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Abstract. Recently, there has been remarkable growth of interest in the develop-

ment and applications of Time-of-Flight (ToF) depth cameras. However, despite

the permanent improvement of their characteristics, the practical applicability of

ToF cameras is still limited by low resolution and quality of depth measurements.

This has motivated many researchers to combine ToF cameras with other sen-

sors in order to enhance and upsample depth images. In this paper, we compare

ToF cameras to three image-based techniques for depth recovery, discuss the up-

sampling problem and survey the approaches that couple ToF depth images with

high-resolution optical images. Other classes of upsampling methods are also

mentioned.

1 Introduction

Image-based 3D reconstruction of static [73, 81, 31] and dynamic [85] objects and

scenes is a core problem of computer vision. In the early years of computer vision, it

was believed that visual information is sufficient for a computer to solve the problem, as

humans can perceive dynamic 3D scenes based on their vision. However, humans do not

need to build precise 3D models of an environment to be able to act in the environment,

while numerous applications of computer vision require precise 3D reconstruction.

Today, different sensors and approaches are often combined to achieve the goal

of building a detailed, geometrically correct and properly textured 3D or 4D (spatio-

temporal) model of an object or a scene. Visual and non-visual sensor data are fused

to cope with varying illumination, surface properties [37], motion and occlusion. This

requires good calibration and registration of the modalities such as color images, laser-

measured data (LIDAR, hand-held scanners, Kinect), or Time-of-Flight (ToF) depth

cameras. The output is typically a point cloud, a depth image, or a depth image with a

color value assigned to each pixel (RGBD).

A calibrated stereo rig is a widespread, classical device to acquire depth information

based on visual data [73]. Since its baseline, i.e, the distance between the two cameras,

is usually narrow, the resulting depth resolution is limited. Wide-baseline multiview

stereo [81] can provide a better depth resolution at the expense of more frequent occlu-

sions and partial loss of spatial data. A collection of different-size, uncalibrated images

of an object, or a video, can also be used for 3D reconstruction. However, this requires

point correspondence, or tracking, across images/frames, which is not always possible.

Photometric stereo [31] applies a camera and several light sources to acquire the sur-

face normals. The normal vectors are integrated to reconstruct the surface. The method
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provides fine surface details but suffers from less robust global geometry [61]. The

latter is better captured by stereo methods which can be combined with photometric

stereo [61] to obtain precise local and global geometry.

Shape acquisition systems using structured light [72, 16] contain one or two cameras

and a projector that casts a specific, fixed or programmable, pattern onto the shape

surface. Systems with programmable light pattern can achieve high precision of surface

measurement.

The approaches to image-based 3D reconstruction listed above are the most widely

used in practice. A number of other approaches to ‘Shape-from-X’ exist [84, 86], such

as Structure-from-Motion, Shape-from-Texture, Shape-from-Shading and Shape-from-

Focus. These approaches are usually less precise and robust. They can be applied when

high precision is not required, or as additional shape cues in combination with other

methods.

Among the non-visual sensors, the popular Kinect [101] can be used for real-time

dense 3D reconstruction, tracking and interaction [38, 62]. The device combines a color

camera with a depth sensor projecting invisible structural light. Currently, its resolu-

tion and precision are limited, but still sufficient for applications in game industry and

human-computer interaction (HCI).

Different LIDAR devices [92] have numerous applications in various areas includ-

ing robot vision, autonomous vehicles, traffic monitoring, as well as scanning and 3D

reconstruction of indoor and outdoor scenes, buildings and complete residential areas.

They deliver point clouds with a measure of surface reflectivity assigned to each point.

Last but not least, ToF depth cameras [18, 29] acquire low-resolution, registered

depth and intensity images at the rates suitable for real-time robot vision, navigation,

obstacle avoidance, game industry and HCI. This paper is devoted to a specific but crit-

ical aspect of ToF image processing, namely, depth image upsampling. The upsampling

can be performed in different ways. We give a brief survey of the methods that com-

bine a low-resolution ToF depth image with a registered high-resolution optical image

in order to refine the depth resolution, typically by a factor of 5 to 10.

The rest of the paper is structured as follows. In section 2, we discuss the specifics

of an important class of ToF cameras and compare their features to the features of three

main image-based methods. Section 3 is the core of our survey, while section 4 provides

conclusion and outlook.

2 Time-of-Flight cameras

A recent survey [18] offers a comprehensive summary of the operation principles, ad-

vantages and limitations of ToF cameras. The survey focuses on lock-in ToF cameras

which are widely used in numerous applications, while the other category of ToF cam-

eras, the pulse-based, is still rarely used. Our survey is also devoted to lock-in ToF

cameras; for simplicity we will omit the term ‘lock-in’.

ToF cameras [68, 24] are small, compact, low-weight, low-consumption devices that

emit infrared light and measure the time-of-flight to the observed object for calculating

the distance to the object, usually called the depth. Contrary to LIDAR devices, ToF

cameras have no mobile parts, and they capture depth images rather than point clouds.
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In addition to depth, ToF cameras deliver registered intensity images of the same size

and reliability values of depth measurements.

The main disadvantages of ToF cameras are their low resolution and significant

acquisition noise. Although both resolution and quality are gradually improving, they

are inherently limited by chip size and small active illumination energy, respectively.

The highest currently available ToF camera resolution is QVGA (320 × 240), with

VGA (640× 480) being a target of future development.

Tab. 1 compares ToF cameras to three main image-based methods in terms of basic

features. Stereo vision (SV) and structured light (SL) need to solve the correspondence,

or matching, problem; the other two methods, photometric stereo (PS) and ToF, are

correspondence-free. Of the four techniques, only ToF does not require extrinsic cali-

bration. SV is a passive method, the rest use active illumination. This allows them to

work with textureless surfaces when SV fails. On the other hand, distinct, strong tex-

tures facilitate the operation of SV but can deteriorate the performance of the active

methods, especially when different textures cover the surface and its reflectance varies.

Table 1. Comparison of four techniques for depth measurement.

stereo vision photometric stereo structured light ToF camera

correspondence yes no yes no

extrinsic calibration yes yes yes no

active illumination no yes yes yes

weak texture perform. weak good good good

strong texture perform. good medium medium medium

low light performance weak good good good

bright light perform. good weak medium/weak medium

outdoor scene yes no no yes?

dynamic scene yes no yes yes

image resolution camera depend. camera depend. camera depend. low

depth accuracy mm to cm mm µm to cm mm to cm

The active methods operate well in low lighting conditions, when scene illumina-

tion is poor. Not surprisingly, passive stereo fails when visibility is low. The situation

reverses for bright lighting that can prevent the operation of PS and reduce the perfor-

mance of SL and ToF. In particular, bright lighting can increase ambient light noise in

ToF [18] if ambient light contains the same wavelength as camera light. (A more recent

report [51] claims that bright lighting performance of ToF is good.) High-reflectivity

surfaces can be a problem for all of the methods.

PS is efficient for neither outdoor nor dynamic scenes. SL can cope with time-

varying surfaces, but currently it is not applied in outdoor conditions. Both SV and ToF

can be used outdoor and applied to dynamic scenes, although the outdoor applicability

of ToF cameras can be limited by their illumination energy and range [14, 9], as well as

by ambient light. Image resolution of the first three techniques depends on the camera

and can be high, contrary to ToF cameras whose resolution is low. Depth accuracy of
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SV depends on the baseline and is comparable to that of ToF. The other two techniques,

especially SL, can yield higher accuracy.

From the comparison of the four techniques, we observe that ToF cameras and pas-

sive stereo vision have complementary characteristics. As discussed below in section 3,

this fact has motivated researchers to combine the two sources of depth data in order

to enhance applicability, accuracy and robustness of 3D vision systems. Although ToF

camera–stereo data fusion usually results in ToF depth image upsampling, in some cases

this may be rather a by-product than the main goal of the fusion.

ToF cameras have numerous applications. The related surveys [19, 18] conclude

that the most exploited feature of the cameras is their ability to operate without moving

parts while providing depth maps at high frame rates. This capability greatly simplifies

the solution of a critical task of 3D vision, the foreground-background separation. ToF

cameras are exploited in robot vision [36] for navigation [91, 13, 88, 99] and 3D pose

estimation and mapping [67, 56, 22].

Further important application areas are 3D reconstruction of objects and environ-

ments [10, 17, 3, 20, 46, 42], computer graphics [82, 69, 44] and 3D television [80, 78,

90]. (See [77] for a recent survey of depth sensing for 3DTV.) ToF cameras are applied

in various tasks related to recognition and tracking of people [26, 4, 43] and parts of hu-

man body: hand [53, 60], head [23] and face [60, 71]. Alenya et al. [1] use color and ToF

camera data to build 3D models of leaves for automated plant measurement. Additional

applications are discussed in the recent book [24].

3 ToF depth image upsampling

Low resolution and low signal-to-noise ratio are the two main disadvantages of ToF

depth imagery. The goal of depth image upsampling is to increase the resolution and

simultaneously improve image quality, in particular, near depth edges where surface

discontinuities tend to result in erroneous or lacking measurements [18]. In some ap-

plications, such as mixed reality and game industry, the depth edge areas are especially

important because they determine occlusion and disocclusion of moving actors.

Approaches to depth upsampling form three main classes [15]. In this survey, we

discuss image-guided upsampling when a high-resolution optical image registered with

a low-resolution depth image is used to refine the depth. Image-guided upsampling was

selected because it is more widespread than the other two classes of approaches, and

sufficient experience had been gained in the area. However, for completeness we will

now briefly discuss the other two classes, as well.

3.1 Upsampling with stereo and with multiple measurements

ToF–stereo fusion [59] combines ToF camera depth with multicamera stereo data.

Hansard et al. [29] discuss the existing variants of this approach and provide a compar-

ative evaluation of several methods. The important issue of registering the ToF camera

and the stereo data is also addressed. By mapping ToF depth values to the disparities of

a high-resolution camera pair, it is possible to simultaneously upsample the depth val-

ues and improve the quality of the disparities [25]. Kim et al. [42] address the problem
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of sparsely textured surfaces and self-occlusions in stereo vision by fusing multicam-

era stereo data with multiview ToF sensor measurements. The method yields dense and

detailed 3D models of scenes challenging for stereo alone while enhancing the ToF

depth images. Zhu et al. [103, 102, 104] also explore the complementary features of

ToF cameras and stereo in order to improve accuracy and robustness.

Yang et al. [96] present a setup that combines a ToF depth camera with three stereo

cameras and report on GPU-based, fast stereo depth frame grabbing and real-time ToF

depth upsampling. The system fails in large dark regions that cause troubles to both

stereo and ToF cameras. Bartczak and Koch [2] combine multiple high-resolution color

views with a ToF camera to obtain dense depths maps of a scene. Similar input data are

used by Li et al. [49] who present a joint learning-based method exploiting differential

features of the observed surface. Kang and Ho [39, 33] report on a system that contains

multiple depth and color cameras.

Hahne and Alexa [27, 28] claim that combination of ToF camera and stereo vision

can provide enhanced depth data even without precise calibration. Kuhnert and Stom-

mel [46] fuse ToF depth data with stereo data for real-time indoor 3D environment re-

construction in mobile robotics. Further methods are discussed in the recent survey [59].

A drawback of ToF–stereo is that it still inherits critical problems of passive stereo vi-

sion: the correspondence problem, the problem of textureless surfaces, and the problem

of occlusions.

A natural way to improve resolution is to combine multiple measurements of an

object. Fusing multiple ToF depth measurements into one image is sometimes referred

to as temporal and spatial upsampling [15]. In the studies [76, 8], the authors acquire

multiple depth images of a static scene from different viewpoints and merge them into

a single depth map of higher resolution. An advantage of such approaches is that it does

not need a sensor of another type. Working with depth images only allows one to avoid

the so called ‘texture copying problem’ that will be discussed later in relation to image-

guided upsampling. A limitation of the methods [76, 8] is that only static objects can be

measured.

Mac Aodha et al. [55] use a training dataset of high-resolution depth images for

patch-based upsampling of a low-resolution depth image. Although theoretically at-

tractive, the method is too time-consuming for most applications. A somewhat similar,

patch-based approach was developed by Hornacek et al. [34] who exploit patchwise

self-similarity of a scene and search for patch correspondences within the input depth

image. The method [34] aims at single-image upsampling while the algorithm [55]

needs a large collection of high-resolution exemplars to search in. A drawback of the

method [34] is that it relies on patch correspondences which may be difficult to obtain,

especially for less characteristic surface regions. Finally, Katz et al. [40] have recently

patented a method for combined depth filtering and resolution refinement.

3.2 Problems of image-guided upsampling

Fig. 1 demonstrates an example of successful upsampling of a high-quality depth image

of low resolution. The input depth and color images are from the Middlebury stereo

dataset [74]. The original high-resolution depth image was acquired with structural

light, then artificially downsampled to get the low-resolution image shown in Fig. 1.
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Small parts of depth data (dark regions) are lost. The upsampled depth is smooth and

very similar to the original high-resolution data used as the ground truth. In the Middle-

bury data, depth discontinuities match well the corresponding edges of the color image.

This dataset is often used for quantitative comparative evaluation of image-guided up-

sampling techniques.

input depth and color images upsampled depth ground-truth depth

Fig. 1. Middlebury input data, upsampled depth and the ground truth.

For real-world data and applications, the problem of depth upsampling is more com-

plicated than for the high-quality Middlebury data. Fig. 2 illustrates the negative fea-

tures of depth images captured by ToF cameras1. The original depth resolution is very

low compared to that of the color image. When resized to the size of the color image,

the depth image clearly shows its deficiencies: a part of the data is lost due to low reso-

lution; some shapes, e.g., the heads, are distorted. Despite the calibration, the contours

of the depth image do not always coincide with those of the color image. There are

erroneous and lacking measurements along the depth edges, in the dark region on the

top, and in the background between the chair and the poster.

To use a high-resolution image for depth upsampling, one needs to relate image

features to depth features. A basic assumption exploited by most upsampling methods

is that image edges are related to depth edges, that is, to surfaces discontinuities. It is

usually assumed [11, 21, 54, 64, 50, 15] that smooth depth regions exhibit themselves as

smooth intensity, or color, regions, while depth edges underlie intensity edges. Clearly,

this assumption is violated in the regions of high-contrast texture and on the border of

a strong shadow.

Some studies [94, 83] relax the assumption of depth-intensity edge coincidence in

order to circumvent the problems discussed below and avoid the resulting artefacts.

However, depth edges are in any case a sensitive issue. Since image features are the only

data available for upsampling, one has to find a balance between the edge coincidence

assumption and other priors. This balance is data-dependent, which may necessitate

adaptive parameter tuning of an upsampling algorithm.

Precise camera calibration is crucial for the applications that require good-quality

depth images, in general, and accurate depth discontinuities, in particular. Techniques

and engineering tools used to calibrate ToF cameras and enhance their quality are dis-

cussed in numerous studies [29, 65, 68, 32, 52, 48]. Procedures for joint calibration of a

1 Data courtesy of Zinemath Zrt [105].
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issue is related to the so-called texture copying, or texture transfer, problem. Contrast

image textures tend to ‘imprint’ onto the upsampled depth image, as illustrated in Fig. 4

where textured regions cause visible perturbation in the refined depth. This disturbing

phenomenon and possible remedies are discussed in [94, 83].

color image upsampled depth ground-truth depth

Fig. 4. The texture transfer problem in depth upsampling.

3.3 Depth upsampling with single image

Image-guided ToF depth upsampling can be based on a single image, or use video. For a

single image, upsampling methods in their operation principles can be loosely grouped

into the following classes:

– methods using different versions of multilateral filtering [45, 97, 5, 70, 21, 94];

– methods based on Markov Random Fields [11, 54, 7];

– methods applying optimization [64, 7, 15, 50];

– methods using Non-Local Means (NL-Means) filtering [35, 64];

– methods based on segmentation [87, 83];

– other methods, e.g., using a Bayesian approach [50].

The classes may overlap since a method may combine several techniques. For example,

MRF-based approaches often lead to optimization and may apply filtering techniques,

as well.

Techniques using video are based on similar principles, but they may exploit video

redundancy and additional constraints such as motion coherence, also called temporal

consistency. We will discuss video-based approaches separately.

Upsampling methods have to combine two different kinds of spatial data, the ToF

depth and the intensity, or color. When video is available, the temporal dimension

should also be taken into account. Upsampling techniques based on filtering in spatial

or spatio-temporal domain are usually variants and extensions of the original bilateral

filter [89]. The bilateral filter applies two Gaussian kernels, a spatial (or domain) one

and a range one. The spatial kernel weighs the distance from the filter center, while the

range kernel weighs the absolute difference between the image value in the center and

the value in a point of the window. The bilateral filter can be efficiently implemented
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in constant and real time [66, 95] which makes its practical application especially at-

tractive. The reader is referred to the book [63] for a detailed discussion of bilateral

filtering.

The idea of bilateral filtering has been extended in different ways. The joint (or

cross) bilateral filters apply the range filter to a second image (guidance image) rather

than to the original one. These filters have been successfully used in a wide range of

tasks including joint bilateral upsampling (JBU) of depth images [45]. Further at-

tempts to combine different criteria and enhance the result of upsampling led to the use

multilateral, rather than bilateral, filters.

Yang et al. [97] applied the joint bilateral filter to a cost volume that measures the

distance between the potential depth candidates and the ToF depth image resized to

the color image size. The filter enforces the consistence of the cost values and the color

values. The upsampling problem is formulated as adaptive cost aggregation. To improve

the robustness of the method [97] and its performance at depth edges, the authors later

added the weighted median filter and proposed a multilateral framework [94]. The use

of the median filter can also diminish the effect of texture copying. (See [98] for a

tutorial on weighted median filtering.) The improved method [94] was implemented on

a GPU to build a real-time high-resolution depth capturing system.

Chan et al. [5] proposed an upsampling scheme based on the blended, composite

joint bilateral filter that locally adapts to the noise level and the smoothness of the

depth function. Depending on the local context, the composite filter switches between

the standard bilateral upsampling filter and an edge-preserving smoothing depth filter

independent from color data. Such solution can potentially reduce artefacts like texture

copying. Riemens et al. [70] presented a multi-step (multiresolution) implementation of

JBU that doubles the depth resolution at each step. Finally, Garcia et al. [21] enhanced

the joint bilateral upsampling by taking into account the low reliability of depth values

near depth edges.

The early paper [11] describes an application of the Markov Random Fields (MRF)

to depth upsampling using a high-resolution color image. The two-layer MRF is defined

via the quadratic difference between the measured and the estimated depth, a depth

smoothing prior, and the weighting factors that relate image edges to depth edges. This

formulation leads to a least square optimization problem which is solved by the con-

jugate algorithm. Lu et al. [54] use a linear cost term (truncated absolute difference)

since the quadratic cost is less robust to outliers. Their formulation of the MRF-based

depth upsampling problem includes adaptive elements and is solved by the loopy belief

propagation. Choi et al. [7] use quadratic terms in the proposed MRF energy and apply

both discrete and continuous optimization in a multiresolution framework.

A number of approaches apply an optimization algorithm to an upsampling cost

function not related to an MRF. Such cost functions often contain terms similar to those

used by the MRF-based methods. Ferstl et al. [15] define an energy function that com-

bines a standard quadratic depth data term with a regularizing Total Generalized Varia-

tion (TGV) term and an anisotropic diffusion term that relates image gradients to depth

gradients. The primal-dual optimization algorithm is used to minimize the energy func-

tional.
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Park et al. [64] apply an MRF to detect and remove outliers in depth data prior

to upsampling. However, their optimization approach to upsampling does not rely on

Markov Random Fields. The functional formulated in [64] includes Non-Local Means

(NLM) regularizing term that helps preserve local structure and fine details in presence

of significant noise. (See the recent survey [57] for a discussion of the NLM filter.).

The method proposed by Huhle [35] et al. also detects outliers and uses the color

NLM filter. However, their approach is based on filtering rather than optimization. The

paper [35] discusses the interdependence between surface texturing and smoothing. The

authors point out that the correspondence of depth and image pixels may change due to

the displacement of the reconstructed point.

Segmentation of color and depth images can be used for upsampling either sepa-

rately [87] or in combination with other tools. Tallon et al. [87] propose an upsampling

and noise reduction method based on joint segmentation of depth and intensity into re-

gions of homogeneous color and depth. Conditional mode estimation is used to detect

and correct regions with inconsistent features. Soh et al. [83] point out that the image-

depth edge coincidence assumption may occasionally be invalid. They oversegment the

color image to obtain image super-pixels and use them for depth edge refinement. Then

a MAP-MRF framework is used to further enhance the depth.

Li et al. [50] developed a Bayesian approach to depth image upsampling that takes

intrinsic camera errors into consideration. The method simulates uncertainty of depth

and color measurements by a Gaussian and a spatial-anisotropic kernel, respectively.

The scene is assumed to be piecewise planar. RANSAC is used to select inliers for each

plane model. An objective function combining depth and color data terms is introduced

and optimized to obtain the refined depth.

Most of the above mentioned studies compare the proposed method to existing tech-

niques. Often, images from the Middlebury stereo dataset [74] containing the ground

truth depth are used for quantitative comparison. The recent evaluation study [47] uses

images from [74] as well as manually labelled ToF camera and color data. The study

compares a number of image-guided upsampling methods including bilateral filters,

MRF optimization and the cost volume-based technique [97].

3.4 Video-based depth upsampling

In this section, we briefly discuss the depth upsampling methods that use video rather

than a single image. As already mentioned, the two categories of methods are based

on the same assumptions and principles, but the video-based techniques may apply

additional constraints.

To obtain depth video, Choi et al. [6] apply motion-compensated frame interpolation

and the composite Joint Bilateral Upsampling procedure [5]. Dolson et al. [12] consider

dynamic scenes and do not use the assumption of identical frame rate of the two video

streams. They present a Gaussian framework for multidimensional extension of 2D

bilateral filter in space and time. Fast GPU implementation is discussed.

Xian et al. [93] consider synchronized depth and image video cameras and propose

upsampling solution implemented on GPU in real time on the frame-by-frame basis

without temporal processing. Their multilateral filter is inspired by the composite Joint

Bilateral Upsampling procedure [5]. Kim et al. [41] propose a depth video upsampling
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method that also operates on the frame-by-frame basis. They use adaptive bilateral filter

taking into account the low SNR of ToF camera data. The problem of texture copying

is addressed.

Richardt et al. [69] consider the task of video-based depth upsampling in the context

of computer graphics applications, such as video relighting, geometry-based abstraction

and stylization, and rendering. The depth data are first pre-processed to remove typical

artefacts. Then a dual-joint-bilateral filter is applied to upsample the depth. Finally, a

spatio-temporal filter is used that blends spatial and temporal components. The blending

parameter specifies the degree of depth propagation from the previous time step to the

current time step using motion compensation.

Min et al. [58] propose weighted mode filtering based on a joint histogram. Tem-

poral coherence of depth video is achieved by extending the method to neighboring

frames. Optical flow supported by a patch-based flow reliability measure is used for

motion estimation and compensation. Schwarz et al. [78–80] view the depth upsam-

pling process as a weighted energy optimization problem constrained by temporal con-

sistency.

Finally, Vosters et al. [90] evaluate and compare several efficient video depth up-

sampling methods in terms of depth accuracy and interpolation quality, in the context

of 3DTV. They also provide an analysis of computational complexity and runtime for

GPU implementations of the methods.

4 Conclusion

The main purpose of this brief survey was to provide an introduction to the depth up-

sampling problem and give short descriptions of approaches. In our opinion, this prob-

lem is of interest beyond the area of ToF camera data processing since sensor data

fusion becomes more and more popular. For example, studies in image-based point

cloud upsampling [30, 75] apply tools similar or identical to those used by the depth

upsampling methods.

We believe that in near future ToF cameras will undergo fast changes in the direction

of higher resolution, increasing range, better robustness and improved image quality.

As a consequence, their application areas will extend and grow, leading to much more

frequent use and lower prices. We also believe that the trend of coupling ToF cameras

with other complementary sensors will persist resulting in growing demand for studies

in depth data fusion with other kinds of data.

For the image processing community to be able to meet this demand, the critical

issue is that of evaluation and comparative testing of the proposed methods. Currently,

many studies assume ideally calibrated data and provide tests on the Middlebury stereo

dataset [74]. Such tests are not really indicative of the performance in real applications.

A good benchmark of ToF data acquired in different real-world conditions is needed.
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84. M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision.

Thomson, 2008.

85. E. Stoykova, A.A. Alatan, P. Benzie, et al. 3-D time-varying scene capture technologies –

A survey. IEEE Trans. on Circuits and Systems, 17:1568–1586, 2007.

86. Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

87. M. Tallón, S.D. Babacan, J. Mateos, et al. Upsampling and denoising of depth maps via

joint-segmentation. In Proc. of European Signal Processing Conference, pages 245–249,

2012.

88. J.T. Thielemann, G.M. Breivik, and A. Berge. Pipeline landmark detection for autonomous

robot navigation using time-of-flight imagery. In Proc. Conf. on Computer Vision and

Pattern Recognition Workshops, pages 1–7, 2008.

89. C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proc. Int.

Conf. on Computer Vision, pages 839–846, 1998.

90. L.P.J. Vosters, C. Varekamp, and G. de Haan. Evaluation of efficient high quality depth

upsampling methods for 3DTV. In IS&T/SPIE Electronic Imaging, pages 865005–865005,

2013.

91. J.W. Weingarten, G. Gruener, and R. Siegwart. A state-of-the-art 3D sensor for robot navi-

gation. In Proc. Int. Conf. on Intelligent Robots and Systems, volume 3, pages 2155–2160,

2004.

92. Wikipedia. Lidar. http://en.wikipedia.org/wiki/Lidar, 2014.

93. X. Xiang, G. Li, J. Tong, et al. Real-time spatial and depth upsampling for range data.

Transactions on Computational Science XII: Special Issue on Cyberworlds, 6670:78, 2011.

94. Q. Yang, N. Ahuja, R. Yang, et al. Fusion of median and bilateral filtering for range image

upsampling. IEEE Trans. Image Processing, 22:4841–4852, 2013.

95. Q. Yang, K.-H. Tan, and N. Ahuja. Real-time O(1) bilateral filtering. In Proc. Conf. on

Computer Vision and Pattern Recognition, pages 557–564, 2009.

96. Q. Yang, K.H. Tan, B. Culbertson, and J. Apostolopoulos. Fusion of active and passive

sensors for fast 3D capture. In Proc. IEEE Int. Workshop on Multimedia Signal Processing,

pages 69–74, 2010.

97. Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth super resolution for range images.

In Proc. Conf. on Computer Vision and Pattern Recognition, pages 1–8, 2007.

98. L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted median filters: a tutorial. IEEE

Trans. on Circuits and Systems II: Analog and Digital Signal Processing, 43:157–192,

1996.

99. F. Yuan, A. Swadzba, R. Philippsen, et al. Laser-based navigation enhanced with 3D time-

of-flight data. In Proc. Int. Conf. on Robotics and Automation, pages 2844–2850, 2009.

100. Z. Zhang. A flexible new technique for camera calibration. IEEE Trans. Pattern Analysis

and Machine Intelligence, 22:1330–1334, 2000.

101. Z. Zhang. Microsoft Kinect sensor and its effect. IEEE MultiMedia, 19:4–10, 2012.

102. J. Zhu, L. Wang, J. Gao, and R. Yang. Spatial-temporal fusion for high accuracy depth maps

using dynamic MRFs. IEEE Trans. Pattern Analysis and Machine Intelligence, 32:899–909,

2010.

103. J. Zhu, L. Wang, R. Yang, and J.E. Davis. Fusion of time-of-flight depth and stereo for high

accuracy depth maps. In Proc. Conf. on Computer Vision and Pattern Recognition, pages

1–8, 2008.

104. J. Zhu, L. Wang, R. Yang, et al. Reliability fusion of time-of-flight depth and stereo geom-

etry for high quality depth maps. IEEE Trans. Pattern Analysis and Machine Intelligence,

33(7):1400–1414, 2011.

105. Zinemath Zrt. The zLense platform. http://www.zinemath.com/, 2014.

���


