
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2004

An Open Core System-on-chip Platform An Open Core System-on-chip Platform

Rishi R. Srivastava
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Srivastava, Rishi R., "An Open Core System-on-chip Platform. " Master's Thesis, University of Tennessee,
2004.
https://trace.tennessee.edu/utk_gradthes/2229

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2229&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2229&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Rishi R. Srivastava entitled "An Open Core System-

on-chip Platform." I have examined the final electronic copy of this thesis for form and content

and recommend that it be accepted in partial fulfillment of the requirements for the degree of

Master of Science, with a major in Electrical Engineering.

Donald W. Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Gregory D. Peterson, Chandra Tan

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Rishi R. Srivastava entitled “An

Open Core System-on-chip Platform”. I have examined the final electronic copy

of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major

in Electrical Engineering.

 Donald W. Bouldin

 Major Professor

We have read this thesis and

recommend its acceptance:

 Gregory D. Peterson_____

 Chandra Tan _________

 Accepted for the Council:

 Anne Mayhew

 Vice Chancellor and

Dean of Graduate Studies

(Original signatures are on file with official student records)

An Open Core

System-on-chip Platform

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Rishi R. Srivastava

August 2004

Acknowledgements

First of all, I would like to thank my academic and thesis advisor Dr. Donald W.

Bouldin for his guidance and support throughout the course of my education. It

was a rewarding experience especially when we worked together for the

submission of Research paper related to my thesis. I would like to thank him for

helping me in pursuing this research and providing me with every facility

available through the Microelectronic Systems Research Lab of the University of

Tennessee. I am also very grateful to Dr. Gregory D. Peterson and Dr. Chandra

Tan for their interest in this work and for serving on the thesis committee. Dr.

Chandra Tan deserves a special thanks for his encouragement and guidance at

particularly difficult stages of my work.

I am thankful to all those who have supported me and discussed every new idea

that encountered during my thesis period. I would like to thank all of the

students in the Spring 2003 class of ECE 652 for helping build a library of

Intellectual Property (IP) blocks used in this thesis.

I am particularly grateful to my boss, Ms. Sydney Post and the Business Office

for providing financial support throughout my education. Last but not the least I

would like to thank my parents, Shri. G. K. Srivastava and Smt. Ragini Srivastava

and my brothers Ravi and Rudra for their unrelenting support and

encouragement.

 ii

Abstract

The design cycle required to produce a System-on-Chip can be reduced by

providing pre-designed built-in features and functions such as configurable I/O,

power and ground grids, block RAMs, timing generators and other embedded

intellectual property (IP) blocks. A basic combination of such built-in features is

known as a platform.

The major objective of this thesis was to design and implement one such

System-on-Chip platform using open IP cores targeting the TSMC-0.18 CMOS

process.

The integrated System-on-Chip platform, which contains approximately four

million transistors, was synthesized using Synopsys - Design Compiler and placed

and routed using Cadence - First Encounter, Silicon Ensemble. Design verification

was done at the pre-synthesis, post-synthesis and post-layout levels using

Mentor Graphics - ModelSim. Final layout was imported into Cadence - Virtuoso

to perform design rule check.

A tutorial was written to enable others to create derivative designs of this

platform quickly.

 iii

Table of Contents

1. Overview 01

 1.1 Introduction

1.2 Project Goals and Core Selection

01

04

2. Background 06

 2.1 Design Process

 Hierarchical Design Process

2.2 Design Methodology

 Timing-Driven Design (TDD)

Block Based Design (BBD)

Platform Based Design (PBD)

2.3 Challenges in System-on-Chip Design

06

08

09

10

11

12

14

3. Component Background 17

 3.1 AMBA Overview

 Advanced High-performance Bus (AHB)

Advanced System Bus (ASB)

Advanced Peripheral Bus (APB)

System-on-Chip platform: Bus Architecture

3.2 LEON-2 Architecture

 LEON-2 Architecture Overview

3.3 RTEMS, LECCS

3.4 Development of IP Library

 AES Cipher

Task Requirements

3.5 Artisan RAM

3.6 Clock Tree Generation

17

18

18

18

19

21

22

25

26

28

29

30

32

 iv

4. Implementation 36

 4.1 Introduction

4.2 Setting up Files

4.3 Customizing the LEON-2 Processor

 For TSMC-25 Technology

4.4 Customizing Artisan RAM

4.5 Synthesis: LEON-2 Processor

4.6 System-on-Chip platform: Adding IP blocks

4.7 System-on-Chip platform: Synthesis

4.8 System-on-Chip platform: Place & Route

36

37

38

38

41

45

49

54

54

5. Results, Conclusion and Future Work 62

 5.1 Results

5.2 Conclusion

5.3 Future Work

62

67

67

 List of References 68

 Vita 72

 v

List of Tables

Table 4.4.1 Entries for Artisan RAM generator 42

Table 5.1.1 Standard-Cell instances & Transistor count of the design 65

 vi

List of Figures

Figure 1.2.1 Block diagram of the open System-on-Chip platform 5

Figure 2.2.1 Design methodologies 12

Figure 3.1.1 AHB bus master interface diagram 20

Figure 3.1.2 APB slave interface description 21

Figure 3.2.1 LEON-2 processor block diagram 22

Figure 3.2.2 Configuring apb_slv_config_vector 23

Figure 3.2.3 Default address allocation 24

Figure 3.3.1 Analogy between gcc and LECCS compiler systems 25

Figure 3.4.1 AES cipher block diagram 28

Figure 3.4.2 Design and verification tasks description 29

Figure 3.5.1 Artisan ram output set up time 30

Figure 3.5.2 Artisan ram read cycle 31

Figure 3.5.3 LEON-2 processor read cycle 32

Figure 3.6.1 CT-Gen design flow 33

Figure 3.6.2 User constraints 34

Figure 4.1.1 Flowchart for open core System-on-Chip platform 36

Figure 4.3.1 LEON-2 processor configuration window 38

Figure 4.3.2 LEON-2 processor: Synthesis customization 39

Figure 4.3.3 LEON-2 processor: Cache configuration 40

Figure 4.4.1 Modelsim window: RAM Size 43

Figure 4.4.2 Artisan RAM generator 44

Figure 4.6.1 LEON-2 Processor: Transmitting control signals to IP Block 52

Figure 4.6.2 IP Block: Performing tasks assigned 53

Figure 4.7.1 LEON-2 Processor: Transmitting control signals to IP Block 55

Figure 4.7.2 AES wrapper: Completing the tasks assigned 56

Figure 4.8.1 System-on-Chip platform: Initial Floorplanning 58

Figure 4.8.2 System-on-Chip platform: Power planning 58

Figure 4.8.3 System-on-Chip platform: Place customization 59

 vii

Figure 4.8.4 System-on-Chip platform: Placed 59

Figure 4.8.5 System-on-Chip platform: Import placed file 60

Figure 4.8.6 System-on-Chip platform: Route completed 61

Figure 5.1.1 Back-annotated simulation results 63

Figure 5.1.2 Back-annotated simulation for correct functionality 64

Figure 5.1.3 System-on-Chip platform: Final layout 66

 viii

Chapter 1: Overview

1.1 Introduction

Moore’s Law [1] predicted that the number of transistors on a chip will double

every eighteen months and for more than three decades now the integrated

circuit design industry has followed Moore’s law. Various studies on similar topics

also predicted a 20-fold increase in power and capabilities of integrated circuits

over a period of a decade [2].

Conventionally, integrated circuit design involved circuits with medium

complexity, around 200-500K gates, operating at 50-100 MHz speed, were

designed using 0.35-micron silicon process technology and were made up of

mostly core logic along with some hard macros like SRAMs. These designs would

have a design cycle of 12-18 months [3].

Whereas modern designs involve circuits with superior complexity, around 10-25

million gates and are designed using 0.18 - 0.13-micron silicon process

technology, and are able to sustain a clock speed in excess of 1 GHz. This

explosive growth in gate count and speed as well as consumer requirements for

bleeding edge technologies like modern telecommunication equipments,

consumer goods like PDAs, 3rd generation mobile devices, has pressured the

design technology community to harness its potential quickly. As a result we

 1

have integrated circuits with much more complex capabilities. Today integrated

circuits are not only faster and larger, they also include traditional

microprocessor cores, Intellectual Property (IP) cores, and memory cores -- in

other words, a System-on-Chip (SoC).

According to a report [4] on market growth for System-on-Chip, the volume will

increase at a stupendous rate of 30-35% annually with many major companies

investing two-thirds of their research and development in the System-on-Chip

arena.

Emergence of System-on-Chip technology has brought with it a whole spectrum

of opportunities and challenges. Opportunities are in the form of reduced cycle

time, time-to-market considerations, bigger spectrum of customers, and superior

performance. Whereas the challenges include deep sub micron design

complexities, verification and integration.

Time-to-market may be optimized by reducing the design cycle and by reducing

the manufacturing cycle. The design cycle can be reduced by providing pre-

designed built-in features and functions such as configurable I/O, power and

ground grids, block RAMs, timing generators and other embedded IPs. A basic

combination of such built-in features is known as a platform. The platform used

to implement a System-on-Chip greatly impacts all of the issues and is the

 2

fundamental decision the hardware designers must make at the start of each

new project.

Design reuse in the form of previously verified and used IP cores can greatly

reduce time-to-market and increase quality for System-on-Chip designs.

According to a report [5], by 2010 the percentage of IP contained in a System-

on-Chip application is predicted to grow to 95%.

Now, million-gate integrated circuits are increasingly being designed as System-

on-Chip platforms since platform design mitigates the risks involved with

integrating a CPU core and other virtual components by a fixed deadline. Using

this approach, designers can overcome uncertainties about the quality of the

components and their interaction and can produce derivative designs rapidly.

The development of one such System-on-Chip platform is described in this

thesis. In the process of implementing this project, emphasis was to learn not

only to reuse existing cores but also the requirements to create high quality

cores for reuse. This System-on-Chip platform, which uses only open cores that

can be obtained by anyone at no charge, served as an “industrial strength”

design for me to learn about optimizations at the logic and physical levels. Thus,

synthesis and place/route tools were used to explore the power-delay-area

solution space of a million-gate design. Having internal visibility of the

 3

components at both the source code level and at the physical layout level greatly

facilitates understanding of System-on-Chip development issues. The System-on-

Chip platform is being placed in the public domain so that others may contribute

to its enhancement.

1.2 Project Goals and Core Selection

The objective of this thesis was to design and implement a baseline System-on-

Chip platform targeting the TSMC-0.18 CMOS process. To enhance the

understanding of System-on-Chip issues, I have selected only open soft cores

that could be obtained for free (e.g. AES) or have been generated internally at

the University of Tennessee (e.g. FIR, FFT). For the CPU, I have selected the

LEON-2 processor [6]. This processor is specifically designed for embedded

applications. As shown in figure 1.2.1, LEON-2 core provides a direct memory-

interfaced PROM, memory-mapped I/O, SRAM and SDRAM with variable memory

width of 8, 16 or 32 bits. The LEON-2 processor can also include various other

features such as two UARTs, an interrupt controller, a memory controller, and an

interface for a coprocessor or floating-point unit.

A flexible configuration scheme makes it straightforward to add new cores as

masters or slaves depending upon their functionality. The LEON-2 processor has

implemented a Harvard Architecture for cache with separate data and instruction

 4

Figure 1.2.1 Block diagram of the open System-on-Chip platform

cache RAMs which can be generated in 1-4 sets each of 1-64Kb depending on

the functionality desired.

The compiler for the LEON-2 is LECCS (LEON/Erc32 GNU Cross-Compiler System)

[7] which is compatible with Sun Solaris / Linux / Windows operating systems.

LECCS supports ordinary sequential C/C++ programming or multitasking using

the RTEMS (Real Time Embedded Micro-controller Systems) kernel.

 5

Chapter 2: Background

2.1 Design Process

As said earlier, it is not uncommon to find chip design that packs 20-50 million

transistors on a single die. In a few years we hope to be able to pack hundreds

of million transistors on a single die. That is assuming the tools are in place that

will be able to manage the design of that complexity. The answer to this

question lies in how industry develops the design process and methodology.

Three major methods used to design integrated circuits are:

- Full-Custom design

- Standard-Cell design

- Gate-array design.

Full-Custom design is the lowest level, requiring the designers to specify the

exact location of every wire and transistor. Standard-Cell designs are a bit

simpler; the designer is given a library of fairly simple logic elements and allowed

to assemble them in any way.

The gate-array approach is not only the simplest but also provides an attractive

alternative that offers shorter design cycle, quicker response on iterations and

modifications, and lower non-recurring engineering (NRE) costs. A gate-array

solution is frequently completed many months ahead of a full-custom or

 6

standard-cell equivalent. I will focus on the gate-array design process because it

is the simplest and because it is the method generally used to design the kind of

chip discussed in this thesis.

Since designing a gate-array is simple, hardware description languages (HDL)

and synthesis tools are very popular among gate-array designers. A hardware

description language provides an easy way to specify the behavior of the chip

and provides an environment for simulating the behavioral model. The synthesis

tools can turn this model into a gate-level description, and often provide ways to

simulate that description as well, thus completing most of the design work,

although it is easier said than done.

As a design gets larger, timing closure at the chip level becomes much more

complex. And as process geometries continue to shrink, signal integrity effects

such as noise, increased interconnect crosstalk, lower power voltage, and other

effects must be considered. The bottom line is that the design and

implementation of sub-0.18 micron chips present significant challenges. If there

is no change either in the methodology or the tools used today the cost and

resource requirements that would be needed to design and implement deep sub-

micron chips will be somewhat proportional to the number of transistors [8].

 7

Hierarchical Design Process

An approach that has been taken while implementing the open core System-on-

Chip platform is hierarchical design. It is a common approach to solving complex

designs problem. The approach is to break down the design into manageable

pieces and solve one piece at a time [8]. If the pieces are small enough, the

problem can be manageable. However, success depends on bringing all of the

pieces together again to provide an answer to the original problem. This

approach has been applied to complex engineering projects and is now finding

its way in the System-on-Chip design process. Hierarchical chip design can be

roughly separated into three broad processes:

- Process of breaking the overall design into blocks that will be implemented

individually. Planning in this process is critical, as project must yield a final

design that meets the project goals for timing and other requirements.

- Process of implementing the detailed design of the individual blocks.

- Process of connecting all of the blocks in the design to result in the final

chip.

We will be discussing more about these issues in the chapter discussing

implementation of the System-on-Chip platform. There we will get a better

understanding about how timing requirements are so essential at the block level

and can have serious consequences on integration of the core.

 8

2.2 Design Methodology

In the ASIC industry, switching from designs that were based on transistors to

the designs that were based on gates proved to be a great boon for the industry

[9]. It induced a huge growth in productivity and helped make concepts such as

gate-arrays a reality. It provided the groundwork for new industries,

restructuring the existing engineering organizations providing broader boundaries

for the relationship between the designer and design by introducing a new level

of abstraction.

A general pattern followed by most of the ASIC industry is that the silicon

process technology changes which is then followed by making changes to the

design technology. These changes are then adopted by the design

methodology, which then implements these changes in the form of new

processes. These processes further result in an increase in productivity [10].

However, over a period of time now, there has been major progress in silicon

manufacturing technology leading to a situation where design technology is

lagging far behind. Consequently, industries now need a fundamental

reorganization so that designs are done not only faster but also in a different and

more efficient way. Therefore, traditional design processes are now being

replaced by the SoC designs.

 9

We are now entering the era of block-based design (BBD); heading towards

virtual component (VC) based System-on-Chip design, which is driven by our

ability to harness reusable virtual components (VC), a form of IPs. Today design

methods can be divided into four main segments [11]:

- Area Driven Design (ADD)

- Timing-driven design (TDD)

- Block-based design (BDD)

- Platform-based Design (PBD)

Timing-Driven Design (TDD)

TDD is the most efficient methodology used for designing a moderately sized

ASIC, consisting mostly of new logic on deep sub-micron processes, without

significant utilization of the hierarchical design process. When a team is working

on some design that is required to meet certain performance constraints with

respect to its speed and power consumption, they follow TDD. With the

availability of modern tools to make delay calculations and timing analysis,

accuracy has reached a new level and is able to provide an unbiased idea about

the design capabilities. One major shortcoming on the part of TDD is that, at

higher gate counts, usually in excess of the 150-K mark, it begins to fail as the

complexity increases.

 10

Block-Based Design (BDD)

Designers are now in a position to reuse system level functions, and the

complexity in the design of a chip is also steadily increasing. Now, with a new

relationship between system, RTL and physical design, designers are making the

change from the Timing Driven Design (TDD) to a Block Based Design (BBD)

methodology. Ideally, BBD is behaviorally modeled at the system level, where

hardware/software trade-offs as well as hardware/software co-verification using

software simulation or hardware emulation is performed. The new design

components are then partitioned and mapped onto specific functional RTL

blocks, which are then designed to budgeted timing, power and area constraints.

This is in contrast to the TDD approach, where timings are captured along

synthesis-restricted boundaries. The combination of system level simulation of

designs and RTL simulation of individual blocks minimizes the requirement for a

unique testbench. Reusable blocks are poorly characterized, subject to

modification and require re-verification. This effects the time-to-market equation.

Block based design generally employ a bus architecture, either processor

determined or custom. BBD needs effective block level floor planning to estimate

effective block size quickly. This helps in creating a viable budget for all blocks

and their interconnection, which is essential to the convergence.

 11

Figure 2.2.1 Design methodologies

Platform Based Design (PBD)

As shown in figure 2.2.1, PBD constitutes the next step in the evolution of design

technologies. It attempts to comprise the cumulative capabilities of both TDD

and BDD technologies. One quality that separates PBD from BBD is extensive

planned design reuse and difference achieved in time-to-market for even the first

products. It has also expanded the opportunities and speed of delivering

derivative products.

Like BBD, PBD too is a hierarchical design methodology that starts at the system

level. Using predictable, preverified reusable IP blocks that have standardized

interfaces increases productivity and greatly effects time-to-market equations

[11]. PBD methodology separates design into two areas of focus:

 12

- Block Authoring

- System-Chip Integration.

Block authoring primarily uses a methodology suited to the block type (TDD,

ADD), but the block is created so that it interfaces easily with multiple target

designs. To be effective two new design concepts must be established: interface

standardization and virtual system design.

In interface standardization many different design teams, both internal and

external to the company can do block authoring, as long as they are all using the

same interface specification and design methodology guidelines. Virtual system

design answers the question related to power consumption and distribution, test

options for different blocks, aspect ratio and clock distribution.

System integration focuses on designing and verifying the system architecture

and the interface between the blocks. Contrary to its name, system integration

starts with partitioning the system around the pre-existing block level functions

taking into consideration performance analysis, hardware software design

tradeoffs.

The basic idea behind the platform-based design approach is to avoid designing

a chip from scratch. Some portion of the chip's architecture is predefined for a

 13

specific type of application. Usually there is a processor, a real-time operating

system (RTOS), peripheral intellectual property (IP) blocks, some memory and a

bus structure. Depending on the platform type, users might customize by adding

hardware IP, programming FPGA logic or writing embedded software.

2.3 Challenges in System-on-Chip Design

With the unprecedented level of integration in integrated circuit design,

designers can pack a variety of functionalities on one chip. But to be able to take

real advantage of such opportunities, System-on-Chip designers have to grapple

with an exponential increase in design complexity. Also exploding transistor

counts and skyrocketing clock rates coupled with changes in design

methodologies have unleashed an entirely new set of design challenges.

The impact of exploding transistor counts on design methodologies has been

profound. A few years ago the majority of silicon respins were due to simple

functional design errors [12]. Furthermore designers could make simple

assumptions to predict and compensate for the impact of physical effects such as

signal integrity and crosstalk.

Today this is no longer the case. Designers can no longer manage those physical

effects with simple models and assumptions regarding the design. As System-

on-Chip designers venture into nanometer processes they are finding that an

 14

increasing proportion of failures are a result of physical effects that are not

reflected in the simple models used to represent transistors and wires. As a

result traditional approaches to design no longer apply and new verification

techniques have to be incorporated.

Today designers of ASICs are faced with the challenge of creating and verifying

the content of million-transistor chips as quickly as possible in order to reduce

the time-to-market [13]. It has been estimated that a one-month delay in

bringing a product to market can result in a loss of ten percent of the potential

revenue [14]. Hence, not all of the transistors on these chips can be customized

but instead must be ported from previous designs. These reusable cores or IP

blocks include CPUs (like ARM, PowerPC and LEON-2), MPEG decompression

engines, PCI bus controllers, specialized DSPs, etc. Combining several complex

cores using standard cells is much more manageable and quicker than designing

millions of transistors one at a time.

The myth that characterizes today’s IP is that these components are blocks that

have well-defined contents and interfaces. However, they are often fuzzy and

hence appear more like patches in a quilt, which must be stitched together. The

components cannot be assembled blindly and rapidly, but rather must be

carefully pieced together to form a working system. Therefore, design for reuse

does not come free. Rather it involves much more in-depth documentation and

 15

characterization than for a design that is not intended to be reused. Based on

the experiences of software engineers, it is estimated that preparing a

component for reuse will require about 50% additional effort [15]. Once this has

been done, the designer who is reusing the component may naively think that

his design time for that component will be reduced to zero. But alas, he must

take care to understand fully how the component works and how it should be

integrated with other components. Again from the experiences of software

engineers, the second design generally requires about 30% of that required to

produce the component originally. Thus, the reuse is not for free but does make

a significant (70% reduction) impact on the next design.

 16

Chapter 3: Component Background

3.1 AMBA Overview

Design reuse in a System-on-Chip is a critical feature and it can be successfully

achieved through proper investment in standards. AMBA, which stands for an

Advanced Microcontroller Bus Architecture, is an open standard [16], which

defines an on-chip bus specification for interconnection and management of

various functional blocks that are a part of System-on-Chip. Using the AMBA

specification enhances the reusable platform based design methodology by

defining a common standard for data transfer in a System-on-Chip module.

AMBA has been widely adopted throughout the industry and, as a consequence,

there is support for the development of AMBA bus-based systems from a

growing number of companies. The AMBA specification has been derived to

satisfy four key requirements:

• To facilitate the right-first-time development of embedded microcontroller

products with one or more CPUs or bus masters.

• To be technology-independent and ensure that highly reusable peripheral can

be migrated across a diverse range of IC processes.

• To encourage modular system design to improve processor independence,

providing a development road map for advanced cached CPU cores and the

development of peripheral libraries.

 17

• To minimize the silicon infrastructure required to support efficient on-chip and

off-chip communication for both operation and manufacturing test.

Three distinct buses are defined within the AMBA specification:

Advanced High-performance Bus (AHB)

The AMBA AHB is for high-performance, high clock frequency system modules.

The AHB acts as the high-performance system backbone bus. AHB supports the

efficient connection of processors, on-chip memories and off-chip external

memory interfaces with low-power peripheral macrocell functions.

Advanced System Bus (ASB)

The AMBA ASB is for high-performance system modules. AMBA ASB is an

alternative system bus suitable for use where the high-performance features of

AHB are not required.

Advanced Peripheral Bus (APB)

The AMBA APB is for low-power peripherals. AMBA APB is optimized for minimal

power consumption and reduced interface complexity to support peripheral

functions. APB can be used in conjunction with either version of the system bus.

The AMBA APB should be used to interface to any peripherals which are low

bandwidth and do not require the high performance of a pipelined bus interface.

 18

System-on-Chip platform: Bus Architecture

For the open core System-on-Chip platform discussed in this thesis there were

various options to attach IP blocks as AHB bus-masters or AHB bus-slaves.

Although attaching them as AHB slaves would be easier and less complicated the

overall architecture would have become restrictive and also very much

dependent upon the availability of LEON-2 processor to carry out a process. On

the other hand, implementing the IP block as AHB bus-master would be more

complex but at the same time provide appropriate flexibility for future

modification or performance improvement tasks.

The AMBA AHB bus protocol is designed to be used with a central multiplexer

interconnection scheme. Using this scheme, all bus masters drive out the address

and control signals indicating the transfer they wish to perform and the arbiter

determines which master has its address and control signals routed to all of the

slaves. A central decoder is also required to control the read data and response

signal multiplexer, which selects the appropriate signals from the slave that is

involved in the transfer.

As shown in figure 3.1.1 an AHB bus master has the most complex bus interface

in an AMBA system. Typically an AMBA system designer would use pre-designed

bus masters and therefore would not need to be concerned with the detail of the

bus master interface. But for our project we had to develop a model using one of

 19

Figure 3.1.1 AHB bus master interface diagram

the IP blocks as an example, which we refer to as AMBA wrapper, could then be

reused for other IP blocks with minor modifications.

Before an AMBA AHB transfer can commence, the bus master must be granted

access to the bus. The master asserting a request signal to the arbiter starts this

process. Then the arbiter indicates when the master will be granted use of the

bus. A granted bus master starts an AMBA AHB transfer by driving the address

and control signals. These signals provide information on the address, direction

and width of the transfer, as well as an indication if the transfer forms part of a

burst.

 20

Figure 3.1.2 APB slave interface description

An IP block to be attached to the open core System-on-Chip platform can be

attached as APB slaves since the LEON-2 processor itself is an APB master. This

way all the control signals to individual IP blocks can be sent through the APB

bus. Figure 3.1.2 describes the interface for a block acting as an APB slave.

3.2 LEON-2 Architecture

LEON-2 is a 32-bit processor conforming to the IEEE-1754 (SPARC V8) standard.

The VHDL model of the processor, which is available free, and is highly flexible

can be configured and made suitable for embedded applications and System-on-

Chip designs [17]. Figure 3.2.1 describes the block diagram for LEON-2

processor.

For my System-on-Chip platform I used the latest version of the LEON-2

 21

Figure 3.2.1 LEON-2 processor block diagram

processor (LEON2-1.0.12) available at the time. Updating to newer versions of

LEON-2 is not a very difficult task provided there aren’t many changes in the

upcoming versions.

 LEON-2 Architecture Overview

The LEON-2 processor is designed for embedded applications containing the

following on-chip features:

- Separate instruction and data cache (Harvard Architecture)

- Hardware Multiplier and Divider

- Interrupt controller

- Debug Support Unit with trace buffer

- Two 24-bit timers

- Two UARTs

 22

- 16-bit I/O port and a flexible memory controller.

- APB is used to access on-chip registers in the peripheral functions.

- AHB is used for high-speed data transfers.

The full AHB/APB standard is implemented and the AHB/APB bus controllers can

be customized through the TARGET package and DEVICE.VHD, which is a

configuration file. Additional (user-defined) AHB/APB peripherals should be

added in the MCORE module. For the bus controller to recognize a new IP

module, the following changes are needed in the DEVICE.VHD file. Figure 3.2.2

shows the addition of AES block in the list of APB slaves.

Important thing to note in the figure 3.2.2 is that the memory range allotted to

AES is 0x800000300 H to 0x8000003FF H. When the LEON-2 processor accesses

Figure 3.2.2 Configuring apb_slv_config_vector

 23

any registers in this memory range then only the AES module is triggered for a

response. Similarly we need to specify in AHB master’s vector, number of bus

masters attached. This notifying the bus-controller which in turn arbitrates which

master has control of the bus. The number of bus masters will change depending

upon the number of IP blocks added at a time. Priority can be assigned in the

MCORE module. In our case following priority were assigned:

- LEON-2 Processor (0), AES block (1), FIR block (2)

Where higher number has higher priority.

LEON-2 itself uses AHB bus to connect the processor cache controllers to the

memory controller and other (optional) high-speed units. In the default

configuration, the processor is the only master on the bus, while two slaves are

provided: the memory controller and the APB bridge. Figure 3.2.3 shows the

default address allocation.

Figure 3.2.3 Default address allocation

 24

From the above address space it is evident that we can read and write to APB

devices in the range 0x80000000 – 0x8FFFFFFF and this is why we added the

AES block in this range. The APB bridge is connected to the AHB as a slave and

acts as the (only) master on the APB. Most on-chip peripherals are accessed

through the APB.

3.3 RTEMS, LECCS

LECCS is an acronym for LEON/ERC-32 Cross Compiler System. Today almost all

real-time embedded software systems are developed in a cross development

environment using cross development tools. In a cross development

environment, software development activities are typically performed on one

computer system, the build host system (in this case LECCS), while the result of

the development effort (produced by the cross tools) is software executable to

be used on the target platform. Figure 3.3.1 explains shows the analogy between

gcc and LECCS.

Figure 3.3.1 Analogy between gcc and LECCS compiler systems

 25

The cross development toolset must allow the developer to customize the tools

to address the target specific run-time issues. The toolset must have provisions

for board dependent features like initialization code, real-time operation etc.

LECCS is one such cross development tool. It is a multi-platform development

system based on the GNU family of freely available tools with additional point

tools developed by Cygnus, OAR and Gaisler Research [7]. The most important

property of LECCS is its ability to incorporate multi-tasking and real-time

operations using RTEMS kernel.

RTEMS [18] is an acronym for Real – Time Executive for Multiprocessor Systems.

It provides a high performance environment for embedded applications including

many features such as: -

- TCP/IP Stack, UDP DHCP

- POSIX including API threads

- Debugging – GNU debugger, thread aware

- Multitasking capabilities

- Event-driven, priority based scheduling

- High level of user configurability.

3.4 Development of IP Library

To build an IP Library an entire graduate level class with sixteen students was

divided into small groups working independently on cores [19]. It was essential

 26

to define some specifications and guidelines to enable the integration of these

into a complete System-on-Chip at a later stage. Each core was verified

individually via pre-layout simulation, synthesis, place/route and post-layout

simulation prior to attempting integration with the LEON-2 or other cores. Thus,

we could be assured that adding a new core to our System-on-Chip design would

not introduce any errors within the system and we need to test only for its

interaction with the rest of the System-on-Chip platform. The task of integrating

these cores into a System-on-Chip platform is greatly facilitated by using a

common bus protocol to interconnect them. For this purpose, an AMBA–wrapper

was created for each core such that it would enable the cores to act as AHB bus

masters and APB bus slaves. Specification guidelines as defined in class were:

 Address width is 32 bit.

 Data width is 32 bit.

 RESET signal to initialize all the registers and rams.

 Data has to be loaded into the RAM.

 GO signal for IP blocks to start functioning.

 Done Signal to indicate output data is ready.

The Advanced Encryption Standard (AES) cipher core was obtained from

opencores.com and is available for free [20]. Similarly other cores used in the

thesis as bus-masters are FIR and FFT cores, which were generated internally at

the University of Tennessee.

 27

AES is the latest Federal Information Processing Standard (FIPS) [21]. AES is

implemented using the Rjindael algorithm. This is a block cipher that takes in a

key and input text in variable-bit block lengths. The current version can have

128, 196, 256-bit key to cipher data with block length of 128,196,256 with all the

nine combinations possible. The AES core is basically two parts. The AES Cipher

top and the AES Inverse Cipher top. The core comes along with a verilog test-

bench. The test bench supplies the Key, Plain Text and Ciphered data (to cross-

check simulation results) in blocks of 128 bits to test the functionality.

AES Cipher

The AES cipher core consists of a key expansion module, an initial permutation

module, a round permutation module and a final permutation module. Figure

3.4.1 explains the block diagram for AES Cipher module. The round permutation

module will loop internally to perform 10 iterations (for 128 bit keys).

Figure 3.4.1 AES cipher block diagram

 28

Task Requirements

Figure 3.4.2 explains the design flow for designing IP block and its verification.

- Simulate the AES Cipher (Open IP) core before synthesis.

- Synthesize the core targeting FPGA Xilinx Virtex 1000e and ASIC TSMC 0.18

technology using FPGA Compiler and Design Compiler.

- Place and Route the Synthesized design using XVMake (Xilinx Virtex) and

Silicon Ensemble (ASIC) to get the SDF files for the design.

- Perform Post-Layout Back Annotated Simulation using SDF File for both

technologies.

- Add DesignWare RAM to the front and back of the design to read the Key and

Data required by the AES Cipher and write back the Ciphered text into the RAM.

- Perform Pre-Synthesis Simulations on the RAM-IP Core-RAM System.

Figure 3.4.2 Design and verification tasks description

 29

- Synthesize this system like Step 2 followed by Place and Route as in Step 3 and

get the SDF files for both technologies

- Perform Post Layout Back Annotated Simulation using SDF File for both

technologies.

3.5 Artisan RAM

The TSMC 0.18-micron synchronous dual-port SRAM is produced by a

parameterized block generator, which allows great flexibility in the SRAM

organization [22]. Three mux options are available which help in choosing the

shape of the RAM.

The SRAM has two ports for the same memory locations. SRAM access is

synchronous and is triggered by the rising edge of the clock, CLKA. Input

address, input data, write enable, and chip enable are latched by the rising edge

of the clock, respecting individual setup and hold times. The figure 3.5.1 shows

the availability of the data on the output port after Ttz time period.

Figure 3.5.1 Artisan ram output set up time

 30

Figure 3.5.2 Artisan ram read cycle

To utilize this SRAM in our design we need to understand its read and write

operation cycle and then create a wrapper to enable the communication with

LEON-2 processor. LEON-2 processor is provided with a test bench to check if

added RAM blocks are functioning in desired manner. Any error in meeting the

timing constraints or data values results in cache failure. Figure 3.5.2 describes

the read operation in Artisan SRAM. To perform a read operation an important

thing to notice is that address of the memory location to be accessed should

already be there when rising edge of the clock appears. Similarly while writing to

a memory location at rising edge both data and address location should already

be there at the data and address bus I/o ports. However if we see the simulation

of LEON-2 processor read cycle in figure 3.5.3, it loads the address and data i/os

at rising edge of the clock. This caused a failure in the LEON-2 processor.

Therefore I have created a wrapper, which acts as an interface between LEON-2

and Artisan RAM.

 31

Figure 3.5.3 LEON-2 processor read cycle

This wrapper can be used with any Artisan RAM block since just the data width

and address width need to be changed.

3.6 Clock Tree Generation

When complexity and size increase, the need to distribute clock signals in a

controlled manner becomes very important. A large, pipelined chip may easily

contain thousands of clocked elements (latches, flip-flops, etc.), and it is

generally desired that the clocked parts switch at the same time, so it is obvious

that a lot of buffering for clock signal is needed is needed.

In order to run CT-Gen [23], the normal design flow in Silicon Ensemble is

broken up after the placement stage and a DEF file describing the design is

saved. This file is then fed into CT Gen along with some library files and after the -

 32

clock tree has been generated the design is imported back into Silicon Ensemble

for routing (as shown in figure 3.6.1).

CT-Gen can be called from within Silicon Ensemble (this feature is available in

version 5.4 or later) or it can be run as a stand-alone tool. For this thesis I tried

both ways to implement a clock tree. For designs like “AES block” which are big

enough to implement a clock tree but not as big as the complete System-on-Chip

platform, both methods worked perfectly. However for a larger design with RAM

blocks and hierarchy in the design I was not able to get a proper result using the

CT-Gen tool. Therefore I used another tool by Cadence – Encounter [24], [25].

Using Encounter for large designs with hierarchy is really advantageous as it

provides a very user-friendly interface to implement the clock tree.

Figure 3.6.1 CT-Gen design flow

 33

Figure 3.6.2 User constraints

Choosing the proper timing constraint for the clock implementation is really

important since user-defined constraints force CT-Gen to insert buffers and

inverters, forming a tree structure, into the clock distribution. Any existing

buffering in the clock path will first be removed. The available components are

picked from the timing file read into the generator. Constraints are the

restrictions given to CT Gen. These are in the form of what delays that can be

accepted in the clock distribution. The constraints that the user can specify are

as follows, figure 3.6.2.

-

. max insertion delay: Maximum delay from root to leaf pin.

. min insertion delay: Minimum delay to leaf pin. This is usually set to 0

but in some cases a higher value is required.

. max skew: The time difference between the fastest and the slowest

clock path.

 34

. max transition time: The 10% to 90% transition time at a leaf pin.

This tool can be used on other heavily loaded signals, such as reset, but that is a

more complicated procedure. And a work-around for this problem can be leaving

the reset signal active for more than 3-4 clock cycles.

 35

Chapter 4: Implementation

4.1 Introduction

This chapter is dual purpose. As we are trying to keep our open core System-on-

Chip platform in public domain, this chapter can be used as a tutorial for further

development of this platform. This chapter also serves as a detailed description

of the implementation for this thesis. In this chapter I have described the

customization of the LEON-2 processor as well as integration of the complete

platform followed by physical synthesis, place and route targeting the TSMC

0.18-micron technology. The System-on-Chip design flow that was followed while

developing this platform can be described with the help of figure 4.1.1.

Figure 4.1.1 Flowchart for open core System-on-Chip platform

 36

The entire development process is divided into three major steps.

1. Building the library of IP blocks to specifications.

2. Customizing and verifying the functionality of the LEON-2 processor.

3. Integrating the System-on-Chip platform and completing the chip design

with physical synthesis, place and route and physical verification.

Building of the IP library and steps involved to determine correctness of their

functionality was described in section 3.4 of this thesis. The next section begins

with setting up the files for System-on-Chip implementation and discusses steps

2 and 3 mentioned above.

4.2 Setting up Files

I have used version LEON2-1.0.12 for my project. All files for this version and

can be located at /usr/cad/rishi/soc_research/leon2-1.0.12.tar.gz

However, for our System-on-Chip project I had to modify various files and add

VHDL models for various IP blocks into the existing files. Therefore, I have

created another tar file, which contains all the files needed to implement this

platform properly. These files are located at

/usr/cad/rishi/soc_research/soc.tar.gz

From your home directory proceed as follows.

 gunzip -c soc.tar.gz | tar xvf –

 37

The open core System-on-Chip has the following directory structure:

soc

top directory

soc/Makefile top-level makefile

soc/leon/ LEON-2 vhdl model

soc/modelsim/ Modelsim simulator support files

soc/pmon Boot-monitor

soc/syn Synthesis support files

soc/tbench LEON-2 VHDL test bench

soc/tsource LEON-2 test bench (C source)

soc/aes AES vhdl model + AMBA wrapper for AES.

soc/fir FIR vhdl model + AMBA wrapper for FIR.

soc/org_edit Original files and edited files

soc/ram_tsmc25 ARTISAN RAM models to be used in SoC

4.3 Customizing the LEON-2 Processor

For TSMC-25 Technology
In /soc directory type following to start configuring the LEON-2 processor.

 make xconfig

Configuration window as shown in figure 4.3.1 should open.

Figure 4.3.1 LEON-2 processor configuration window

 38

Figure 4.3.2 LEON-2 processor: Synthesis customization

In “Main Menu” click on “Synthesis” and a second window for synthesis

customization will open. In that window select “Target Technology” to be

“TSMC25” and you’ll see all the variables in figure 4.3.2 below are automatically

selected. For the time being, we’ll use the default values for all the variables

except one. We will configure the LEON-2 design without any pads. The reason

for this is with pads we won’t be able to simulate the design after synthesis. If

we need to send this design for fabrication then we can add pads later.

Click on the “Main Menu” button and select “Boot option” in that window with

“Memory” (Default is: Memory). Click on the “Main Menu” button and select

“Processor and caches” and then select “cache system” and change the “set

 39

Figure 4.3.3 LEON-2 processor: Cache configuration

size” to 8k. the entrees should be similar to the one shown in figure 4.3.3. Press

“OK” and then “Main Menu”.

 Press “Save and Exit” button. This will prompt a new window informing you to

type make dep. “make dep” which creates a DEVICE.VHD file, which contains

the information about the customization that we have done.

 make dep

 mentor_tools

 make all (this will compile all the files)

 40

Once the LEON-2 model has been compiled, use the TB_FUNC32 test bench to

verify the behavior of the model. Simulation should be started in the top

directory.

 vsim tb_func32&

 In the modelsim window type run –all

The output from the simulation should be similar to:

 # # *** Starting LEON system test ***

Memory interface test

Cache memory

Register file

Interrupt controller

Timers, watchdog and power-down

Parallel I/O port

UARTs

Test completed OK, halting with failure

** Failure: TEST COMPLETED OK, ending with FAILURE

Simulation is halted by generating a failure.

4.4 Customizing Artisan RAM

Behavioral models for various RAMs that are needed to implement the data and

instruction caches are provided in LEON-2 files. Even the registers in LEON-2

processors are implemented as dual-port RAMs. These behavioral models are

technology-specific and are provided in the TECH_*.VHD files. Since we will

synthesize the design generated for the TSMC25 process, all of the behavioral

models can be found in TECH_TSMC25.VHD. To be able to synthesize the design

and place and route it, we need to replace the behavioral models by

 41

corresponding RTL models of Artisan RAM. To find out what size of RAMs we

need in our design we may have to go back one step.

 make all

 vsim tb_func32&

In the Modelsim window we can see the size of the RAMs it is using, by going to

the “proc0” model as shown in the figure 4.4.1. As we can see we need to use

DPRAM of size 136x32 and SDRAM of size 256x27 & 2048x32. However we will

use DPRAM instead of SDRAM too.

Exit from the Modelsim window. And in the main directory proceed as follows:

 cd ram_tsmc25

 /sw/CDS/ARTISAN/TSMC18/aci/ra2sh/bin/ra2sh

Figure 4.4.2 describes the Artisan RAM generator window that opens up. Entries

specific to this project are described in table 4.4.1. We need to generate

following views for each of our RAM design. 1. Verilog Model, 2. Synopsys Model,

3. TLF Model, 4. VCLEF footprint, 5. GDSII Layout.

Table 4.4.1 Entries for Artisan RAM generator

PARAMETERS DPRAM 136x32 RAM 256x27 RAM 2048x32

Instance Name dpram136x32_inst ram256x27_inst ram2048x32_inst

Number of words 256 256 2048

Number of width 32 27 32

Frequency (Mhz) 50 50 50

Multiplexer Width 4 4 8

Library Name DPRAM1 RAM2 RAM3

 42

Figure 4.4.1 Modelsim window: RAM Size

 43

Figure 4.4.2 Artisan RAM generator

 44

As discussed in section 3.5 these RAMs cannot be used as it is. We will have to

create a wrapper around these block RAMs so that they are able to communicate

with the LEON-2 processor in same fashion as the behavioral models do. These

wrappers are provided in ram_tsmc25 directory.

dpram136x32_box0.vhd ram2048x32_box0.vhd

dpram136x32_box1.vhd ram256x27_box0.vhd

4.5 Synthesis: LEON-2 Processor

Make sure you have “.synopsys_dc.setup” & “.synopsys_vss.setup” already

there in /syn directory. Design with Artisan RAM components complicates the

synthesis process. The Verilog model of Artisan RAM is for simulation purposes

only. We already have synthesized library for our Artisan RAM in the form

“dpram136x32_inst_typical_syn.lib”. Following is the way to use designs in .lib

files for synthesis purposes. We first add the designs in the library (i.e. *.lib files)

to a database (i.e. *.db files) and then add that database format to our tsmc18

cell database.

 (Library to database conversion) File name: lib2db.dcsh

define_design_lib WORK -path WORK

read_lib ../ram_tsmc25/dpram136x32_inst_typical_syn.lib

write_lib DPRAM1 -format db -output ../ram_tsmc25/dpram136x32_inst_typical.db

read_lib ../ram_tsmc25/ram256x27_inst_typical_syn.lib

write_lib RAM2 -format db -output ../ram_tsmc25/ram256x27_inst_typical.db

read_lib ../ram_tsmc25/ram2048x32_inst_typical_syn.lib

write_lib RAM3 -format db -output ../ram_tsmc25/ram2048x32_inst_typical.db

 quit

 45

 synopsys_tools

 dc_shell -f lib2db.dcsh

 rm –r WORK

Now we need to edit “.synopsys_dc.setup” file to add the database of rams to

tsmc18 cell database.

File Name: .synopsys_dc.setup

search_path = {} + search_path + /sw/CDS/ARTISAN/TSMC18/aci/sc/synopsys +

/sw/CDS/ARTISAN/TSMC18/PADS/synopsys/tpz973g_200c +

/home/rishi/652/soc/ram_tsmc25 + /home/rishi/652/soc/ram_virtex2

link_library = {typical.db"*"}

target_library = typical.db

symbol_library = typical.db

syntetic_library = { /sw/synopsys/libraries/syn/dw06.sldb + /sw/synopsys/libraries/syn/dw02.sldb

+ /sw/synopsys/libraries/syn/dw01.sldb }

link_library = target_library + synthetic_library + dw06.sldb + dw03.sldb + dw02.sldb +

dw01.sldb + tpz973gtc.db + dpram136x32_inst_typical.db +

dpram512x36_inst_typical.db + ram2048x32_inst_typical.db +

ram256x27_inst_typical.db

search_path = search_path + {synopsys_root + "/dw/sim_ver"}

Generating Black Boxes for each of RAM component.

 cd syn

 rm –r WORK

 mkdir WORK

File Name: ram_box.dcsh

define_design_lib WORK -path WORK

analyze -f vhdl -library WORK ../ram_tsmc25/ram256x27_box0.vhd

elaborate ram256x27_box0

 46

uniquify

compile -map_effort high

write -f verilog -hierarchy -o ../leon/ram256x27_box0.v

 quit

 Note# Please substitute the name of ram file in ram_box.dcsh also delete

WORK directory after every run.

 synopsys_tools

 dc_shell –f ram_box.dcsh (do it for each ram model)

Replacing the LEON-2 files so that new files use these ram black boxes instead of

original behavioral models. For that purpose we will have to replace original

tech_tsmc25.vhd with a modified module.

 cd leon

 cp ../org_edit/tech_tsmc25-rishi.vhd tech_tsmc25.vhd

 cd syn

 cp /org_edit/leon-syn.dcsh leon.dcsh

 rm –r WORK

 mkdir WORK

 synopsys_tools

 dc_shell –f leon.dcsh > zm01.txt

This is going to take a while and we can keep checking the output file (zm01.txt)

for errors. To get a post synthesis simulation of the netlist:

 cd leon

 cp ../syn/leon.v .

 rm leon.vhd

 cp /org_edit/Makefile_synth Makefile

 47

 cp /org_edit/tsmc18.v .

 cp /org_edit/tp*.v .

 cp ../ram_tsmc25/ram*box0*.v .

 cd ..

 cd tbench

Editing the testbench (tbgen.vhd) to specify the clock speed.

File Name: tbgen.vhd

 Note: We need to edit the frequency(clkperiod = 50 ; ie freq =25MHz)

 entity tbgen is

 generic (

 msg1 : string := "32 kbyte 32-bit rom, 0-ws";

 msg2 : string := "2x128 kbyte 32-bit ram, 0-ws";

 pci : boolean := false; -- use the PCI version of leon

 DISASS : integer := 0; -- enable disassembly to stdout

 clkperiod : integer := 50; -- system clock period

 romfile : string := "tsource/rom.dat"; -- rom contents

 ramfile : string := "tsource/ram.dat"; -- ram contents

 cd ..

 make clean

 mentor_tools

 make all

 vsim tb_func32

 In modelsim window type run –all

If synthesis was done properly then the netlist should pass the entire component

test provided by the LEON-2.

*** Starting LEON system test ***

Memory interface test

Cache memory

 48

Register file

Interrupt controller

Timers, watchdog and power-down

Parallel I/O port

UARTs

Test completed OK, halting with failure

** Failure: TEST COMPLETED OK, ending with FAILURE

Simulation is halted by generating a failure.

4.6 System-on-Chip platform: Adding IP blocks

For adding an IP block to LEON-2 processor we have to complete the following

two tasks.

- Creating a bus master.

- Preparing LEON-2 files to recognize new bus master.

For AES to act as a bus master I have created a wrapper that would enable it to

communicate through AMBA busses. This wrapper is in two parts – AES.VHD and

AES_CTRL.VHD (FIR.VHD and FIR_CTRL.VHD).

 cd leon

 cp ../aes/DW_ram*.vhd .

 cp ../aes/aes*.vhd .

 cp ../aes/controller.v .

 cp ../aes/topmodule.v .

 cp ../aes/aes.vhd .

 cp ../aes/aes_ctrl.vhd .

Second step involves modifying the LEON-2 processor files to include AES as bus

master. For this purpose files that need to be changed are - MCORE.VHD,

TARGET.VHD, AMBACOMP.VHD, and DEVICE.VHD. Copying the modified files:

 49

 rm ambacomp.vhd mcore.vhd target.vhd device.vhd Makefile*

 cp ../org_edit/ambacomp-soc.vhd ambacomp.vhd

 cp ../org_edit/mcore-soc.vhd mcore.vhd

 cp ../org_edit/target-soc.vhd target.vhd

 cp ../org_edit/device-soc.vhd device.vhd

 cp ../org_edit/Makefile-soc Makefile

 cd..

 make clean

Now we need to change the software for the LEON-2 processor so that we can

program the transfer of data from registers in LEON-2 to the memory of the IP

blocks. Once this operation is complete, LEON-2 will have to generate control

signals for the respective IP blocks corresponding to the operation it wants to be

done. The first task is deleting the original RAM.DAT file. The second task is

cross compiling the software files to generate a new RAM.DAT file containing the

information about the operation to be performed by the LEON-2 processor.

 cd tsource

 rm ram.dat

 make clean

 cp leon_test.c leon_test-org.c

 cp /org_edit/leon_test.c .

 bash

In response to the bash prompt, please set following path:

 export PATH=$PATH:/opt/rtems/bin

 make all

 50

 51

After make all, it should compile without errors.

 exit

Now we have set all the files and we can simulate the design. All the relevant

signals can be seen by running the wave file aes.do

 cd ..

 mentor_tools

 make all

 do aes.do (in the modelsim window)

 run -all (in the modelsim window)

You can see how data communication is taking place the between bus-master (in

this case AES) and LEON-2 by watching the simulation results of signals in the

AES_CTRL module. As shown in figure 4.6.1, the control signals being received

by the IP block from the LEON-2 processor through APB bus at Register ports

0x80000300-318. Any change in the value of these ports triggers a

corresponding operation in the AES_CTRL module. In figure 4.6.2 the IP block is

requesting the bus and after the AHB bus has been granted it is accessing the

data from memory and loading onto the AES block rams which is followed by a

“go” signal.

Figure 4.6.1 LEON-2 Processor: Transmitting control signals to IP Block

 52

Figure 4.6.2 IP Block: Performing tasks assigned

53

 54

4.7 System-on-Chip platform: Synthesis

Once synthesis for the LEON-2 processor in section 4.4 is successful, then the

tasks in this section are straightforward.

Remove and create a new WORK directory.

 synopsys_tools

 dc_shell –f soc.dcsh > zm-03.txt

Check the file zm-03.txt for any errors from synthesis and simulate the file in

similar fashion as in section 4.4. Figure 4.7.1 shows the control signals being

received by the IP block.

Figure 4.7.2 shows the IP block performing the tasks assigned and loading the

data onto the RAM blocks. It also shows the data being loaded on to the IP core

AES and giving load signal which is followed by a done signal in approximately

12 clock signals which indicates the 128 bit data has been encrypted.

4.8 System-on-Chip platform: Place & Route

Place and route is an elaborate process and to discuss each detail is out of the

scope of this document. I will however, highlight the steps followed during layout

generation.

Figure 4.7.1 LEON-2 Processor: Transmitting control signals to IP Block

 55

4.7.2 AES wrapper: Completing the tasks assigned

56

- Floorplanning – Encounter: Sown in figure 4.8.1

- Power Planning – Encounter: Shown in figure 4.8.2

- Place – Encounter: Shown in figure 4.8.3 and figure 4.8.4

- Clocktree insertion – Encounter

- Add filler cells – Encounter

- Export design – Encounter

- Import design – Design in Silicon Ensemble is shown in figure 4.8.5.

- Connect Rings – Silicon Ensemble

- Verify Geometry – Silicon Ensemble

- Verify connectivity – Silicon Ensemble

- Route – Silicon Ensemble: Shown in figure 4.8.6

- Verify Design – Silicon Ensemble

- Export def, gdsII formats.

- Perform post-layout back annotation simulation using SDF file.

 57

Figure 4.8.1 System-on-Chip platform: Initial Floorplanning

Figure 4.8.2 System-on-Chip platform: Power planning

58

Figure 4.8.3 System-on-Chip platform: Place customization

Figure 4.8.4 System-on-Chip platform: Placed

 59

Figure 4.8.5 System-on-Chip platform: Import placed file

 60

Figure 4.8.6 System-on-Chip platform: Route completed

 61

 62

Chapter 5: Results, Conclusion and Future Work

5.1 Results

As mentioned earlier, the objective of this thesis was to implement a System-on-

Chip platform. To achieve this goal we not only had to have a working RTL

model but also synthesize, place & route the design. This design, which has

more than four million transistors, posed various design problems. Therefore,

testing the functionality of the design after each design step – synthesis, clock

tree insertion, and routing was important. For this purpose simulation of the

design net-list was done using Modelsim.

Simulation results after the stages – RTL design, synthesis, clock tree insertions

were shown in the previous chapter. Final post-layout back-annotation simulation

was done to test if the design was properly placed and routed. For this purpose a

standard delay file (SDF) of the design was generated using the Hyper-extract

tool. Figure 5.1.1 and 5.1.2 shows the simulation using Modelsim with delay

information provided by the SDF file. The baseline System-on-Chip was operated

up to a speed of 25 MHz with basic timing constraints.

Figure 5.1.1 Back-annotated simulation results

 63

Figure 5.1.2 Back-annotated simulation for correct functionality

64

To calculate the number of transistors and standard-cell instances in the design I

have used a script generated internally at the University of Tennessee to actually

count the number of standard-cell instances in the net-list. A second script then

substitutes the number of transistors in each standard-cell instance based on the

information from the spice net-list (*.CDL) to calculate the number of transistors

in the design. These scripts are provided in the soc/count/ directory. Table 5.1.1

provides the comparison of standard-cell instance count and transistor count

after adding each IP to the LEON-2 processor.

Figure 5.1.3 shows the layout after importing the DEF file containing the

placement information of the design into the Virtuoso layout editor.

Table 5.1.1: Standard-Cell instances & Transistor count of the design

Design Instance Count Transistor Count
LEON-2 CPU 10022 117038
LEON-2 CACHE/RAM 10 2730118
LEON-2 Processor 10032 2847226
AES 17496 565800
FIR 96108 1016734
LEON-2 Processor + AES 30034 3075779
LEON-2 Processor + AES + FIR 130008 4132824

 65

Figure 5.1.3 System-on-Chip platform: Final layout

 66

5.2 Conclusion

• All major goals for this project were realized.

• Base platform established for further enhancements.

• Current implementations and future scope comprehensively documented

with a supporting tutorial.

• The integrated System-on-Chip platform contains approximately four

million transistors and around one hundred and thirty thousand standard-

cell instances.

5.3 Future Work

This platform is ready for further development and at the University of

Tennessee further work is being done on this platform under the title “The

Volunteer SoC”. Some preparations that I have made to enable performance

improvement as a part of future work are located in the soc/timing/ directory

which contains files for performance improvement using a timing constraint that

can be provided during synthesis and files for performing Static Timing Analysis

(STA) using the Synopsys - Primetime tool. These tasks will require various

teams working on different components of this System-on-Chip platform and

integrating them on a later stage and therefore were not taken as part of this

thesis.

 67

List of References

 68

[1] S. Thakur, Jeremy Buckle, "Introduction to Human Computer Interaction:

Moore’s Law," [Online]. Available:

http://www.cs.indiana.edu/~sithakur/l542_p2/1jepbuckl-2sithakur.html,

unpublished.

[2] R. Nair, "Effect of increasing chip density on the evolution of computer

architectures,” IBM J. RES. & DEV. VOL. 46 NO. 2/3 MARCH/MAY 2002.

[Online]. Available: http://www.research.ibm.com/journal/rd/462/nair.pdf.

[3] Pieter Burggraaf, "ASIC Highlights,” in STATUS 1998, ISBN: 1-877750-65-

4, Integrated Circuit Engineering Corporation, AZ, 1998.

[4] Udaya Kamath, Rajita Kaundin, "System-on-Chip Designs," White Paper,

June 2001. [Online]. Available:

http://www.wipro.com/pdf_files/Wipro_System_on_Chip.pdf, unpublished.

[5] Rick Mosher, AMI Semiconductor, “Structured ASIC Based SoC Design,”

[Online]. Available:

http://www.us.design-reuse.com/articles/article7058.html, unpublished.

[6] Jiri Gaisler, Gaisler Research, The LEON-2 Processor. [Online]. Available:

http://www.gaisler.com/.

[7] Jiri Gaisler, Gaisler Research The LEON/ERC32 GNU Cross-Compiler

System. [Online]. Available: http://www.gaisler.com/doc/leccs-1.2.2.pdf.

[8] Magma Design Automation, Inc. “A Full-Chip Hierarchical Design System,”

White Paper, 2002. [Online]. Available: http://www.magma-

da.com/res/Pages/articles/HierarchicalDesign_Overview.pdf.

[9] James Wall and Anne Macdonald. (1993) “The NASA ASIC Guide,” Internet

Draft. [Online]. Available: http://nppp.jpl.nasa.gov/asic/title.page.html.

[10] Allen C. -H. Wu, Tsing Hua University. “Business Trends and Design

Methodologies for IP Reuse”. [Online]. Available:

http://larc.ee.nthu.edu.tw/dtc/doc/soc_dream.pdf, unpublished.

[11] Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew McNelly,

Lee Todd, Surviving the SOC Revolution: A Guide to Platform Based

 69

http://www.cs.indiana.edu/~sithakur/l542_p2/1jepbuckl-2sithakur.html
http://www.research.ibm.com/journal/rd/462/nair.pdf
http://www.wipro.com/pdf_files/Wipro_System_on_Chip.pdf
http://www.us.design-reuse.com/articles/article7058.html
http://www.gaisler.com/
http://www.gaisler.com/doc/leccs-1.2.2.pdf
http://www.magma-da.com/res/Pages/articles/HierarchicalDesign_Overview.pdf
http://www.magma-da.com/res/Pages/articles/HierarchicalDesign_Overview.pdf
http://nppp.jpl.nasa.gov/asic/title.page.html
http://larc.ee.nthu.edu.tw/dtc/doc/soc_dream.pdf

Design. Reading, Kluwer Academic Publishers (1999).

[12] Aurangzeb Khan, Cadence Design Systems “Addressing Design Challenges

at 130-Nanometer and Below: The Silicon Readiness Approach,” White

paper, Fabless Semiconductor Association, October 2003. [Online].

Available: http://www.fsa.org/resources/whitepapers/Cadence10-03.pdf.

[13] “International Technology Roadmap for Semiconductors,” 2003 Edition,

Reading. [Online]. Available: http://public.itrs.net/.

[14] Smith, M. J. S., “Application-Specific Integrated Circuits,” Reading.

Addison-Wesley, Boston, MA, 1997.

[15] D. W. Bouldin, University of Tennessee. “Enhancing System-Level

Education with Reusable Designs,” Proceedings of European Workshop on

Microelectronics Education (EWME), Aix-en-Provence, France, pp. 5-8 (May

18, 2000). [Online]. Available:

http://microsys6.engr.utk.edu/ece/ewme00.pdf.

[16] AMBA Specifications Rev 2.0, ARM IHI 0011A, ARM Limited, (1999).

[Online]. Available: http://www.arm.com,

[17] Jiri Gaisler, Gaisler Research. The LEON-2 Processor: User’s Manual.

[Online]. Available: http://www.gaisler.com/.

[18] OAR Corporation, “Embedded with RTEMS,”. [Online]. Available:

http://www.rtems.com/. unpublished.

[19] Donald W. Bouldin and Rishi R. Srivastava, "An Open System-on-Chip

Platform for Education," Proceedings of 2004 European Workshop on

Microelectronics Education (EWME), Lausanne, Switzerland, (April 15-16,

2004). [Online]. Available: http://microsys6.engr.utk.edu/ece/ewme04-

soc.pdf.

[20] OpenCores.Org, [Online]. Available: http://www.opencores.com.

[21] Advanced Encryption Standard, Federal Information Processing Standards

Publication 197 November 26, 2001. [Online]. Available:

http://csrc.nist.gov/cryptval/aes/aesval.html

 70

http://www.fsa.org/resources/whitepapers/Cadence10-03.pdf
http://public.itrs.net/
http://microsys6.engr.utk.edu/ece/ewme00.pdf
http://www.arm.com/
http://www.gaisler.com/
http://www.rtems.com/
http://microsys6.engr.utk.edu/ece/ewme04-soc.pdf
http://microsys6.engr.utk.edu/ece/ewme04-soc.pdf
http://www.opencores.com/
http://csrc.nist.gov/cryptval/aes/aesval.html

[22] Artisan Components, Inc. “Generator User Manual”.

[23] Envisia Technologies Inc. “Envisia Clock Tree Generator: User Manual”.

[Online]. Available: http://www.es.lth.se/ugradcourses/cadsys/Ectgen.pdf.

[24] Cadence Design Systems. “Encounter Digital IC Design Platform”. [Online].

Available: http://www.cadence.com/products/digital_ic/index.aspx.

unpublished.

[25] University of California San Diego. Place and Route with SoC Encounter.

[Online]. Available: http://vlsicad.ucsd.edu/courses/ece260b-

w04/Lab2/Lab2.php. unpublished.

 71

http://www.es.lth.se/ugradcourses/cadsys/Ectgen.pdf
http://www.cadence.com/products/digital_ic/index.aspx
http://vlsicad.ucsd.edu/courses/ece260b-w04/Lab2/Lab2.php
http://vlsicad.ucsd.edu/courses/ece260b-w04/Lab2/Lab2.php

Vita

Rishi R. Srivastava was born in Bhopal, India. He received his Bachelor of

Engineering in Electronics and Telecommunication engineering from Pt. Ravi

Shankar Shukla University Raipur, India. He joined the University of Tennessee,

Knoxville as a Graduate student (Masters program) in August 2001. Subsequently

he has been doing his research under the guidance of Prof. Donald W. Bouldin.

His research interests are in field of ASIC Design and Verification. He plans to

graduate with a Master’s degree in Electrical engineering in Aug 2004.

 72

	An Open Core System-on-chip Platform
	Recommended Citation

	Donald W. Bouldin
	Gregory D. Peterson_____
	Chandra Tan _________
	Anne Mayhew
	System-on-Chip Platform
	A Thesis
	The University of Tennessee, Knoxville
	Rishi R. Srivastava

	Chapter 2: Background
	For TSMC-25 Technology
	Instance Name

	(Library to database conversion) File name: lib2db.dcsh
	File Name: .synopsys_dc.setup
	Table 5.1.1: Standard-Cell instances & Transistor count of t
	Design
	List of References
	Vita

