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Abstract 

The design cycle required to produce a System-on-Chip can be reduced by 

providing pre-designed built-in features and functions such as configurable I/O, 

power and ground grids, block RAMs, timing generators and other embedded 

intellectual property (IP) blocks. A basic combination of such built-in features is 

known as a platform.  

 

The major objective of this thesis was to design and implement one such 

System-on-Chip platform using open IP cores targeting the TSMC-0.18 CMOS 

process. 

 

The integrated System-on-Chip platform, which contains approximately four 

million transistors, was synthesized using Synopsys - Design Compiler and placed 

and routed using Cadence - First Encounter, Silicon Ensemble. Design verification 

was done at the pre-synthesis, post-synthesis and post-layout levels using 

Mentor Graphics - ModelSim. Final layout was imported into Cadence - Virtuoso 

to perform design rule check. 

 

A tutorial was written to enable others to create derivative designs of this 

platform quickly. 
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Chapter 1: Overview 

 

1.1 Introduction 

Moore’s Law [1] predicted that the number of transistors on a chip will double 

every eighteen months and for more than three decades now the integrated 

circuit design industry has followed Moore’s law. Various studies on similar topics 

also predicted a 20-fold increase in power and capabilities of integrated circuits 

over a period of a decade [2]. 

 

Conventionally, integrated circuit design involved circuits with medium 

complexity, around 200-500K gates, operating at 50-100 MHz speed, were 

designed using 0.35-micron silicon process technology and were made up of 

mostly core logic along with some hard macros like SRAMs. These designs would 

have a design cycle of 12-18 months [3].  

 

Whereas modern designs involve circuits with superior complexity, around 10-25 

million gates and are designed using 0.18 - 0.13-micron silicon process 

technology, and are able to sustain a clock speed in excess of 1 GHz. This 

explosive growth in gate count and speed as well as consumer requirements for 

bleeding edge technologies like modern telecommunication equipments, 

consumer goods like PDAs, 3rd generation mobile devices, has pressured the 

design technology community to harness its potential quickly. As a result we 
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have integrated circuits with much more complex capabilities. Today integrated 

circuits are not only faster and larger, they also include traditional 

microprocessor cores, Intellectual Property (IP) cores, and memory cores -- in 

other words, a System-on-Chip (SoC). 

 

According to a report [4] on market growth for System-on-Chip, the volume will 

increase at a stupendous rate of 30-35% annually with many major companies 

investing two-thirds of their research and development in the System-on-Chip 

arena. 

 

Emergence of System-on-Chip technology has brought with it a whole spectrum 

of opportunities and challenges. Opportunities are in the form of reduced cycle 

time, time-to-market considerations, bigger spectrum of customers, and superior 

performance. Whereas the challenges include deep sub micron design 

complexities, verification and integration. 

 

Time-to-market may be optimized by reducing the design cycle and by reducing 

the manufacturing cycle. The design cycle can be reduced by providing pre-

designed built-in features and functions such as configurable I/O, power and 

ground grids, block RAMs, timing generators and other embedded IPs. A basic 

combination of such built-in features is known as a platform. The platform used 

to implement a System-on-Chip greatly impacts all of the issues and is the 
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fundamental decision the hardware designers must make at the start of each 

new project. 

 

Design reuse in the form of previously verified and used IP cores can greatly 

reduce time-to-market and increase quality for System-on-Chip designs. 

According to a report [5], by 2010 the percentage of IP contained in a System-

on-Chip application is predicted to grow to 95%. 

 

Now, million-gate integrated circuits are increasingly being designed as System-

on-Chip platforms since platform design mitigates the risks involved with 

integrating a CPU core and other virtual components by a fixed deadline. Using 

this approach, designers can overcome uncertainties about the quality of the 

components and their interaction and can produce derivative designs rapidly.   

 

The development of one such System-on-Chip platform is described in this 

thesis.  In the process of implementing this project, emphasis was to learn not 

only to reuse existing cores but also the requirements to create high quality 

cores for reuse.  This System-on-Chip platform, which uses only open cores that 

can be obtained by anyone at no charge, served as an “industrial strength” 

design for me to learn about optimizations at the logic and physical levels.  Thus, 

synthesis and place/route tools were used to explore the power-delay-area 

solution space of a million-gate design.  Having internal visibility of the 
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components at both the source code level and at the physical layout level greatly 

facilitates understanding of System-on-Chip development issues. The System-on-

Chip platform is being placed in the public domain so that others may contribute 

to its enhancement. 

 

1.2 Project Goals and Core Selection 

The objective of this thesis was to design and implement a baseline System-on-

Chip platform targeting the TSMC-0.18 CMOS process.  To enhance the 

understanding of System-on-Chip issues, I have selected only open soft cores 

that could be obtained for free (e.g. AES) or have been generated internally at 

the University of Tennessee (e.g. FIR, FFT). For the CPU, I have selected the 

LEON-2 processor [6]. This processor is specifically designed for embedded 

applications. As shown in figure 1.2.1, LEON-2 core provides a direct memory- 

interfaced PROM, memory-mapped I/O, SRAM and SDRAM with variable memory 

width of 8, 16 or 32 bits. The LEON-2 processor can also include various other 

features such as two UARTs, an interrupt controller, a memory controller, and an 

interface for a coprocessor or floating-point unit.  

 

A flexible configuration scheme makes it straightforward to add new cores as 

masters or slaves depending upon their functionality. The LEON-2 processor has 

implemented a Harvard Architecture for cache with separate data and instruction  
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Figure 1.2.1 Block diagram of the open System-on-Chip platform 

 

cache RAMs which can be generated in 1-4 sets each of 1-64Kb depending on 

the functionality desired.  

 

The compiler for the LEON-2 is LECCS (LEON/Erc32 GNU Cross-Compiler System) 

[7] which is compatible with Sun Solaris / Linux / Windows operating systems. 

LECCS supports ordinary sequential C/C++ programming or multitasking using 

the RTEMS (Real Time Embedded Micro-controller Systems) kernel. 
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Chapter 2:  Background 

 

2.1 Design Process 

As said earlier, it is not uncommon to find chip design that packs 20-50 million 

transistors on a single die. In a few years we hope to be able to pack hundreds 

of million transistors on a single die. That is assuming the tools are in place that 

will be able to manage the design of that complexity. The answer to this 

question lies in how industry develops the design process and methodology.  

Three major methods used to design integrated circuits are: 

- Full-Custom design 

- Standard-Cell design 

- Gate-array design. 

 

Full-Custom design is the lowest level, requiring the designers to specify the 

exact location of every wire and transistor. Standard-Cell designs are a bit 

simpler; the designer is given a library of fairly simple logic elements and allowed 

to assemble them in any way.  

 

The gate-array approach is not only the simplest but also provides an attractive 

alternative that offers shorter design cycle, quicker response on iterations and 

modifications, and lower non-recurring engineering (NRE) costs. A gate-array 

solution is frequently completed many months ahead of a full-custom or 
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standard-cell equivalent. I will focus on the gate-array design process because it 

is the simplest and because it is the method generally used to design the kind of 

chip discussed in this thesis. 

 

Since designing a gate-array is simple, hardware description languages (HDL) 

and synthesis tools are very popular among gate-array designers. A hardware 

description language provides an easy way to specify the behavior of the chip 

and provides an environment for simulating the behavioral model. The synthesis 

tools can turn this model into a gate-level description, and often provide ways to 

simulate that description as well, thus completing most of the design work, 

although it is easier said than done. 

 

As a design gets larger, timing closure at the chip level becomes much more 

complex. And as process geometries continue to shrink, signal integrity effects 

such as noise, increased interconnect crosstalk, lower power voltage, and other 

effects must be considered. The bottom line is that the design and 

implementation of sub-0.18 micron chips present significant challenges. If there 

is no change either in the methodology or the tools used today the cost and 

resource requirements that would be needed to design and implement deep sub-

micron chips will be somewhat proportional to the number of transistors [8]. 
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Hierarchical Design Process 

An approach that has been taken while implementing the open core System-on-

Chip platform is hierarchical design. It is a common approach to solving complex 

designs problem. The approach is to break down the design into manageable 

pieces and solve one piece at a time [8]. If the pieces are small enough, the 

problem can be manageable. However, success depends on bringing all of the 

pieces together again to provide an answer to the original problem. This 

approach has been applied to complex engineering projects and is now finding 

its way in the System-on-Chip design process. Hierarchical chip design can be 

roughly separated into three broad processes: 

- Process of breaking the overall design into blocks that will be implemented 

individually. Planning in this process is critical, as project must yield a final 

design that meets the project goals for timing and other requirements. 

- Process of implementing the detailed design of the individual blocks. 

- Process of connecting all of the blocks in the design to result in the final 

chip. 

We will be discussing more about these issues in the chapter discussing 

implementation of the System-on-Chip platform. There we will get a better 

understanding about how timing requirements are so essential at the block level 

and can have serious consequences on integration of the core. 
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2.2 Design Methodology 

In the ASIC industry, switching from designs that were based on transistors to 

the designs that were based on gates proved to be a great boon for the industry 

[9]. It induced a huge growth in productivity and helped make concepts such as 

gate-arrays a reality. It provided the groundwork for new industries, 

restructuring the existing engineering organizations providing broader boundaries 

for the relationship between the designer and design by introducing a new level 

of abstraction. 

 

A general pattern followed by most of the ASIC industry is that the silicon 

process technology changes which is then followed by making changes to the 

design technology.  These changes are then adopted by the design 

methodology, which then implements these changes in the form of new 

processes. These processes further result in an increase in productivity [10]. 

However, over a period of time now, there has been major progress in silicon 

manufacturing technology leading to a situation where design technology is 

lagging far behind. Consequently, industries now need a fundamental 

reorganization so that designs are done not only faster but also in a different and 

more efficient way. Therefore, traditional design processes are now being 

replaced by the SoC designs. 
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We are now entering the era of block-based design (BBD); heading towards 

virtual component (VC) based System-on-Chip design, which is driven by our 

ability to harness reusable virtual components (VC), a form of IPs. Today design 

methods can be divided into four main segments [11]: 

- Area Driven Design (ADD) 

- Timing-driven design (TDD) 

- Block-based design (BDD) 

- Platform-based Design (PBD) 

 

Timing-Driven Design (TDD)  

TDD is the most efficient methodology used for designing a moderately sized 

ASIC, consisting mostly of new logic on deep sub-micron processes, without 

significant utilization of the hierarchical design process. When a team is working 

on some design that is required to meet certain performance constraints with 

respect to its speed and power consumption, they follow TDD. With the 

availability of modern tools to make delay calculations and timing analysis, 

accuracy has reached a new level and is able to provide an unbiased idea about 

the design capabilities. One major shortcoming on the part of TDD is that, at 

higher gate counts, usually in excess of the 150-K mark, it begins to fail as the 

complexity increases. 
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Block-Based Design (BDD)   

Designers are now in a position to reuse system level functions, and the 

complexity in the design of a chip is also steadily increasing. Now, with a new 

relationship between system, RTL and physical design, designers are making the 

change from the Timing Driven Design (TDD) to a Block Based Design (BBD) 

methodology. Ideally, BBD is behaviorally modeled at the system level, where 

hardware/software trade-offs as well as hardware/software co-verification using 

software simulation or hardware emulation is performed. The new design 

components are then partitioned and mapped onto specific functional RTL 

blocks, which are then designed to budgeted timing, power and area constraints. 

This is in contrast to the TDD approach, where timings are captured along 

synthesis-restricted boundaries. The combination of system level simulation of 

designs and RTL simulation of individual blocks minimizes the requirement for a 

unique testbench. Reusable blocks are poorly characterized, subject to 

modification and require re-verification. This effects the time-to-market equation. 

 

Block based design generally employ a bus architecture, either processor 

determined or custom. BBD needs effective block level floor planning to estimate 

effective block size quickly. This helps in creating a viable budget for all blocks 

and their interconnection, which is essential to the convergence. 
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Figure 2.2.1 Design methodologies 

 
Platform Based Design (PBD)  

As shown in figure 2.2.1, PBD constitutes the next step in the evolution of design 

technologies. It attempts to comprise the cumulative capabilities of both TDD 

and BDD technologies. One quality that separates PBD from BBD is extensive 

planned design reuse and difference achieved in time-to-market for even the first 

products. It has also expanded the opportunities and speed of delivering 

derivative products.  

 

Like BBD, PBD too is a hierarchical design methodology that starts at the system 

level. Using predictable, preverified reusable IP blocks that have standardized 

interfaces increases productivity and greatly effects time-to-market equations 

[11]. PBD methodology separates design into two areas of focus:  
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- Block Authoring 

- System-Chip Integration. 

 

Block authoring primarily uses a methodology suited to the block type (TDD, 

ADD), but the block is created so that it interfaces easily with multiple target 

designs. To be effective two new design concepts must be established: interface 

standardization and virtual system design. 

 

In interface standardization many different design teams, both internal and 

external to the company can do block authoring, as long as they are all using the 

same interface specification and design methodology guidelines. Virtual system 

design answers the question related to power consumption and distribution, test 

options for different blocks, aspect ratio and clock distribution.   

 

System integration focuses on designing and verifying the system architecture 

and the interface between the blocks. Contrary to its name, system integration 

starts with partitioning the system around the pre-existing block level functions 

taking into consideration performance analysis, hardware software design 

tradeoffs. 

 

The basic idea behind the platform-based design approach is to avoid designing 

a chip from scratch. Some portion of the chip's architecture is predefined for a 

 13 



specific type of application. Usually there is a processor, a real-time operating 

system (RTOS), peripheral intellectual property (IP) blocks, some memory and a 

bus structure. Depending on the platform type, users might customize by adding 

hardware IP, programming FPGA logic or writing embedded software. 

 

2.3 Challenges in System-on-Chip Design 

With the unprecedented level of integration in integrated circuit design, 

designers can pack a variety of functionalities on one chip. But to be able to take 

real advantage of such opportunities, System-on-Chip designers have to grapple 

with an exponential increase in design complexity. Also exploding transistor 

counts and skyrocketing clock rates coupled with changes in design 

methodologies have unleashed an entirely new set of design challenges. 

 

The impact of exploding transistor counts on design methodologies has been 

profound. A few years ago the majority of silicon respins were due to simple 

functional design errors [12]. Furthermore designers could make simple 

assumptions to predict and compensate for the impact of physical effects such as 

signal integrity and crosstalk. 

 

Today this is no longer the case. Designers can no longer manage those physical 

effects with simple models and assumptions regarding the design.  As System-

on-Chip designers venture into nanometer processes they are finding that an 
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increasing proportion of failures are a result of physical effects that are not 

reflected in the simple models used to represent transistors and wires. As a 

result traditional approaches to design no longer apply and new verification 

techniques have to be incorporated. 

 

Today designers of ASICs are faced with the challenge of creating and verifying 

the content of million-transistor chips as quickly as possible in order to reduce 

the time-to-market [13].  It has been estimated that a one-month delay in 

bringing a product to market can result in a loss of ten percent of the potential 

revenue [14].  Hence, not all of the transistors on these chips can be customized 

but instead must be ported from previous designs.  These reusable cores or IP 

blocks include CPUs (like ARM, PowerPC and LEON-2), MPEG decompression 

engines, PCI bus controllers, specialized DSPs, etc.  Combining several complex 

cores using standard cells is much more manageable and quicker than designing 

millions of transistors one at a time.   

 

The myth that characterizes today’s IP is that these components are blocks that 

have well-defined contents and interfaces.  However, they are often fuzzy and 

hence appear more like patches in a quilt, which must be stitched together.  The 

components cannot be assembled blindly and rapidly, but rather must be 

carefully pieced together to form a working system. Therefore, design for reuse 

does not come free.  Rather it involves much more in-depth documentation and 
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characterization than for a design that is not intended to be reused.  Based on 

the experiences of software engineers, it is estimated that preparing a 

component for reuse will require about 50% additional effort [15]. Once this has 

been done, the designer who is reusing the component may naively think that 

his design time for that component will be reduced to zero.  But alas, he must 

take care to understand fully how the component works and how it should be 

integrated with other components.  Again from the experiences of software 

engineers, the second design generally requires about 30% of that required to 

produce the component originally.  Thus, the reuse is not for free but does make 

a significant (70% reduction) impact on the next design. 
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Chapter 3: Component Background 

 

3.1 AMBA Overview 

Design reuse in a System-on-Chip is a critical feature and it can be successfully 

achieved through proper investment in standards. AMBA, which stands for an 

Advanced Microcontroller Bus Architecture, is an open standard [16], which 

defines an on-chip bus specification for interconnection and management of 

various functional blocks that are a part of System-on-Chip.  Using the AMBA 

specification enhances the reusable platform based design methodology by 

defining a common standard for data transfer in a System-on-Chip module.  

AMBA has been widely adopted throughout the industry and, as a consequence, 

there is support for the development of AMBA bus-based systems from a 

growing number of companies. The AMBA specification has been derived to 

satisfy four key requirements: 

 

• To facilitate the right-first-time development of embedded microcontroller 

products with one or more CPUs or bus masters.  

• To be technology-independent and ensure that highly reusable peripheral can 

be migrated across a diverse range of IC processes.  

• To encourage modular system design to improve processor independence, 

providing a development road map for advanced cached CPU cores and the 

development of peripheral libraries.  
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• To minimize the silicon infrastructure required to support efficient on-chip and 

off-chip communication for both operation and manufacturing test. 

 

Three distinct buses are defined within the AMBA specification: 

 

Advanced High-performance Bus (AHB) 

The AMBA AHB is for high-performance, high clock frequency system modules. 

The AHB acts as the high-performance system backbone bus. AHB supports the 

efficient connection of processors, on-chip memories and off-chip external 

memory interfaces with low-power peripheral macrocell functions.  

 

Advanced System Bus (ASB)  

The AMBA ASB is for high-performance system modules. AMBA ASB is an 

alternative system bus suitable for use where the high-performance features of 

AHB are not required.  

 

Advanced Peripheral Bus (APB) 

The AMBA APB is for low-power peripherals. AMBA APB is optimized for minimal 

power consumption and reduced interface complexity to support peripheral 

functions. APB can be used in conjunction with either version of the system bus. 

The AMBA APB should be used to interface to any peripherals which are low 

bandwidth and do not require the high performance of a pipelined bus interface.  
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System-on-Chip platform: Bus Architecture 

For the open core System-on-Chip platform discussed in this thesis there were 

various options to attach IP blocks as AHB bus-masters or AHB bus-slaves. 

Although attaching them as AHB slaves would be easier and less complicated the 

overall architecture would have become restrictive and also very much 

dependent upon the availability of LEON-2 processor to carry out a process. On 

the other hand, implementing the IP block as AHB bus-master would be more 

complex but at the same time provide appropriate flexibility for future 

modification or performance improvement tasks. 

 

The AMBA AHB bus protocol is designed to be used with a central multiplexer 

interconnection scheme. Using this scheme, all bus masters drive out the address 

and control signals indicating the transfer they wish to perform and the arbiter 

determines which master has its address and control signals routed to all of the 

slaves. A central decoder is also required to control the read data and response 

signal multiplexer, which selects the appropriate signals from the slave that is 

involved in the transfer. 

 

As shown in figure 3.1.1 an AHB bus master has the most complex bus interface 

in an AMBA system. Typically an AMBA system designer would use pre-designed 

bus masters and therefore would not need to be concerned with the detail of the 

bus master interface. But for our project we had to develop a model using one of  
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Figure 3.1.1 AHB bus master interface diagram 

 

the IP blocks as an example, which we refer to as AMBA wrapper, could then be 

reused for other IP blocks with minor modifications. 

 

Before an AMBA AHB transfer can commence, the bus master must be granted 

access to the bus. The master asserting a request signal to the arbiter starts this 

process. Then the arbiter indicates when the master will be granted use of the 

bus. A granted bus master starts an AMBA AHB transfer by driving the address 

and control signals. These signals provide information on the address, direction 

and width of the transfer, as well as an indication if the transfer forms part of a 

burst. 
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Figure 3.1.2 APB slave interface description 

 

An IP block to be attached to the open core System-on-Chip platform can be 

attached as APB slaves since the LEON-2 processor itself is an APB master. This 

way all the control signals to individual IP blocks can be sent through the APB 

bus.  Figure 3.1.2 describes the interface for a block acting as an APB slave. 

 

3.2 LEON-2 Architecture 

LEON-2 is a 32-bit processor conforming to the IEEE-1754 (SPARC V8) standard. 

The VHDL model of the processor, which is available free, and is highly flexible 

can be configured and made suitable for embedded applications and System-on-

Chip designs [17].  Figure 3.2.1 describes the block diagram for LEON-2 

processor. 

 

For my System-on-Chip platform I used the latest version of the LEON-2  
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Figure 3.2.1 LEON-2 processor block diagram 

 

processor (LEON2-1.0.12) available at the time. Updating to newer versions of 

LEON-2 is not a very difficult task provided there aren’t many changes in the 

upcoming versions.  

 

 LEON-2 Architecture Overview 

The LEON-2 processor is designed for embedded applications containing the 

following on-chip features: 

- Separate instruction and data cache (Harvard Architecture)  

- Hardware Multiplier and Divider  

- Interrupt controller  

- Debug Support Unit with trace buffer  

- Two 24-bit timers  

- Two UARTs  
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- 16-bit I/O port and a flexible memory controller.  

- APB is used to access on-chip registers in the peripheral functions. 

- AHB is used for high-speed data transfers.  

 

The full AHB/APB standard is implemented and the AHB/APB bus controllers can 

be customized through the TARGET package and DEVICE.VHD, which is a 

configuration file. Additional (user-defined) AHB/APB peripherals should be 

added in the MCORE module. For the bus controller to recognize a new IP 

module, the following changes are needed in the DEVICE.VHD file. Figure 3.2.2 

shows the addition of AES block in the list of APB slaves. 

 

Important thing to note in the figure 3.2.2 is that the memory range allotted to 

AES is 0x800000300 H to 0x8000003FF H. When the LEON-2 processor accesses 

 

 

Figure 3.2.2 Configuring apb_slv_config_vector 
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any registers in this memory range then only the AES module is triggered for a 

response. Similarly we need to specify in AHB master’s vector, number of bus 

masters attached. This notifying the bus-controller which in turn arbitrates which 

master has control of the bus. The number of bus masters will change depending 

upon the number of IP blocks added at a time. Priority can be assigned in the 

MCORE module. In our case following priority were assigned: 

- LEON-2 Processor (0), AES block (1), FIR block (2) 

Where higher number has higher priority. 

 

LEON-2 itself uses AHB bus to connect the processor cache controllers to the 

memory controller and other (optional) high-speed units. In the default 

configuration, the processor is the only master on the bus, while two slaves are 

provided: the memory controller and the APB bridge. Figure 3.2.3 shows the 

default address allocation. 

 

 

Figure 3.2.3 Default address allocation 
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From the above address space it is evident that we can read and write to APB 

devices in the range 0x80000000 – 0x8FFFFFFF and this is why we added the 

AES block in this range. The APB bridge is connected to the AHB as a slave and 

acts as the (only) master on the APB. Most on-chip peripherals are accessed 

through the APB. 

 

3.3 RTEMS, LECCS 

LECCS is an acronym for LEON/ERC-32 Cross Compiler System. Today almost all 

real-time embedded software systems are developed in a cross development 

environment using cross development tools. In a cross development 

environment, software development activities are typically performed on one 

computer system, the build host system (in this case LECCS), while the result of 

the development effort (produced by the cross tools) is software executable to 

be used on the target platform. Figure 3.3.1 explains shows the analogy between 

gcc and LECCS. 

 

 

Figure 3.3.1 Analogy between gcc and LECCS compiler systems 
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The cross development toolset must allow the developer to customize the tools 

to address the target specific run-time issues. The toolset must have provisions 

for board dependent features like initialization code, real-time operation etc. 

LECCS is one such cross development tool. It is a multi-platform development 

system based on the GNU family of freely available tools with additional point 

tools developed by Cygnus, OAR and Gaisler Research [7]. The most important 

property of LECCS is its ability to incorporate multi-tasking and real-time 

operations using RTEMS kernel. 

 

RTEMS [18] is an acronym for Real – Time Executive for Multiprocessor Systems. 

It provides a high performance environment for embedded applications including 

many features such as: - 

- TCP/IP Stack, UDP DHCP 

- POSIX including API threads 

- Debugging – GNU debugger, thread aware 

- Multitasking capabilities 

- Event-driven, priority based scheduling 

- High level of user configurability. 

 

3.4 Development of IP Library 

To build an IP Library an entire graduate level class with sixteen students was 

divided into small groups working independently on cores [19]. It was essential 
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to define some specifications and guidelines to enable the integration of these 

into a complete System-on-Chip at a later stage. Each core was verified 

individually via pre-layout simulation, synthesis, place/route and post-layout 

simulation prior to attempting integration with the LEON-2 or other cores. Thus, 

we could be assured that adding a new core to our System-on-Chip design would 

not introduce any errors within the system and we need to test only for its 

interaction with the rest of the System-on-Chip platform. The task of integrating 

these cores into a System-on-Chip platform is greatly facilitated by using a 

common bus protocol to interconnect them. For this purpose, an AMBA–wrapper 

was created for each core such that it would enable the cores to act as AHB bus 

masters and APB bus slaves. Specification guidelines as defined in class were: 

 Address width is 32 bit. 

 Data width is 32 bit. 

 RESET signal to initialize all the registers and rams. 

 Data has to be loaded into the RAM. 

 GO signal for IP blocks to start functioning. 

 Done Signal to indicate output data is ready. 

 

The Advanced Encryption Standard (AES) cipher core was obtained from 

opencores.com and is available for free [20]. Similarly other cores used in the 

thesis as bus-masters are FIR and FFT cores, which were generated internally at 

the University of Tennessee.  
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AES is the latest Federal Information Processing Standard (FIPS) [21]. AES is 

implemented using the Rjindael algorithm. This is a block cipher that takes in a 

key and input text in variable-bit block lengths. The current version can have 

128, 196, 256-bit key to cipher data with block length of 128,196,256 with all the 

nine combinations possible. The AES core is basically two parts. The AES Cipher 

top and the AES Inverse Cipher top. The core comes along with a verilog test-

bench. The test bench supplies the Key, Plain Text and Ciphered data (to cross-

check simulation results) in blocks of 128 bits to test the functionality. 

 

AES Cipher 

The AES cipher core consists of a key expansion module, an initial permutation 

module, a round permutation module and a final permutation module. Figure 

3.4.1 explains the block diagram for AES Cipher module. The round permutation 

module will loop internally to perform 10 iterations (for 128 bit keys). 

 

 

Figure 3.4.1 AES cipher block diagram 
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Task Requirements 

Figure 3.4.2 explains the design flow for designing IP block and its verification. 

- Simulate the AES Cipher (Open IP) core before synthesis.  

- Synthesize the core targeting FPGA Xilinx Virtex 1000e and ASIC TSMC 0.18 

technology using FPGA Compiler and Design Compiler. 

- Place and Route the Synthesized design using XVMake (Xilinx Virtex) and 

Silicon Ensemble (ASIC) to get the SDF files for the design. 

- Perform Post-Layout Back Annotated Simulation using SDF File for both 

technologies.  

- Add DesignWare RAM to the front and back of the design to read the Key and 

Data required by the AES Cipher and write back the Ciphered text into the RAM.  

- Perform Pre-Synthesis Simulations on the RAM-IP Core-RAM System. 

 

 

Figure 3.4.2 Design and verification tasks description 
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- Synthesize this system like Step 2 followed by Place and Route as in Step 3 and 

get the SDF files for both technologies  

- Perform Post Layout Back Annotated Simulation using SDF File for both 

technologies. 

 

3.5 Artisan RAM 

The TSMC 0.18-micron synchronous dual-port SRAM is produced by a 

parameterized block generator, which allows great flexibility in the SRAM 

organization [22]. Three mux options are available which help in choosing the 

shape of the RAM.  

 

The SRAM has two ports for the same memory locations. SRAM access is 

synchronous and is triggered by the rising edge of the clock, CLKA. Input 

address, input data, write enable, and chip enable are latched by the rising edge 

of the clock, respecting individual setup and hold times. The figure 3.5.1 shows 

the availability of the data on the output port after Ttz time period.  

 

 

Figure 3.5.1 Artisan ram output set up time 
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Figure 3.5.2 Artisan ram read cycle 

 

To utilize this SRAM in our design we need to understand its read and write 

operation cycle and then create a wrapper to enable the communication with 

LEON-2 processor. LEON-2 processor is provided with a test bench to check if 

added RAM blocks are functioning in desired manner. Any error in meeting the 

timing constraints or data values results in cache failure. Figure 3.5.2 describes 

the read operation in Artisan SRAM. To perform a read operation an important 

thing to notice is that address of the memory location to be accessed should 

already be there when rising edge of the clock appears. Similarly while writing to 

a memory location at rising edge both data and address location should already 

be there at the data and address bus I/o ports. However if we see the simulation 

of LEON-2 processor read cycle in figure 3.5.3, it loads the address and data i/os 

at rising edge of the clock. This caused a failure in the LEON-2 processor. 

Therefore I have created a wrapper, which acts as an interface between LEON-2 

and Artisan RAM.  
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Figure 3.5.3 LEON-2 processor read cycle 

 

This wrapper can be used with any Artisan RAM block since just the data width 

and address width need to be changed. 

 

3.6 Clock Tree Generation 

When complexity and size increase, the need to distribute clock signals in a 

controlled manner becomes very important. A large, pipelined chip may easily 

contain thousands of clocked elements (latches, flip-flops, etc.), and it is 

generally desired that the clocked parts switch at the same time, so it is obvious 

that a lot of buffering for clock signal is needed is needed.  

 

In order to run CT-Gen [23], the normal design flow in Silicon Ensemble is 

broken up after the placement stage and a DEF file describing the design is 

saved. This file is then fed into CT Gen along with some library files and after the -
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clock tree has been generated the design is imported back into Silicon Ensemble 

for routing (as shown in figure 3.6.1).  

 

CT-Gen can be called from within Silicon Ensemble (this feature is available in 

version 5.4 or later) or it can be run as a stand-alone tool. For this thesis I tried 

both ways to implement a clock tree. For designs like “AES block” which are big 

enough to implement a clock tree but not as big as the complete System-on-Chip 

platform, both methods worked perfectly. However for a larger design with RAM 

blocks and hierarchy in the design I was not able to get a proper result using the 

CT-Gen tool. Therefore I used another tool by Cadence – Encounter [24], [25]. 

Using Encounter for large designs with hierarchy is really advantageous as it 

provides a very user-friendly interface to implement the clock tree. 

 

 

Figure 3.6.1 CT-Gen design flow 
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Figure 3.6.2 User constraints 

 

Choosing the proper timing constraint for the clock implementation is really 

important since user-defined constraints force CT-Gen to insert buffers and 

inverters, forming a tree structure, into the clock distribution. Any existing 

buffering in the clock path will first be removed. The available components are 

picked from the timing file read into the generator. Constraints are the 

restrictions given to CT Gen. These are in the form of what delays that can be 

accepted in the clock distribution. The constraints that the user can specify are 

as follows, figure 3.6.2. 

-

.  max insertion delay: Maximum delay from root to leaf pin. 

.   min insertion delay: Minimum delay to leaf pin. This is usually set to 0 

but in some cases a higher value is required. 

.   max skew: The time difference between the fastest and the slowest 

clock path.  
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.   max transition time: The 10% to 90% transition time at a leaf pin. 

 

This tool can be used on other heavily loaded signals, such as reset, but that is a 

more complicated procedure. And a work-around for this problem can be leaving 

the reset signal active for more than 3-4 clock cycles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 35 



Chapter 4: Implementation 

 

4.1 Introduction 

This chapter is dual purpose. As we are trying to keep our open core System-on-

Chip platform in public domain, this chapter can be used as a tutorial for further 

development of this platform. This chapter also serves as a detailed description 

of the implementation for this thesis. In this chapter I have described the 

customization of the LEON-2 processor as well as integration of the complete 

platform followed by physical synthesis, place and route targeting the TSMC 

0.18-micron technology. The System-on-Chip design flow that was followed while 

developing this platform can be described with the help of figure 4.1.1. 

 

Figure 4.1.1 Flowchart for open core System-on-Chip platform 
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The entire development process is divided into three major steps. 

1. Building the library of IP blocks to specifications. 

2. Customizing and verifying the functionality of the LEON-2 processor.  

3. Integrating the System-on-Chip platform and completing the chip design 

with physical synthesis, place and route and physical verification. 

Building of the IP library and steps involved to determine correctness of their 

functionality was described in section 3.4 of this thesis. The next section begins 

with setting up the files for System-on-Chip implementation and discusses steps 

2 and 3 mentioned above. 

 

4.2 Setting up Files  

I have used version LEON2-1.0.12 for my project.  All files for this version and 

can be located at /usr/cad/rishi/soc_research/leon2-1.0.12.tar.gz  

 

However, for our System-on-Chip project I had to modify various files and add 

VHDL models for various IP blocks into the existing files. Therefore, I have 

created another tar file, which contains all the files needed to implement this 

platform properly. These files are located at    

/usr/cad/rishi/soc_research/soc.tar.gz 

  

From your home directory proceed as follows. 

          gunzip -c soc.tar.gz  |  tar xvf – 
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The open core System-on-Chip has the following directory structure: 

soc  

 

top directory 

soc/Makefile  top-level makefile 

soc/leon/  LEON-2 vhdl model

soc/modelsim/  Modelsim simulator support files 

soc/pmon  Boot-monitor 

soc/syn  Synthesis support files 

soc/tbench  LEON-2 VHDL test bench 

soc/tsource  LEON-2 test bench (C source) 

soc/aes AES vhdl model + AMBA wrapper for AES. 

soc/fir FIR vhdl model + AMBA wrapper for FIR. 

soc/org_edit Original files and edited files 

soc/ram_tsmc25 ARTISAN RAM models to be used in SoC 

 

4.3 Customizing the LEON-2 Processor 

For TSMC-25 Technology 
In /soc directory type following to start configuring the LEON-2 processor. 

         make xconfig 

 
Configuration window as shown in figure 4.3.1 should open. 

 

 

Figure 4.3.1 LEON-2 processor configuration window 
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Figure 4.3.2 LEON-2 processor: Synthesis customization 

 

In “Main Menu” click on “Synthesis” and a second window for synthesis 

customization will open. In that window select “Target Technology” to be 

“TSMC25” and you’ll see all the variables in figure 4.3.2 below are automatically 

selected. For the time being, we’ll use the default values for all the variables 

except one. We will configure the LEON-2 design without any pads. The reason 

for this is with pads we won’t be able to simulate the design after synthesis. If 

we need to send this design for fabrication then we can add pads later. 

 

Click on the “Main Menu” button and select “Boot option” in that window with 

“Memory” (Default is: Memory). Click on the “Main Menu” button and select 

“Processor and caches” and then select “cache system” and change the “set  
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Figure 4.3.3 LEON-2 processor: Cache configuration 

 

size” to 8k. the entrees should be similar to the one shown in figure 4.3.3. Press 

“OK” and then “Main Menu”. 

 

 Press “Save and Exit” button. This will prompt a new window informing you to 

type make dep. “make dep” which creates a DEVICE.VHD file, which contains 

the information about the customization that we have done.   

         make dep  

         mentor_tools 

         make all (this will compile all the files) 
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Once the LEON-2 model has been compiled, use the TB_FUNC32 test bench to 

verify the behavior of the model. Simulation should be started in the top 

directory.  

         vsim tb_func32& 

         In the modelsim window type run –all 

 

The output from the simulation should be similar to: 

 # # *** Starting LEON system test *** 

# # Memory interface test 

# # Cache memory 

# # Register file 

# # Interrupt controller 

# # Timers, watchdog and power-down 

# # Parallel I/O port 

# # UARTs 

# # Test completed OK, halting with failure 

# ** Failure: TEST COMPLETED OK, ending with FAILURE 

Simulation is halted by generating a failure. 

 

4.4 Customizing Artisan RAM 

Behavioral models for various RAMs that are needed to implement the data and 

instruction caches are provided in LEON-2 files. Even the registers in LEON-2 

processors are implemented as dual-port RAMs. These behavioral models are 

technology-specific and are provided in the TECH_*.VHD files. Since we will 

synthesize the design generated for the TSMC25 process, all of the behavioral 

models can be found in TECH_TSMC25.VHD. To be able to synthesize the design 

and place and route it, we need to replace the behavioral models by 
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corresponding RTL models of Artisan RAM. To find out what size of RAMs we 

need in our design we may have to go back one step.  

        make all 

         vsim tb_func32& 

 

In the Modelsim window we can see the size of the RAMs it is using, by going to 

the “proc0” model as shown in the figure 4.4.1. As we can see we need to use 

DPRAM of size 136x32 and SDRAM of size 256x27 & 2048x32. However we will 

use DPRAM instead of SDRAM too. 

 

Exit from the Modelsim window. And in the main directory proceed as follows: 

         cd ram_tsmc25 

  /sw/CDS/ARTISAN/TSMC18/aci/ra2sh/bin/ra2sh 

 
Figure 4.4.2 describes the Artisan RAM generator window that opens up. Entries 

specific to this project are described in table 4.4.1. We need to generate 

following views for each of our RAM design. 1. Verilog Model, 2. Synopsys Model, 

3. TLF Model, 4. VCLEF footprint, 5. GDSII Layout.  

 

Table 4.4.1 Entries for Artisan RAM generator 

PARAMETERS DPRAM 136x32 RAM 256x27 RAM 2048x32 

Instance Name dpram136x32_inst ram256x27_inst ram2048x32_inst

Number of words 256 256 2048 

Number of width 32 27 32 

Frequency (Mhz) 50 50 50 

Multiplexer Width 4 4 8 

Library Name  DPRAM1 RAM2 RAM3 
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Figure 4.4.1 Modelsim window: RAM Size 
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Figure 4.4.2 Artisan RAM generator 
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As discussed in section 3.5 these RAMs cannot be used as it is. We will have to 

create a wrapper around these block RAMs so that they are able to communicate 

with the LEON-2 processor in same fashion as the behavioral models do. These 

wrappers are provided in ram_tsmc25 directory.  

dpram136x32_box0.vhd ram2048x32_box0.vhd 

dpram136x32_box1.vhd ram256x27_box0.vhd 

 
 

4.5 Synthesis: LEON-2 Processor 

Make sure you have “.synopsys_dc.setup” & “.synopsys_vss.setup” already 

there in /syn directory. Design with Artisan RAM components complicates the 

synthesis process. The Verilog model of Artisan RAM is for simulation purposes 

only. We already have synthesized library for our Artisan RAM in the form 

“dpram136x32_inst_typical_syn.lib”. Following is the way to use designs in .lib 

files for synthesis purposes. We first add the designs in the library (i.e. *.lib files) 

to a database (i.e. *.db files) and then add that database format to our tsmc18 

cell database. 

 (Library to database conversion) File name: lib2db.dcsh  

define_design_lib WORK -path WORK 

read_lib ../ram_tsmc25/dpram136x32_inst_typical_syn.lib 

write_lib DPRAM1 -format db -output ../ram_tsmc25/dpram136x32_inst_typical.db 

read_lib ../ram_tsmc25/ram256x27_inst_typical_syn.lib 

write_lib RAM2 -format db -output ../ram_tsmc25/ram256x27_inst_typical.db 

read_lib ../ram_tsmc25/ram2048x32_inst_typical_syn.lib 

write_lib RAM3 -format db -output ../ram_tsmc25/ram2048x32_inst_typical.db 

 quit 

 

 45 



  synopsys_tools 

  dc_shell -f lib2db.dcsh 

  rm –r WORK 

 
 

Now we need to edit “.synopsys_dc.setup” file to add the database of rams to 

tsmc18 cell database.  

File Name: .synopsys_dc.setup 

search_path = {} + search_path + /sw/CDS/ARTISAN/TSMC18/aci/sc/synopsys + 

/sw/CDS/ARTISAN/TSMC18/PADS/synopsys/tpz973g_200c + 

/home/rishi/652/soc/ram_tsmc25 + /home/rishi/652/soc/ram_virtex2 

link_library = {typical.db"*"} 

target_library = typical.db 

symbol_library = typical.db 

syntetic_library = { /sw/synopsys/libraries/syn/dw06.sldb + /sw/synopsys/libraries/syn/dw02.sldb 

+ /sw/synopsys/libraries/syn/dw01.sldb  } 

link_library = target_library + synthetic_library + dw06.sldb + dw03.sldb + dw02.sldb + 

dw01.sldb + tpz973gtc.db + dpram136x32_inst_typical.db + 

dpram512x36_inst_typical.db + ram2048x32_inst_typical.db + 

ram256x27_inst_typical.db 

search_path = search_path + {synopsys_root + "/dw/sim_ver"} 

  

Generating Black Boxes for each of RAM component. 

  cd syn 

  rm –r WORK 

  mkdir WORK 

 
 
File Name: ram_box.dcsh 

define_design_lib WORK -path WORK 

analyze -f vhdl -library WORK  ../ram_tsmc25/ram256x27_box0.vhd 

elaborate ram256x27_box0 
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uniquify 

compile -map_effort high 

write -f verilog -hierarchy -o ../leon/ram256x27_box0.v 

 quit 

 
 Note# Please substitute the name of ram file in ram_box.dcsh also delete 

WORK directory after every run.  

         synopsys_tools 

  dc_shell –f ram_box.dcsh ( do it for each ram model) 

 
 

Replacing the LEON-2 files so that new files use these ram black boxes instead of 

original behavioral models. For that purpose we will have to replace original 

tech_tsmc25.vhd with a modified module.  

         cd leon 

  cp ../org_edit/tech_tsmc25-rishi.vhd tech_tsmc25.vhd 

         cd syn 

         cp /org_edit/leon-syn.dcsh leon.dcsh 

         rm –r WORK 

         mkdir WORK 

         synopsys_tools 

         dc_shell –f leon.dcsh > zm01.txt 

 

This is going to take a while and we can keep checking the output file (zm01.txt) 

for errors. To get a post synthesis simulation of the netlist: 

         cd leon 

         cp ../syn/leon.v . 

  rm leon.vhd 

  cp /org_edit/Makefile_synth Makefile 
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  cp /org_edit/tsmc18.v . 

  cp /org_edit/tp*.v . 

  cp ../ram_tsmc25/ram*box0*.v .  

  cd .. 

  cd tbench 

 
 

Editing the testbench (tbgen.vhd) to specify the clock speed. 

File Name: tbgen.vhd 

 Note: We need to edit the frequency( clkperiod = 50 ; ie freq =25MHz) 

 entity tbgen is 

  generic ( 

     msg1      : string := "32 kbyte 32-bit rom, 0-ws"; 

    msg2      : string := "2x128 kbyte 32-bit ram, 0-ws"; 

    pci       : boolean := false;       -- use the PCI version of leon 

     DISASS    : integer := 0;   -- enable disassembly to stdout 

    clkperiod : integer := 50;         -- system clock period 

    romfile   : string := "tsource/rom.dat";  -- rom contents 

    ramfile   : string := "tsource/ram.dat";  -- ram contents 

 
 

         cd .. 

  make clean 

  mentor_tools 

  make all 

  vsim tb_func32 

  In modelsim window type run –all 

 

If synthesis was done properly then the netlist should pass the entire component 

test provided by the LEON-2. 

# # *** Starting LEON system test *** 

# # Memory interface test 

# # Cache memory 
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# # Register file 

# # Interrupt controller 

# # Timers, watchdog and power-down 

# # Parallel I/O port 

# # UARTs 

# # Test completed OK, halting with failure 

# ** Failure: TEST COMPLETED OK, ending with FAILURE 

Simulation is halted by generating a failure. 

 

4.6 System-on-Chip platform: Adding IP blocks  

For adding an IP block to LEON-2 processor we have to complete the following 

two tasks.  

- Creating a bus master.  

- Preparing LEON-2 files to recognize new bus master. 

For AES to act as a bus master I have created a wrapper that would enable it to 

communicate through AMBA busses. This wrapper is in two parts – AES.VHD and 

AES_CTRL.VHD (FIR.VHD and FIR_CTRL.VHD).   

         cd leon 

  cp ../aes/DW_ram*.vhd . 

  cp ../aes/aes*.vhd . 

  cp ../aes/controller.v . 

  cp ../aes/topmodule.v . 

  cp ../aes/aes.vhd . 

  cp ../aes/aes_ctrl.vhd . 

 
Second step involves modifying the LEON-2 processor files to include AES as bus 

master. For this purpose files that need to be changed are - MCORE.VHD, 

TARGET.VHD, AMBACOMP.VHD, and DEVICE.VHD. Copying the modified files: 
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         rm ambacomp.vhd mcore.vhd target.vhd device.vhd Makefile* 

         cp ../org_edit/ambacomp-soc.vhd ambacomp.vhd 

         cp ../org_edit/mcore-soc.vhd mcore.vhd 

         cp ../org_edit/target-soc.vhd target.vhd 

         cp ../org_edit/device-soc.vhd device.vhd 

  cp ../org_edit/Makefile-soc Makefile 

  cd..  

  make clean 

 
 

Now we need to change the software for the LEON-2 processor so that we can 

program the transfer of data from registers in LEON-2 to the memory of the IP 

blocks. Once this operation is complete, LEON-2 will have to generate control 

signals for the respective IP blocks corresponding to the operation it wants to be 

done. The first task is deleting the original RAM.DAT file. The second task is 

cross compiling the software files to generate a new RAM.DAT file containing the 

information about the operation to be performed by the LEON-2 processor. 

         cd tsource  

         rm ram.dat 

         make clean 

         cp leon_test.c leon_test-org.c 

         cp /org_edit/leon_test.c . 

         bash 

 

In response to the bash prompt, please set following path: 

         export PATH=$PATH:/opt/rtems/bin 

         make all 

 

 50 



 51 

After make all, it should compile without errors. 

         exit 

 
Now we have set all the files and we can simulate the design. All the relevant 

signals can be seen by running the wave file aes.do 

         cd .. 

         mentor_tools 

         make all   

         do aes.do (in the modelsim window) 

         run -all   (in the modelsim window) 

 
 

You can see how data communication is taking place the between bus-master (in 

this case AES) and LEON-2 by watching the simulation results of signals in the 

AES_CTRL module. As shown in figure 4.6.1, the control signals being received 

by the IP block from the LEON-2 processor through APB bus at Register ports 

0x80000300-318. Any change in the value of these ports triggers a 

corresponding operation in the AES_CTRL module. In figure 4.6.2 the IP block is 

requesting the bus and after the AHB bus has been granted it is accessing the 

data from memory and loading onto the AES block rams which is followed by a 

“go” signal. 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 4.6.1 LEON-2 Processor: Transmitting control signals to IP Block 
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Figure 4.6.2 IP Block: Performing tasks assigned
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4.7 System-on-Chip platform: Synthesis  

Once synthesis for the LEON-2 processor in section 4.4 is successful, then the 

tasks in this section are straightforward.  

 

Remove and create a new WORK directory. 

         synopsys_tools 

  dc_shell –f soc.dcsh > zm-03.txt 

 

Check the file zm-03.txt for any errors from synthesis and simulate the file in 

similar fashion as in section 4.4. Figure 4.7.1 shows the control signals being 

received by the IP block.  

 

Figure 4.7.2 shows the IP block performing the tasks assigned and loading the 

data onto the RAM blocks. It also shows the data being loaded on to the IP core 

AES and giving load signal which is followed by a done signal in approximately 

12 clock signals which indicates the 128 bit data has been encrypted. 

 

4.8 System-on-Chip platform: Place & Route 

Place and route is an elaborate process and to discuss each detail is out of the 

scope of this document. I will however, highlight the steps followed during layout 

generation. 

 

 



 

Figure 4.7.1 LEON-2 Processor: Transmitting control signals to IP Block 
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4.7.2 AES wrapper: Completing the tasks assigned 
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- Floorplanning – Encounter: Sown in figure 4.8.1 

- Power Planning – Encounter: Shown in figure 4.8.2  

- Place – Encounter: Shown in figure 4.8.3 and figure 4.8.4 

- Clocktree insertion – Encounter 

- Add filler cells – Encounter 

- Export design – Encounter 

- Import design – Design in Silicon Ensemble is shown in figure 4.8.5. 

- Connect Rings – Silicon Ensemble 

- Verify Geometry – Silicon Ensemble 

- Verify connectivity – Silicon Ensemble 

- Route – Silicon Ensemble: Shown in figure 4.8.6 

- Verify Design – Silicon Ensemble 

- Export def, gdsII formats. 

- Perform post-layout back annotation simulation using SDF file. 
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Figure 4.8.1 System-on-Chip platform: Initial Floorplanning 
 

 

 
Figure 4.8.2 System-on-Chip platform: Power planning  
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Figure 4.8.3 System-on-Chip platform: Place customization  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8.4 System-on-Chip platform: Placed 
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Figure 4.8.5 System-on-Chip platform: Import placed file 
 

 

 

 

 

 

 

 60 



 
 

Figure 4.8.6 System-on-Chip platform: Route completed 
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Chapter 5: Results, Conclusion and Future Work 

 

5.1 Results 

As mentioned earlier, the objective of this thesis was to implement a System-on-

Chip platform. To achieve this goal we not only had to have a working RTL 

model but also synthesize, place & route the design. This design, which has 

more than four million transistors, posed various design problems. Therefore, 

testing the functionality of the design after each design step – synthesis, clock 

tree insertion, and routing was important. For this purpose simulation of the 

design net-list was done using Modelsim.  

 

Simulation results after the stages – RTL design, synthesis, clock tree insertions 

were shown in the previous chapter. Final post-layout back-annotation simulation 

was done to test if the design was properly placed and routed. For this purpose a 

standard delay file (SDF) of the design was generated using the Hyper-extract 

tool. Figure 5.1.1 and 5.1.2 shows the simulation using Modelsim with delay 

information provided by the SDF file. The baseline System-on-Chip was operated 

up to a speed of 25 MHz with basic timing constraints.  

 

 

 

 



 

 

Figure 5.1.1 Back-annotated simulation results 
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Figure 5.1.2 Back-annotated simulation for correct functionality 
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To calculate the number of transistors and standard-cell instances in the design I 

have used a script generated internally at the University of Tennessee to actually 

count the number of standard-cell instances in the net-list. A second script then 

substitutes the number of transistors in each standard-cell instance based on the 

information from the spice net-list (*.CDL) to calculate the number of transistors 

in the design. These scripts are provided in the soc/count/ directory. Table 5.1.1 

provides the comparison of standard-cell instance count and transistor count 

after adding each IP to the LEON-2 processor. 

 

Figure 5.1.3 shows the layout after importing the DEF file containing the 

placement information of the design into the Virtuoso layout editor.  

 

Table 5.1.1: Standard-Cell instances & Transistor count of the design 

Design Instance Count Transistor Count 
LEON-2 CPU 10022 117038 
LEON-2 CACHE/RAM 10 2730118 
LEON-2 Processor 10032 2847226 
AES 17496 565800 
FIR 96108 1016734 
LEON-2 Processor + AES 30034 3075779 
LEON-2 Processor + AES + FIR 130008 4132824 
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Figure 5.1.3 System-on-Chip platform: Final layout 
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5.2 Conclusion 

• All major goals for this project were realized.  

• Base platform established for further enhancements. 

• Current implementations and future scope comprehensively documented 

with a supporting tutorial. 

• The integrated System-on-Chip platform contains approximately four 

million transistors and around one hundred and thirty thousand standard-

cell instances. 

 

5.3 Future Work 

This platform is ready for further development and at the University of 

Tennessee further work is being done on this platform under the title “The 

Volunteer SoC”. Some preparations that I have made to enable performance 

improvement as a part of future work are located in the soc/timing/ directory 

which contains files for performance improvement using a timing constraint that 

can be provided during synthesis and files for performing Static Timing Analysis 

(STA) using the Synopsys - Primetime tool. These tasks will require various 

teams working on different components of this System-on-Chip platform and 

integrating them on a later stage and therefore were not taken as part of this 

thesis. 
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