a combination of the

reflected light from each individual source, Light1..LightM .
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ICj
(xi) =

∫
Λ

D1(xi, λ) ·R(xi, λ, θL1 , θCj
) · t(λ)dλ+

∫
Λ

D2(xi, λ) ·R(xi, λ, θL2 , θCj
) · t(λ)dλ+ . . . (6.6)

For notational convenience we will hereafter drop the indexing for scene location,

xi, since it is understood that each scene location is considered separately. Further,

we denote integration constants for particular pairs of light-camera directions as

RC1L1 =

∫
Λ

D1(λ) ·R(λ, θL1 , θC1) · t(λ)dλ (6.7)

Equation (6.6) can be rewritten using the new notation as:

ICj
= RCjL1 +RCjL2 +RCjL3 + . . . (6.8)

We can include the notion of lighting variation in which Di(λ) is modulated by a

scalar LiVj . Let IC1V1 be the observed irradiance at camera C1 under the illumination

variation V1, we can write a sequence of bilinear equations relating the observations

from each camera, C1..CJ , under illumination conditions, V1..VN :

IC1V1 = L1V1RC1L1 + L2V1RC1L2 + . . .
IC2V1 = L1V1RC2L1 + L2V1RC2L2 + . . .

. . .
IC1V2 = L1V2RC1L1 + L2V2RC1L2 + . . .
IC2V2 = L1V2RC2L1 + L2V2RC2L2 + . . .

. . .

(6.9)

Note that light transport constancy holds that RCjLm is constant for a given

pair of light source and camera position regardless of how we vary the illumination

conditions. In addition, the illumination variation for a given light source, LmVn , does

not depend on either the BRDF or the camera viewpoint.
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This set of linear equations can be rewritten in matrix form as:

#  of cameras #  of lights #  of cameras
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(6.10)

Let us denote the matrix on the left side I, and the two matrices on the right L

(lighting modulation matrix) and R (reflectance matrix). From the factorization, we

can see that there is a rank constraint on matrix I. When the number of light sources,

M , is less than both the number of lighting variations and the number of cameras,

matrix I has rank of at most M . This constraint allows stereo correspondence to be

determined.

6.1.2 Rank constraint with multiple color channels

In the case of color cameras, irradiance ICj
is typically represented as a triple of three

intensity values, each representing a distinct color channel in red, green or blue. Let

us denote them as {IrCj
, IgCj

, and IbCj
}. Similarly we further decompose the spectral re-

sponse of the light source Lighti into three separate channels: {Dr
i (λ), Dg

i (λ), Db
i (λ)}

(imagine that we have a 3-color light projector).

By plugging in different camera/light spectral responses t(λ) and D(λ) for each
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color channel in equation (6.5), {IrCj
, IgCj

, and IbCj
} can be obtained as

IrCj
= Rr
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1
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g
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1
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(6.11)

where Rl
CjLm

1
=
∫
Dm

1 (λ) ·R(λ, θL1 , θC1) · tl(λ)dλ and l,m ∈ {r, g, b}.

With multiple views and multiple lights, we can rewrite the matrix in equa-

tion (6.10) for color input as:
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(6.12)

The reflectance matrix R consists of many 3× 3 sub-matrices. Each matrix, typi-

cally called as a color mixing matrix, records the interaction of the spectral responses

of the light source and camera. Typically, the responses of cameras and projectors

are wide band and have large overlaps [169]. Thus each sub-matrix has a general

form shown above. Nevertheless, as far as stereo matching is concerned, we are only

interested in the rank of matrix I on the left side, not the actual decomposition.

Therefore the rank constraint we have developed for gray-scale images can be simply

extended. That is, matrix I has rank of at most 3 ×M . Note that although I now

has a higher rank, it has 3× the columns as well, so that on balance we expect little

change in the outcome.

There are two special cases we can consider. First, with a white light captured

by color cameras, the number of columns in the lighting matrix L reduces by a
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factor of three. Therefore the rank constraint on I is at most M , i.e., same as using

gray-scale cameras. Since we are measuring 3× the data but have only 1× the rank

constraint, we expect white lighting and color cameras to be a desirable measurement

configuration. Second, with color lighting captured by gray-scale cameras, we have

two subcases. If the three color channels scale independently, I has only J columns

where J is the number of cameras, but its rank constraint remains 3×M . Naturally

this is undesirable since more cameras will be required to ensure that I has a sufficient

number of columns. On the other hand, if the three channels scale in the same way,

I’s rank remains M , which is the same as the gray-scale case.

Dealing with color images is a direct extension from the gray-scale case. Because

the notation is cumbersome, we will resume the assumption of a gray-scale world in

our remaining discussion.

6.1.3 Arbitrary lighting basis functions

Light transport constancy applies even when light sources are not simple point light

sources. Each light in the preceding analysis can be replaced with a lighting basis

function, each of which might have broad spatial support.

In general, the irradiance value from a scene point, xi, in the direction of cam-

era Cj can be written as an integral over all incoming light directions. Therefore

equation (6.5) can be modified as the following for a more general lighting setup.

ICj
=

∫
Φ

∫
Λ

D(λ, φ) ·R(λ, φ, θCj
) · t(λ)dλdφ (6.13)

where D(λ, φ) is the incident light irradiance function indexed by incoming angle φ,
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and Φ ranges over a hemisphere.

The irradiance field D can be decomposed into a linear combination of basis

vectors:

D(λ, φ) = kL1D1(λ, φ) + kL2D2(λ, φ) + . . .+ kLM
DM(λ, φ) (6.14)

It is conceptually helpful to think of each basis as a separate light source. We pre-

viously discussed individual point lights as the basis, however area lights represented

as a piecewise constant basis, or a wavelet decomposition of the incident illumination

field would work equally well. By truncating the wavelet expansion after a sufficient

amount of variation has been accounted for, very general lighting can be modeled

using a finite set of coefficients. The graphics community has in fact used such an

expansion to represent incident illumination fields [170].

We can now rewrite equation (6.13), taking into account the lighting bases and

indexed by illumination condition.

ICjVn = kL1Vn

∫
Φ

∫
Λ

D1(λ, φ) ·R(λ, φ, θCj
) · t(λ)dλdφ

+ kL2Vn

∫
Φ

∫
Λ

D2(λ, φ) ·R(λ, φ, θCj
) · t(λ)dλdφ

(6.15)

That is, the observation from camera Cj under illumination condition Vn, is a summa-

tion over the individual lighting bases, each modified by their own variation multiplier,

kLmVn .

Notice that each integral term is constant because it relies only on the lighting

basis and the surface BRDF. Just as is true in the case of discrete point light sources,

lighting variation will induce a set of bilinear equations. These equations can be

95



written identically to equation (6.10) by redefining variables in terms of the new

continuous formulation.
LmVn = kLmVn

RCjLm =

∫
Φ

∫
Λ

Dm(λ, φ) ·R(λ, φ, θCj
) · t(λ)dλdφ

(6.16)

6.1.4 Limited BRDF complexity

So far we have formulated the problem assuming completely arbitrary surface re-

flectance. However, most real world BRDFs are not arbitrary, and it is unlikely that

the reflectance is truly independent in every camera direction. In this case we can

further factor the reflectance matrix, R, into a set of reflectance bases, B, and a

mixing matrix M.

(6.17)

We now have a trilinear equation I=LBM, which has a rank constraint on I if

either I or B has a small number of columns. For example, if the surface is Lambertian,

then a single BRDF basis describes the outgoing light in all camera directions, and B

has a single column. Thus we have a rank constraint if either the illumination or the

BRDF is sufficiently “simple”. In this work we address completely arbitrary BRDFs

and have not evaluated the expected complexity of real world BRDFs.
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6.1.5 Stereo matching

It is not necessary to find an actual factorization of the observation matrix I in order

to evaluate stereo correspondence. It is sufficient to calculate the singular values of

matrix I and select the disparity which results in a matrix of minimum rank.

Because the matrix will be corrupted with noise, it is impossible to calculate rank

exactly. Conceptually, we prefer matrices which have most of their energy in the first

few principal components rather than those with evenly distributed energy. Thus, we

use moments to approximate the notion of minimum rank and select the disparity

with minimum score. If the singular values of I are encoded in w1..wn, then we choose

the disparity which minimizes <.

< =
∑
i

(i · w2
i )/
∑
i

w2
i (6.18)

When a single light source and only two cameras are used, simply minimizing the

second singular value is equivalent to equation (6.18). However, in general it is

impossible to use the second (or any particular) singular value as a matching metric,

because the expected rank of the matrix is not known a priori.

The introductory matching metric which uses image ratios given in equation (6.4),

is also equivalent to equation (6.18). A proof of this equivalence is provided in the

Appendix. When only two cameras are used, this simpler matching metric is quite

convenient, because it allows existing stereo implementations to be used without

modification.

Scharstein and Szeliski have introduced a taxonomy of stereo algorithms which

includes matching cost, aggregation, and disparity selection [18]. Light transport
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constancy and the implied rank constraint are local operators and replace only the

matching cost in existing stereo algorithms. Aggregation, disparity selection, and any

global regularization are all orthogonal issues, and the new invariant introduced in

this work can be used in conjunction with a wide variety of existing algorithms.

6.2 Experiments

In order to facilitate the evaluation of our technique, we captured several stereo data

sets under varying illumination conditions. Our data acquisition setup includes up

to four synchronized VGA (640 × 480) cameras and two light projectors, as shown

in Figure 6.3. The cameras are calibrated with respect to each other, but the pro-

jectors are completely uncalibrated. Note that much simpler light sources could be

substituted–for example, the flashlight shown in Figure 6.1. We use projectors only

because they allow the light distribution to be controlled remotely rather than by

physically manipulating the light source. The actual light output of the projector is

unknown to our algorithm. We used several types of patterns for lighting variation

(shown in Figure 6.4), attempting to verify that our results work for both low and

high frequency variation. The first is a smooth ramp that is used in the minimum

configuration of two lighting variations. The second is a randomly moving Gaussian

blob that exhibits low-frequency brightness variation. The third is a pattern acquired

from a real flashlight. And the last is a stripe pattern with random intensity values

which exhibits high frequency variation. Unless noted otherwise, all the experiments

were carried out with the low-frequency (blob) pattern since we expected this to most

closely mimic a spotlight which is brighter in the center of its field, similar to the
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Figure 6.3: Our experimental setup with four cameras and two variable light sources.

Figure 6.4: Patterns used for lighting variation. From left to right: ramp lighting
(boxed for illustration purpose), blob lighting, flashlight, stripe lighting.

motivational example shown in Figure 6.1.

Another practical issue to mention is the dynamic range. Saturated pixels (e.g.,

from specular highlights) will violate the rank constraint we have developed. In our

experiments we carefully control the exposure to avoid saturation. It is also possible

to combine images taken with multiple exposures to generate a high-dynamic-range

(HDR) image (e.g. [168,171]).

Two-view stereo is the dominant method by which stereo algorithms are evalu-

ated. Although our method is inherently multi-view, we defer to tradition and first

evaluate our method in the arrangement we believe will be most commonly imple-

mented. Following these evaluations we provide some analysis of the rank constraint
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when multiple cameras and lights are present. Finally we show some quantitative

evaluations with a ground-truth data set.

6.2.1 Two-view with one light source

In this setup, we used two cameras and a single light source position. We experi-

mented with gray-scale images to evaluate our method against traditional stereo.

Minimal configuration. We captured gray-scale images from each of two cameras

under two different lighting variations. Figure 6.5 shows the two lighting variations

from the viewpoint of one of the cameras. The first lighting pattern is a flat gray-

field and the second is the ramp in Figure 6.4. Brightness constancy (i.e., traditional

intensity difference based on lambertian surfaces) is evaluated using one of the two

lighting configurations. Light transport constancy is evaluated by first computing a

new image as the ratio of the two illumination conditions, as given in equation (6.4).

This process is mathematically equivalent to evaluating the rank constraint. The

resulting ratio image is shown in Figure 6.6. Note that neither the specular highlights

nor any other view-dependant effect are visible in the ratio image.

Standard stereo matching is applied to the stereo pairs arising from both bright-

ness constancy and light transport constancy using a Sum-of-Absolute-Differences

(SAD) metric. Because we are interested in the performance of a local matching

operator, we use a WTA approach and simply accept the minimum SAD disparity as

correct rather than applying a global regularization method.

Figure 6.7 shows the stereo results from each method. The left column is derived

from brightness constancy, and the right column is from light transport constancy.
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Figure 6.5: A plastic pumpkin illuminated by a single light source under
two different lighting conditions.

Figure 6.6: The ratio of im-
ages taken under two light-
ing conditions.

The first row shows the disparity map computed by each method. Depth is coded

such that white pixels indicate depths closer to the camera. The second row shows the

same data along a single scanline as scaled disparity values. In both visualizations,

it is clear that our new method has superior results. Note the garbled depth values

in the case of brightness constancy. In the third row of Figure 6.7, we investigate the

reason that our method performs well by plotting the matching profile for a single

pixel. Note that brightness constancy has no clear global minimum, whereas our

method has a very clear minimum at the correct disparity. This presumably leads to

much better depth estimates.

Together with existing stereo methods. In order to validate that existing stereo
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Figure 6.7: Results from us-
ing brightness constancy (left col-
umn) and light transport con-
stancy (right column). (Row
1) Disparity maps computed by
stereo matching using each invari-
ant. (Row 2) Scaled disparity es-
timates along a single scan line.
(Row 3) Matching profile for the
pixel marked with a red cross.

methods can be adapted to handle non-Lambertian objects, we tested the same two

sets of gray-scale stereo pairs with a stereo implementation available on the web [172].

This implementation happens to be based on graph cuts [117], which allowed us to

further verify that no undesirable artifacts are caused by integration with a global

regularization method. Since we have computed a ratio image to use for matching,

absolutely no modification to the existing code is required. The computed disparity

maps are shown in Figure 6.8. Similar to the WTA example above, the disparity map

computed using light transport constancy shows much better results.

Increased lighting variation. It is possible that our improved results come merely

because by imposing lighting variation more information is available when computing

disparity, rather than because our new invariant actually performs better. To eval-
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Figure 6.8: Disparity maps com-
puted using an unmodified graph-
cut stereo algorithm with bright-
ness constancy (left) and our new
invariant (right).

Figure 6.9: Disparity maps com-
puted from a data set with six il-
lumination variants. Left is from
brightness constancy; right is from
light transport constancy.

uate whether this is true, we computed disparity using a data set with six lighting

variations, as shown in Figure 6.9. Brightness constancy is evaluated as the Sum-of-

Absolute-Differences over the vector of all six image pairs. Light transport constancy

is evaluated as a rank constraint over the same input images. Although it is clear that

additional lighting variations improve the result from brightness constancy, the result

from light transport constancy also improves. We conclude that additional lighting

variations improve the results from either constraint but that our new invariant per-

forms better on objects such as the pumpkin, which exhibit non-Lambertian effects.

Using a simulated flashlight. We captured a lighting pattern of a regular flashlight

(shown as one pattern in Figure 6.4). To facilitate automatic data acquisition, we use

a projector to display five variations of the flashlight pattern with shift or rotation,

simulating the scenario described in Figure 6.1. Good results can be obtained as

shown in Figure 6.10.

Complex reflectance. We further experimented with scenes containing more com-
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Figure 6.10: Reconstructed depth map
using a simulated flashlight with five
lighting variations.

plex surface material properties. We first captured a piece of silk glued onto a slightly

curved surface. The view dependent reflectance of the silk is very obvious in the stereo

pair, as shown in Figure 6.11. Using seven lighting variations, we evaluate brightness

constancy against our new invariant and find that light transport constancy is better

able to deal with this highly non-Lambertian scene. The improvement is particularly

obvious in the plot of disparity along a scanline, shown in the bottom row of Fig-

ure 6.12. Brightness constancy results in many incorrect disparity estimates, whereas

light transport constancy results in a smooth curve.

Multi-channel color. The advantage of light transport constancy over brightness

constancy is further demonstrated in Figure 6.13. We captured full color images

of a lady’s purse made from materials with a complex anisotropic BRDF. Note the

surface color changes in the stereo image pair: the right side of the purse appears

to be blue in one image and pink in the other image. With a white light source, we

captured just two lighting variations in full color. We use as few lighting variations

as possible to illustrate the effectiveness of our approach. All color images were

used to compute each of light transport constancy and brightness constancy. The

reconstructed depth maps are shown in the bottom row of Figure 6.13. We would

not expect brightness constancy to perform well under these conditions, and indeed
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Figure 6.11: Silk cloth from two different viewpoints. Note the non-Lambertian
reflectance.

Figure 6.12: (Top) Disparity maps computed using brightness constancy and light
transport constancy (LTC). (Bottom) Scaled disparity values along a single scanline.
Note how much more robustly LTC estimates depth.

we see that the computed object depth is erroneous in the region exhibiting color

change. In contrast, light transport constancy is able to evaluate depth accurately.

Note that it is not required to use the multichannel color formulation to compute

disparity on colored objects such as this. We converted the input images to gray-scale

to experiment with the formulation given in equation (6.10), and found the result to
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Figure 6.13: Stereo reconstruction of a lady’s purse with anisotropic BRDFs. (Top
row) the left and right images under one lighting condition; note the color changes
in two images. (Bottom left) reconstructed depth map using brightness constancy.
(Bottom right) reconstructed depth map using light transport constancy.

be qualitatively similar to that in Figure 6.13, which is computed using the full 3-

channel color formulation given in equation (6.1.2), with the caveat that the rank on

the matrix I is expected to be one because we use a gray-scale light source. As we

have discussed in Section 6.1.2, this is a more favorable configuration for matching.

Complex geometry. Our next data set is a live tree with substantial specular

highlights. This scene would be challenging for traditional stereo algorithms due to

the non-Lambertian effects and because there are many depth discontinuities. For this

setup, we used the high-frequency (stripe) pattern with 30 variations to calculate the

disparity map shown in Figure 6.14. With such a large number of lighting conditions,

we would anticipate good performance. As expected, the results are of high quality.

Individual leaves are well represented by clean boundaries and smooth estimates of

depth, despite the fact that no global regularization method is applied.
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Figure 6.14: (Left) Tree with non-Lambertian reflectance properties and many depth
discontinuities. (Right) Disparity map computed from thirty lighting variations.

Figure 6.15: Disparity map for the pumpkin calculated from multiple cameras and
multiple light sources.

6.2.2 Multi-view with two light sources

To evaluate the behavior of the rank constraint under multi-view conditions, we

computed disparity on the pumpkin scene using four cameras, two light sources, and

thirty lighting variations. The resulting disparity map can be seen in Figure 6.15. As

a whole, the results are very good, with smooth estimates of depth across the surface

of the pumpkin. There is an error in the lower left corner which we believe is caused by

occlusion from some camera viewpoints. Accounting for partial occlusion is typically

handled during the aggregation stage of stereo processing, and, as mentioned earlier,

we focus on the matching cost in this work.

Analysis of singular values. When two light sources are used, the rank of the
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observation matrix is limited to 2 for surfaces with arbitrary BRDF. In this case, we

expect the third singular value to be minimized at the correct disparity. However, if

the complexity of the surface reflectance is limited, the rank may be lower. This could

happen either if the surface was actually Lambertian or merely because it appears

Lambertian from the limited set of viewpoints available.

To provide some insight into the behavior of our rank constraint, we plotted the

2nd, 3rd, and 4th singular values as a function of disparity for two different scene

points, drawn from the multi-view example above. For the scene point in the top

plot of Figure 6.16, we see that the 2nd singular value has an obvious minimum and

that the combined metric < is minimized at this same disparity. However, in the

case of the scene point in the bottom plot, < is minimized at the same disparity as

the 3rd singular value. Although the 4th singular value is not precisely zero as would

be expected in an ideal environment without noise, we can see that < has an easily

locatable global minimum which confirms that our approximation of “minimum rank”

is performing as expected.

6.2.3 Quantitative Evaluation

While the Middlebury stereo evaluation web site [1] has become the gold standard to

evaluate performance of stereo algorithms, the datasets there do not include lighting

variations therefore cannot be used for our approach. In order to generate our own

“ground-truth” data, we project a single vertical strip pattern from the light projector

and calculate the depth along this strip using traditional stereo. The strip is swept

across the scene simulating a laser triangulation-based scanner. Since only the strip
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Figure 6.16: Normalized singular values for two particular scene points. The x-axis
represents the disparity. Dots indicate the minimum on each curve. The moment has
been scaled to fit on the same graph together with the singular values. Note that the
moment is minimized together with a different singular value in each case.

is illuminated, disparity can be calculated unambiguously. The advantage of this

approach as opposed to using a real laser range scanner is that the ground-truth data

is automatically registered in the stereo cameras’ coordinate frame.

Figure 6.17 shows a data set we captured. Note that we have not implemented

sub-pixel disparity interpolation, so some of the groves on the surface are not visually

noticeable in the depth map. Bad pixels around the silhouette (due to occlusions)

are manually removed.

We generated depth results under varying patterns and compared the depth maps

with the ground-truth data. If a pixel’s disparity differs more than one pixel from the
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Figure 6.17: The ground truth dataset.Left is one color image and right is its corre-
sponding depth map. Bad pixels due to occlusions are manually removed.

ground truth, we label it as a bad match. The error rates from two methods, one using

the brightness constancy (BC) and the other using LTC, are summarized in Table 6.1

and Figure 6.18. In general, the error rates for both methods reduce as the number

of lighting variations increases. This is not surprising because there are more data to

work with. With just a few low-frequency lighting variations, the error rate from BC

is very large and changes quite arbitrarily. Results from LTC are much better. On

the other hand, with high frequency lighting, both BC and LTC can generate much

more accurate results and the difference in error rates is much smaller. These rapid

lighting variations in fact “mask” the surface reflectance properties. This is similar

to the fact that regular structured light scanners using binary-coded patterns can get

decent results from shiny objects. Nevertheless, LTC always outperforms BC in all

testing cases.

Table 6.1: Error rate of depth maps computed with brightness constancy (BC) and
light transport constancy (LTC). Different lighting patterns (as shown in Figure 6.4)
are used for this evaluation.

# of lighting Low-freq. (blob) High-freq. (stripe)

variations 2 3 4 8 16 32 8 16 32
BC Error (%) 54.5 65.0 61.1 40.7 44.1 21.3 3.44 3.95 3.25
LTC Error (%) 13.6 9.27 5.9 5.28 3.9 3.10 3.33 3.13 2.36
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Figure 6.18: A plot of the error rates using data from Table 6.1.

6.3 Summary

Light transport constancy is a new invariant for multi-view stereo matching which

allows the depth of surfaces with arbitrary BRDF to be computed. We introduce

a rank constraint based on this invariant which allows stereo algorithms to combine

observations of non-Lambertian surfaces from different viewpoints in a theoretically

principled way.

Our rank constraint can be applied with as few as two cameras and two lighting

configurations. In addition, unlike existing methods for non-Lambertian stereo, our

method does not require that light sources be precisely calibrated nor does it require

known calibration objects in the scene. The rank constraint implied by light transport

constancy can easily be employed as a replacement to brightness constancy. Thus,

whenever sufficient lighting variation is available, any existing stereo algorithms can

be enhanced to allow matching of non-Lambertian surfaces. We have verified exper-

imentally that stereo matching is possible using our rank constraint. In addition, we
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show that it performs better than brightness constancy on a variety of scenes.

A few aspects of our work may limit the conditions under which light transport

constancy can be used. The rank constraint requires multiple illumination conditions

to be available. All previously existing methods for arbitrary BRDF stereo also

require illumination variation [133, 140], and it is interesting to wonder if this is a

fundamental requirement. In addition, we do not consider the issue of inter-reflection

in our formulation. In scenes with strong inter-reflection (e.g., concave and shiny

objects), some points may have a higher rank than the rest (consider inter-reflections

as additional light sources). Experiments are needed to see if inter-reflection can

be treated as a secondary effect or noise. Finally, the rank constraint is a multi-

view constraint, and we do theoretically require more camera viewpoints than light

source positions when the surface BRDF is truly arbitrary. However, the BRDF of

most real surfaces is not arbitrary, and we have shown that BRDF complexity can

be traded for lighting complexity. Thus an interesting avenue for future work would

be to characterize the actual matrix rank, and thus the actual number of viewpoints

required, for a wide class of naturally occurring scenes and lighting.
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Chapter 7 Conclusions and Future Work

In this dissertation, we have focused on the classical stereo matching problem - esti-

mating the scene depth information from a collection of calibrated images gathered

from different viewpoints. We have presented novel dense stereo algorithms for high-

quality depth estimation from images. In this chapter, we summarize our technical

innovations and suggest areas for future work.

7.1 Innovations

This dissertation has introduced the following five innovations:

• Two-Pass Approximation of the Bilateral Filtering Based Cost Aggre-

gation. We investigate the use of two separate 1D windows, one horizontal, and

one vertical, to approximate the full bilateral filtering based cost aggregation

approach originally described in [3]. Our approximation leads to low computa-

tional complexity and satisfactory cost-volume smoothing results. The two-pass

approximation is also suitable for hardware acceleration. We propose a GPU

implementation of this two-pass adaptive aggregation method and showed that

the GPU version is orders of magnitude faster than its CPU counterpart.

• Real-Time Stereo using Vertical Aggregation and Dynamic Program-

ming. For high-quality depth estimation in real-time, we propose to incorpo-

rate the two-pass cost aggregation scheme into a dynamic programming (DP)
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stereo framework. We found that changing the window shapes from conven-

tional squares to vertical rectangles allows overall smooth depth estimates,

fine structures near depth discontinuities, and much less scanline inconsistency

(“streaking”) artifacts. A hybrid (GPU + CPU) implementation makes it one

of the fastest stereo algorithms available.

• GCPs-Based Regularization Prior for Global Stereo. We propose a novel

formulation for stereo reconstruction that makes use of constraints from sparse

ground control points (GCPs). Prior constraints about the scene structure de-

rived from the GCPs are incorporated into a global inference framework via an

MRF formulation in a principled way. We demonstrated that using GCPs com-

puted automatically from stable matching, our stereo model can improve the

reconstruction accuracy without resorting to image segmentation, plane fitting,

or additional sensors. Furthermore we showed that our stereo formulation is

able to handle surfaces with different orders of smoothness, such as those with

high-curvature details.

• Fusion of Low Resolution LiDAR Data and High Resolution Imagery

for 3D Reconstruction. Based on our proposed stereo formulation in Chap-

ter 5, we fuse low resolution LiDAR data acquired from a mobile range scanner

with high resolution images captured by digital cameras for 3D reconstruction.

In this scenario, we demonstrate that GCPs can be obtained from external sen-

sors and our stereo model is able to improve the stereo matching quality by

leveraging the constraints from sparse LiDAR measurements.
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• Light Transport Constancy for Stereo Correspondence Beyond Lam-

bert. We introduce a new matching invariant for stereo called light transport

constancy (LTC) and use it to formulate a rank constraint for multi-view stereo.

LTC does not require calibrated light sources or calibration objects in the scene

and allows stereo matching to be performed precisely even when the scenes

contain arbitrary surface BRDFs. Our new constraint can be used to provide

BRDF invariance to any existing stereo method whenever appropriate lighting

variation is available.

7.2 Future Work

At the end of each previous chapter (Chapters 4, 5,and 6), we discussed limitations of

our proposed methods and suggested relative immediate issues for future work. In this

section, we propose a few more ambitious research topics and share our impressions

of future trends in stereo matching.

After roughly 40 years of research on stereo, many elements of stereo algorithms

had, in many ways, matured. For instance, camera calibration, stereo geometry, and

efficient methods for local correspondences search are well understood. Perhaps the

most significant progress in the last decade has been the advance of global stereo

methods that based on the MRF formulation [85]. In particular, the development of

powerful optimization algorithms (e.g., graph cuts [165] and belief propagation [173])

and effective regularization priors (e.g., segment-based priors [122,174] and high-order

smoothness priors [2, 88] has dramatically pushed the envelope of stereo research,

giving substantially more accurate results than were previously possible. However,
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nearly all top stereo algorithms were evaluated using the Middlebury benchmark data

set [5, 175] which has been captured inside the laboratory with ideal lighting condi-

tions, Lambertian materials and piecewise planer surfaces (Figure 2.4). On the other

hand, depth estimation for outdoor environments is of greater relevance to applica-

tions but also more challenging. Typical difficulties that a stereo method needs to

conquer in an outdoor scene (e.g. Figure 7.1) include large textureless regions (ground

and sky), non-rigid scenes (pedestrians or vehicles), non-Lambertian reflectance (win-

dows and metals), changing light conditions, and surface with high-curvature details,

etc. These aspects form a particular challenge for outdoor stereo reconstructions.

We believe that in the coming decade, the focus of stereo algorithms should turn to

handling real-world images that has been acquired outside the laboratory without

attempting to find simple or ideal cases. We also expect to see more complete bench-

mark data that contains realistic scenes, i.e., outdoor scenes for which active stereo

is not applicable. The recent work by Strecha et al. [6]is a promising first step.

Another important research direction to explore is the potential of using ma-

chine learning and data driven approaches to help stereo reconstruction overcome

its weakness. Recently, learning has been successfully applied to single image 3D

reconstruction [31, 33]. Unlike stereo vision which reconstructs 3D via triangulation,

depth estimates from monocular cues are entirely based on the evidence about the

environment presented in a single image. A natural question to ask is whether one

can combine the monocular cues with multi-view cues for improved depth estimation.

We believe that for certain types of scene (e.g. urban environments), monocular cues

and geometric-based stereo cues give largely orthogonal, and therefore complemen-
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Figure 7.1: Image of a typical outdoor urban scene.

tary information about depth. Take the scene in Figure 7.1 for example, stereo should

be able to predict correct disparities for building facades and thin structures which

contain sufficient texture variations, however tends to fail for textureless regions such

as the ground and sky. On the other hand, monocular cues which depend on the

overall content of the image, are better at handling these homogeneously textured

regions. Looking into the near future, investigating how monocular cues can be inte-

grated with passive stereo to obtain better depth estimates than using stereo alone

is, in our view, a very promising direction.
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Appendix

We show in this appendix that the multiview rank constraint proposed in Chapter 6

is equivalent to the absolute difference of ratio images when only two viewpoints

and two illumination conditions are present. That is, given image intensities from

illumination conditions a and k1a from camera A, and b and k2b from camera B, we

want to show that the observation matrix’s second singular value has a minimum at

the same disparity as |k1 − k2|.

The observation matrix can be written as:

[
a b
k1a k2b

]
Its second singular value s2 can be calculated as:

s2 =
1

2

[
2(a2 + k21 + k22b

2 + b2)− 2

√
a4(k21 + 1)2 + b4(k22 + 1)2+

2a2b2(k1k2 + 1)2 − 2a2b2(k1 − k2)2

] 1
2

(A.1)

Let us define d = k1 − k2 such that it is positive, reversing the role of k1 and k2

if necessary. Note also that a, b, k1, k2 are all positive due to physical constraints.

It can be shown that s2 = 0 if and only if k1 = k2, (given non-zero a and b).

Similarly, it is obvious that |k1 − k2| = 0 only when k1 = k2. It remains to be shown

that s2 is related to d by a monotonic relationship, such that an increase in s2 always

implies an increase in d.

Now if we replace k2 with k1 − d in equation (A.1) and take the derivative of s2

with respect to d, we have:

∂(s2)

∂(d)
=

1

4
√
s2

[4(k1 + d)b2 − 1

G
(4b4((k1 + d)2 + 1)(k1 + d)+

4a2b2(k1(k1 + d) + 1)k1 − 4a2b2d],

(A.2)
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where

G =

√√√√ a4(k21 + 1)2 + b4((k1 + d)2 + 1)2+

2a2b2(k1(k1 + d) + 1)2 − 2a2b2d2
(A.3)

We need to show that this derivative is always positive, ∂(s2)
∂(d)
≥ 0, which is the

same as showing:

4(k1 + d)b2 >
1

G
(4b4((k1 + d)2 + 1)(k1 + d)+

4a2b2(k1(k1 + d) + 1)k1 − 4a2b2d)
(A.4)

Taking square of both sides and simplifying results in:

64a2b6d2 + 128a2b6k21d
2 + 64a2b6k31d + 64a2b6k1d

3+

64a4b4k31d + 64a2b6k1d + 64a4b4k1d + 64a4b4k21d
2 > 0

(A.5)

The above inequality holds true because all variables are positive, and thus the

rank constraint is equivalent to using the absolute difference of the ratio images.
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