2,985 research outputs found

    Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models.

    Get PDF
    This study evaluates the effect of complete nationwide lockdown in 2020 on residential electricity demand across 13 Indian cities and the role of digitalisation using a public smart meter dataset. We undertake a data-driven approach to explore the energy impacts of work-from-home norms across five dwelling typologies. Our methodology includes climate correction, dimensionality reduction and machine learning-based clustering using Gaussian Mixture Models of daily load curves. Results show that during the lockdown, maximum daily peak demand increased by 150-200% as compared to 2018 and 2019 levels for one room-units (RM1), one bedroom-units (BR1) and two bedroom-units (BR2) which are typical for low- and middle-income families. While the upper-middle- and higher-income dwelling units (i.e., three (3BR) and more-than-three bedroom-units (M3BR)) saw night-time demand rise by almost 44% in 2020, as compared to 2018 and 2019 levels. Our results also showed that new peak demand emerged for the lockdown period for RM1, BR1 and BR2 dwelling typologies. We found that the lack of supporting socioeconomic and climatic data can restrict a comprehensive analysis of demand shocks using similar public datasets, which informed policy implications for India's digitalisation. We further emphasised improving the data quality and reliability for effective data-centric policymaking

    Structural health monitoring of inland navigation infrastructure

    Get PDF
    The inland navigation system in the U.S. is a civil infrastructure network that relies on the performance of a vast array of infrastructure assets scattered across the nation to function successfully. The system is critical to the U.S. economy, allowing the transportation of billions of dollars in goods annually. The primary infrastructure assets of the inland navigation system are locks and dams, which are structures that allow vessels to traverse inland waterways. Of all the components of locks and dams, the gates are the weak links and are the primary cause of closures and downtime on the inland navigation system. The closure of a lock and dam can have significant impacts to the economy, because traffic will be unable to move on the river and goods will remain stalled on the waterways. Inspection of lock and dam gates is expensive, generally requiring the complete closure of the site, and occurs relatively infrequently. Thus, lock gates are generally maintained in a reactive, manner, meaning they are operated until something breaks, at which time a portion of the inland navigation system is shut down for emergency repairs. The research presented herein addresses the difficulty in inspection of lock gates by developing a structural health monitoring (SHM) system that can be used by the stakeholders of inland navigation infrastructure to obtain the necessary information to assess the integrity and condition of their structures continuously. While SHM is being increasingly implemented on civil infrastructure, such as framed buildings and bridges, research into the application of SHM on navigation infrastructure is lacking. To accomplish the goal of developing an SHM system for navigation infrastructure, this research focuses on development of methods for the detection and assessment of several critical problems common to lock and dam gates, with emphasis given to the most common gates used in the U.S.; miter gates and Tainter gates. The layout of this dissertation is as follows: first, a general overview of inland navigation is given that explores the importance of locks and dams to the global economy. Then, design and behavior of miter and Tainter gates are discussed in detail. As an initial step to the development of a structural health monitoring system, numerical models are created of lock gates to obtain detailed information on the behavior of the structures both with and without the presence of damage. A discussion of best practices for numerical models of lock gates is provided with the models of two specific lock gates used as examples. Next, the methods developed for this dissertation to detect and assess the identified critical issues of lock gates are discussed. The first method discussed is the use of Principal Component Analysis combined with a novel strain gage data processing technique to detect boundary condition degradation of miter gates. The developed method addresses environmental variation frequently present in strain gage data and is validated by utilizing data from an in-service miter gate combined with results of a numerical model. Next, a discussion is given on the development of a non-contact, vision-based method to monitor the tension in a component of miter gates known as diagonals. The method utilizes optical-flow to track the displacement of a vibrating diagonal, from which the frequency is obtained and the tension found using Euler-Bernoulli beam theory. Partial submersion of the diagonals and the non-prismatic nature of the components are challenges that are addressed, and the method is validated with experimental and field data. Finally, the methods utilized to detect uneven hoisting of a Tainter gate are discussed. This method relies on a multi-faceted approach to show definitively that uneven hoisting is occurring on an operating Tainter gate. This approach is performed first by comparing strain gage data to numerical model results. Then data collected from inclinometers on the gate are inspected for the presence of uneven hoisting. Finally, indirect measurements of the tension in hoisting cables using vibration measurements taken during gate operation is used to show that an operating Tainter gate is hoisting unevenly. All three approaches are shown to be sensitive to the presence of uneven hoisting. The research presented herein addresses critical issues with inland navigation infrastructure. The method developed in this dissertation will be leveraged to provide the owners and operators of lock gate with the necessary information to extend the useful life of this critical infrastructure. More importantly, a structural health monitoring system of inland navigation infrastructure will aid in ensuring the continued operability of the inland navigation system, allowing river-borne traffic to continue to get goods to market

    NASA Tech Briefs, January 2008

    Get PDF
    Topics covered include: Induction Charge Detector with Multiple Sensing Stages; Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors; Robot Electronics Architecture; Optimized Geometry for Superconducting Sensing Coils; Sensing a Changing Chemical Mixture Using an Electronic Nose; Inertial Orientation Trackers with Drift Compensation; Microstrip Yagi Antenna with Dual Aperture-Coupled Feed; Patterned Ferroelectric Films for Tunable Microwave Devices; Micron-Accurate Laser Fresnel-Diffraction Ranging System; Efficient G(sup 4)FET-Based Logic Circuits; Web-Enabled Optoelectronic Particle-Fallout Monitor; SiO2/TiO2 Composite for Removing Hg from Combustion Exhaust; Lightweight Tanks for Storing Liquefied Natural Gas; Hybrid Wound Filaments for Greater Resistance to Impacts; Making High-Tensile-Strength Amalgam Components; Bonding by Hydroxide-Catalyzed Hydration and Dehydration; Balanced Flow Meters without Moving Parts; Deflection-Compensating Beam for Use inside a Cylinder; Four-Point-Latching Microactuator; Curved Piezoelectric Actuators for Stretching Optical Fibers; Tunable Optical Assembly with Vibration Dampening; Passive Porous Treatment for Reducing Flap Side-Edge Noise; Cylindrical Piezoelectric Fiber Composite Actuators; Patterning of Indium Tin Oxide Films; Gimballed Shoulders for Friction Stir Welding; Improved Thermal Modulator for Gas Chromatography; Nuclear-Spin Gyroscope Based on an Atomic Co-Magnetometer; Utilizing Ion-Mobility Data to Estimate Molecular Masses; Optical Displacement Sensor for Sub-Hertz Applications; Polarization/Spatial Combining of Laser-Diode Pump Beams; Spatial Combining of Laser-Diode Beams for Pumping an NPRO; Algorithm Optimally Orders Forward-Chaining Inference Rules; Project Integration Architecture; High Power Amplifier and Power Supply; Estimating Mixing Heights Using Microwave Temperature Profiler; and Multiple-Cone Sunshade for a Spaceborne Telescope

    Physical security professional’s body of knowledge: A cultural domain analysis of physical security’s knowledge structure

    Get PDF
    The study undertook a cultural domain analysis to articulate physical security’s knowledge system, isolating the fundamental knowledge units and building their structure. This applied a multiphase approach, (a) a literature critique, (b) expert interviews, (c) quantitative validation, and (d) focus group analysis. Findings demonstrate this knowledge comprises a broad matrix of task related knowledge categories, ranging from diagnosing risk, professional inference using security theories and principles, to treatment via engineering knowledge supported by professional attributes

    Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease.

    Get PDF
    Disordered proteins are challenging therapeutic targets, and no drug is currently in clinical use that modifies the properties of their monomeric states. Here, we identify a small molecule (10074-G5) capable of binding and sequestering the intrinsically disordered amyloid-β (Aβ) peptide in its monomeric, soluble state. Our analysis reveals that this compound interacts with Aβ and inhibits both the primary and secondary nucleation pathways in its aggregation process. We characterize this interaction using biophysical experiments and integrative structural ensemble determination methods. We observe that this molecule increases the conformational entropy of monomeric Aβ while decreasing its hydrophobic surface area. We also show that it rescues a Caenorhabditis elegans model of Aβ-associated toxicity, consistent with the mechanism of action identified from the in silico and in vitro studies. These results illustrate the strategy of stabilizing the monomeric states of disordered proteins with small molecules to alter their behavior for therapeutic purposes
    • …
    corecore