800 research outputs found

    Digital Offset Calibration of an OPAMP Towards Improving Static Parameters of 90 nm CMOS DAC

    Get PDF
    In this paper, an on-chip self-calibrated 8-bit R-2R digital-to-analog converter (DAC) based on digitally compensated input offset of the operational amplifier (OPAMP) is presented. To improve the overall DAC performance, a digital offset cancellation method was used to compensate deviations in the input offset voltage of the OPAMP caused by process variations. The whole DAC as well as offset compensation circuitry were designed in a standard 90 nm CMOS process. The achieved results show that after the self-calibration process, the improvement of 48% in the value of DAC offset error is achieved

    Design Methodologies and Architecture Solutions for High-Performance Interconnects

    Get PDF
    ABSTRACT In Deep Sub-Micron (DSM) technologies, interconnects play a crucial role in the correct functionality and largely impact the performance of complex System-on-Chip (SoC) designs. For technologies of 0.25µm and below, wiring capacitance dominates gate capacitance, thus rapidly increasing the interconnect-induced delay. Moreover, the coupling capacitance becomes a significant portion of the on-chip total wiring capacitance, and coupling between adjacent wires cannot be considered as a second-order effect any longer. As a consequence, the traditional top-down design methodology is ineffective, since the actual wiring delays can be computed only after layout parasitic extraction, when the physical design is completed. Fixing all the timing violations often requires several time-consuming iterations of logical and physical design, and it is essentially a trial-and-error approach. Increasingly tighter time-to-market requirements dictate that interconnect parasitics must be taken into account during all phases of the design flow, at different level of abstractions. However, given the aggressive technology scaling trends and the growing design complexity, this approach will only temporarily ameliorate the interconnect problem. We believe that in order to achieve gigascale designs in the nanometer regime, a novel design paradigm, based on new forms of regularity and newly created IP (Intellectual Property) blocks must be developed, to provide a direct path from system-level architectural exploration to physical implementation

    Variable Body Biasing (VBB) based VLSI Design Approach to Reduce Static Power

    Get PDF
    The static power consumption is an important parameter concern in IC design due to t for a higher integration numbers of transistor to achieve greater performance in a single chip. Leakage current is the main issues for static power dissipation in standby mode as the size of transistor been scale. Therefore, the subthreshold leakage current rises due to threshold voltage scaling and gate leakage current increases due to scale down of oxide thickness. In this paper, a Variable Body Biasing (VBB) technique was applied to reduce static power consumption in VLSI design. The VBB technique used a DC bias at body terminal to control the threshold voltage efficiently. The Synopsys Custom Designer EDA tools in 90nm MOSFET technology was used to design a 1-bit full adder with VBB technique in full custom methodology. The simulation of 1-bit full adder was carried out with operation voltage   supply was compared in conventional technique and VBB technique. The results achieved the reduction in term of peak power,   and average power,   in static CMOS 1-bit full adder compared with conventional bias and VBB technique

    Linear CCD-Based Spectrometry Using Either an ASIC or FPGA Design Methodology

    Get PDF
    At room temperature, high-responsivity charge-coupled devices (CCD) comprising arrays of several thousand linear photodiodes are readily available. These sensors are capable of ultraviolet to near infrared wavelengths sensing with detecting resolutions of up to 24 dots per millimeter. Their applicability in novel spectrometry applications has been demonstrated. However, the complexity of their timing, image acquisition, and processing necessitates sophisticated peripheral circuitry for viable output. In this chapter, we outline the application specifications for a versatile spectrometer that is reliant on a field programmable gate array (FPGA) automation. The sustained throughput is 1.23 gigabit per second 8-bit color readout rate. This approach is attractive because the final FPGA design may be reconfigured readily to a single, branded, application-specific integrated circuit (ASIC) to drive a wider range of linear CCDs on the market. This is advantageous for rapid development and deployment of the spectrometer instrument

    Multi-Threshold Low Power-Delay Product Memory and Datapath Components Utilizing Advanced FinFET Technology Emphasizing the Reliability and Robustness

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In this thesis, we investigated the 7 nm FinFET technology for its delay-power product performance. In our study, we explored the ASAP7 library from Arizona State University, developed in collaboration with ARM Holdings. The FinFET technology was chosen since it has a subthreshold slope of 60mV/decade that enables cells to function at 0.7V supply voltage at the nominal corner. An emphasis was focused on characterizing the Non-Ideal effects, delay variation, and power for the FinFET device. An exhaustive analysis of the INVx1 delay variation for different operating conditions was also included, to assess the robustness. The 7nm FinFET device was then employed into 6T SRAM cells and 16 function ALU. The SRAM cells were approached with advanced multi-corner stability evaluation. The system-level architecture of the ALU has demonstrated an ultra-low power system operating at 1 GHz clock frequency

    An Open Core System-on-chip Platform

    Get PDF
    The design cycle required to produce a System-on-Chip can be reduced by providing pre-designed built-in features and functions such as configurable I/O, power and ground grids, block RAMs, timing generators and other embedded intellectual property (IP) blocks. A basic combination of such built-in features is known as a platform. The major objective of this thesis was to design and implement one such System-on-Chip platform using open IP cores targeting the TSMC-0.18 CMOS process. The integrated System-on-Chip platform, which contains approximately four million transistors, was synthesized using Synopsys - Design Compiler and placed and routed using Cadence - First Encounter, Silicon Ensemble. Design verification was done at the pre-synthesis, post-synthesis and post-layout levels using Mentor Graphics - ModelSim. Final layout was imported into Cadence - Virtuoso to perform design rule check. A tutorial was written to enable others to create derivative designs of this platform quickly

    Analysis of performance variation in 16nm FinFET FPGA devices

    Get PDF

    Ideas on DC-DC Converters for Delivery of Low Voltage and High Currents for the SLHC / ILC Detector Electronics in Magnetic field and Radiation environments

    Get PDF
    For more efficient power transport to the electronics embedded inside large colliding beam detectors, we explore the feasibility of supplying 48 Volts DC and using local DCDC conversion to 2 V (or lower, depending upon on the lithography of the embedded electronics) using switch mode regulators located very close to the front end electronics. These devices will be exposed to high radiation and high magnetic fields, 10 – 100 Mrads and 2 - 4 Tesla at the SLHC, and 20 Krads and 6 Tesla at the ILC

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur
    corecore