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Abstract
A class of high-order nonlinear filter schemes by Yee et al. (J Comput Phys 150:199–238, 1999), Sjögreen and Yee (J Comput
Phys 225:910–934, 2007), and Kotov et al. (Commun Comput Phys 19:273–300, 2016; J Comput Phys 307:189–202, 2016)
is examined for long-time integrations of computational aeroacoustics (CAA) turbulence applications. This class of schemes
was designed for an improved nonlinear stability and accuracy for long-time integration of compressible direct numerical
simulation and large eddy simulation computations for both shock-free turbulence and turbulence with shocks. They are based
on the skew-symmetric splitting version of the high-order central base scheme in conjunction with adaptive low-dissipation
control via a nonlinear filter step to help with stability and accuracy capturing at shock-free regions as well as in the vicinity
of discontinuities. The central dispersion-relation-preserving schemes as well as classical central schemes of arbitrary orders
fit into the framework of skew-symmetric splitting of the inviscid flux derivatives. Numerical experiments on CAA turbulence
test cases are validated.

Keywords High-order methods · CAA turbulence with shocks · Skew-symmetric splitting · High-order nonlinear filter · DRP
schemes with nonlinear filter

1 Introduction

Improving nonlinear stability without smearing physical
turbulent fluctuations for long-time integrations of turbu-
lent flows with discontinuities poses a difficult challenge.
Since the turn of this century, many optimized compact and
non-compact weighted essentially non-oscillatory (WENO)
and essentially non-oscillatory (ENO) schemes have been
developed to reduce numerical dissipation away from dis-
continuity regions. See, e.g., [1–3]. These numericalmethods
are very high in CPU operation count and most often still
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suffer from numerical stability/accuracy for long-time inte-
gration. Other numerical methods for combating excess
numerical dissipation switch between non-dissipative (or low
dissipative) spatial schemes and high-order high-resolution
shock-capturing schemes. The blending of these two types of
schemes requires extreme care to ensure numerical conser-
vation and stability at interface locations [4]. More efficient
numerical methods which avoid the interfacing problem are
the nonlinear filter schemes [5–9]. Numerical stability can
be improved by skew-symmetric splitting of the inviscid
flux derivatives [10–12] and by high-order stable entropy-
conservative numerical fluxes [13,14]. Other sources of
accuracy improvement are the dispersion-relation-preserving
(DRP) schemes for computational aeroacoustics (CAA) [15]
in conjunction with proper shock-capturing mechanisms.

The Yee and Sjögreen [16] adaptive nonlinear filter
method consists of a high-order non-dissipative spatial base
scheme and a nonlinear filter step. The nonlinear filter step
consists of a flow sensor and the dissipative portion of a high-
resolution high-order shock-capturing method to guide the
application of the shock-capturing dissipation where needed.
The nonlinear filter idea was first initiated by Yee et al. [5]
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1118 B. Sjögreen et al.

using an artificial compression method of Harten [17] as the
flow sensor. Smart flow sensors were developed at a later
stage by the same investigators and collaborators in [6–9].
The smart flow sensor provides the locations and the esti-
mated strength of the necessary numerical dissipation needed
at these locations and leaves the rest of the flow field free
of shock-capturing dissipation. It is noted that the nonlin-
ear filter approach of Yee and Sjögreen [16] requires one
Riemann solve per time step per grid point for each spa-
tial direction. It is independent of the time discretization
to be used. However, hybrid schemes (switching between
high-order non-dissipative methods and high-order shock-
capturing methods) would require four Riemann solves per
time step per grid point for each spatial direction if a fourth-
stage Runge–Kutta time discretization is used. Unlike the
hybrid method, our highly parallelizable adaptive nonlinear
filter schemes do not rely on switching between schemes
to avoid the related numerical instability and conservation
consideration at switching locations. These nonlinear filter
schemes with adaptive numerical dissipation control in high-
order shock-capturing schemes and their hybrid cousins have
shown an excellent performance for certain turbulent test
cases. For more practical 3D test cases of direct numeri-
cal simulation (DNS) and large eddy simulation (LES) of
compressible shock-free turbulence, low-speed turbulence
with shocklets, and supersonic turbulence for non-periodic
boundaries in curvilinear geometries, some improvement
in numerical stability is needed without resorting to added
numerical dissipation that can interfere with the accuracy of
numerical simulations.

In the early 1980s, skew-symmetric splitting of certain
components of the inviscid flux derivatives in conjunction
with central schemes was shown to help with numerical sta-
bility for long-time integration. For certain splittings, they
can provide a stable energy norm estimate for the Euler
equations with smooth flows. For other skew-symmetric
formulations, they can provide a discrete momentum con-
servation or a discrete kinetic preservation property. See Yee
and Sjögreen, Kotov et al., Yee et al., Yee and Sjögreen,
Arakawa, Blaisdell et al., and Ducros [7–10,16,18–21] for
somediscussions and performance of the combined approach
for DNS and LES applications. A semi-conservative skew-
symmetric splitting (entropy splitting) of Yee et al. [10] in
conjunction with the nonlinear filter approach to improve
numerical stability without added ad hoc numerical dissipa-
tion was conducted in 2000. It has been utilized extensively
in DNS of shock-free turbulence. See [22] and their later
work for their wide applications. For their skew-symmetric
splitting extension to the equations of ideal magnetohydro-
dynamics (MHD), see Yee et al., and Sjögreen et al. [10,11].

Traditionally, for shock-free CAA flows, formal order of
accuracy of the scheme is not as important as reducing disper-
sion error in both time and space. Thus, the CAA community

would rather use a lower-order DRP (dispersion relation pre-
serving) scheme with a wider grid stencil than its standard
central scheme counterpart. Most optimized DRP schemes
prioritize optimizing the wave number at the expense of a
wider grid stencil with the lower formal order (accuracy)
than standard central schemes. On the one hand, acous-
tic waves interacting with shocks and turbulence-induced
noise DRP schemes with linear filters alone usually are not
capable of simulating such flows. As indicated in [23], a
combination of a DRP linear filter and a shock-capturing
nonlinear filter is needed. On the other hand, high-order com-
pact WENO schemes, e.g., [3] and references cited therein,
are more CPU intensive but exhibit no obvious improve-
ment for long-time integration of compressible shock-free
turbulence and turbulence with shocks than the high-order
nonlinear filter approach (or their hybrid method counter-
parts) [8,9,15,16,24,25]. Due to this fact, here, the Yee and
Sjögreennonlinear filter stepwith shock-capturingproperties
is designed to replace the spatial DRP linear filter for CAA
turbulence with shock waves. In addition, we consider the
Ducros et al. two-factor and Kennedy–Gruber three-factor
conservative skew-symmetric splittings [20,26] as part of the
Yee and Sjögreen [16] nonlinear filter scheme framework to
improve nonlinear stability for long-time integration. Both
the classical high-order central schemes and central DRP
schemes as part of the base schemes are considered. The
Ducros et al. splitting will henceforth be referred to as DS.

This paper only considers high-order spatial discretiza-
tions by the method-of-lines approach. Appropriate, accu-
rate, stable time discretization is assumed. Development or
utilization of time discretization schemes is beyond the scope
of the current investigation. This is a sequel to [15,24] with
application to CAA turbulence with shocks. After a brief
introduction and motivation, the skew-symmetric splitting
form for both high-order central schemes and the centralDRP
schemes will be briefly reviewed. Then, for low-dissipative
high-order shock-capturing methods that were designed for
long-time integration of turbulent flows with discontinuities,
our most updated nonlinear filter approach will be briefly
described. Grid refinement studies for two CAA test cases
with shocks comparing different high-order nonlinear filter
methods will be included. Due to our adaptive flow sensor
to control the location and amount of numerical dissipa-
tion where needed, the dissipative portion of the high-order
shock-capturing scheme is only utilized at isolated compu-
tational regions, while maintaining high accuracy almost
everywhere. Our numerical experiments only considered
the less-CPU-intensive dissipative portion of high-resolution
shock-capturing schemes as candidates for our nonlinear fil-
ter approach. Although the dissipative portion of optimized
high-orderWENO, ENO, compactWENO, or another more-
CPU-intensive high-resolution shock-capturing scheme fits
into the framework of our nonlinear filter scheme frame-

123



Skew-symmetric splitting of high-order central schemes… 1119

work, due to the CPU-intensive nature of these schemes,
they are not considered in our numerical experiments. In
addition, shock-capturing schemes that concentrate on cap-
turing discontinuitieswith a narrowest grid stencil are usually
designed for the rapidly developing flows. Often, for a long-
time integration of DNS and LES types of flows, other added
mechanisms are needed to improve nonlinear stability.

2 An overview of skew-symmetric split
approximations for gas dynamics

Standard spatial centered difference approximations of non-
linear conservation laws normally encounter nonlinear insta-
bilities after a short-time integrationwithout addednumerical
dissipation. It is well known that the appearance of these
instabilities can be delayed if the convective flux derivatives
are written in an equivalent desired split form before the pure
central approximation is employed. Hereafter, this is referred
to as a split approximation.

For example, a split approximation starts from rewriting
the derivative of the product (ab)x as

(ab)x = α(ab)x + γ abx + βaxb (1)

before discretization. Here, a and b are functions of x and
α, γ , and β are parameters chosen to be still equivalent to the
original (ab)x before discretization. A common split deriva-
tive is found by setting α = γ = β = 1/2 resulting in the
form

(ab)x = 1

2
(ab)x + 1

2
abx + 1

2
axb. (2)

As another example, a split approximation for the deriva-
tive of the triple product of three functions (abc)x is

(ab)x = α(abc)x + γ [a(bc)x + bcax ] + β[b(ac)x + acbx ]
+ κ[c(ab)x + abcx ] + δ[bcax + acbx + abcx ]

(3)

before discretization. Here, a, b, and c are functions of x and
α, γ , β, κ , and δ are parameters chosen to be still equivalent
to the original (abc)x before discretization.

A common parameter choice was established by Kennedy
and Gruber, and Pirozzoli [26,27] for the nonlinear Euler
equation by setting α = γ = β = κ = 1/4 and δ = 0 for
the triple-product derivative. The resulting splitting in con-
junction with the central scheme is kinetic energy preserving
in the discretized sense.

The next section briefly derives theDucros et al. [20]-type
conservative splitting (DS) for 2pth-order central schemes.
For the corresponding numerical fluxes in the DS split form

for the nonlinear Euler and MHD equations, see [10,11,15].
A similar procedure can be derived for the Kennedy–Gruber
splitting of arbitrary even order for central schemes. A com-
parison of these skew-symmetric splittings can be found in
[28] and its extended journal version.

2.1 Ducros et al.-type conservative splitting (DS)

For nonlinear systems, such as the Euler equations of gas
dynamics, split approximations have been used for a long
time; see, e.g., Blaisdell et al. and Ducros et al. [19,20]. The
Ducros et al. split approximation startswith (2)with the terms
of the split form approximated by

1

2
D(ab) + 1

2
D(a)b + 1

2
aD(b), (4)

where D is a centered finite difference operator and a and b
are functions of x .

The key step in the DS [20] split approximation is to
rewrite (4) in the conservation form. For example, with
second-order operatorDu j = (u j+1−u j−1)/(2�x), it holds
that

1

2
D(ab) + 1

2
D(a)b + 1

2
aD(b)

= 1

4�x
�+[(a j + a j−1)(b j + b j−1)], (5)

where �+q j = (q j+1 − q j ).
Equation (5) can be generalized to standard centered dif-

ference operators of 2pth-order of accuracy,

Dpu j = 1

�x

p∑

k=1

α
(p)
k (u j+k − u j−k). (6)

The coefficients α
(p)
k satisfy

p∑

k=1

kα(p)
k = 1

2

p∑

k=1

α
(p)
k k2n+1 = 0, n = 1, . . . , p − 1.

(7)

To derive the conservative form of the split approximation
for an arbitrary operator, the right-hand side of the algebraic
identity

a j+kb j+k − a j−kb j−k + (a j+k − a j−k)b j + a j (b j+k − b j−k)

= (a j+k + a j )(b j+k + b j ) − (a j + a j−k)(b j + b j−k)

(8)
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is written in the conservation form by

(a j+k + a j )(b j+k + b j ) − (a j + a j−k)(b j + b j−k)

=
k−1∑

m=0

(a j−m + a j+k−m)(b j−m + b j+k−m)

−
k−1∑

m=0

(a j−1−m + a j−1+k−m)(b j−1−m + b j−1+k−m).

(9)

The conservative form of the split approximation becomes

1

2
Dp(ab) + 1

2
Dp(a)b + 1

2
aDp(b)

= 1

�x

p∑

k=1

1

2
α

(p)
k

(
(a j+kb j+k − a j−kb j−k)

+ a j (b j+k − b j−k) + (a j+k − a j−k)b j
)

= 1

�x

p∑

k=1

α
(p)
k

2

(
k−1∑

m=0

(a j−m + a j+k−m)(b j−m + b j+k−m)

−
k−1∑

m=0

(a j−1−m + a j−1+k−m)(b j−1−m + b j−1+k−m)

)

= 1

�x
(h j+1/2 − h j−1/2), (10)

where the numerical flux is defined by

h j+1/2 =
p∑

k=1

1

2
α

(p)
k

k−1∑

m=0

(a j−m + a j+k−m)(b j−m + b j+k−m).

(11)

3 DRP schemes

In the turbulence and CAA communities, researchers prefer
to utilize wave-number-optimized schemes for general DNS
and LES applications. In this study, two different optimized
finite difference operators are considered to compare with
the high-order classical central scheme. See Tam [29] and
De Roeck et al. [30] for the development and references cited
therein. These are: (a) DRP4S7, the original Tam and Webb
fourth-order accurate DRP operator with a seven-point wide
grid stencil, and (b) DRP4S9, the fourth-order accurate DRP
operator with a nine-point wide grid stencil. Both operators
have antisymmetric coefficients and are optimized over wave
number intervals: 0 ≤ k�x ≤ 1.1 for DRP4S7 and π/16 ≤
k�x ≤ π/2 forDRP4S9.Here,�x is the grid spacing and the
integer k is the mode number. DRP4S7 was studied in [30].

Remark Numerical experiments made with DRP4S7 opti-
mized over π/16 ≤ k�x ≤ π/2 gave worse accuracy
than with DRP4S7 optimized over the more standard choice

Table 1 Coefficients of
DRP4S7, optimized over
[0, 1.1]

k ak

1 0.77088238051822552

2 −0.16670590441458047

3 0.02084314277031176

Table 2 Coefficients of
DRP4S9, optimized over
[π/16, π/2]

k ak

1 0.846863763009931

2 −0.251240526849904

3 0.063181723773749

4 −0.008481970157843

0 ≤ k�x ≤ 1.1 used here. It is reasonable to expect that with
fewer free parameters, the interval of optimization would be
made shorter. DRP4S7 and DRP4S9 use least square mini-
mization of the absolute error, i.e., integral over the square
of the error in wave number space.

Their difference operators D for the first-order derivative
of a grid function u j are of the form

Du j = 1

�x

q∑

k=1

ak(u j+k − u j−k). (12)

Table 1 gives the coefficients of the DRP4S7 scheme. Table 2
lists the coefficients of the DRP4S9 scheme.

Note that the centered operators (12) are of the same anti-
symmetric form as (6). This implies that the DS splitting and
the Kennedy–Gruber splitting described in the previous sub-
section are also straightforwardly applicable to be used for
the optimized operators described in this subsection.

4 Skew-symmetric split form of classical
central and DRP differencing as base
schemes in the framework of the nonlinear
filter method of Yee and Sjögreen, Kotov
et al., and Yee and Sjögreen [7–9,12,16]

Before the application of a high-order non-dissipative cen-
tral spatial base scheme, a preprocessing step is employed
to improve numerical stability. In the turbulence community,
it is often referred to as de-aliasing errors. The inviscid flux
derivatives of the governing equations are split into the fol-
lowing two ways, depending on the flow types and the desire
for rigorous mathematical analysis or physical argument.

— Entropy splitting of [10] or the natural splitting [21]:
These are non-conservative splittings, and they are
among some of the best in improving the numerical sta-
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Skew-symmetric splitting of high-order central schemes… 1121

bility for non-dissipative central schemes, especially for
long-time integration of shock-free turbulence.

— The DS splitting [20] and Kennedy–Gruber splitting
[26,27] for systems: These are conservative splittings and
are suitable for problems with discontinuities.

Remark For problems containing discontinuities, conserva-
tive skew-symmetric splittings should be used.

4.1 Base scheme step after the preprocessing step

A full time step is advanced using a high-order non-
dissipative (or very low dissipation) spatially central scheme
approximating the split form of the governing partial differ-
ential equations (PDEs) (i.e., after the preprocessing step).
For the current study, sixth-order to eighth-order classical
central schemes and theDRP4S7 andDRP4S9DRP schemes
are considered as base schemes.

For the base scheme step, a full time step of high-order
temporal discretization such as the third- and fourth-order
Runge–Kutta (RK3 and RK4) method is used. Other DRP
temporal discretizations could be used for the base scheme
step, but are beyond the scope of this investigation. See Tam
[29,31], Brambley [32], and Haras and Ta’asan [33].

4.2 Post-processing (nonlinear filter step)

To further improve the accuracy of the computed solution
from the base scheme step, after a full time step of a non-
dissipative high-order spatial base scheme on the split form
of the governing equation(s), the post-processing step non-
linearly filters the solution by a dissipative portion of a
high-order shock-capturing scheme with a local flow sen-
sor. A comparable order of accuracy of the nonlinear filter
dissipation with the base scheme is usually considered.
For non-entropy-satisfying shock-capturing schemes, it is
assumed that entropy-satisfying fixes for both 1D and multi-
D are employed as indicated in Yee et al. [34]. For extreme
flows, positivity-preserving shock-capturing schemes should
be used. See Kotov et al. [35] for some performance of
positivity-preserving nonlinear filter schemes.

The flow sensor provides locations and amounts of built-
in shock-capturing dissipation that can be further reduced
or eliminated. At each grid point, a local flow sensor is
employed to analyze the regularity of the computedflowdata.
Only the strong discontinuity locations would receive the full
amount of shock-capturing dissipation. In smooth regions,
no shock-capturing dissipation would be added unless high-
frequency oscillations develop, owing to the possibility of
numerical instability in long-time integrations of nonlinear
governingPDEs. In regionswith strong turbulence, if needed,
a small fraction of the shock-capturing dissipation would be
added to improve stability.

In one space dimension, the numerical flux function used
in the nonlinear filter step is described by the formula

h(f)
j+1/2 = s j+1/2

(
h(weno)
j+1/2 − h(c)

j+1/2

)
,

where s j+1/2 is the flow sensor, h(weno)
j+1/2 is aWENOnumerical

flux function, and h(c)
j+1/2 is a centered numerical flux. The

2pth-order accurate centered flux is used together with the
2p−1 accurateWENOflux.Thewavelet flow sensor consists
of two factors

s j+1/2 = κw j+1/2

where κ is a constant and w j+1/2 ∈ [0, 1] is a normalized
function of the local Lipschitz exponent of the flowfield, esti-
mated from the wavelet coefficients, see [6] for details. The
numerical experiments in this paper were made with a three-
level wavelet sensor, based on the fourth-order redundant
B-spline wavelet basis. In the 2D shock–vortex interaction
problem, the Lipschitz cutoff exponent was set to α0 = 0.5
and the premultiplying factor κ = 0.5. In the duct flow prob-
lem, the parameters were set to α0 = 0.9 and κ = 1. In both
cases, the LLF variant of the WENO scheme was used.

5 Numerical experiments

To validate our high-order nonlinear filter approach, a 2D
inviscid stationary shock interacting with a pair of counter-
rotating vortices [36] and a 2D inviscid supersonic flow
entering a duct through a nozzle [23] are considered. A large
number of computations using different levels of grid refine-
ment for each test case were made. The finest grid acts as
the reference solution to compare the accuracy of the studied
schemes.

5.1 Test Case 1: 2D inviscid shock–vortex interaction

This is a 2D inviscid test problem reported in [36] where
two vortices pass through a steady shock wave. The constant
states on the left (subscript L) and on the right (subscript R)
of the steady shock wave are

(ρ, u, v, p)L = (1.3416, −0.8944, 0, 1.0810) (13)

(ρ, u, v, p)R = (1, −1.2, 0, 1/γ ), (14)

where γ = 1.4. This makes the speeds of sound cL = 1.0621
and cR = 1, and theMach numbersML = 0.8421 andMR =
1.2. Hence, the right state is supersonic, giving supersonic
inflow conditions at the upstream (right) boundary. The left
state is subsonic, giving subsonic outflow conditions at the
downstream (left) boundary. The domain is square of size
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1122 B. Sjögreen et al.

− 40 ≤ x ≤ 20, − 30 ≤ y ≤ 30. The shock wave is located
at x = 0. Here, all sizes are given in non-dimensional units.

Initially, the vortices are superimposed on the right-hand
state with vortex one centered at (x1, y1) and vortex two
centered at (x2, y2). The right state is modified to

ρR =
(
1 − 1

2
(γ − 1)β2e1−r21 − 1

2
(γ − 1)β2e1−r22

)1/(γ−1)

(15)

uR = −1.2 − β(y − y1)e
(1−r21 )/2 + β(y − y2)e

(1−r22 )/2

(16)

vR = β(x − x1)e
(1−r21 )/2 − β(x − x2)e

(1−r22 )/2 (17)

pR = ρ
γ
R/γ, (18)

where the pressure definition makes the entropy pρ−γ equal
to 1/γ . The distances are defined by r21 = (x − x1)2 +
(y − y1)2 and r22 = (x − x2)2 + (y − y2)2. The vor-
tex centers are (x1, y1) = (4, − 2 cosα) and (x2, y2) =
(4 + 4 sin α, 2 cosα). The vortex strength, β, and vortex
alignment, α, are problem parameters.

In the example computations, β = 0.05 and α = 45◦.
The computations are run to time 15. The plotted acoustic
pressure is defined by pa = (p−p0)/p0, where p0 = 1.0810
is the left state pressure. Figure 1 shows velocity magnitude,√
u2 + v2, and contours for the initial data.
Figures 2, 3, and 4 show the acoustic pressure contours

at t = 15 for three grids (201 × 201, 401 × 401, and
801×801), comparing seventh-orderWENO (WENO7)with
the two central base schemes DRP4S9DS and C08 in con-
junctionwith the dissipative portion ofWENO7 (WENO7FI)
as the nonlinear filter. DRP4S9DS indicates the use of the
DS split form of DRP4S9. C08 + WENO7FI indicates the
eighth-order classical central scheme in conjunction with

Fig. 1 Shock–vortex interaction: velocitymagnitude of initial datawith
α = 45◦

Fig. 2 Shock–vortex interaction: acoustic pressure contours at t = 15.
WENO7, 201 × 201 grid points (top), 401 × 401 grid points (middle),
and 801 × 801 grid points (left)

the dissipative portion of WENO7 as the nonlinear filter.
Figures 5, 6, and 7 show the corresponding contour line
plots using a finer grid as the reference solution for the three
schemes with and without the DS splitting. Results with
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Skew-symmetric splitting of high-order central schemes… 1123

Fig. 3 Shock–vortex interaction: acoustic pressure contours at t = 15.
DRP4S9DS+WENO7FI, 201× 201 grid points (top), 401× 401 grid
points (middle), and 801 × 801 grid points (bottom)

C08DS, the DS split form of C08, as the base scheme are
also shown.

Figures 8 and 9 show acoustic pressure comparisons of
two selected cross sections for the four-grid and five high-

Fig. 4 Shock–vortex interaction: acoustic pressure contours at t = 15.
C08 + WENO7FI, 201 × 201 grid points (top), 401 × 401 grid points
(middle), and 801 × 801 grid points (bottom)

order methods. There is a definite gain in accuracy by
DRP4S9DS compared with DRP4S9 (it is less oscillatory
with improved shock capturing; see top figure in Fig. 7 in
the vicinity of the shock and Figs. 8 and 9 at the oscilla-
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1124 B. Sjögreen et al.

Fig. 5 Shock–vortex interaction: acoustic pressure contours at t = 15.
WENO7, 1601 × 1601 grid

Fig. 6 Shock–vortex interaction: acoustic pressure contours at t = 15.
C08+WENO7FI (top) and C08DS+WENO7FI (bottom), 1601×1601
grid

Fig. 7 Shock–vortex interaction: acoustic pressure contours at t = 15.
DRP4S9 + WENO7FI (top) and DRP4S9DS + WENO7FI (bottom),
1601 × 1601 grid

tory portion of the cross section curves). Figure 10 shows
the solutions of five methods for the coarse grid 201 × 201
at selected cross sections compared with a reference solu-
tion obtained by WENO7 on a grid with 1601 × 1601 grid
points. For C08 + WENO7FI versus C08DS + WENO7FI,
there is less gain in accuracy with or without DS splitting.
Although there is a minor gain in accuracy by the nonlin-
ear filter scheme over the WENO scheme for this particular
test case, in terms of efficiency, the nonlinear filter step only
requires one Riemann solve per time step, regardless of the
time discretization. For their WENO scheme counterparts or
hybrid scheme variants, Riemann solvers are needed at every
Runge–Kutta stage resulting in higher computational cost.
Hybrid schemes here are the blending of two schemes with a
flow sensor to switch between two schemes as described in
Sect. 1.
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Fig. 8 Shock–vortex interaction: acoustic pressure at x = −4. Com-
parison of several schemes for four grids

Fig. 9 Shock–vortex interaction: acoustic pressure at y = 3. Compar-
ison of several schemes for four grids
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Fig. 10 Shock–vortex interaction: acoustic pressure at x = −25,
x = −10, x = −4, and y = 3, grid 201 × 201 compared with the
reference grid solution

Fig. 11 Domain of the problem

5.2 Test Case 2: duct flow

The second test case is a 2D inviscid supersonic flow enter-
ing a duct through a nozzle. The flow exits the duct into a
reservoir of the given pressure. The Navier–Stokes version
of this problem was described in [23], where both computa-
tions and comparisons with experimental results were made
for a pseudo-3D overset grid computation with a very fine
grid discretizing the boundary-layer regions. As described in
[23], the interest in this problem is to compute flows where
acoustic duct modes interact with modes from the unsteady
shock waves. The domain is outlined in Fig. 11. We follow
[23] by using the height of the duct H = 0.033195m as the
unit of length in the geometrical description. The duct length
is L = 7.23H , and the inflow nozzle height is h = 0.3H .
In the study of Emmert et al., the 3D geometry is extended
periodically in the direction normal to Fig. 11, with length
b = 3.0125H .

The inflow state from the nozzle is imposed as a bound-
ary condition on the left boundary of the duct. The fluid is
a gamma-law gas with γ = 1.4. The inflow state uI and
reservoir state uE are given by

⎛

⎜⎜⎝

ρI
uI
vI
pI

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0.75818
315.67

0
52902

⎞

⎟⎟⎠

⎛

⎜⎜⎝

ρE
uE
vE
pE

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1.2062τ
0
0

1.0123 × 105τ

⎞

⎟⎟⎠ ,

(19)

where the numbers are given in SI units. The inflow is super-
sonic with Mach number 1.01. The problem parameter τ

influences the behavior of the flow. It has been observed
experimentally that for lowvalues of τ , a regular steady shock
cell pattern develops. As τ is increased, the shock structure
breaks up and becomes unsteady; see [23]. The density is
denoted by ρ, and u, v, and w are the velocities in the x-, y-,
and z-direction, respectively. The pressure is denoted by p.
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Fig. 12 Inviscid duct flow: uniform Cartesian duct grid with stretched
reservoir grid

The viscosity is given by Sutherland’s law

μ(T ) = μ(Tref)

(
T

Tref

)1.5 (
Tref + C

T + C

)
,

where Tref = 273 K, C = 110 K, μ(Tref) = 1.5 ×
10−5 kgm−1 s−1. The Reynolds number based on the
length scale H and the inflow speed of sound

√
γ pI/ρI =

312.55m s−1 as the velocity scale is 6.9167×105. With this
scaling, the flow variables are all of unit order of magnitude.
The Prandtl number is 0.72.

In the discussion and plots below, the lengths (x , y) are
scaled by H , but all other quantities are given in SI units.

Adiabatic wall boundary conditions are imposed on the
boundaries of the duct, except for the left boundary where
the inflow state is imposed on −0.15 < y < 0.15.

In our study, the main goal is to show the performance of
several high-order, shock-capturing schemes concentrating
on the nonlinear Euler equations. Here, only the inviscid 2D
flow counterpart of a symmetric-like steady supersonic flow
case for τ = 0.15 of [23] is considered. We considered two
overset grids for our study. One is the uniform Cartesian grid
on the duct, and the other is the stretched Cartesian grid on
the reservoir as shown in Fig. 12. At the right boundary of
the duct, the reservoir and duct grids have the same spacing.
This results in grid points of the two grids coinciding on the
overlap, making it straightforward to apply interface condi-
tions. The dimensions of the reservoir grid in computations
are 47 × 55, corresponding to stretching the grid spacing at
the far-field boundary to 100 times the grid spacing of the
duct grid. Characteristic inflow/outflow boundary conditions
are used on its sides. The grid is stretched to be coarser near
the boundaries, as in a supergrid sponge layer.

The exit state is imposed in the entire domain initially.
The evolution of the pressure in time is shown in Fig. 13.
The figure shows pressure contour levels at five times up to
t = 8.13× 10−3 s. The flow pattern has not reached a quasi-
steady state. This computation used the WENO5 spatial

Fig. 13 Inviscid duct flow: pressure contours by WENO5 at times
t = 3.48, 4.65, 5.81, 6.97, and 8.13ms, from top to bottom. Duct grid
has 431 × 61 grid points

Fig. 14 Inviscid duct flow: pressure versus time by WENO5 at the
upper wall of the duct at x = 3.615

discretization with 431 × 61 grid points in the duct grid and
167 × 241 in the reservoir grid. A third-order Runge–Kutta
method integrated the equations in time, using 36,000 time
steps and CFL number 0.85. Figure 14 shows the recorded
pressure vs. time at the upper wall at the point x = 3.615.

Due to the long-time integration nature of this test case,
to gain a first-hand numerical study, only WENO5 and its
nonlinear filter counterparts are considered. Figure 15 shows
pressure contours at time 1.32ms, computed by three differ-
ent schemes. The upper subplot shows the solution by the
WENO5 scheme. The middle subplot shows the solution by
the nonlinear filter C06DS+WENO5FI. The nonlinear fil-

123



1128 B. Sjögreen et al.

Fig. 15 Inviscid duct flow: pressure contours at time t = 1.32ms
computed by WENO5 (upper), C06DS+WENO5FI (middle), and
DRP4S7+WENO5FI (bottom). Duct grid has 431 × 61 grid points

Fig. 16 Inviscid duct flow: pressure contours at time t = 1.32ms
computed by WENO5 (upper), C06DS+WENO5FI (middle), and
DRP4S7+WENO5FI (bottom). Duct grid has 861 × 121 grid points

ter uses the wavelet flow sensor to determine the amount
of numerical dissipation and location where to apply it; see
[6,16]. Finally, the lower subplot shows the solution by the
nonlinear filter scheme when the fourth-order DRP scheme
with a seven-point grid stencil (DRP4S7) is used as the
base scheme, DRP4S7DS+WENO5FI. For simplicity of dis-
cussion, hereafter the letters DS behind DRP4S7 are not
indicated. The nonlinearWENO5FI dissipation is used to fil-
ter the solution after each full time step of the Runge–Kutta
method.

A three-grid refinement study is shown in Figs. 16
and 17, where the same quantities as in Fig. 15 are plotted,
but computed on finer grids. Figure 16 uses 861 × 121 grid
points in the duct, and Fig. 17 uses 1721 × 241 grid points.
The flow appears to be unstable, with an increasing number
of small scales emerging as the grid is refined.

Figures 18, 19, and 20 show a similar grid refinement
study, but at the later time 10.62ms. This corresponds to
around 130, 000 time steps on the 1721×241 grid. Figure 18

Fig. 17 Inviscid duct flow: pressure contours at time t = 1.32ms
computed by WENO5 (upper), C06DS+WENO5FI (middle), and
DRP4S7+WENO5FI (bottom). Duct grid has 1721 × 241 grid points

Fig. 18 Inviscid duct flow: pressure at time t = 10.62ms
computed by WENO5 (upper), C06DS+WENO5FI (middle), and
DRP4S7+WENO5FI (bottom). Duct grid has 431 × 61 grid points

displays results with 431×61 points in the duct grid. Amore
stable shock structure appears in the finer grid simulations
shown in Figs. 19 and 20 using 861 × 121 and 1721 × 241
grid points.

A detailed study of the differences is obtained by plotting
the pressure vs. y for grid lines x = constant, i.e., across the
duct. This is done as shown in Fig. 21 for x = 0.69 (top),
x = 2.72 (middle), and x = 3.98 (bottom). Four differ-
ent numerical schemes are compared (C06DS+WENO5FI,
C06+WENO5FI, DRP4S7+WENO5FI, and WENO5).

Figure 22 shows pressure versus time at x = 3.615 on
the upper wall of the duct on the finest grid. After the initial
transient, the pressure oscillates around a constant level. The
noise is higher in the WENO5 computation, possibly due to
differences in the numerical implementation of the boundary
conditions.
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Fig. 19 Inviscid duct flow: pressure at time t = 10.62ms
computed by WENO5 (upper), C06DS+WENO5FI (middle), and
DRP4S7+WENO5FI (bottom). Duct grid has 861 × 121 grid points

Fig. 20 Inviscid duct flow: pressure at time t = 10.62ms
computed by WENO5 (upper), C06DS+WENO5FI (middle), and
DRP4S7+WENO5FI (bottom). Duct grid has 1721 × 241 grid points

Since the grid refinement of the three y-cross sections
at t = 10.62ms appeared to require a longer-time integra-
tion before we can judge whether a symmetric steady pattern
emerges, we restarted the computations and recorded the
same comparison at double the end time at t = 21.24ms.
See Figs. 23, 24, 25, and 26. Figure 24 shows a pressure
comparison at time t = 21.24ms using 1721 × 241 grid
points. WENO5 exhibits a more symmetric steady-like flow
near the exit with the finest grid and double the time inte-
gration than the one for t = 10.62ms. For the medium
grid, WENO5 still has not settled to a symmetric steady-like
flow.

BycomparingFig. 26withFig. 25 at the sameend time t =
21.24ms, it is evidenced that using 861×121 and 1721×241
grid points is approaching nearly grid convergent symmetric-
like steady patterns.WENO5 exhibits very different pressure
values at the three cross sections than the rest of the methods.

Fig. 21 Inviscid duct flow: pressure versus y for x = 0.69 (top),
x = 2.72 (middle), and x = 3.98 (bottom). Comparison of several
schemes, all using 861 × 121 grid points at t = 10.62ms

6 Concluding remarks

Several skew-symmetric versions of the high-order central-
based schemes, in conjunction with adaptive low-dissipation
control via a nonlinear filter step to aid with stability and
accuracy simulations, are explored forCAAturbulence appli-
cations. The central DRP (dispersion relation preserving)
schemes as well as classical central schemes of arbitrary
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Fig. 22 Inviscid duct flow: pressure versus time at the upper
wall of the duct. Comparison of two methods, WENO5 (red) and
C06DS+WENO5FI (black), using 1721 × 241 grid points

Fig. 23 Inviscid duct flow: pressure at time t = 21.24ms
computed by WENO5 (upper), C06DS+WENO5FI (middle), and
DRP4S7+WENO5FI (bottom). Duct grid has 861 × 121 grid points
at t = 21.24ms. The integration time is twice the duration as in Fig. 21

Fig. 24 Inviscid duct flow: pressure at time t = 21.24ms
computed by WENO5 (upper), C06DS+WENO5FI (middle), and
DRP4S7+WENO5FI (bottom). Duct grid has 1721×241 grid points at
t = 21.24ms. The integration time is twice the duration as in Fig. 21

Fig. 25 Inviscid duct flow: pressure versus y for x = 0.69 (top),
x = 2.72 (middle), and x = 3.98 (bottom). Comparison of several
schemes, all using 861× 121 grid points at t = 21.24ms. The integra-
tion time is twice the duration as in Fig. 21

orders fit into the framework of skew-symmetric splitting
of the inviscid flux derivatives. Preliminary studies indi-
cated that the nonlinear filter schemes of Yee et al., Yee
and Sjögreen, and Kotov et al. [5,7–10,16] are suitable for
CAA turbulent computations and provide accurate and stable
numerical results.
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Fig. 26 Inviscid duct flow: pressure versus y for x = 0.69 (left),
x = 2.72 (middle), and x = 3.98 (right). Comparison of several
schemes, all using 1721 × 241 grid points at t = 21.24ms. The inte-
gration time is twice the duration as in Fig. 21

The current study of the duct flow is a step toward solving
more realistic CAA engineering problems than previously
done with the nonlinear filter scheme. In such problems, the
flow interacts strongly with the boundaries of the domain,
grid refinement interfaces are present, andReynolds numbers
can be very high. Future work will be to test, and improve

as needed, the nonlinear filter schemes for these types of
simulations.

Specifically, we plan to analyze in more detail the reasons
for the differences in results between WENO and centered
schemes for the duct flow problem. Furthermore, we plan
to use the Navier–Stokes equations and to add fine grids to
resolve the boundary-layer regions. For the duct flow prob-
lem, this will allow us to study the behavior of the flow
physics under different pressure ratios, τ .

Acknowledgements Funding was provided by Ames Research Center
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