284 research outputs found

    Accuracy consideration by DRP schemes for DNS and LES of compressible flow computations

    Get PDF
    Several dispersion relation-preserving (DRP) spatially central discretizations are considered as the base scheme in the framework of the Yee & Sjögreen low dissipative nonlinear filter approach. In addition, the nonlinear filter of Yee & Sjögreen with shock-capturing and long time integration capabilities is used to replace the standard DRP linear filter for both smooth flows and flows containing discontinuities. DRP schemes for computational aeroacoustics (CAA) focus on dispersion error consideration for long time lin- ear wave propagation rather than the formal order of accuracy of the scheme. The resulting DRP schemes usually have wider grid stencils and increased CPU operations count compared with standard central schemes of the same formal order of accuracy. For discontinuous initial data and long time wave propa- gation of smooth acoustic waves, various space and time DRP linear filter are needed. For acoustic waves interacting with shocks and turbulence induced noise, DRP schemes with linear filters alone usually are not capable of simulating such flows. The investigation presented in this paper is focused on the pos- sible gain in efficiency and accuracy by spatial DRP schemes over standard central schemes having the same grid stencil width for general direct numerical simulations (DNS) and large eddy simulations (LES) of compressible flows. Representative test cases for both smooth flows and problems containing discontinuities for 3D DNS of compressible gas dynamics are included

    Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of ∇·B Numerical Error

    Get PDF
    An adaptive numerical dissipation control in a class of high order filter methods for compressible MHD equations is systematically discussed. The filter schemes consist of a divergence-free preserving high order spatial base scheme with a filter approach which can be divergence-free preserving depending on the type of filter operator being used, the method of applying the filter step, and the type of flow problem to be considered. Some of these filter variants provide a natural and efficient way for the minimization of the divergence of the magnetic field (∇·B) numerical error in the sense that commonly used divergence cleaning is not required. Numerical experiments presented emphasize the performance of the ∇·B numerical error. Many levels of grid refinement and detailed comparison of the filter methods with several commonly used compressible MHD shock-capturing schemes will be illustrated

    Skew-symmetric splitting of high-order central schemes with nonlinear filters for computational aeroacoustics turbulence with shocks

    Get PDF
    A class of high-order nonlinear filter schemes by Yee et al. (J Comput Phys 150:199–238, 1999), Sjögreen and Yee (J Comput Phys 225:910–934, 2007), and Kotov et al. (Commun Comput Phys 19:273–300, 2016; J Comput Phys 307:189–202, 2016) is examined for long-time integrations of computational aeroacoustics (CAA) turbulence applications. This class of schemes was designed for an improved nonlinear stability and accuracy for long-time integration of compressible direct numerical simulation and large eddy simulation computations for both shock-free turbulence and turbulence with shocks. They are based on the skew-symmetric splitting version of the high-order central base scheme in conjunction with adaptive low-dissipation control via a nonlinear filter step to help with stability and accuracy capturing at shock-free regions as well as in the vicinity of discontinuities. The central dispersion-relation-preserving schemes as well as classical central schemes of arbitrary orders fit into the framework of skew-symmetric splitting of the inviscid flux derivatives. Numerical experiments on CAA turbulence test cases are validated

    On error-based step size control for discontinuous Galerkin methods for compressible fluid dynamics

    Full text link
    We study temporal step size control of explicit Runge-Kutta methods for compressible computational fluid dynamics (CFD), including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations. We demonstrate that error-based approaches are convenient in a wide range of applications and compare them to more classical step size control based on a Courant-Friedrichs-Lewy (CFL) number. Our numerical examples show that error-based step size control is easy to use, robust, and efficient, e.g., for (initial) transient periods, complex geometries, nonlinear shock capturing approaches, and schemes that use nonlinear entropy projections. We demonstrate these properties for problems ranging from well-understood academic test cases to industrially relevant large-scale computations with two disjoint code bases, the open source Julia packages Trixi.jl with OrdinaryDiffEq.jl and the C/Fortran code SSDC based on PETSc

    Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes

    Get PDF
    Recently, it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the simple density wave propagation example for the compressible Euler equations. The issue is related to missing local linear stability, i.e. the stability of the discretization towards perturbations added to a stable base flow. This is strongly related to an anti-diffusion mechanism, that is inherent in entropy-conserving two-point fluxes, which are a key ingredient for the high-order discontinuous Galerkin extension. In this paper, we investigate if pressure equilibrium preservation is a remedy to these recently found local linear stability issues of entropy-conservative/dissipative high-order split-form discontinuous Galerkin methods for the compressible Euler equations. Pressure equilibrium preservation describes the property of a discretization to keep pressure and velocity constant for pure density wave propagation. We present the full theoretical derivation, analysis, and show corresponding numerical results to underline our findings. The source code to reproduce all numerical experiments presented in this article is available online (DOI: 10.5281/zenodo.4054366)

    High Order Upwind Schemes for Multidimensional Magnetohydrodynamics

    Get PDF
    A general method for constructing high order upwind schemes for multidimensional magnetohydrodynamics (MHD), having as a main built-in condition the divergence-free constraint \divb=0 for the magnetic field vector \bb, is proposed. The suggested procedure is based on {\em consistency} arguments, by taking into account the specific operator structure of MHD equations with respect to the reference Euler equations of gas-dynamics. This approach leads in a natural way to a staggered representation of the \bb field numerical data where the divergence-free condition in the cell-averaged form, corresponding to second order accurate numerical derivatives, is exactly fulfilled. To extend this property to higher order schemes, we then give general prescriptions to satisfy a (r+1)th(r+1)^{th} order accurate \divb=0 relation for any numerical \bb field having a rthr^{th} order interpolation accuracy. Consistency arguments lead also to a proper formulation of the upwind procedures needed to integrate the induction equations, assuring the exact conservation in time of the divergence-free condition and the related continuity properties for the \bb vector components. As an application, a third order code to simulate multidimensional MHD flows of astrophysical interest is developed using ENO-based reconstruction algorithms. Several test problems to illustrate and validate the proposed approach are finally presented.Comment: 34 pages, including 14 figure

    Discontinuous Galerkin Spectral Element Methods for Astrophysical Flows in Multi-physics Applications

    Get PDF
    In engineering applications, discontinuous Galerkin methods (DG) have been proven to be a powerful and flexible class of high order methods for problems in computational fluid dynamics. However, the potential benefits of DG for applications in astrophysical contexts is still relatively unexplored in its entirety. To this day, a decent number of studies surveying DG for astrophysical flows have been conducted. But the adoption of DG by the astrophysics community is just beginning to gain traction and integration of DG into established, multi-physics simulation frameworks for comprehensive astrophysical modeling is still lacking. It is our firm believe, that the full potential of novel approaches for numerically solving the fluid equations only shows under the pressure of real-world simulations with all aspects of multi-physics, challenging flow configurations, resolution and runtime constraints, and efficiency metrics on high-performance systems involved. Thus, we see the pressing need to propel DG from the well-trodden path of cataloguing test results under "optimal" laboratory conditions towards the harsh and unforgiving environment of large-scale astrophysics simulations. Consequently, the core of this work is the development and deployment of a robust DG scheme solving the ideal magneto-hydrodynamics equations with multiple species on three-dimensional Cartesian grids with adaptive mesh refinement. We chose to implement DG within the venerable simulation framework FLASH, with a specific focus on multi-physics problems in astrophysics. This entails modifications of the vanilla DG scheme to make it fit seamlessly within FLASH in such a way that all other physics modules can be naturally coupled without additional implementation overhead. A key ingredient is that our DG scheme uses mean value data organized into blocks - the central data structure in FLASH. Having the opportunity to work on mean values, allows us to rely on a rock-solid, monotone Finite Volume (FV) scheme as "backup" whenever the high order DG method fails in cases when the flow gets too harsh. Finding ways to combine the two schemes in a fail-safe manner without loosing primary conservation while still maintaining high order accuracy for smooth, well-resolved flows involves a series of careful considerations, which we document in this thesis. The result of our work is a novel shock capturing scheme - a hybrid between FV and DG - with smooth transitions between low and high order fluxes according to solution smoothness estimators. We present extensive validations and test cases, specifically its interaction with multi-physics modules in FLASH such as (self-)gravity and radiative transfer. We also investigate the benefits and pitfalls of integrating end-to-end entropy stability into our numerical scheme, with special focus on highly compressible turbulent flows and shocks. Our implementation of DG in FLASH allows us to conduct preliminary yet comprehensive astrophysics simulations proving that our new solver is ready for assessments and investigations by the astrophysics community
    corecore