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An adaptive numerical dissipation control in a class of high order filter meth-
ods for compressible MHD equations is systematically discussed. The filter
schemes consist of a divergence-free preserving high order spatial base scheme
with a filter approach which can be divergence-free preserving depending on
the type of filter operator being used, the method of applying the filter step,
and the type of flow problem to be considered. Some of these filter variants
provide a natural and efficient way for the minimization of the divergence
of the magnetic field (∇·B) numerical error in the sense that commonly used
divergence cleaning is not required. Numerical experiments presented empha-
size the performance of the ∇·B numerical error. Many levels of grid refine-
ment and detailed comparison of the filter methods with several commonly
used compressible MHD shock-capturing schemes will be illustrated.

KEY WORDS: Magnetohydrodynamics; difference scheme; high order of accu-
racy; shock capturing; numerical divergence.

1. PRELIMINARIES

An integrated approach for the control of numerical dissipation in high
order finite difference filter schemes in structured curvilinear grids for
the compressible Euler and Navier–Stokes equations has been developed
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version of a longer internal report, Feb. 19, 2004. The longer internal report was published
as a RIACS Technical Report TR03.10, July 2003, NASA Ames Research Center.
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and verified by the authors and collaborators [22–25, 32–34]. These fil-
ter schemes are suitable for complex multiscale compressible viscous flows,
especially for high speed turbulence combustion and acoustics problems.
Standard high-resolution shock-capturing schemes are too dissipative for
the simulation of these types of flow. Basically, the filter scheme consists
of sixth-order or higher spatially centered difference operators as the base
scheme. To control the amount and types of numerical dissipation, an arti-
ficial compression method (ACM) indicator or multiresolution wavelets are
used as sensors to adaptively limit the amount and to aid in the selec-
tion and/or blending of the appropriate types of numerical dissipation to
be used. This adaptive control of numerical dissipation is accomplished
by a filter step after the completion of each full-time step integration of
the base scheme. Hereafter, we refer to these schemes as the high order
ACM-filter and WAV-filter methods. The following provides the relevant
background in extending these filter schemes to the multi-D compressible
MHD equations.

This paper is concerned with the compressible MHD equations, which
for ease of reference will henceforth be referred to simply as MHD
equations. Presently, there are basically two camps in solving the MHD
equations; namely, that which solves the conservative form, and that which
solves the non-conservative symmetrizable form [11, 19, 20]. For both
forms of the MHD equations, high-resolution shock-capturing methods
suffer from the need to perform extra work to minimize the ∇·B numeri-
cal error. The popular procedures for minimizing the ∇·B numerical error
include augmenting an extra PDE to the system [4], using variants of the
staggered grid approach of Yee (including variants of the constraint trans-
port methods) [5, 7, 8, 39] and using variants of a projection method (see
e.g. [40]). For ease of reference, hereafter, these existing procedures will be
referred to as “standard” or “commonly used” divergence cleanings.

There is a key advantage to solving the conservative equations over
the non-conservative symmetrizable equations, since solving the conserva-
tive form by a conservative entropy satisfying scheme guarantees correct
propagation speeds and locations of discontinuities. The disadvantage is
that the conservative form is a non-strictly hyperbolic system with non-
convex inviscid fluxes. There exist states (e.g., triple umbilic points for 1-D)
for which the Jacobian of the flux of the conservative form does not have
a complete set of eigenvectors, especially for higher than 1-D.

We formulate our filter scheme together with the Cargo and Gallice
[3] and Gallice [9,10] form of the multi-D symmetrizable MHD Roe-type
approximate Riemann solver for both the conservative and symmetrizable
MHD equations. Their Roe-type MHD approximate Riemann solver is
an improvement over the Brio and Wu [2] and Powell [9] approximate
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Riemann solver. A novel feature of our new method introduced in
Sjögreen and Yee [26] is that the well-conditioned eigen-decomposition of
the symmetrizable MHD equations, with a minor modification (see the
next section), is used to solve the conservative equations. This new feature
of the method provides well-conditioned eigenvectors for the conservative
formulation, so that correct wave speeds for discontinuities are assured by
conservative entropy satisfying schemes. It was shown in [26] and will also
be shown here that this approach, using the symmetrizable eigensystem
when solving the conservative equations, also works well in the context of
standard shock-capturing schemes involving the use of the eigen-structure
of the MHD equations.

Outline: the present paper is Part II of a series of papers on the
subject. This is an expanded version of [35]. Part I [26] introduced some
of the basic idea of our new scheme with preliminary study. The pres-
ent paper present a comprehensive description of the schemes so that
interested readers will be able to implement them for practical appli-
cations without having to study many additional references. Extensive
grid convergence comparisons of these filters schemes with three stan-
dard shock-capturing scheme will be conducted in detail. Numerical exam-
ples presented emphasize the minimization of the ∇·B numerical error.
Throughout the paper, the term “∇·B numerical error” refers to the
“amount of non-zero value of the discretized form of ∇·B of the under-
lying scheme.” The following discussion pertains to schemes involving the
use of Riemann solvers or the eigen-structure of the MHD equations. In
addition, our discussion is restricted to the finite difference formulation.

2. A NEW METHOD IN SOLVING THE MULTI-D CONSERVATIVE
MHD SYSTEMS

A full description of our adaptive low dissipative high order filter
scheme for the Euler and Navier–Stokes equations can be found in [22,
25, 32–34]. Here, we describe the extension of this scheme to the MHD
equations with the blending of high order non-linear filters and high order
linear filters for both the conservative and non-conservative symmetriz-
able systems. An important ingredient in our method is the use of the
dissipative portion of high-resolution shock-capturing schemes as part of
the non-linear filters. These non-linear filters involve the use of approx-
imate Riemann solvers. A new form of high-resolution shock-capturing
schemes for the conservative MHD equations using the non-conservative
symmetrizable eigensystem will be elaborated.
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2.1. Conservative and Symmetrizable Compressible MHD Equations

The conservative MHD equations are a system of non-strictly hyper-
bolic conservation laws. It has previously been shown by Powell [19]
and Powell et al. [20] that an “almost” equivalent MHD system in
non-conservative (symmetrizable) form can be derived. In order to have
a better conditioned eigensystem for the application of high-resolution
shock-capturing schemes, they adjoined ad hoc non-conservative terms to
the conservative equation. The non-conservative symmetrizable form was
systematically derived by Godunov [11] 24 years earlier. In 1996, Vinokur
showed that the MHD equations can be derived from basic principles in
either conservative or non-conservative symmetrizable form [29].

Consider the 3-D conservative and non-conservative symmetrizable
forms of the ideal compressible MHD equations in Cartesian grids,

⎛
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(symmetrizable), (2)

where the velocity vector u = (u, v,w)T , the magnetic field vector B =
(Bx,By,Bz)

T , ρ is the density, and e is the total energy. The notation B2 =
B2

x +B2
y +B2

z is used. The pressure is related to the other variables by

p = (γ −1)

(
e− 1

2ρ(u2 +v2 +w2)− 1
2 (B2

x +B2
y +B2

z )

)
.

For plasmas, γ is usually equal to 5/3 (for monatomic gases).
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The vector on the right-hand side of (2) is the non-conservative por-
tion of the symmetrizable MHD system, which is frequently referred to
in the literature as a source term vector. The authors prefer not to use
this nomenclature since this is part of the symmetrizable form of the
MHD and it is not a source term. That is, the symmetrizable form of the
MHD (2) is written in two parts; namely, a conservative portion and a
non-conservative portion. The non-conservative portion is proportional to
∇·B. Physically, it is zero if ∇·B = 0 initially. Hereafter, the terms “sym-
metrizable system (or non-conservative symmetrizable)” and “non-conser-
vative system” are used interchangeably.

In symbolic form the conservative and non-conservative forms can be
written as

Ut +∇ ·F =0,

Ut +∇ ·F =S,

respectively, where U is the corresponding state vector, F is the conserva-
tive inviscid flux vector tensor and S is the non-conservative portion of the
equations in (2).

2.2. Solving the Conservative and Symmetrizable Systems Involving
the Use of Approximate Riemann Solvers

For convenience of presentation we will describe our numerical meth-
ods for the x-flux on a uniform grid. The schemes to be discussed, in
most part, only spell out the x-component terms with the y- and z-compo-
nents omitted. Let A(U) denote the Jacobian ∂F/∂U with the understand-
ing that the present F and S are the x-component of the 3-D description
above. For later discussion we write the non-conservative term S in the
x-direction as N(U)Ux .

Gallice [9] and Cargo and Gallice [3] made use of the fact that
seven of the eigenvalues and eigenvectors are identical for the “conser-
vative” Jacobian matrix A and the “non-conservative” Jacobian matrix
(A−N). For ease of reference, we refer to the distinct eigenvalue (eigen-
vector) between the conservative and non-conservative MHD as the eighth
eigenvalue (eigenvector). The eighth eigenvector of A of the conservative
system associated with the degenerate zero eigenvalue can sometimes coin-
cide with one of the other eigenvectors, thereby, making it difficult to
obtain the Roe-type approximate Riemann solver for the multi-dimen-
sional conservative MHD. On the other hand, the eigenvectors of the non-
conservative Jacobian A∗ = (A − N) always form a complete basis, and
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can be obtained from analytical formulas [11, 19] for 1-D or higher. A
Roe-type average state was developed in [3] for 1-D conservative MHD
and extended to the 3-D non-conservative MHD in [9, 10]. Their form is
an improvement over the Brio and Wu [2] and Powell [19] average state.

The construction of the Gallice Roe-type average state for the conser-
vative system (with F and A, the flux function and the Jacobian in the x-
direction, respectively) satisfying the following

F(UR,UL)=A(UR,UL)(UR −UL)=A(UR −UL)

does not satisfy the specific Roe’s average state perfect gas dynamic condi-
tion. For a perfect gas in gas dynamics, there exists a Roe average state U

such that (assuming Apg as the Jacobian of the inviscid gas dynamic flux)

Apg(UR,UL)=Apg(U).

For the non-conservative MHD system, it is not possible to obtain the
MHD equivalent of Apg(U) for A due to the B2 term. Gallice’s aver-
age state is a combination of Roe-type average state for certain MHD
flow variables, a mean average state and a new average state for B.
We formulate our scheme together with the Gallice form of the 3-D
non-conservative MHD Roe-type approximate Riemann solver for both
the conservative and non-conservative MHD equations.

2.3. Solving the Conservative System Using the Symmetrizable
Eigenvectors

We propose to use eigenvectors of the non-conservative form but with
the degenerate eigenvalue replaced by an entropy correction [12, 31] of
what was supposed to be the zero eigenvalue (e.g., a small parameter ε

that is scaled by the largest eigenvalue of A(U)) for the conservative form.
In the present context, the use of the non-zero entropy correction is differ-
ent from the standard entropy violation associated with expansion shocks
in the Roe-type approximate solver in gas dynamics, since the conserva-
tive inviscid gas dynamics equations are strictly hyperbolic. For more than
one-space dimension, a multi-dimension entropy correction as proposed in
[31] is used for each of the degenerate eigenvalues in each spatial direction.
Our rationale for doing this is that only the eighth eigenvector of the non-
conservative form is not the same as the eighth eigenvector for the con-
servative form. The incorrect eigenvector for the conservative form will be
multiplied by an eigenvalue which is close to zero (the eigenvalue will not
be exactly zero when an entropy correction is used). Thus the effect of a
“false” eigenvector will be small. By using the eighth eigenvector of the
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non-conservative system instead, the difficulty of dealing with an incom-
plete set of eigenvectors for the conservative system can be avoided.

From here on, the use of ACM-filter, WAV-filter, Harten–Yee, MUS-
CL or the fifth-order WENO [13] (WENO5) scheme in solving the con-
servative MHD (1) in this paper means the used of the non-conservative
eigen-decomposition described above in solving the conservative MHD
equation set (1), whereas the corresponding schemes solving the sym-
metrizable equation set (2) means the used of its own non-conservative
eigen-decomposition.

3. DESCRIPTION OF HIGH ORDER FILTER METHODS

Our high order ACM-filter and WAV-filter methods consist of two
steps, a base scheme step (not involving the use of approximate Riemann
solvers or flux limiters) and a filter step (involving the use of approximate
Riemann solvers and flux limiters). The filter step can be divergence-free
preserving depending on the type of filter operator being used and the
method of applying the filter step. In order to have good shock-captur-
ing capability and improved non-linear stability related to spurious high
frequency oscillations, the blending of a high order non-linear filter and
a high order linear filter was proposed in our gas dynamic schemes [34].
The non-linear filter consists of the product of an ACM or wavelet sensor
and the non-linear dissipative portion of a high-resolution shock-capturing
scheme. The high order linear filter consists of the product of another sen-
sor, a tuning parameter and a high order centered linear dissipative opera-
tor that is compatible with the order of the base scheme being used. Here
the extension with a modification of the gas dynamic filter approach to the
MHD equations that minimizes the ∇·B numerical error is discussed.

3.1. Divergence-Free Preserving Base Scheme Step

The first step of the numerical method consists of a time step by a
high order non-dissipative spatial and high order temporal base scheme
operator L∗ (e.g., a sixth-order central in space and high order linear-
multistep or fourth-order Runge–Kutta in time). After the completion of
a full-time step of the base scheme step, the solution is denoted by U∗

U∗ =L∗(Un), (3)

where Un is the numerical solution vector at time level n. Note that for
more than two time level linear-multistep methods (LMMs) as time dis-
cretizations, the L∗ operator involves the corresponding number of time
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levels. For higher than first-order Runge–Kutta method, the L∗ operator
involves the corresponding number of stages of spatial discretization of the
flux derivatives.

When necessary, a high order linear numerical dissipation operator
can be added to the base scheme. For example, an eighth-order linear dis-
sipation with the sixth-order centered base scheme to approximate F(U)x
(with the grid indices k and l for the y- and z-directions suppressed) is
written as

∂F

∂x
≈D06Fj +d(Δx)7(D+D−)4Uj , (4)

where D06 is the standard sixth-order accurate centered difference opera-
tor, and D+D− is the standard second-order accurate centered approxima-
tion of the second derivative. The small parameter d is a scaled value in
the range of 0.00001–0.005, depending on the flow problem, and has the
sign which gives dissipation in the forward time direction. The D06 oper-
ators is modified at boundaries in a stable way by the so-called summa-
tion-by-parts (SBP) operators [14–17, 34]. See the end of this section for
a discussion. The linear numerical dissipation operator D+D− is modified
at the boundaries to be semi-bounded [21].

For example, the base scheme step with the fourth-order classical
Runge–Kutta time discretization takes the form

k1 =L(Un),

k2 =L(Un + Δt
2 k1),

k3 =L(Un + Δt
2 k2),

k4 =L(Un +Δtk3),

U∗ =Un + Δt
6 [k1 +2k2 +2k3 +k4],

(5)

where the L operator is a semi-discrete form of the conservative system (1)
or non-conservative system (2). For example, using formula (4) to discret-
ize (1) with the F = (F,G,H) flux vector tensor takes the form

d(Uj,k,l)

dt
= L(U)j,k,l

= −{(Dj )06Fj,k,l + (dx)(Δx)7[(Dj )+(Dj )−]4Uj,k,l

+(Dk)06Gj,k,l + (dy)(Δy)7[(Dk)+(Dk)−]4Uj,k,l

+(Dl)06Hj,k,l + (dz)(Δz)7[(Dl)+(Dl)−]4Uj,k,l}, (6)

where Dj,Dk, and Dl denote finite difference operators acting in the
j -, k-, l-directions, respectively. Here for example (Dj )06 denotes the sixth-
order centered difference operator in the x-direction. Similarly, (Dj )+(Dj )−
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denotes the second-order centered approximation of the second derivative
in the j -direction. The small parameters dx, dy , and dz are the same as d

in (4). The base scheme operator L∗ in (3) in conjunction with the fourth-
order Runge–Kutta (5) and (6) becomes

U∗ =L∗(Un)=Un + Δt

6
[k1 +2k2 +2k3 +k4].

This highly accurate spatial base scheme is employed to numerically pre-
serve the divergence-free condition of the magnetic field (to the level of
round-off error) for uniform Cartesian grids with periodic boundary con-
ditions. For example, when using pure centered difference operators, it is
trivial to see that the divergence of B is perfectly preserved. Take, for
example, the semi-discrete approximation of the magnetic field equations

dBx (t)j,k,l

dt
+
Dk [(By)j,k,l

uj,k,l − (Bx)j,k,lvj,k,l ]+Dl [(Bz)j,k,luj,k,l − (Bx)j,k,lwj,k,l ]=0,
dBy (t)j,k,l

dt
+
Dj [(Bx)j,k,lvj,k,l − (By)j,k,l

uj,k,l)+Dl((Bz)j,k,lvj,k,l − (By)j,k,l
wj,k,l ]=0,

dBz(t)j,k,l

dt
+
Dj [(Bx)j,k,lwj,k,l − (Bz)j,k,luj,k,l ]+Dk [(By)j,k,l

wj,k,l − (Bz)j,k,lvj,k,l ]=0,

where Dj,Dk, and Dl here denote finite difference centered operators act-
ing in the j -, k-, l-directions, respectively.

Forming the divergence by taking the sum of Dj on the Bx equation,
Dk on the By equation, and Dl on the Bz equation gives

d(DjBx +DkBy +DlBz)j,k,l

dt
=−DjDk [(By)j,k,l

uj,k,l ]+DkDj [(By)j,k,l
uj,k,l ]+· · ·=0,

where the dots denote several additional terms of a form similar to the
first two. All these terms disappear, since the difference operators along
different coordinate directions commute, i.e., DjDk =DkDj . Similarly, ∇·B
is perfectly preserved for the base scheme that includes a high order lin-
ear dissipation term (4) applied to the magnetic field equations. The same
property of the base scheme holds for the non-conservative system (2).

When the solution is smooth, the filter step might not be needed.
Thus the use of a high order centered difference operator as the base
scheme will perfectly preserve the divergence-free condition (for periodic
boundary conditions and open boundaries without complex wave struc-
ture near the physical boundaries). In this case the result will be the same,
whether we solve the conservative system (1) or non-conservative system
(2). It is noted that for open boundaries with complex wave interactions
near the physical boundaries, it is not absolutely clear how different it is
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in solving system (1) and system (2) for the base scheme step. The study
on this issue is forthcoming. We discuss below numerical boundary treat-
ment for high order methods for non-periodic physical boundaries.

Stable Numerical Boundary Treatments in Spatially High Order
Centered Base Schemes versus. Divergence Free Preserving: the type of
spatially high order centered base schemes used in the ACM-filter and
WAV-filter methods [22, 25, 32–34] is divergence-free preserving for the
multi-dimensional MHD equations for periodic boundary conditions and
for open boundaries without complex wave structures near the physical
boundaries. Even for these types of physical boundary conditions, straight-
forward application of the filter step to the MHD equations will not auto-
matically preserve the divergence-free magnetic field condition numerically
since the filter step involves the non-linear dissipative portion of standard
shock-capturing schemes. On the other hand, with careful modification
of the gas dynamics scheme, the filter mechanism offers several natural
and efficient alternatives (without the commonly used divergence clean-
ing procedures) for minimizing the ∇·B numerical error. For ease of ref-
erence, divergence-free base schemes for the interior points (away from
the computational boundaries), for periodic boundary conditions, and for
open boundaries without complex wave structure near the physical bound-
aries, will be henceforth referred to as “divergence-free preserving base
schemes”.

For non-periodic boundary conditions, the stable numerical boundary
condition treatments for spatially high order methods for non-linear sys-
tems of hyperbolic conservation laws are not straightforward, unlike their
second-order or lower schemes. For higher than second-order centered
schemes, a discrete L2 energy norm stability (SBP stable numerical bound-
ary conditions) provides the required numerical boundary schemes [14–17].
The SBP type of stable numerical boundary conditions is employed in
this paper. It is important to point out that the requirement for a spa-
tially stable high order centered scheme (including boundary schemes)
is potentially conflicting with the desire to be divergence-free preserving
for general multi-dimensional open boundaries. These stable L2 energy
norm conditions impose non-traditional numerical boundary treatments
and are not divergence-free preserving in a general multi-dimensional open
boundary setting, unless the open boundaries are very smooth in all spa-
tial directions with the computational domain large enough to not be
affected by the reflecting waves at the boundaries. The grid stencil of
these SBP boundary operators is very wide. Lowering the order of the
centered scheme near the open boundaries, a non-reflecting boundary
condition treatment, and/or enlargement of the computational domain if
appropriate might help to minimize the ∇·B numerical error. Research on
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divergence-free preserving stable numerical boundary conditions for open
physical boundaries for high order centered schemes is ongoing.

3.2. Adaptive Numerical Dissipation Filter Step

After the completion of a full-time step of the divergence-free preserving
base scheme step, the second step is to adaptively filter the solution by
the product of “an ACM indicator or wavelet sensor” and the “non-linear
dissipative portion of a high-resolution shock-capturing scheme.” If neces-
sary, the blending of a high order linear filter with a non-linear filter [34]
will be used. The final update step after the filter step can be written (with
some of grid indices suppressed for ease of illustration) as

Un+1
j,k,l =U∗

j,k,l − Δt

Δx

[
H

f x

j+1/2 −H
f x

j−1/2

]
− Δt

Δy

[
H

fy

k+1/2 −H
fy

k−1/2

]

− Δt

Δz

[
H

f z

l+1/2 −H
f z

l−1/2

]
. (7)

Here, H
f x

j±1/2,H
fy

k±1/2, and H
f z

l±1/2 are the filter numerical fluxes in the x, y,

and z directions, respectively. The x-filter numerical flux vector H
f x

j+1/2 is

H
f x

j+1/2 =Rj+1/2Hj+1/2,

where Rj+1/2 is the matrix of right eigenvectors of the Jacobian of the
non-conservative MHD flux vector (Aj+1/2 −Nj+1/2) evaluated at the Gal-
lice average state in terms of the U∗ solution from the base scheme step
(3). The notation, for example Rj+1/2 stands for Rj+1/2,k,l and the sub-
script in Rj+1/2 indicates the average state evaluated in the x-direction of
the eigenvectors in terms of U∗. See [10, 27] or Appendix A for the aver-
age state formula for the 3-D non-conservative system (2). The Hj+1/2
(involving the use of flux limiters) are also evaluated from the same aver-
age state. The dimension-by-dimension procedure of applying the approx-
imate Riemann solver is adopted.

3.3. Blending of a Non-Linear Filter with a High Order Linear Filter

Option I: “filter all” a straightforward extension of our gas dynamic
filter scheme for the MHD equations using the blending of a non-linear
filter with a high order linear filter to all equations of (1) or (2) take the
following form. Denote the elements of the vector Hj+1/2 by h

l

j+1/2, l =
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1,2, . . . ,8. They have the form

h
l

j+1/2 = 1
2 (sN)lj+1/2(φ

l
j+1/2)− (sL)lj+1/2d

l
j+1/2. (8)

Here (sN)l
j+1/2 and (sL)l

j+1/2 are sensors to activate the higher order
non-linear filter and linear filter, respectively. For example, (sN)l

j+1/2 is
designed to be zero or near zero in regions of smooth flow and near one
in regions with discontinuities. (sN)l

j+1/2 varies from one grid point to
another and is obtained either from a wavelet analysis of the flow solu-
tion (WAV-filter scheme), or from a gradient-based detector (ACM-filter
scheme) [22, 25, 32–34]. We have in the previous numerical experiments [34]
used (sL)l

j+1/2 = 1 − (sN)l
j+1/2, but other choices are possible (see [34] or

Appendix B for the sensor formula). The functions φl
j+1/2 and dl

j+1/2 are
the dissipative portion of the respective non-linear and linear filters for the
local lth-characteristic wave [34] in the x-direction.

Note that the wavelet sensor can be obtained from the characteristic
variables for each wave or a single sensor for all eight waves, based on
pressure and density. Both methods were implemented but, for the numer-
ical test in this paper, the simpler non-characteristic sensor was employed.

The dissipative portion of the non-linear filter φl
j+1/2 =gl

j+1/2 −bl
j+1/2

is the dissipative portion of a high order high-resolution shock-capturing
scheme for the local lth-characteristic wave. Here gl

j+1/2 and bl
j+1/2 are

numerical fluxes of the uniformly high order high-resolution scheme and
a high order central scheme for the lth-characteristic, respectively. It is
noted that bl

j+1/2 might not be unique since there is more than one way
of obtaining φl

j+1/2. For the forms of the φl
j+1/2 used in the numerical

experiment section, (see[22, 25, 32–34] or Appendix B for a description).
For example, the form of Harten and Yee and symmetric TVD schemes
are already in the proper form in the sense that they are written in a
central differencing portion bl

j+1/2 and a non-linear dissipation portion
φl

j+1/2. No work is required to obtain φl
j+1/2 in this case. A compari-

son of using three different dissipative portions of typical shock-capturing
schemes (Harten–Yee, MUSCL and WENO5) is reported in [38].

For the dissipative portion of the linear filter in the second term of
eight, for example an eighth-order linear filter in terms of the local char-
acteristic variables has the form

dl
j+1/2 = 1

2df Δx6D+(D+D−)3(wl
j+1/2 +wl

j−1/2)

or

dl
j+1/2 =df Δx6D+(D+D−)3wl

j .
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Here wl
j is the local lth-characteristic variable in the x-direction evalu-

ated at U∗. The term wl
j+1/2 is the local lth-characteristic variable in the

x-direction evaluated at the average state in terms of U∗. df is a small tun-
ing parameter with a range scaled range as the parameter d in (4). The
sign of df giving dissipation in the forward time direction. For a sixth-
order spatial base scheme, the eighth-order central dissipation for the lin-
ear filter is used. For the test cases to be shown later, all the computations
use only the non-linear filter. i.e., setting (sL)l

j+1/2 =0. Note that the high
order linear filter is not to be confused with the high order linear dissipa-
tion in the base scheme step (4).

An alternative to applying the linear filter in terms of the characteris-
tic variables [second term in (8)], is to apply it in terms of the conservative
variables. In this case, we split

H
f x

j+1/2 =Rj+1/2Hj+1/2 =Rj+1/2H
N

j+1/2 +H
L

j+1/2,

where elements of H
N

j+1/2 are (8) with the second term not present. The

linear filter H
L

j+1/2 now has the form

H
L

j+1/2 = 1
2
swavdf Δx6D+(D+D−)3(Uj+1/2 +Uj−1/2)

or

H
L

j+1/2 = swavdf Δx6D+(D+D−)3Uj .

Here swav is the wavelet sensor based on the pressure and density at the
grid point j +1/2.

The blended filter given by (8) or the alternative discussed above, if
applied to the entire MHD system (denoted by “filter all”) will not pre-
serve the divergence free magnetic field condition with the exception of
using the WAV-filter scheme for certain smooth flows (see the numeri-
cal examples section for an example). This is due to the fact that the
WAV-filter scheme sensor turns off the non-linear filter at regions of very
smooth flow, whereas the ACM-filter only reduces the strength of the non-
linear filter (see Appendix B or [22] for the comparison of the two sen-
sors). The next subsection describes some alternatives.

3.4. Additional Options in Filtering the Magnetic Field Equations

The need to minimize the ∇·B numerical error and to achieve a high-
resolution numerical solution on the inherent flow structure of a particular
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problem are often conflicting. Without special care on the non-linear filter
step, the ∇·B numerical error might overwhelm the overall accuracy of the
magnetic field numerical solutions. Four options were proposed in [36] to
minimize the ∇·B numerical error over the “filter all” approach. Only one
option is discussed here.

Option II: “no filter on B” For this option, the non-linear filter step
[for (sL)

l
j+1/2 =0 of (8)] only acts on the gas dynamic portion of the equa-

tions. That is, the non-linear filter step (8) only applies to the first five
equations of (1) or (2). The no filter on the magnetic field equations is
denoted by “no filter on B.” Here the complete set of eigenvalues and
eigenvectors of the full MHD system is used to evaluate the first five equa-
tions of (1) or (2). With the divergence free spatial base scheme, the diver-
gence free property should be preserved.

4. 2-D COMPRESSIBLE MHD NUMERICAL EXAMPLES

A highly parallel 3-D compressible viscous MHD code was built
based on our ACM-filter and WAV-filter schemes in curvilinear grids. It
was tested on a 3-D curvilinear grid problem. Here, in order to fully test
the “No Filter on B” filter approach first, only two-space dimensions are
chosen (using the same 3-D code with one of the dimensions not acti-
vated) in order to complete the study in a reasonable time frame. This is
due largely to the fact that the MHD equations are a larger system of
equations than their gas dynamics counterpart.

4.1. Summary of Numerical Experiments

Four different 2-D MHD test cases commonly used in the literature
were chosen; namely, the Kelvin–Helmholtz, 2-D Riemann, Orszag–Tang
vortex and shock/magnetic cloud interaction problems. The first and the
third test cases consist of periodic boundary conditions and the other
test cases consist of open boundaries. These test cases, mostly shock wave
dominated, represent four different flow types which typically arise in
computational astrophysics and space weather forecasting. They are cho-
sen to fully validate our proposed schemes. They are not shock/turbu-
lence/combustion problems. The performance of our filter approach for
multiscale physical problems will be reported in a forthcoming paper. It
is reminded that the full capability of the new scheme is not utilized
on these test cases. Thus, we do not expect the new scheme to exhibit
drastic improvement in shock-resolution over conventional shock-captur-
ing schemes, since these filter schemes use the same flux limiters to control
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the spurious oscillation across discontinuities as any good high-resolution
shock-capturing scheme. Resolution will be gained in regions away from
discontinuities on flows with complex structures such as turbulent fluctu-
ations due to the filter approach. See [34] for the performance of the fil-
ter approach for long time integration of shock/turbulence interaction gas
dynamic flows. In all test cases, the high order linear filter in (8) is not
needed for option I. Hereafter, we refer to option I with (sL)l

j+1/2 = 0 in
(8) as “filter all.”

Five shock-capturing schemes, notation and time discretizations: The
sixth-order base scheme [d = 0 in (4)] together with the non-linear/linear
filter with wavelet sensor will be denoted WAV66. When a gradient-based
sensor ACM is used, the scheme is denoted ACM66. The second num-
ber indicates the order of the scheme for discretizing the viscous fluxes, if
present. To adhere to the convention of previous work, even though we
are dealing with inviscid flows, the same notation is used (see [37, 38] for
some non-ideal computations). If high order linear numerical dissipation
is also used in the base scheme [d �=0 in (4)], the methods will be denoted
WAV66+AD8 and ACM66+AD8, respectively. The strength of the eighth-
order dissipation tunable coefficient d in (4) is in the range of (0.0001,
0.01). For some of the test cases and flux limiter combinations, d =0.0001
exhibits small spurious oscillations due to insufficient dissipation on the
base scheme step. For all test cases, d = 0.001 exhibits less ∇·B numeri-
cal error than d = 0.01. Only results for d = 0.001 will be shown. In all
of the filter scheme computations, the non-linear dissipative portion of
Harten–Yee is used as part of the non-linear filter term φl

j+1/2 (8) (See
Appendix B). A comparison of using three different non-linear dissipative
portions of typical shock-capturing schemes (Harten–Yee, MUSCL and
WENO5) as part of φl

j+1/2 (8) is reported in [38]. The resolution of these
three different dissipative portions of shock-capturing schemes is compa-
rable with similar efficiency. The entropy fix parameter ε is 0.25 for the
Harten–Yee, MUSCL, ACM, and WAV-filter schemes. The cut off wave-
let Lipschitz exponent β is 0.5 [22] for the WAV-filter scheme. The ACM,
parameter κ is 0.5, 0.7, 0.9 and 0.9 for the four test cases, respectively
(see[22, 32, 34] or Appendix B for the definition of κ and β).

The fifth-order (WENO5), and second-order Harten–Yee and second-
order MUSCL schemes are used for comparison. Classical fourth-order
Runge–Kutta time stepping is used for all sixth-order schemes, as well as
for the WENO5 scheme. The second-order Harten–Yee and MUSCL are
integrated in time by the second-order TVD Runge–Kutta method. Solv-
ing the conservative and non-conservative systems of these three standard
shock-capturing schemes as well as the ACM- and WAV-filter schemes is
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considered. All the methods use the same approximate Riemann solver
of Gallice in uniform Cartesian grids. For the conservative form of the
MHD equations, the non-conservative eigenvector decomposition as dis-
cussed in the previous section is employed for the filter step. Unless other-
wise indicated on the figures, all results solve the conservative system using
the eigenvector of the non-conservative system. When needed, the nota-
tion “Cons” denotes computations solving the conservative system and
“Non-cons” denotes computations solving the non-conservative system.

Flux limiters: Except for WENO5, the minmod limiter, the van Leer
version of the van Albada limiter and the Colella-Woodward limiter are
considered (see [31] or Appendix B for the form of limiters being used in
the computations). For the second-order MUSCL scheme, the limiter is
applied to the primitive variables. In general, all three limiters are stable
for the test cases. The van Albada and Colella–Woodward limiters exhibit
better accuracy than the minmod limiter when using coarse grids. The
minmod limiter is the most dissipative limiter among the three and thus
appears to be more stable with smear shock/contact profiles at the expense
of requiring a finer grid for the same resolution. In a few isolated cases,
the Colella–Woodward limiter exhibits small spurious oscillations whereas
the van Albada limiter does not. Due to this fact, unless indicated, all fig-
ures use the van Albada limiter. It is noted that a large number of MHD
computations reported in the literature employ the minmod limiter due to
instability or moderate spurious oscillations encountered in using the other
two limiters on their shock-capturing schemes.

For all test cases, except for WENO5, the CFL used is in the range
of (0.4,0.6). In some cases, even a higher CFL (up to 0.9) can be used.
For WENO5, the CFL used is in the range of (0.1,0.4).

Second-order versus higher-order spatial schemes: For each of the four
test cases, in general, the higher-order methods require half the num-
ber of grid points in each direction over the second-order methods for
coarse grids, except for the 2-D Riemann problem. Since most of the 2-D
Riemann test problem consists of no structure away from discontinuities,
there is no gain by employing higher-order methods over second-order
methods. However, the purpose of choosing this problem is to observe
in the simplest way the amount of ∇·B numerical error by the differ-
ent schemes due mainly to discontinuities capturing mechanisms. As the
grid is refined, the majority of the methods, if convergent, have resolutions
very similar for their gas dynamic solutions. However, the magnetic field
variables and the ∇·B numerical errors are very different from method
to method. In order to give an indication of the the gas dynamic flow
structure including all discontinuities for each test case, only representative
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density contours will be shown. The measure of the ∇·B numerical error
for the various schemes are as follows.

Measure of the ∇·B numerical errors: It is well known in computa-
tional MHD circles that standard upwind shock-capturing schemes with-
out any divergence cleaning can exhibit large ∇·B numerical errors even
if the accuracy of their gas dynamic variables is not drastically affected.
There is also no common consensus in measuring the ∇·B numerical error
effectively in the literature when dealing with a large amount of compari-
son. This is compounded by the fact that the order of the scheme plays a
role in how to define the discrete ∇·B numerical errors. The authors con-
sider two forms in measuring these errors, namely; (a) examine the discrete
∇·B contour at a certain stage of the evolution process and (b) examine
the discrete L2-norm for the entire time evolution of interest.

The ∇·B numerical error is obtained by approximating the ∇·B
by sixth-order centered differences for WAV66 (WAV66+AD8), ACM66
(ACM66+AD8), and WENO5, whereas the corresponding ∇·B numerical
error is obtained by second-order centered differences for the second-order
TVD schemes (MUSCL and Harten–Yee). The L2-norm of ∇·B of a par-
ticular scheme is computed by taking the square root of the sum over all
spatial directions of the square of the discretized form of ∇·B at all grid
points, including boundary points. These two measures complement each
other and give a global picture of the numerical error in ∇·B and, indi-
rectly the B fields. However, these two measures will not illustrate the iso-
lated instances where one of the magnetic field errors is more pronounced
than the others. In light of the number of schemes and their variants and
the different flow structure of each test case, searching for such isolated
instances will not be undertaken.

From the above definitions, the discrete ∇·B and discrete L2-norm of
∇·B are different between the second-order methods and their higher-order
counterparts. For each of the test cases, the range and the number of the
contours shown are determined by the largest error among the considered
methods. Care must be taken when interpreting the results. If one of the
methods exhibits a much larger ∇·B error than the rest, the small error
might appear to be without any contour line on the plot (blank plot).
Thus, not all of the blank (empty) ∇·B contour plots are an indication of
zero ∇·B numerical error (machine zero) at that particular time instance.
The discrete L2-norm of ∇·B time history curve value should be used as
a check if blank ∇·B contours are truly divergence-free preserving at that
specific time instance. From here on, ∇·B contours and L2 norm of ∇·B
of the underlying scheme refer to the discrete ∇·B contours and discrete
L2 norm of ∇·B of the scheme in question.
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Solving the conservative and non-conservative systems comparison: In
general, the solution resolution solving the conservative system is almost
identical to solving the non-conservative system for the considered test
cases, especially on their gas dynamics variables. For Harten–Yee, MUSCL
and WENO5, the solution resolution is similar in solving the conservative
system as oppose to solving the non-conservative system with the excep-
tion of MUSCL (not for all test cases). In some test cases, solving the con-
servative system, MUSCL exhibit a smaller L2-norm ∇·B error. Although
there is no strong evidence on the advantage of solving the conservative
system (aside from not having to evaluate the non-conservative terms) over
the non-conservative system for the considered test cases, the possibility
of obtaining wrong shock speed/location by the non-conservative system
exists for other physical problems [28].

Non-uniform grid and curvilinear grid extension: We note here that
the divergence-free property of the base schemes are restricted to uni-
form Cartesian grids. Although the 3-D curvilinear grid formulation is a
straightforward extension of the gas dynamics methodology as in [30], the
divergence-free property of the base schemes for non-uniform grid, and
general curvilinear grids is not divergence free. If the grid aspect ratio
on non-uniform grids are small (i.e., within 10% of unity), our numeri-
cal experiment on a mixing layer computation indicated that divergence
free is still possible at for most of the time evolution when the solution
is still smooth. After shocks/shears have been formed, complete divergence
free is not possible. The resulting ∇·B numerical error is, however, many
orders of magnitude smaller than the “filter all” option and standard
shock-capturing schemes without any divergence cleaning. Thus, the mini-
mization of the ∇·B numerical error is also possible by the filter approach
if low grid aspect ratio is used in curvilinear grids. An alternative to
obtaining a fully divergence free filter scheme for non-uniform curvilinear
grids is to employ a staggered grid approach in updating the magnetic field
equations for the base scheme step and the corresponding linear filter step.
See Sjögreen and Yee [27] for our derivation of the approximate Riemann
average states and the eigenvectors in curvilinear grids.

4.2. MHD Kelvin–Helmholtz Instabilities (γ =1.4, Periodic BC)

The magnetohydrodynamic Kelvin–Helmholtz instabilities have been
studied previously by many investigators (see [4] and references cited
therein). We have used the set up in [4] which is shown in Fig. 1 [with
(ux, uy, uz)= (u, v,w)]. At time zero two shear layers are given which are
smooth but with strong gradients. A small spatial perturbation is intro-
duced to trigger the instability. The problem is solved to time T =0.5. At
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Fig. 1. Problem setup and time evolution of the Kelvin–Helmholtz problem. x-velocity
contours by CEN66+AD8 on 101×201 grid points.

a later time, vortices start to form and gradients become steeper. Snap-
shots of the time evolution of the x-velocity are also shown in Fig. 1
by CEN66+AD8 [sixth-order central with an eighth-order linear numerical
dissipation added to the base scheme (d =0.001)]. The solution is obtained
without the filter step. At stopping time T = 0.5, the problem is smooth
enough that it can be solved by the base scheme alone. Five levels of grid
refinement are considered, namely, 51×101,101×201,201×401,401×801,
and 801×1601.

Figure 2 displays the solution on grids of increasing refinement by
the eighth-order central difference with a 10th-order linear dissipation
added (CEN88+AD10, d = 0.001). Density contours at time T = 0.5 with
30 equidistant contour levels between 0.4 and 1.2 are used. Again, the
CEN88+AD10 solution is obtained by the base scheme CEN88+AD10
alone without the filter step. Computations using d = 0 (CEN88) are
not stable for the entire considered time evolution for all five grids. The
CEN88+AD10 solution by solving the non-conservative system is exactly
the same as the conservative computation. This is due to the fact that
the base scheme CEN88+AD10 alone is divergence-free preserving. The
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Fig. 2. Grid refinement of CEN88+AD10 solving the conservative system. Density
contours at T =0.5 for the Kelvin–Helmholtz problem.

sequence of grid refinements shows that the global structure of the flow
is in good agreement with the finest grid solution. In order to capture
some of the finest structure internal to the vortex, it is necessary to use
the 201 × 401 grid. The finest grid 801 × 1601 by CEN88+AD10 is used
as the reference solution.

Although at stopping time T =0.5 the problem is smooth enough and
there is no need for the more CPU intensive shock-capturing schemes, as
the flow evolves at a later time, shock-capturing methods are required.
Here, the purpose is to examine the ∇·B numerical error when the flow
is still smooth using shock-capturing methods. Figure 3 shows the density
(left) and ∇·B (middle) contours at T = 0.5, and L2-norm of ∇·B as a
function of time (right) by MUSCL (top row) and WENO5 (bottom row)
for three different grids. The same computations by ACM66 and WAV66
using the no filter on B option are shown in Fig. 4. The ∇·B contours
with 30 equidistant contour levels between −150 and 150 are used.

Density contours using ACM66, ACM66+AD8 (figures not shown),
WAV66, and WAV66+AD8 (figures not shown) exhibit an accuracy sim-
ilar to CEN88+AD8. There is no gain in solving the conservative over
the non-conservative system for these two filter schemes. However, their
∇·B numerical errors are very different when using the “no filter on B”
option versus the “filter all” option. They are also very different from the
standard MUSCL, Harten–Yee and WENO5 schemes. The three standard
shock-capturing methods (solving both systems) all exhibit ∇·B numerical
errors as well as the filter all option of the two filter schemes for the entire
time evolution for all five grids. By examining the ∇·B contours at T =0.5
for all five grids, their ∇·B numerical error increases as the grid is refined.
For the no filter on B option, divergence-free preservation is achieved by
ACM66 (ACM66+AD8) and WAV66 (WAV66+AD8) for all five grids.
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Fig. 3. Density (left) and ∇·B (middle) contours at T = 0.5 (201 × 401 grid), and L2-norm
of ∇·B as a function of time (right) by MUSCL (top row) and WENO5 (bottom row) for
three grids for the Kelvin–Helmholtz problem.

The blank ∇·B contours at T = 0.5 by ACM66 and WAV66 using
the no filter on B option indicate that within the considered contour lev-
els and number of contours, no such contour error was found, whereas
MUSCL, Harten–Yee (figure not shown) and WENO5 exhibit the corre-
sponding ∇·B numerical errors. The numerical errors at T = 0.5 are not
an isolated case. As a matter of fact, for the entire time evolution, the
L2-norm ∇·B numerical error indicates the superiority of the two filter
schemes (no filter on B). Note that the L2-norm ranges shown are not the
same for Figs. 3 and 4.

The CPU time used was considerably larger (around a factor 2.5) for
the WENO5 scheme (due to the lower stability limit and higher operations
count of WENO5 than the rest of the schemes). MUSCL, Harten–Yee and
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Fig. 4. Density (left) and ∇·B (middle) contours at T = 0.5 (201 × 401 grid), and L2-norm
of ∇·B as a function of time (right) by ACM66 (top row) and WAV66 (bottom row) for
three grids for the Kelvin–Helmholtz problem.

WENO5 exhibit small oscillations at the outer edges of the vortices as the
grid is refined. It is possible to decrease these oscillations by increasing the
multi-dimensional entropy fix parameters of the Harten–Yee scheme [31].

4.3. A 2-D Compressible MHD Riemann Problem (γ =5/3)

We examine the same 2-D Riemann problem as in [4]. It consists of
four constant states at time zero, as shown in Fig. 5. These initial data are
chosen so that the magnetic field is divergence free and three of the four
1-D constant states are simple waves as indicated in Fig. 5. The bound-
aries are treated as open boundaries. The problem is solved on the domain
−1<x <1,−1<y <1 to time T =0.2. Five levels of grid refinement were
performed (101 × 101,201 × 201,401 × 401,801 × 801, and 1601 × 1601).
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Fig. 5. Schematic of the initial data for the 2-D Riemann problem.

The presence of discontinuities at time zero makes this problem suitable
for the study of how ∇·B is generated at discontinuities. Grid convergence
studies solving conservative (top) and non-conservative (bottom) systems
by WENO5 are shown in Fig. 6 for density contours at T = 0.2 with 40
equally spaced contours between 0.75 and 2.1. Their density contours are
almost identical.

The accuracy in a solution of a Riemann problem away from discon-
tinuities is difficult to improve by increasing the order of the scheme. A
large part of the solution is constant, and the structure that develops is
affected by low order errors from the discontinuity in the initial data. All
five methods can capture shocks within 2–4 grid cells, using the same flux
limiter (except WENO5). Their density contours look very similar, even
though the ∇·B contours or the L2-norm of the ∇·B numerical errors are
all very different.

The effect on ∇·B when switching from a non-conservative system to
a conservative system is less significant for the Harten–Yee and WENO5
than for MUSCL for the entire time evolution (L2-norm of ∇·B not
shown, see [36] for details). ∇·B contours for the three methods, MUSCL,
Harten–Yee, and WENO5 are displayed in Fig. 7. The ∇·B contours use
30 equidistant contour levels between −3.7 and 3.7. Figure 8 shows a
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Fig. 6. Grid refinement by WENO5. Density contours solving the conservative (upper row)
and non-conservative (lower row) form of the equations for the 2-D Riemann problem.

comparison of the filter all versus no filter on B options by ACM66+AD8
(d = 0.001) for the ∇·B contours at T = 0.2 and the L2-norm ∇·B time
evolution for three grids. Again the blank ∇·B contours at T = 0.2 (bot-
tom right) indicate divergence-free preserving of the no filter on B option.
The L2-norm of ∇·B at T = 0.2 confirms the conclusion. As a mat-
ter of fact, the four filter schemes (ACM66, ACM66+AD8, WAV66, and
WAV66+AD8) all exhibit divergence-free preservation by the no filter on B
option for the entire time evolution. Our study also indicates that the ∇·B
numerical error at T =0.2 increases as the grid is refined by the MUSCL,
Harten–Yee, WENO5 and the two filter schemes using the filter all option.

Numerical boundary condition treatments: For problems with non-peri-
odic boundaries, special care has to be taken to avoid generation of ∇·B
by the numerical boundary condition treatment. This is especially impor-
tant for spatially higher than second-order base schemes for open bound-
aries as discussed in the Preliminary Section. When an extrapolation to the
outer most boundary point in conjunction with the (SBP) boundary oper-
ator obtained from a floating point computation with uncertain round-off
properties for the sixth-order base scheme was used, 10−6L2-norm of ∇·B
numerical error was generated on the non-periodic boundaries as well. As
an alternative, a SBP boundary operator, from [14], was implemented with
closed rational expressions for all coefficients. Figure 9 shows the differ-
ence in results obtained. The more accurately given SBP operator gave
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Fig. 7. Comparison of ∇·B contours among MUSCL, Harten–Yee and WENO5 using a
201×201 grid for the 2-D Riemann problem.
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Fig. 8. L2-norm of ∇·B versus. time and ∇·B contours at T = 0.2 by ACM66+AD8,
d =0.001, no filter on B (left) and filter all (right) using 201 × 201,401 × 401, and 801 × 801
grid points for the 2-D Riemann problem.

a considerably smaller ∇·B generation on the boundary. It is noted that
the grid stencil of the SBP boundary operator in [14] is smaller than the
SBP boundary operator in [15, 16]. Since the flow near both the x and y-
directions boundaries are either smooth or uniform (aside from a few iso-
lated discontinuities), the SBP boundary operator has very small effect on
the generation of ∇·B numerical error through the boundaries. The fourth
test problem consists of complex wave interactions on both the x and y

boundary directions at later time evolution, using a wide grid stencil SBP
boundary operator will exhibit larger ∇·B numerical error as can be seen
later.



Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows 141

0 0.05 0.1 0.15 0.2

10
-10

10
 - 5

t

|| 
∇

⋅B
 ||

ACM66+AD8, 201x201, Rational bnd op

0 0.05 0.1 0.15 0.2

10
 -10

10
- 5

t

|| 
∇

⋅B
 ||

ACM66+AD8, 201x201, Float bnd op

- 1 0 1
- 1

- 0.5

0

0.5

1

x

y

ACM66+AD8 201x201, Rational bnd op

- 1 0 1
- 1

 0.5

0

0.5

1

x

y

ACM66+AD8 201x201, Float bnd op

Fig. 9. ACM66+AD8 (d =0.001, no filter on B option) computations for the 2-D Riemann
problem. L2-norm of ∇·B versus time, and ∇·B contours at T = 0.2. SBP operator given as
rational numbers (left) and SBP operator computed by a lengthy floating point computation
(right) using a 201×201 grid.

4.4. Compressible Orszag–Tang Vortex (γ =5/3, Periodic BC)

The 2-D compressible Orszag–Tang vortex problem [5, 6] consists
of periodic boundary conditions with smooth initial data as shown in
Fig. 10. The computational domain is 0 < x < 2π,0 < y < 2π . This popu-
lar test case is a compressible MHD version of the original incompressible
MHD Orszag–Tang vortex problem [18].

The computation stops at time T = 3.14 (≈ π ), when discontinuities
and complicated flow interactions have formed. Density contours with 30
equally spaced contours between 0.9 and 6.1, and ∇·B contours with
30 equally spaced contours between −30 and 30 are used for illustra-
tion. Again, the same five levels of grid refinement study as the 2-D
Riemann problem were performed on all five methods. Density contours
by WAV66+AD8 at T = 3.14 using “Filter all” and “no filter on B” are
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Fig. 10. Schematic, problem setup and density contours by WAV66+AD8 for the Orszag–
Tang problem using a 801×801 grid at time T =3.14.

also shown in Fig. 10. The density contours are almost identical. Their
∇·B numerical error are very different as we will discussed next.

Figures 11–15 show the comparison of ∇·B contours at T =3.14 and
L2-norm of ∇·B among the five methods. Figures 11–13 also show the
comparison among MUSCL, Harten–Yee and WENO5 solving both sys-
tems using a fine grid of 801 × 801. In addition, Figs. 14 and 15 com-
pare the “no filter on B” option with the “Filter all” option. Note that
the L2-norm range for Figs. 11–13 is different from Figs. 14 and 15.
Care must be taken to interpret their corresponding L2-norm ∇·B errors.
Divergence-free preservation is achieved by WAV66+AD8 (d = 0.001) and
ACM66+AD8 (d =0.001) using the no filter on B option.

The MUSCL scheme applied to the non-conservative equations pro-
duces a considerably larger error in ∇·B than does the same method
applied to the conservative equations. The ∇·B development for Harten–
Yee and WENO5 shows less difference between the conservative and the
non-conservative equations. The size of the generated ∇·B is similar for
both equations, and somewhat more spread out for the non-conservative
equations.

The ∇·B contour error at T =3.14 by ACM66+AD8 with the filter all
option is larger than WAV66+AD8, Harten–Yee and WENO5, but smaller
than MUSCL. The behavior of WAV66 (d = 0) and ACM66 (d = 0) is
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Fig. 11. L2-norm of ∇·B in time (top row) and ∇·B contours at T =3.14 (bottom row ) by
MUSCL for the Orszag–Tang problem, conservative (left) and the non-conservative (right)
equations using a 801×801 grid.

similar to WAV66+AD8 and ACM+AD8, respectively. It is interesting to
point out that divergence free is also possible for the “Filter all” option by
WAV66+AD8 for T <0.7, whereas the ACM66+AD8 loses its divergence-
free preservation at a much earlier time. This is due to the fact that the
WAV-filter scheme sensor turns off the non-linear filter at regions of very
smooth flow (in this case for T <0.7) whereas the ACM-filter only reduces
the strength of the non-linear filter for T <0.7 for the filter all option. For
this problem, WENO5 exhibits a lower L2-norm error for T <0.6 in solv-
ing the conservative system over the non-conservative system. Divergence
free is also possible by WENO5 at very early stages of the time evolution
for solving both systems.

The resolution of the global structure of the density contours is well
captured by all five methods. However, small fine structures were captured
by the ACM-filter and WAV-filter schemes on a 101 × 101 grid, and not
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Fig. 12. L2-norm of ∇·B in time (top row) and ∇·B contours at T =3.14 (bottom row) by
Harten–Yee for the Orszag–Tang problem, conservative (left) and the non-conservative (right)
systems using a 801×801 grid.

by MUSCL, Harten–Yee and WENO5 using the same grid. Similar to
the first two test cases, the ∇·B numerical error at T = 3.14 increases as
the grid is refined by MUSCL, Harten–Yee, WENO5 and the two filter
schemes using the filter all option.

4.5. A Planar Shock Interacting with a Magnetic Cloud (γ =5/3,
Supersonic Inflow and Open Boundaries)

The fourth test problem is a planar shock interacting with a magnetic
cloud studied in [5, 6]. This is a more challenging problem to simulate due
to the stiffness of the flow with rapidly developed complex wave interac-
tions close to the boundaries. The same initial configuration as in [28] is
considered here. The computational domain is the square 0 < x < 1,0 <

y < 1. A planar shock is initially situated at x = 0.6 and move towards
the right. In a circular region with center at (0.8, 0.5) and radius 0.15, a
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Fig. 13. L2-norm of ∇·B in time (top) and ∇·B contours at T =3.14 (bottom) by WENO5
for the Orszag–Tang problem solving the conservative (left) and the non-conservative (right)
systems using a 801×801 grid.

state of increased density (i.e., the cloud) is given. The problem setup and
schematic of the initial condition are shown in Fig. 16. The flow velocity
is directed in the negative x-direction, and the cloud will move to the left
as indicated on Fig. 16. The right boundary is supersonic inflow, where
the right state is imposed. The other boundaries are open boundaries. The
same five levels of grid refinement for the last two test cases were per-
formed on this shock/cloud interaction problem. Density contours with 50
equidistant contours in log scale from log(0.99) to log(48), and the ∇·B
contours with 30 equidistant contours between −500 and 500 are used.
Figure 16 also shows the density contours by WENO5 at T = 0.06 using
a 801×801 grid.

Figures 17 and 18 show the comparison between WENO5 (solv-
ing both systems) and WAV66+AD8 (d = 0.001) in terms of L2-norm
of ∇·B for three grids and the ∇·B contours at T = 0.06. In addition
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Fig. 14. WAV66+AD8 L2-norm of ∇·B in time (top row), ∇·B contours at T = 3.14 (bot-
tom row) by WAV66+AD8 for the Orszag–Tang problem. No non-linear filter on B (left) and
non-linear filter on all components (right) using a 801×801 grid.

Fig. 18 shows the comparison between filter all and no filter on B by
WAV66+AD8. Figure 19 shows similar computations by ACM66+AD8
(d = 0.001) using a 801 × 801 grid. Figures 20 and 21 show the L2-
norm of ∇·B comparison among MUSCL, WENO5, ACM66+AD8 and
WAV66+AD8. Note that the range of the L2-norm in Figs. 17 and 20 is
different from Figs. 18, 19, and 21.

For this test case, the L2-norm error by the three standard shock-
capturing methods and the two filter schemes using the filter all options
are similar. In most parts of the time evolution, above unity error was
obtained. Their ∇·B contour errors at T =0.06 are different (different dis-
tributions of ∇·B). In addition, their ∇·B numerical errors at T = 0.06
increase as the grid is refined. The filter all options by the filter schemes
exhibit a larger ∇·B contour error at T = 0.06 than Harten–Yee and
WENO5.

The different distribution of ∇·B can be seen by examining the
respective figures. For example, WENO5 is better at suppressing ∇·B
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Fig. 15. L2-norm of ∇·B in time (top row) and ∇·B contours at T =3.14 (bottom row) by
ACM66+AD8 for the Orszag–Tang problem. No non-linear filter on B (left) and non-linear
filter on all components (right) using a 801×801 grid.

generation at the main shock. The non-conservative equations evolve ∇·B
with the streamlines, which for this problem are directed towards the nega-
tive x-direction. Therefore, a larger ∇·B numerical error is seen to the bot-
tom left of Fig. 17. For the MUSCL and Harten–Yee schemes (figures not
shown), solving the conservative system is slightly better than solving the
non-conservative system by examining their ∇·B contours at T =0.06.

For both the WAV66+AD8 and ACM66+AD8 using the no filter on
B, perfect ∇·B preservation is only obtained up to a certain time (T =
0.04). The increase in the norm of ∇·B is caused by boundary effects. A
SBP difference boundary operator is used. Due to the wide grid stencil
of the SBP boundary difference operator in conjunction with the need to
use an extrapolation to the outermost open boundary point, ∇·B is not
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Fig. 16. Problem setup and schematic of the initial data of the MHD shock/cloud interac-
tion problem. Density contours by WENO5 solving the conservative system using a 801 ×
801 grid.

preserved. The effect is only seen when the solution is non-trivial on the
boundary where complex wave interactions are taking place in both direc-
tions of the open boundaries.

Although divergence-free preservation by ACM66+AD8 and WAV66+
AD8 is not possible for T > 0.04 by the “no filter on B” option, the L2-
norm for this option is at least an order of magnitude smaller than the
“Filter all” option and the three standard shock-capturing schemes when
T >0.04. Figures 20 and 21 show the distinct lower L2-norm error levels
than the MUSCL and WENO5. Note again that the range of the L2-norm
in Figs. 17 and 20 is different from Figs. 18, 19, and 21. Care is needed when
comparing the results.

The solution by ACM66+AD8 (figure not shown) solving either the
conservative or non-conservative system is slightly different from the other
four methods. A very weak discontinuity is seen to originate from the
cloud which hits the lower boundary at around x =0.6. This discontinuity
is not present in any of the other computed solutions. Furthermore, the
main shock is in a slightly different position than in the rest of the meth-
ods. The solution behavior of ACM66+AD8 is similar for both the filter
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Fig. 17. Grid convergence study of L2-norm of ∇·B, and ∇·B contours at T = 0.06 by
WENO5 using a 401 × 401 grid, conservative (left) and non-conservative (right) for the
shock/cloud interaction problem.

all and no filter on B options. The reason for this discrepancy is under
investigation. The wide grid stencil of the SBP boundary operator might
play a role.

Since this is a very stiff problem, very small CFL is required. For the
finer grid, in order to obtain a stable solution by WENO5 (CFL = 0.1),
the CPU time is more than an order of magnitude greater than for the
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Fig. 18. Grid convergence study of L2-norm of ∇·B, and ∇·B contours at T = 0.06 by
WAV66+AD8 using a 801 × 801 grid, filter all (left) and no filter on B (right) for the
shock/cloud interaction problem.

Harten–Yee and MUSCL schemes, and many times more CPU time than
the ACM and WAV-filter schemes. This is partially due to a lower stability
limit of WENO5 than the rest of the schemes.

5. CONCLUDING REMARKS

A natural and efficient high order finite difference filter approach in the
sense of not needing traditional divergence cleaning for the minimization
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Fig. 19. L2-norm of ∇·B versus time (top row) and ∇·B contours at T =0.06 (bottom row)
by ACM66+AD8 (d=0.001) for the shock/cloud problem with filter all (right) and no filter
on B (left) using a 801×801 grid.

of the ∇·B numerical error was proposed and validated using four 2-
D compressible MHD test cases. The new method of defining high-res-
olution shock-capturing schemes for the conservative MHD equations is
further validated over the preliminary study in [26]. Five levels of grid
refinement on four different flow types were compared with three standard
high-resolution shock-capturing schemes, namely, a second-order MUSCL
and Harten–Yee upwind TVD schemes, and the fifth-order WENO scheme
(WENO5). The new method of using the non-conservative eigensystem
when solving the conservative equations is also applicable in the context
of commonly used shock-capturing schemes for the MHD equations.

The “no filter on B” by the two filter schemes works well for both
the conservative and non-conservative systems and exhibits smaller ∇·B
numerical error than standard shock-capturing methods without tradi-
tional divergence cleanings. For periodic boundary conditions and for
open boundaries without complex wave interactions near the physical
boundaries, these filter schemes are divergence free. In general, for coarse
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Fig. 20. L2-norm of ∇·B of MUSCL (top), and WENO5 (bottom) for the shock/cloud
problem, conservative (left), non-conservative (right).

grids, the high order methods are more accurate (gas dynamics variables)
and require only half the grid points than required by second-order meth-
ods. For fine enough grids, in most test cases, the accuracy (gas dynamics
variables) is similar for all five methods.

Over all, ACM66 and WAV66 are less stable than ACM66+AD8
and WAV66+AD8. In some cases, ACM66+AD8 is more stable than
WAV66+AD8. However, divergence free can be obtained by WAV66+AD8
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Fig. 21. L2-norm of ∇·B of ACM66+AD8, d = 0.001, (top) and WAV66+AD8, d = 0.001,
(bottom), for the shock/cloud problem, filter all (left), no filter B (right).

using the filter all option at an early stage of time development for the
Orszag–Tang test case but not by ACM66+AD8. This is due to the fact
that the wavelet sensor is capable in detecting very smooth flow and turns
off the non-linear filter completely whereas the ACM sensor only reduces
the strength at the same region.

The role that the proper treatment of the corresponding numerical
boundary conditions can play on the effect of reducing the ∇·B numerical
error was studied. It was shown that a divergence-free numerical boundary
condition plays an important role for a completely divergence-free scheme.
There is an added potential complication in a need to employ stable
numerical boundary treatments and the requirement of divergence free for
spatially higher than second-order centered base schemes. Stable numerical
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boundary conditions for higher than second-order centered schemes for
systems of hyperbolic conservation laws were only fully developed in the
1990s using the discrete L2 energy norm, sometimes referred to as the SBP
conditions. The grid stencil of these SBP boundary operators is very wide
and might not be suitable for general multi-dimensional open boundaries
with very complex wave interactions. An example of this type of flow is
the shock/cloud problem. One difficulty with the SBP boundary operator
is that the SBP condition can be easily destroyed when a Neumann or
Robin type of physical boundary condition is encountered. Several ways
to overcome the difficulty have been suggested by Olsson [15, 16] for con-
servation laws without constraint. For the MHD with an initial condition
constraint of ∇·B = 0, we have identified the additional difficulty of how
to conserve the ∇·B condition at the boundaries without destroying the
advantage of the SBP condition. Research in this direction is ongoing.

For all four test cases, MUSCL and Harten–Yee require similar CPU
time. The ACM and WAV-filter schemes require slightly more CPU time
than the Harten–Yee and MUSCL schemes. For almost all problems,
WENO5 requires more CPU time than ACM and WAV-filter schemes.
This is due to the fact that both filter schemes require only one Riemann
solve/per time step per direction (independent of the time discretizations
of the base scheme step) as oppose to two Riemann solves/per time step
per direction by the MUSCL, Harten–Yee schemes using a second-order
Runge–Kutta method. In addition, for all test cases and all five meth-
ods (except the no filter on B option for the two filter schemes), the ∇·B
contour numerical errors (at their corresponding stopping times) increase
as the grid is refined. For a more detailed comparison and the perfor-
mance of all five schemes for all the test cases (see [36]). Although this
paper concentrates on using the Harten–Yee dissipative portion as part of
the non-linear filter, comparison among three different non-linear dissipa-
tions (Harten–Yee, MUSCL and WENO5) as part of the non-linear filter
is reported in [37].

One shortcoming of the base scheme step of the filter scheme is that
it is not completely divergence free for non-uniform grids and general cur-
vilinear grids. However, if the grid aspect ratio on non-uniform grids is
small (e.g., within 10% of unity), numerical experiment on a mixing layer
computation indicated that divergence free is still possible for most of
the time evolution when the solution is still smooth. After shocks/shears
have formed, complete divergence free is not possible. The resulting ∇·B
numerical error is many orders of magnitude smaller than the “Filter all”
option and the three standard shock-capturing schemes. Thus, the minimi-
zation of the ∇·B numerical error is also possible by the filter approach
if low grid aspect ratios are used in curvilinear grids. Application of these
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schemes to viscous non-ideal MHD flows for the generalized Ohm’s law
with multiscale structure is forthcoming. Preliminary study shows that
divergence free is also possible for viscous MHD with resistivity [37, 38].

APPENDIX A: AVERAGE STATES FORMULAS FOR THE 3-D
NON-CONSERVATIVE MHD SYSTEM

Consider the 3-D symmetrizable non-conservative MHD system (2) in
the coordinate direction k= (k1 k2 k3) with the velocity vector (u1, u2, u3)

T

= (u, v,w)T and the magnetic field vector (B1,B2,B3)
T = (Bx,By,Bz)

T .
Let the right and left given states of the conservative vector be, UL and
UR, respectively. The Gallice average state for the eight variables q =
(ρ u1 u2 u3 h∗ B1 B2 B3) denoted by

q = (ρ u1 u2 u3 h
∗

B1 B2 B3),

where the averages are computed as

ρ =√
ρLρR, u1 = (u1)L

√
ρL + (u1)R

√
ρR√

ρL +√
ρR

,

h
∗ = h∗

L

√
ρL +h∗

R

√
ρR√

ρL +√
ρR

, B1 = (B1)L
√

ρR + (B1)R
√

ρL√
ρL +√

ρR

and similarly for u2, u3,B2,B3. The modified enthalpy is defined as

h∗ = (e+p +|B|2/2)/ρ.

Define

X = [((ΔB1)
2 + (ΔB2)

2 + (ΔB3)
2)/2(ρL +ρR)]

with the notation

Δ(B1)= (B1)R − (B1)L.

Similarly, for Δ(B2) and Δ(B3) and same notation convention will be fol-
lowed. The average state sound speed squared becomes

c2 = (2−γ )X + (γ −1)
[
h

∗ − 1
2 (u2

1 +u2
2 +u2

3)− (B2
1 +B2

2 +B2
3)/ρ

]
(9)

where the values of the variables are taken from the average state vector
q.
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The average state fast, Alfv́en and slow speeds cf , ca, cs can now be
computed from the average state and the sound speed (9), according to the
formulas

c2
f,s = 1

2

[
c2 +|B|2/ρ ±

√
(c2 +|B|2/ρ)2 −4c2B2/|k|2ρ

]
(10)

and

ca =|B|/(|k|√ρ), (11)

where the notation B = k1B1 + k2B2 + k3B3 and |B|2 = (B1)
2 + (B2)

2 +
(B3)

2 are used. The average state eigenvalues of the symmetrizable non-
conservative MHD system are (subscribe index in increasing order of the
eigenvalues)

λ8,1 =u±|k|cf , λ7,2 =u±|k|ca, λ6,3 =u±|k|cs, λ4,5 =u,

where we denote u=k1u1 +k2u2 +k3u3. For the average state eigenvectors,
we compute the magnetic field orthogonal to k,

B⊥ =B−kT B
k

|k|2 ,

where B is the average state magnetic field in q. Compute the normalized
vector b⊥ =B⊥/|B⊥|, orthogonal to k. If B⊥ is zero, define b⊥ as any unit
vector (n1, n2, n3) which is orthogonal to k. The eigenvectors are given as

r8,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ραf

ρ(αf (u1 ± cf n1)∓αscssb⊥,1)

ρ(αf (u2 ± cf n2)∓αscssb⊥,2)

ρ(αf (u3 ± cf n3)∓αscssb⊥,3)

ραf (h
∗ ± ũcf −|B|2/ρ)∓ραscss(uT b⊥)+√

ραsc|B⊥|
αs

√
ρcb⊥,1

αs
√

ρcb⊥,2
αs

√
ρcb⊥,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

r7,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
±ρ(b⊥ ×k)1
±ρ(b⊥ ×k)2
±ρ(b⊥ ×k)3

±ρ[uT (b⊥ ×k)]
−s

√
ρ(b⊥ ×k)1

−s
√

ρ(b⊥ ×k)2
−s

√
ρ(b⊥ ×k)3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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r6,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ραs

ρ(αs(u1 ± csn1)±αf cf sb⊥,1)

ρ(αs(u2 ± csn2)±αf cf sb⊥,2)

ρ(αs(u3 ± csn3)±αf cf sb⊥,3)

ραs(h
∗ ± ũcf −|B|2/ρ)±ραf cf s(uT b⊥)−√

ραf c|B⊥|
−αf

√
ρcb⊥,1

−αf
√

ρcb⊥,2
−αf

√
ρcb⊥,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

r4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
u1
u2
u3

1
2 (u2

1 +u2
2 +u2

3)+ γ−2
γ−1X

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
B

k1
k2
k3.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the eigenvectors above, all variables (except X) as well as the quantities

n1 =k1/|k|, n2 =k2/|k|, n3 =k3/|k|, ũ=u/|k|,
s = signB, α2

f = (c2 − c2
s )/(c

2
f − c2

s ), α2
s = (c2

f − c2)/(c2
f − c2

s )

are computed at the average state q, or through the wave speeds derived
from q as described in (9), (10), and (11).

For all the high-resolution shock-capturing schemes as well as the fil-
ter schemes which involved the use of the Roe-type approximate solver
(dimension-by-dimension), the jump in the local characteristic variables α

are needed. Here, α has the form

α =R
−1

(UR −UL)=R
−1

ΔU,

where R
−1

is the inverse of the average state of the above eigenvectors.
Instead of obtaining the matrix R

−1
and performing the matrix and

vector multiplications at every grid points, the formulas for α given below
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are more economic to compute. Define first

a1p = 1
ρc2

[αf Δp +αf XΔρ +√
ρcαs(bT

⊥ΔB)],

a1m = 1
c2

(−sαscs(bT
⊥Δu)+αf cf (nT Δu)),

a2p = s
√

ρ|k|2 kT (b⊥ ×ΔB),

a2m =− 1
|k|2 kT (b⊥ ×Δu),

a3p = 1
ρc2

(αsΔp +αsXΔρ −√
ρcαf (bT

⊥ΔB)),

a3m = 1
c2

(sαf cf (bT
⊥Δu)+αscs(nT Δu)).

The lth element of α (denoted by αl) are then given by

α1 =a1p −a1m, α2 =a2p −a2m, α3 =a3p −a3m,

α4 = ((c2 −X)Δρ −Δp)/c2, α5 =kT ΔB/|k|2,
α6 =a3p +a3m, α7 =a2p +a2m, α8 =a1p +a1m.

For high-resolution shock-capturing schemes involving the use of flux lim-
iters on the elements of α in simulating high speed flows when the jump of
the pressure is more pronounced than the jump in the energy, it is advan-
tageous to scale the eigenvectors so that α is proportional to the jump in
the pressure instead of the energy (see [31]). We suggest using the eigen-
vectors r′ instead, where

r′
1,3,6,8 = r1,3,6,8/(ρc2), r′

2,7 = r2,7/(ρc), r′
4 = r4/c

2, r′
5 = r5/(

√
ρc).

The correspondingly α should be scale accordingly (i.e., scale by the
inverse of what is used for the eigenvectors).

To this end, when applying the above average state at, for example, the
average state grid index (j +1/2, k, l), the right state UR should be replaced
by Uj+1,k,l , and the left state UL should be replaced by Uj,k,l . The element
αl now becomes αl

j+1/2,k,l
(αl

j+1/2) and the rest of the average state eigen-
values and eigenvectors accordingly.

APPENDIX B

This appendix shows the non-linear dissipative portion of the Harten–Yee
scheme, the three flux (slope) limiters, the form of the ACM sensor and
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a summary of the wavelet sensor that was used to solve the four test
cases. A comparison of using three different dissipative portions of typical
shock-capturing schemes (Harten–Yee, MUSCL, and WENO5) is reported
in [38].

Non-Linear Dissipative Portion of the Harten–Yee Scheme

The Harten–Yee scheme (for an one-time level time discretization) can
be written as

Un+1
j,k,l = Un

j,k,l −
Δt

Δx
[F̃ n

j+1/2 − F̃ n
j−1/2]− Δt

Δy
[H̃ n

k+1/2 − H̃ n
k−1/2]

−Δt

Δz
[G̃n

l+1/2 − G̃n
l−1/2].

The x-numerical flux F̃j+1/2 has the form

F̃j+1/2 = 1
2 [Fj+1,k,l +Fj,k,l +Rj+1/2Φj+1/2].

The non-linear dissipative portions of the Harten–Yee scheme are Φj+1/2
and Φj−1/2. For all the numerical experiments, the non-linear dissipative
portions of the Harten–Yee scheme are used as part of the non-linear fil-
ter. Denote the lth-element of Φj+1/2 as φl

j+1/2. In this case, the φl
j+1/2 in

(8) for the j -direction is

φl
j+1/2 = 1

2Q(al
j+1/2)[g

l
j+1 +gl

j ]−Q(al
j+1/2 +γ l

j+1/2)α
l
j+1/2,

γj+1/2 = 1
2Q(al

j+1/2)

{
(gl

j+1 −gl
j )/α

l
j+1/2, αl

j+1/2 �=0,

0, αl
j+1/2 =0

with Q(x) =
√

x2 + ε2, the entropy satisfying remedy for the scheme with
entropy correction parameter ε · al

j+1/2 is the lth characteristic speed,
γ l
j+1/2 is the modified characteristic speed and gl

j is a slope limiter which
is a function of αl

j±1/2, the jump in the characteristic variable in the

x-direction. Here αl
j±1/2 are the lth elements of R−1

j±1/2(Uj+1 −Uj). All the
variables with the subscripts “j +1/2” are evaluated at the Gallice average
state in the j -direction (see Appendix A for the average state formula).

Flux or Slope Limiters

The three limiters used for the four test cases are the minmod, van
Albada and Colella and Woodward limiters. They are of the following
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form, respectively

gl
j = minmod(αl

j− 1
2
, αl

j+ 1
2
),

gl
j =

{
αl

j− 1
2

[
(αl

j+ 1
2
)
2 + δ2

]+αl

j+ 1
2

[
(αl

j− 1
2
)
2 + δ2

]}/

[
(αl

j+ 1
2
)
2 + (αl

j− 1
2
)
2 +2δ2

]
,

gl
j = minmod

(
2αl

j− 1
2
,2αl

j+ 1
2
,

1
2
(αl

j+ 1
2
+αl

j− 1
2
)
)
.

Here δ2 is a small dimensionless parameter to prevent division by zero.
In practical calculations 10−7 ≤ δ2 ≤10−5 is a commonly used range. The
minmod function of a list of arguments is equal to the smallest number
in absolute value if the list of arguments is of the same sign, or is equal
to zero if any arguments are of opposite sign. Note that the same form of
the limiters for the MUSCL scheme is used except αl

j+1/2 will be replaced
by the jump in the primitive variables if primitive variables are used for
the application of the slope limiters.

Next, we discuss the ACM and wavelet sensors. These sensors are
scheme independent and are not restricted to use with the non-linear
dissipative portion of the Harten–Yee scheme.

ACM AND Wavelet Sensors

A form of the ACM sensor (sN)
l
j+1/2 proposed in [32] is

(sN)
l

j+1/2 =κ max(θ l
j , θ

l
j+1),

where

θj =
∣∣∣∣∣
|αl

j+1/2|− |αl
j−1/2|

|αl
j+1/2|+ |αl

j−1/2|

∣∣∣∣∣ .

The parameter κ is in the range of (1, 0.5) for each wave. For example,
κ is larger for non-linear waves and κ is smaller for the degenerate wave
(see [32, 33] for details).

It was shown in [22] that the method can be improved by letting the
sensor (sN)

l
j+1/2 be based instead on a regularity estimate obtained from

the wavelet coefficients of the flow solution. The wavelet analysis gives
an estimate of the so-called local Lipschitz exponent β at each grid cell.
The dissipation is switched on for low β values, and switched off when β
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becomes large [22]. The wavelet analysis is more general and can be used
to detect other features besides shocks/contacts. In addition, the wavelet
sensor can be used as an improved indicator over commonly used detec-
tors for grid adaptation.

Wavelet Sensor for Multiscale Flow Physics

The CPU time to compute the ACM sensor is nearly the same as the
wavelet sensor. However, one needs some background in multi-resolution
wavelets. It is too lengthy to be repeated here. Interested reader should
refer to [23, 34] for details. Here, the basic idea for obtaining the wavelet
in descriptive form is summarized.

(I) Wavelet type: (non-orthogonal multi-resolution wavelets)

– redundant form of Harten’s multi-resolution form,
– second-order B-splines,
– wavelets that can distinguish spurious high frequency oscillations

from turbulence.

(II) Flow variables to be sensed

– density and pressure,
– local characteristic variables,
– primitive variables,
– entropy variables.

(III) Procedures

– apply wavelets to the flow variable vector to be sensed,
– obtain the corresponding wavelet coefficients at each grid point

(usually involves 2–4 levels of nested difference operators),
– obtain the corresponding Lipschitz exponent βj of the wavelet

coefficients (e.g., least square fit of the wavelet coefficients in
domain of dependence),

– determine the cut off Lipschitz exponent (sN)
l
j+1/2 at each grid

point. In this case (sN)
l
j+1/2 consists of either “0”s or “1”s. An

alternative is to have a smooth transition between 0 and 1),
– use Lipschitz exponent cut off values (sN)

l
j+1/2 as indicators to

switch on or off the appropriate numerical dissipations at each
grid point,

– the same (sN)
l
j+1/2 sensor can be used as indicators for grid

adaption if desired.
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25. Sjögreen, B., and Yee, H. C. (2002). Analysis of high order difference methods for mul-
tiscale complex compressible flows. In Proceedings of the 9th International Conference on
Hyperbolic Problems, March 25–29, Pasadena, CA.

26. Sjögreen, B., and Yee, H. C. (2003). Efficient low dissipative high order schemes for
multiscale MHD flows, I: basic theory. AIAA 2003-4118. In Proceedings of the 16th
AIAA/CFD Conference, June 23–26, Orlando, Fl.
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38. Yee, H. C., and Sjögreen, B. (2004). Nonlinear filtering and limiting in high order meth-
ods for ideal and Non-ideal MHD. In Proceedings of the ICOSAHOM04, June 21–25,
Brown University, Providence, RI.

39. Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Max-
well’s equations in isotropic media. IEEE Trans. Antennas Propagat. 14, 302–307.

40. Zachary, A. L., Malagoli, A., and Colella, P. (1994). A higher-order Godunov method
for multidimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput. 15, 263–284.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	10-2006

	Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of ∇·B Numerical Error
	Helen C. Yee
	Bjorn Sjögreen

	tmp.1511811769.pdf.olKAD

