
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

12-2023

Reliability Modeling and Improvement of Critical Infrastructures: Reliability Modeling and Improvement of Critical Infrastructures:

Theory, Simulation, and Computational Methods Theory, Simulation, and Computational Methods

José Carlos Hernández Azucena
University of Arkansas-Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Industrial Engineering Commons, Industrial Technology Commons, Operational Research

Commons, and the Systems Engineering Commons

Citation Citation
Hernández Azucena, J. (2023). Reliability Modeling and Improvement of Critical Infrastructures: Theory,
Simulation, and Computational Methods. Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/5136

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.uark.edu%2Fetd%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1062?utm_source=scholarworks.uark.edu%2Fetd%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.uark.edu%2Fetd%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.uark.edu%2Fetd%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=scholarworks.uark.edu%2Fetd%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/5136?utm_source=scholarworks.uark.edu%2Fetd%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Reliability Modeling and Improvement of
Critical Infrastructures:

Theory, Simulation, and Computational Methods

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Engineering, with a concentration in Industrial Engineering

by

José Carlos Hernández Azucena
Escuela Superior de Economı́a y Negocios

Bachelor of Science in Business Engineering, 2014
University of Arkansas

Master of Science in Industrial Engineering, 2022

December 2023
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Haitao Liao, Ph.D.
Dissertation Director

Edward Pohl, Ph.D.
Committee Member

Om Prakash Yadav, Ph.D.
Committee Member

Shengfan Zhang, Ph.D.
Committee Member

Kelly Sullivan, Ph.D.
Committee Member

Abstract

This dissertation presents a framework for developing data-driven tools to model and improve

the performance of Interconnected Critical Infrastructures (ICIs) in multiple contexts. The

importance of ICIs for daily human activities and the large volumes of data in continuous

generation in modern industries grant relevance to research efforts in this direction.

Chapter 2 focuses on the impact of disruptions in Multimodal Transportation Networks,

which is explored from an application perspective. The outlined research directions propose

exploring the combination of simulation for decision-making with data-driven optimization

paradigms to create tools that may provide stakeholders with optimal policies for a wide

array of scenarios and conditions. The flexibility of the developed simulation models, in

combination with cutting-edge technologies, such as Deep Reinforcement Learning (DRL),

sets the foundation for promising research efforts on the performance, analysis, and opti-

mization of Inland Waterway Transportation Systems.

Chapter 3 explores data-driven models for condition monitoring and prognostics, with a

focus on using Deep Learning (DL) to predict the Remaining Useful Life of turbofan engines

based on sequential sensor measurements. A myriad of approaches exist for this type of

problems, and the main contribution for future efforts might be centered around combining

this type of data-driven methods with simulation tools and computational methods in the

context of network resilience optimization.

Chapter 4 revolves around developing data-driven methods for estimating all-terminal

reliability of networks with arbitrary structures and outlines research directions for data-

driven surrogate models. Furthermore, the use of DRL for network design optimization and

maximizing all-terminal network reliability is presented. This poses a promising research

venue that has been extended to network reliability problems involving dynamic decision-

making on allocating new resources, maintaining and/or improving the edges already in the

network, or repairing failed edges due to aging.

The outlined research presents various data-driven tools developed to collaborate in the

context of modeling and improvement for Critical Infrastructures. Multiple research venues

have been intertwined by combining various paradigms and methods to achieve this goal.

The final product is a line of research focused on reliability estimation, design optimization,

and prognostics and health management for ICIs, by combining computational methods and

theory.

© 2023 by José Carlos Hernández Azucena
All Rights Reserved.

Acknowledgements

The author expresses their gratitude to the funding from the U.S. National Science Foun-

dation (NSF) under the grants: OIA-2119691, OIA-1946391, and CMMI–1745353. The

findings and opinions expressed in this dissertation are those of the author only and do not

necessarily reflect the views of the sponsors.

Dedication

To my Lia, my Partner in Crime and wife.

Love of my life.

My best friend and all-mighty support.

To my brother, Dani; my mom, Juanita; and my dad, Carlos.

I would not be me without you by my side. Thanks for always being there for me.

To my abuelita and abuelito, Maŕıa Cruz and José Artemio,

who planted the seeds of the desire for knowledge and education.

To the t́ıas, t́ıos, primos y primas and all the familia always cheering for us.

Thanks to the most patient and supportive advisor, Dr. Haitao Liao.

Thanks to my role model, Dr. César Ruiz.

Thanks to my mentor, Dr. Carlos Carcach.

Thanks to all the friends, colleagues, support staff, and professors,

benefactors and blessings in human form,

who have been part of this adventure.

Contents

1 Introduction 1

1.1 Overview . 2

1.2 Simulation of Inland Waterway Transportation Networks 3

1.3 Prognostics and Health Management . 5

1.4 All-Terminal Reliability . 6

1.5 Conclusions and Future Research Directions 7

2 Simulation of Inland Waterway Transportation Networks 9

2.1 Hybrid simulation to support interdependence modeling of a multimodal trans-

portation network . 10

2.2 Extensions to the Inland Waterway Transportation Simulation Model 43

2.3 Decision-making using DRL . 49

3 Prognostics and Health Management 52

3.1 Prognostic Using Dual-Stage Attention-Based

Recurrent Neural Networks . 53

4 Study on All-Terminal Network Reliability 61

4.1 Deep Reinforcement Learning and All-Terminal Network Reliability 62

4.2 Stochastic Variational Inference Neural Networks for All-Terminal Network

Reliability . 75

4.3 Dynamic Control using Deep Reinforcement Learning 89

4.4 Need-Based Sampling for All-Terminal Reliability Models 97

4.5 All-Terminal Reliability using Quantum Computing 104

5 Conclusions 112

Bibliography 115

A Appendix 127

A.1 Chapter 2, Section 2.1 . 128

List of Figures

2.1 Measurement sites by rivers . 20
2.2 Simulation model interface on NetLogo . 23
2.3 Simulation model interface setup controllers in NetLogo 24
2.4 Simulation model interface view and lock controllers in NetLogo 25
2.5 Simulation running on NetLogo . 27
2.6 Instantaneous plotting information while simulation is running on NetLogo . 30
2.7 Simulation model output of time to reach destinations for vessels in different

categories (in hours) . 40
2.8 Number of extreme events for vessels in different categories 40
2.9 Average speeds of vessels in different categories (mph) 41
2.10 Water levels (in ft) predicted by the Spatio-temporal statistical model vs.

actual data at some selected sites . 42
2.11 Updated Graphic Interface for the Simulation Model 44

3.1 Evolution of MSE . 59
3.2 RUL estimation for Unit 100 . 59

4.1 An example of simple series-parallel network. 65
4.2 Results for the 7-node network with B = 5 73
4.3 Results for the 10-node network with B = 5 74
4.4 Prediction comparison . 86
4.5 Initial (left) and final (right) graphs . 87
4.6 Initial (left) and final (right) graphs for the Case Study 87
4.7 Example 12 node network after 500 (left) and 999 (right) simulation steps . . 94
4.8 Example 12 node network: results for 100 replications 95
4.9 Example case study network after 500 (left) and 999 (right) simulation steps 96
4.10 Example case study network: results for 100 replications 97
4.11 Sample circuit schematic in Qiskit . 108
4.12 Fully Connected 7-node graph . 109
4.13 Fully Connected 12-node graph . 110

A.1 Water level thresholds set by user for all sites to control extreme events criteria130

List of Tables

2.1 Summary of GH statistics . 17
2.2 The main inputs and outputs of the developed simulation tool 29
2.3 Detail on simulation scenarios . 30
2.4 Summary of vessels’ statistics for the base-case simulation runs 33
2.5 Summary of vessels’ statistics for the random lock failure case 36
2.6 Summary of vessels’ statistics for the spatio-temporal model 38
2.7 Summary of trucks’ statistics for the base-case simulation runs 39

A.1 Detailed outputs for trucks . 134

Published Works in this Dissertation

Chapter 2, Section 2.1: J. C. H. Azucena, B. Alkhaleel, H. T. Liao, and H. Nachtmann,
“Hybrid simulation to support interdependence modeling of a multimodal transportation
network,” Simulation Modelling Practice and Theory, vol. 107, p. 102 237, 2021

Chapter 3, Section 3.1: J. C. H. Azucena and H. T. Liao, “Prognostic using dual-stage
attention-based re-current neural networks,” in Proceedings of the 11th International Con-
ference on Mathematical Methods in Reliability (MMR), Hong Kong, Jun. 2019

Chapter 4, Section 4.1: J. C. H. Azucena, H. Wells, H. T. Liao, K. Sullivan, and E. A. Pohl,
“Applying deep reinforcement learning to improve the reliability of an infrastructure net-
work,” in Proceedings of the 60th European Safety, Reliability & Data Association (ESReDA)
Seminar, ser. Advances in Modelling to Improve Network Resilience, Grenoble, France, May
2022, pp. 46–55

Chapter 4, Section 4.2: J. C. H. Azucena, F. Hashemian, H. T. Liao, and E. A. Pohl,
“Applying machine learning to improve all-terminal network reliability,” in Proceedings of
the 69th Annual Reliability and Mantainability Symposyum (RAMS), Orlando, FL, Jan. 2023

1. Introduction

1

1.1 Overview

Interconnected Critical Infrastructures (ICIs) are essential for daily human activities in mod-

ern societies worldwide. ICIs can take the form of communication, water distribution, power,

and transportation networks. Maintaining functions as defined by service requirements is

potentially crucial for various stakeholders, including multiple industries, governmental agen-

cies, non-profit organizations, and the general public. The unavailability of these critical

services and any loss of capacity in complying with the service requirements are failures.

The network structures mentioned above are prone to failure due to natural degradation,

disruptions due to extreme operating conditions, and adverse events. The wear and tear

of normal operating conditions can eventually lead to failure. Adverse events and extreme

operating conditions can also lead to failures. Therefore, quantifying the reliability of such

infrastructure networks becomes essential to guarantee proper functioning. This is the first

thread of research explored in the present work.

In parallel, expanding the thread of natural degradation into condition monitoring in a

modern context, continuous monitoring of operational conditions and system status is pos-

sible using multiple types of sensors simultaneously. Said sensors may measure the intended

quantities with varying noise levels, accuracy, and relevance for predictions. The contin-

uous measurement can be framed as a multi-dimensional heterogeneous array. Therefore,

the redundancy of sensors provides a multivariate time series that can be used to create

prognostics and monitor the health of a system of interest. Creating estimation models for

such situations becomes a crucial task in condition monitoring. This is the second thread of

research explored in the present work.

Quantifying the resilience of ICIs becomes crucial in settings where decision-making is

related to guaranteeing that the essential elements in the network remain communicated for

determined time intervals. Using the probability that the elements in the network remain

connected as a measure of resilience, grants relevance to methods estimating and maximizing

the All-Terminal Reliability of the ICIs network. Data-driven methods for both estimating

2

and maximizing this relevant metric under varying and dynamic operational conditions and

decisions become crucial in modern industrial processes in data-rich environments. This is

the third thread of research explored in the present work.

From an application perspective, the impact of disruptions in Multimodal Transportation

Networks is explored in Chapter 2. Section 1.2 contextualizes this problem and discusses

the explored directions. For condition monitoring and prognostics, Chapter 3 explores a

data-driven model using Deep Learning to generate predictions for Remaining Useful Life

(RUL) for multiple sensors under various combinations of operating conditions. Section 1.3

discusses an introduction and future research directions. Methods for data-driven estimation

of all-terminal network reliability for arbitrary graphs are explored in the work presented in

Chapter 4. A brief introduction and discussion of the explored methods are presented in this

Chapter under Section 1.4.

The research threads mentioned above connect as specific efforts to achieve a larger goal:

create a data-driven framework for reliability estimation, design optimization, and prognos-

tics and health management for ICIs. Multiple methods and paradigms will be combined

to achieve this goal. The main contribution is making these various tools collaborate in a

data-driven fashion, combining computational methods and theory.

1.2 Simulation of Inland Waterway Transportation Networks

The work presented in Chapter 2 corresponds to the journal article in [1], which is an

extension of the conference article in [5]. The main goal of this work is to create a tool

capable of simulating the flow of barges in the McClellan-Kerr Arkansas Navigation System

(MKARNS) while emulating the seasonal and spatially correlated operation conditions of

the Inland Waterway Transportation (IWT) network, such as the water levels along the

river system. This will allow quantifying the impact of disruptions on this multimodal

network. The primary motivation is how critical the U.S. transportation network is for

national security and economic competitiveness. As part of this multimodal network, the

3

inland waterways mobilize a good proportion of farm exports and petroleum products. The

IWT network is exposed to disruptions from natural events such as droughts and floods. A

Spatio-Temporal Bayesian model is applied to capture the seasonality and correlation of the

water-level measurements across the system.

As potential extensions, two main propositions are available at the moment. First, it

becomes apparent that it is necessary to compare the effects of different rerouting policies for

barges facing disruptions. The work in [1] did not count with rerouting policies. Developing

and incorporating simple routes for rerouting was carried out for the simulation model from

specific locks to designated rerouting points and changing modality to truck transportation.

Additional development of the simulation model was explored to include logic related to

assigning barges to different towing vessels in the traffic generation subroutines, assigning

commodities to said barges, governing the distribution of commodities along the different

routes with controllable configurations, and including lock queueing and random service

times in the locks system logic. All of these developments were carried out while maintaining

an emphasis on the efficiency of the use of computational resources to the point that, while

having a richer and more complex logic than the model presented in [1], the current state of

the development is several times faster. However, in terms of the current state’s multimodal

capabilities, including land transportation using railways is a necessary addition as it would

be a more realistic alternative to truck transportation, as it is usually the most economical

option due to economies of scale. Different alternatives for rerouting and the impacts of said

policies could be explored to further extend this work.

The second extension is related to data-driven decision-making using Machine Learning

models, such as Deep Reinforcement Learning (DRL) agents. Using the simulation envi-

ronment to sample rewards for the agents under different action sequences and condition

operation scenarios, a DRL model could be trained to optimize selected network metrics,

such as maximizing satisfied demand, minimizing operation costs, or maximizing system

availability. For example, the available actions could include the inspection, maintenance,

4

repair, or replacement of the system’s different lock and dam elements to maximize the sys-

tem availability while restraining the cost of these actions within a budget for every time

step. As the selected sequence of actions also affects the flow of commodities through the

system, a balance between scheduled condition monitoring and maintenance operations and

regular operation of the system must be achieved. This was explored in the conference arti-

cles [6] and [7]. For the latter, the simulation environment has been updated to center the

tool’s focus on the flow of barges and use them as the smallest transportation unit. Locks’

queues and lockage service dynamics are also included in the updated model. The schedul-

ing and quantities of towboats traveling from each source port to selected destinations also

change to become configurable by any user. The updated simulation and the DRL agents

lead to data-driven decision-making for maintenance scheduling optimization. Further de-

velopments in this direction will be aimed at quantifying the effects of scheduling surplus

working crews during seasonally affected high traffic or high disruption risk time intervals.

As the simulation tool developed is flexible and can be parameterized to represent different

scenarios, economic studies of the commodity flow in the region of interest are also poten-

tial extensions. The current development and immediate improvements to the codebase are

expected to produce results in this direction to support decision-making for transportation

operations.

1.3 Prognostics and Health Management

The work presented in Chapter 3 corresponds to the conference article in [2]. This research

effort aims to develop a data-driven model to estimate the RUL of multiple turbine units

while monitoring sensor information and interpreting the sensor measurements as a mul-

tivariate time series. Considering that a system might transition through different stages

of degradation before failure, condition monitoring and observing the system behavior to

gauge the likelihood of said transitions becomes relevant for applications where the system

availability is crucial, such as in ICIs. Together with the ideas in Sections 1.4 and 1.2, a

5

data-driven condition monitoring framework could help guide a DRL agent for decisions

related to maintenance, repair, and replacement of infrastructure components.

Data-driven models tend to become black-box models, and the interpretation of the

reasoning behind the predictions is usually obscured. While investing efforts into improv-

ing performance and achieving robustness in the predictions is worthwhile, creating more

straightforward and interpretable models might provide significant advantages on an alter-

native track. Work such as [8] challenges the notion of a trade-off between simplicity and

explainability vs. predictive performance. Sparse and interpretable models like the one

presented in [9] could lead to condition monitoring models with good predictive power and

interpretable decision rules. Using a similar framework for multivariate time series could be

a potential research direction.

1.4 All-Terminal Reliability

The work presented in Chapter 4 corresponds to the conference articles in [3] and [4]. Both

pieces of research are focused on All-terminal Network Reliability. The former uses an au-

tomated procedure to generate reliability polynomials and evaluate multiple configurations

of network topologies to train a DRL agent to maximize the Network Reliability subject to

a budget constraint. The latter uses a Stochastic Variational Inference framework to train a

Deep Neural Network as a surrogate model for estimating the all-terminal reliability of arbi-

trary graphs. Then, with this surrogate model, train a DRL agent to maximize the reliability

measure. Both approaches rely on DRL agents to optimize the network design. Still, the

methods to evaluate the all-terminal reliability differ, and the attempts to gain speed-ups in

computation vary. As part of the explored extensions, there is a focus on extending the de-

cision space by including maintenance, improvement, repair, and replacement activities into

the agent’s action space. Furthermore, there is an emphasis on aging components following

individually parameterized distributions and evolving over specified mission cycles. This

grants broader applicability for this problem in ICI contexts, such as the one mentioned in

6

Section 1.2. In this line of research, modifications to the current problem statement are also

under exploration, such as the one explored in the work envisioned in [10]. Here, instead of

maximizing the static all-terminal reliability of a given network configuration, the dynamic

evolution of the network over multiple mission periods is considered. A heavier emphasis

is placed on the efficiency of the surrogate models developed as the network configurations

constantly fluctuate. Furthermore, the DRL agents need to consider the changes in the net-

work states due to simulation dynamics and all the potential actions that could improve the

network reliability. Alternatively, exploring novel data-driven optimization schemes beyond

DRL could be an alternative research venue. The potential of using frameworks as novel and

in the vanguard of research, such as Quantum Computing, has become a personal interest

of this author in recent years. In particular, methodologies such as the work in [11] present

ideas to combine Variational Inference with groundbreaking technologies such as Quantum

Computation and simulation of quantum systems. Efforts in this direction could lead to

fruition as these novel methods are being tested in problems closely related to network de-

sign contexts. Furthermore, as these technologies come to maturity, the design of algorithms

to implement them to optimize all-terminal network reliability might become valuable. Pre-

liminary explorations of these ideas are presented at the end of the chapter. The outlook

for future developments in this direction is optimistic as there is a large variety of potential

approaches both in the definition of the problems and the methods to combine and develop.

1.5 Conclusions and Future Research Directions

This author is optimistic in that following the presented research threads will lead to interwo-

ven patterns that give rise to fertile areas and ideas to be explored: further developments in

the field of systems reliability and simulation of complex systems, combining vanguard tech-

nological such as quantum computing with the pragmatically solid results of deep learning

and machine learning. Finally, Chapter 5 remarks on the pursued development directions.

The main contribution is making these various developed tools collaborate in a data-driven

7

fashion. Multiple methods and paradigms have been combined to achieve a unified goal: the

coalescence of the different research venues to create a data-driven framework for reliability

estimation, design optimization, and prognostics and health management for Interconnected

Critical Infrastructures, combining computational methods and theory.

8

2. Simulation of Inland Waterway Transportation Networks

9

2.1 Hybrid simulation to support interdependence modeling of a multimodal

transportation network

2.1.1 Introduction

2.1.1.1 Background and motivation

The physical distribution infrastructure is critical to national security, economic well-being,

global competitiveness, and quality of life in the United States (U.S.) [12]. The distribution

infrastructure, referred to as the transportation network, includes but is not limited to

the interconnected network of ports, inland waterways, highways, and railroads. The U.S.

transportation network comprises almost 4 million miles (6.43 million kilometers) of public

roads and highways, more than 360,000 interstate trucking companies and 20 million trucks

for business, and 1,900 seaports and 1,700 inland river terminals on 11,000 miles of inland

waterways carrying grain, chemicals, petroleum products, and import and export goods [13]–

[15].

Many industries rely on the U.S. transportation network; thus, the economic impacts

of disruptions affecting the network are expected to be substantial. Such interruptions

can cause a cascading effect that can become widespread due to the spatial and temporal

distributions of commodity flows [16]. Even without large-scale disruptions, the Federal

Highway Administration (FHWA) estimated the trucking industry losses to be around $8

billion a year due to highway congestion [16], [17]. Such losses are expected to increase in the

future due to forecasted increases in the U.S. domestic freight tonnages by approximately 50%

in the next fifteen years [15], [18], [19]. In addition to highway network impacts, railways

are expected to experience more significant congestions and breakdowns due to increased

demand for Class I railroads [20]. The U.S. Maritime Administration, an agency of the

U.S. Department of Transportation, has called for investment in the domestic waterways for

freight movement [21], recognizing the need to reduce road and rail congestion. The increased

use of 25,000 miles of inland waterway freight transport could result in less congestion on

10

U.S. roads and a reduction in the risk of road and rail transport accidents and possibly

even reduce emissions of air pollution [16]. Barge transport is frequently cheaper than rail

and truck alternatives, and there are many products which are too large for other transport

methods. In 2017, the U.S. inland waterways were used to transport approximately 20% of

America’s coal, 22% of U.S. petroleum products, and 60% of farm exports between 38 states

summing up the annual weight transported to around 630 million tons [14], [15].

Although general freight movements via the inland waterways are expected to increase in

the upcoming years due to economic and logistic drivers, research investigating the impacts

of disruptions on waterway operations, multimodal commodity flow, and economic analy-

sis are limited. Indeed, one reason for the limited number of studies may be the lack of

tools that could facilitate research in this area by providing data-driven models. There is

an urgent need to protect and coordinate U.S. multimodal transportation infrastructure to

support strong economic growth and national security. Inland waterways and road and rail

transport have a significant impact on various business operations in the U.S., especially in

middle America along hundreds of miles of the Mississippi River. However, inland water

transportation is significantly affected by weather, current and future waterway conditions,

and operation strategies at different locks, dams, and ports [22]. For example, in the case of

flooding or drought, inland water transport will be constrained by the water levels of dams

and ports, and the effects will propagate downstream. In response to such emergencies, goods

on cargo vessels need to be offloaded and re-routed through the available ground transporta-

tion system. Since these infrastructures are managed by different governing agencies [14],

multiple stakeholders need to understand the characteristics of these Interdependent Criti-

cal Infrastructures (ICIs), such as ports, lock and dam systems, and ground transportation

that cross administrative boundaries. Considering the large potential impact and lack of

actual data availability, this research will generate simulated data to represent a multimodal

transportation systems.

11

2.1.1.2 Related work

There are various simulation models discussed in the literature that focus on inland waterway

operations with different problems to solve and goals to achieve; however, the literature that

studies the simulation of traffic flow in inland waterways can be broadly divided into three

categories: (1) literature that focuses primarily on lock operation simulation models to

analyze lock delays and tow travel times and optimize waterway investment projects and

other aspects of locks operations [23]–[25], (2) literature that discusses barge dispatching

and vessel assignment scheduling problems in inland waterways [26]–[28], and (3) literature

with a broader scope that considers ICI resilience, disruption management strategies and

economic studies with a focus on inland waterways as the leading network of commodity

flow [29]–[31].

There are multiple simulation models that were developed to analyze the different aspects

of lock operations [23]; the earliest model can be found in 1969 [32] which was developed

jointly by Resources for the Future Inc. and Pennsylvania State University. The model (re-

ferred to as RFF by [24]) was programmed to simulate the movement of shallow draft barge

tows through a linear waterway having up to ten locks with one or two chambers, twenty

ports, and ten delay points (channel restrictions). Model inputs include tow characteristics,

tow itineraries, and attributes of the waterway system; model outputs include a variety of

statistics including tows processed, transit and delay times, queue lengths, and tonnages

[24], [32]. [24] developed an enhanced two-part model of the RFF; the first part processes

information concerning commodity flows and waterway fleet characteristics to derive a list of

tows that will move on the Illinois waterway and upper Mississippi River, where the second

part of the model simulates the movement of these tows through the ports, locks, pools,

and channel delay areas that comprise the waterway system. Moreover, [33] developed a

waterway simulation model that estimates tow delays at a series of locks, tow travel time

along waterways, and the means and variances of interarrival and interdeparture times at

each lock; and was validated by comparing it to the well-established M/G/1 queue system.

12

Additionally, [34] applied the simultaneous perturbation stochastic approximation (SPSA)

technique with simulation models to optimize the size and timing of investment projects

in a waterway system with five locks. The discussed lock operation simulation studies rely

on site-specific simulation models without network generality and comprehensive function-

ality, making it difficult to extend the developed simulation models to any other waterway

networks [23]. To address the lack of generalized modeling, [23] developed a general wa-

terway simulation model that is independent of network geometry to evaluate a waterway

system over a multi-year planning horizon. Recently, [25] developed a robust Monte Carlo

simulation-based method to assess port capacity and expansion plans. Their method helps

to identify optimal resource configurations for expected throughputs.

A second category of waterway simulation studies uses simulation as an optimization

tool to solve the barge dispatching and assignment problem, which is generally solved using

classical optimization approaches [28]. [26] developed a Barge Operations Systems Simulator

(BOSS) to assist in the task of fleet sizing when transporting refuse from New York City to

Fresh Kills Landfill on Staten Island. Moreover, [27] developed a discrete event simulation

model as a decision support tool for logistical management within a marine-based distribution

system to determine fleet size and resource allocation to meet delivery requirements in a

timely manner. [28] presented a simulation-based scheduling system designed to assist in

barge dispatching and boat assignment problems for inland waterways.

Regarding the third category of literature, many studies have investigated the modeling

and simulation of ICIs through empirical approaches, agent-based approaches, network-based

approaches, and other approaches [31], [35]. However, only few articles addressed simula-

tion of inland waterways transportation [15]. [36] developed an iterative technique between

optimization and simulation models to check the feasibility of barge routings suggested by

the optimization model based on a sampled dataset. Biles et al. [37] presented a simulation

model of traffic flow in inland waterways with the incorporation of the Geographic Informa-

tion System (GIS) to improve vessel scheduling. Recently, [29] used a Monte Carlo simulation

13

model to estimate the potential economic impacts of inland waterway disruptions. Moreover,

several studies investigated the economic impact of disruptions on different transportation

systems [38]–[40]. Furthermore, [30] created a simulation architecture of inland waterways

based on Markov Decision Process (MDP) and climate projections under uncertainty. [15]

developed an agent-based multimodal simulation tool, which is the initial study of the model

presented in this article. With the exception of [15], all the studies in this third category do

not consider predicting disruptions in advance based on statistical models, simulating multi-

modal transportation, modeling the interdependency between waterway transportation and

ground transportation, and allowing different scenario generation by controlling lock and

dam systems.

2.1.1.3 Overview and research contributions

The ultimate goal of this work is to provide research methods and application opportunities

from which the U.S. economic growth and homeland security can significantly benefit. A

thorough understanding of multimodal freight movement processes that combine different

data sources can provide open-sourced, multi-regional, multi-industry, data-driven statistical

models, and simulation tools to benefit decision-makers, researchers, and other stakeholders.

Thus, various data elements from historical events of natural inland waterway disruptions

such as floods and droughts along the Mississippi River and the McClellan–Kerr Arkansas

River Navigation System (MKARNS) were used to develop a spatio-temporal statistical

model [41], [42]. This model predicts disruptions at different locations on both rivers, which

guide the movement of multi-industry cargo vessels, operation of the lock-and-dam system

in the area, and decisions regarding other modes of transportation for products shipped to

and from inland waterway terminals.

The simulated data are derived from actual data on ICIs. The ICIs related data includes:

1) inland waterway and ground transportation networks (e.g., road type and capacity of road

network) [43]; 2) locations of dams and locks [13], [44], [45]; 3) locations of major ports and

14

their top commodities [13], [14]; 4) historical hydrological observation data at ports and

locks including water depth, changes in waterways, and the normal capacity of inland water

transport [46]; 5) major types of cargo vessels and barges classified by their capacity and

usual transport speed; and 6) weather data covering the studied regions [47]. Moreover, the

Maritime Transportation Research and Education Center (MarTREC) at the University of

Arkansas [48] provides the Transportation Resource Data Bank [49] that compiles rich infor-

mation, such as freight commodity flow and ports. It is worth pointing out that, although the

proposed simulation methods are centered on multimodal transportation networks, they can

be used broadly in modeling other local, regional, and national infrastructures after proper

modifications. Especially, the access to the most recent version of the open-sourced simula-

tion tool addressed in this article is currently available for researchers, decision-makers, and

other stakeholders to advance research on multimodal transportation systems [50].

The remainder of this article is organized as follows. Section 2.1.2 describes the develop-

ment of the spatio-temporal statistical model used in this study and the basic features of the

model. Section 2.1.3 introduces the simulation tool developed on an open-source platform.

Section 2.1.4 presents a case study to illustrate the capabilities of the tool. Section 2.1.5

provides concluding remarks and future research directions.

2.1.2 Methodology

A hybrid methodology combining statistical analysis and simulation is applied. The statis-

tical modeling is employed with two primary purposes: 1) to map the spatial fluctuations

of gage height on a given river across sites, to interpolate spatially unobserved points on a

river and 2) to forecast the gage height measurements on the sites of interest and anticipate

possible interruptions in the flow of vessels. The simulation-based modeling is used to create

scenarios for vessel and truck flow, utilizing the results from the statistical models. The

dynamic interaction between different input parameters and simulation controls allows for

the estimation of various metrics.

15

2.1.2.1 Geo-spatial model

Environmental variables are among the factors affecting the reliability of ICIs. To repre-

sent the waterway transportation network, modeling relevant variables of the corresponding

water bodies, e.g., rivers, becomes central in understanding the processes that affect the

availability of the infrastructures of interest. The selected statistical modeling approach

must make accurate predictions and estimate the confidence intervals for relevant variables

on the selected sites. To this end, developing a model capable of capturing the underlying

relationship between the selected variables, the spatial correlation among the selected mea-

suring sites and the associated variations in time is one of the key tasks in this stage. The

chosen framework is spTimer [51], a spatio-temporal Bayesian modeling package using the

R language for statistics. The main variable of interest is the Gage Height (GH), a measure

of the water’s depth filling the waterways on the measurement sites. The main purpose

of this model is to generate data to estimate the GH on unobserved sites of interest. In

this context, unobserved sites are selected locations with no available measurements, and it

is necessary to infer the missing GH data from those from the observed sites. The model

will learn a spatio-temporal mapping for the GH data from the observed sites and generate

interpolations for new coordinates of interest along the same rivers.

The proposed model captures the seasonal variation for each site’s time series of gage

height measurements along with the spatial correlation in such measurements, driven by

spatial location and their relation to each river. Although historical data over a long time

interval is used to showcase the model’s performance, the model is potentially useful for

stakeholders to predict future conditions, even under changes in spatial or temporal structure.

A potential approach, beneficial for planning and control, is to repeat the model fit as soon

as more data is available and limit the prediction horizon to a short but useful time interval.

For example, the model could be readjusted every week using a sliding window of two years

of historical data with a one-week prediction horizon. This would guarantee that the model

is up to date with the environmental conditions and that the predictions are current and

16

informative.

2.1.2.2 Data

The data used corresponds to GH’s hourly measurements and lock availability data in eigh-

teen different sites, equivalent to eighteen geo-related time series, with 17,542 observations

each (more than 315 thousand in total). From these, 22,961 are missing measurements, rep-

resenting 7.3% of the total observations. A statistical summary of the GH measurements is

shown in Table 2.1. The time window begins on February 22, 2016, and finishes on February

21, 2018. The observed sites are shown in Figure 2.1. The sites are classified as connected

to the MKARNS (red) or the Mississippi River (green). The selected unobserved locations

of interest are marked with “X.”

Min Q1 Median Mean Q3 Max
0.00 7.45 11.83 14.04 19.43 44.63

Table 2.1: Summary of GH statistics

2.1.2.3 Theoretical background

To model the GH data, a hierarchical autoregressive model specifying distributions for data,

process, and parameters in three stages is presented. The data is modeled by a Gaussian Pro-

cess with spatio-temporal random effects. Model parameter estimation is conducted using

Bayesian computation methods [51] implemented through Gibbs sampling with the spTimer

package in R. A summary of the nomenclature is presented.

Nomenclature

i Index for sites

l Index for longer time unit (e.g., months)

t Index for shorter time unit (e.g., hours)

17

r Total number of longer units

Tl Total number of shorter units

n Number of sites

N Total number of observations

si The ith site

Zl(si, t) Observation at site i on time t

Ol(si, t) True value of observation at site i and time t

ϵl(si, t) Error term at site i and time t

ηl(si, t) Spatial random effect at site i and time t

Zlt Vector of observations

Olt Vector of true values

Xlt Matrix of covariates

ϵlt Vector of error terms

ηlt Vector of spatial random effects

Ση Covariance matrix of spatial random effects

Sη Spatial correlation matrix

κ (si, sj ;ϕ, ν) Correlation matrix entry for sites i and j

z Matrix of observations

z∗ Matrix of missing observations

θ Vector of parameters

ρ Temporal correlation parameter

β Vector of covariate coefficients

σ2
ϵ Pure error variance

σ2
η Spatial random effects variance

ϕ Rate of decay of the spatial correlation

ν Smoothness of the correlation function

µl Mean of the autoregressive component on the lth time unit

18

σ2
l Variance of the autoregressive term on the lth time unit

Let Zl(si, t) be the observed point-referenced data and Ol(si, t) be the true value cor-

responding to Zl(si, t) at site si, i = 1, ..., n at time denoted by the two indices l and

t, where l and t represent two units of time, for which l denotes the longer unit (e.g.,

months), l = 1, ..., r, and t denotes the shorter unit (e.g., hours), t = 1, ..., Tl. Note

that r and Tl are the total numbers of the two time units, respectively. Define two vec-

tors Zlt = (Zl (s1, t) , . . . , Zl (sn, t))T and Olt = (Ol(s1, t), ..., Ol(sn, t))T . Let

N = n
∑r

l=1 Tl be the total number of observations to be modeled. The observed data

is represented by z and the missing data is denoted by z∗. The hierarchical model used is

expressed as follows with a description of variables and inputs, as presented in [51]:

Zlt =Olt + ϵlt

Olt =ρOlt−1 +Xltβ + ηlt

(2.1)

where ϵlt = (ϵl(s1, t), ..., ϵl(sn, t))
T denotes the nugget effect (i.e., the pure error term) and

is assumed to follow N(0, σϵIn), ρ is the temporal correlation parameter, and β = (β1, ..., βp)

represents the regression coefficients of the X fixed effects or covariates. The spatio-temporal

random effects are modeled by ηlt = (ηl(s1, t), ..., ηl(sn, t))T , which is assumed to follow

N(0,Ση) and to be independent in time. Specially, Ση = σ2
ηSη, where σ2

η is the spatial

variance assumed to be equal for all sites, and Sη is the spatial correlation matrix. In this

article, Sη is obtained from the general Matérn correlation function [52], which is well suited

to model a smooth process:

κ (si, sj ;ϕ, ν) =
1

2ν−1Γ (ν)
(2
√
ν||si − sj||ϕ)νKν(2

√
ν||si − sj||ϕ), ϕ > 0, ν > 0 (2.2)

where Γ(ν) is the standard gamma function, Kν is the modified Bessel function of second

kind with order ν, ||si − sj|| is the distance between sites si and sj, ϕ is the rate of decay of

19

Figure 2.1: Measurement sites by rivers

the spatial correlation, and ν is the smoothness parameter. Note that for the autoregressive

component, ρ, it requires the specification of Ol0, the initial term, for each l. For this

purpose, an additional mean parameter µl and covariance matrix σ2
l S0 must be estimated,

with S0 following the same structure as in Eq. 2.2.

Let θ = (β, ρ, σ2
ϵ , σ

2
η, ϕ, ν,µl, σ

2
l) be the vector containing all the parameters of this model

and π(θ) be the prior distribution of θ. The logarithm of the joint posterior distribution of

20

the parameters and the observed and missing data for this model is given by [51]:

lnπ (θ,O, z∗|z) ∝− N

2
lnσ2

ϵ −
1

2σ2
ϵ

r∑
l=1

Tl∑
t=1

(Zlt −Olt)
T (Zlt −Olt)−

∑r
l=1 Tl

2
ln
∣∣σ2

ηSη

∣∣
− 1

2σ2
η

r∑
l=1

Tl∑
t=1

(Olt − ρOlt−1 −Xltβ)
T S−1

η (Olt − ρOlt−1 −Xltβ)

− 1

2

r∑
l=1

ln
∣∣σ2

l S0

∣∣− 1

2

r∑
l=1

1

σ2
l

(Ol0 − µl)
T S−1

0 (Ol0 − µl)

+ ln (π (θ))

(2.3)

Using this posterior distribution and full conditionals as presented in [51], the estimation is

carried out using Gibbs sampling. Then, the spatial interpolation or temporal extrapolation

can be achieved using the predictive posterior for Zl(s0, t
′) for any unobserved location s0

and unobserved time point t′:

π (Zl(s0, t
′)|z) =

∫
π
(
Zl(s0, t

′)|Ol(s0, t
′), σ2

ϵ

)
× π (Ol(s0, t

′)|θ,O, z∗)

× π (θ,O, z∗|z) dOl(s0, t
′)dOdθdz∗

(2.4)

2.1.3 Hybrid simulation model

This simulation model is developed using NetLogo, an agent-based programming language

and simulation platform offered as freeware [53]. NetLogo is also a cross-platform and inte-

grated environment for modeling both simple and complex systems that evolve dynamically.

In NetLogo, “Agents” (turtle, link, patch, and observer) are the integral part of the NetL-

ogo world and can follow instructions given by the designers. Turtles move around in the

two-dimensional world, whereas the world contains a grid of patches. Every patch repre-

sents a square piece of land. All these agents can operate simultaneously without interfering

with one another. NetLogo permits users to run the simulation in a browser or desktop

application, interact with the software, and analyze its behavior under various settings [54].

21

2.1.3.1 Overview of the simulation model

The developed model was built on four extensions of NetLogo: GIS (Geographic Information

System), R (R Language for Statistics), NW (Networks), and CSV (Comma Separated

Values). GIS extension provides the ability to load vector GIS data in the form of ESRI

shapefiles. The GIS extension is used to import several maps in the simulation model.

Initially, a map of the U.S. is loaded as the base of NetLogo environment. Then, maps of

inland waterways and highways are imported and drawn on top of the base map. Here, our

simulation focus is primarily on the MKARNS and lower Mississippi River, representing the

case study in this article (see Section 2.1.4). Figure 2.2 shows NetLogo’s user interface after

opening and setting the basic environment of the model. The graphic window makes the

two-dimensional “world” of the model visible. It is divided up into a grid of patches that

have pxcor and pycor coordinates. The basic idea here is to create a NetLogo graph (nodes

and links) by importing the GIS maps and creating vessel and truck “agents” that travel

along with the links. The main components of the program are:

• A map of the United States, drawn on NetLogo in a simplified form. Each state border

is drawn for reference. Figures 2.3–2.4, provide a zoomed version of the interface.

• Maps of navigable waterways and highways. Both maps are made of nodes, turtles with

own properties, connected by links. While the waterways/highways are only figurative,

the nodes play an active role in the simulation because they facilitate the simulation

understanding of waterways/highways maps.

• Vessels. These are turtles with their own variables such as current location, destination,

distance-traveled, speed, vessel category (1 for large-sized, 2 for medium-sized, and 3

for small-sized), product weight, product type, extreme events, total delay, and others

related to the control of the travel logic.

• Trucks. These are also turtles with properties such as current location, destination,

22

distance-traveled, speed, product-weight, product-type, and others related to the con-

trol of the travel logic.

• Ports along the waterways. Eight ports are considered and modeled as a type of turtle.

These are located in Tulsa, Fort Smith, Little Rock, Greenville (Mississippi), Baton

Rouge, Helena, Memphis, and St. Louis along the MKARNS and Mississippi River.

In Figure 2.3, the yellow nodes represent the ports.

• Fifteen locks along MKARNS. They are also made of nodes (a type of turtle) with

properties such as ID and location.

• Twenty-four sites, modeled as turtles, along the MKARNS and Mississippi River. In

each site, the gage height level is checked and a decision is made regarding whether

the vessels will move forward or not. The red nodes in Figure 2.3 represent the sites.

Figure 2.2: Simulation model interface on NetLogo

• An algorithm that makes the vessels and trucks move on the waterways and highways,

respecting defined interaction rules of movement between source and destination, nav-

igation time and speed, and other agents. For example, during the simulation, a vessel

always takes the shortest path between its source and destination. The travel logic

23

Figure 2.3: Simulation model interface setup controllers in NetLogo

controls that a defined speed is enforced for each vessel and truck. The speed is de-

fined when the vessel or truck is created as a random variate following a truncated

exponential distribution. The range and mean of said distribution are parameters that

can be controlled by the user. During the simulation, each vessel and truck checks

that the distance traveled along the next node in the path is consistent with its defined

speed. If the distance is larger than what it should travel during a tick, it waits for

another tick. If it is shorter than what it should travel, it progresses another step in

the path and checks that the cumulative distance is consistent with the speed. If it

encounters an obstacle in its path (e.g., a vessel facing an extreme event or disabled

lock), it waits until the path is enabled again.

The main assumptions of our simulation model are as follows:

• Vessels are uniformly distributed based on the annual demand for commodities. The

decisions for instantiating different vessels are encoded in the model following the times

24

Figure 2.4: Simulation model interface view and lock controllers in NetLogo

between departures designed to have a uniform distribution throughout the year.

• The speed of vessels varies with its capacity and size [37], [55]. The smallest vessel is the

fastest one with an average speed of nine mph. The medium-sized vessel moves at seven

mph, where the largest one moves with five mph [37], [55]. A truncated exponential

distribution is used to draw random values for the speed each time a vessel is created

in the simulation.

• Each vessel and truck carries only one commodity type.

• All the vessels and trucks travel only once to their predefined destinations and do not

return to their origin ports.

25

2.1.3.2 Interdependencies of critical infrastructures

The functional interdependencies among ICIs are modeled by simulating a certain number

of traveling cargo vessels along the waterways and a number of available ports with various

capacities and conditions. In the case of a natural disturbance (e.g., elevated water levels),

a decision of offloading and re-routing based on the expected size and duration of the distur-

bance and the current and future conditions of the ground transportation network is made.

Given the flexibility of the proposed simulation model, different scenarios can be tested to

assess the decision making process.

Additionally, another form of functional interdependency is available through the sim-

ulation of the interconnected operations of dam, lock, port, and ground transportation in

case of traffic congestion or disruption. Considering such interdependencies of critical in-

frastructures and the multimodal transportation components, different scenarios involving

human interactions, such as flood discharge, dredging, and use and maintenance of locks,

can be analyzed. Furthermore, cost analysis approaches can be implemented to estimate the

economic impact of commodity flow decisions.

Potential response plans will be simulated to help researchers understand how enacted

emergency plans impact the multimodal transportation system and the surrounding infras-

tructure. Moreover, the developed agent-based simulation tool is capable of simulating the

evacuation and re-routing processes, for which the system performance can be presented for

different points in time. Thus, the interdependency among multiple decision-makers at ports,

ground transportation, and government in this simulation environment can be captured to

generate various scenarios. Such scenarios can help coordinate the efforts to optimize the

decision making process for all stakeholders involved.

26

2.1.4 Case study

2.1.4.1 Problem description

In the simulation, the system analyzes a pre-determined set of representative quantities based

on the input parameters listed in Table 2.2. In addition, Figure 2.5 represents a sample run

and Figure 2.6 shows a sample of plots that were generated during the simulation. We

generate an output file at the end of the simulation which presents all the measurements

Figure 2.5: Simulation running on NetLogo

listed above. The simulation time is set for 12 months (1 year), the fleet size is set to 25

trucks, and GH global threshold is 100 feet with individual thresholds set to action stage

level based on the National Weather Service (NWS) data [56]. Initially, vessels began from

the ports of Tulsa, Baton Rouge, Little Rock, Greenville, and Helena, and the locks were

all open. The vessels were moving towards their destination ports, and extreme events were

checked by measuring gage height and lock availability at each site. For example, the vessels

27

passing the sites with GH greater than the allowable threshold between the LA-MS route

along the Mississippi River could not move and had to wait until the GH level falls below the

threshold. Whenever a vessel faces any extreme event and stops moving forward, its color

turns red to represent a stoppage. The vessel gets back to its original color when movement

resumes. If the disruption is prolonged, it may potentially inhibit the vessel from reaching

its destination. This is moderated by the parameter ”WaitDays” that controls the number of

days a given barge waits before detouring into ground transportation as an alternative. To

illustrate the capability of the model, three different simulation runs covering few different

aspects of available inputs were generated. First, a base-case run is generated without

including the developed spatio-temporal statistical model with level predictions or possibility

of random lock failures. Second, a run that includes random lock failures was generated to

show how the model handles new input data and how output results are affected. Third, the

spatio-temporal statistical model is used to predict water levels; hence, it predicts extreme

events resulting from elevated water levels. To validate the spatio-temporal statistical model

predictions, we provide water level time series comparisons with our available true data for

multiple sites. A summary of these conditions is presented in Table 2.3.

For the scope of the current model, random lock failures are assumed to follow exponen-

tial distributions, both for the time between failures and time between repairs. Locks are

initiated in a working state, and the time until the next failure is drawn from the exponential

distribution with the mean time of three months as the default value. The time to complete

a repair is drawn from the exponential distribution with the mean time of one week as the

default value. The alternation of states is continued until the simulation run ends. Note that

the mean time to failure and the mean time to repair have been coded as two parameters

that the user can modify as needed.

Moreover, when a vessel reaches its destination port, trucks are used to carry its products

to the final destinations. Figure 2.6 (left) shows the number of vessels that were used to

carry products (Crops) between two ports. At the end of the simulation, we generate an

28

Model Inputs Model Outputs

• Gage height from a
spatio-temporal model

• Supply and demand between ports
(movement of commodities)

• Gage height threshold limit

• Lock availability

• Vessel distribution at each port

• Fleet size

• Number of trucks

• Average speed of each vessel category
between every two ports (mph)

• Number of delays between every two ports
• Total time lost due to extreme events (hour)
• Total number of vessels delayed and their
tonnages

• Overall average speeds for the three types of
vessels (mph)

• Number of extreme events and length (time)
in MKARNS and lower Mississippi River

• Number of vessels from each category
traveled and arrived between every two
ports

• Average speed of trucks for each product
type (mph)

Table 2.2: The main inputs and outputs of the developed simulation tool

output report summarizing multiple statistics of vessel (e.g., average speed and the number

of extreme events) and truck behavior and summary plots (e.g., boxplots) that help the user

understand varying aspects of the hybrid model.

2.1.4.2 Simulation results

This subsection reports the results obtained for a one-year base-case simulation run for the

lower Mississippi River and MKARNS and compares selected results with the other two runs.

These results are shown in Tables 2.4–2.7 and Figures 2.7–2.9. Table 2.4 shows summary

statistics for vessels traveled between every two ports classified by the vessel category, where

category 1 represents small-sized vessels carrying up to 6 ktons of cargo, category 2 represents

medium-sized vessels carrying up to 12 ktons of cargo, and category 3 represent large-sized

vessels carrying up to 18 ktons of cargo. Table 2.4 information includes the number of

vessels that have traveled between every pair of ports, average speed of travel, product type

carried (petroleum or crops in our case), records of vessel category, and the total weight

29

Scenario
Lock

Failures
GH

Measurements
Unobserved

Sites

Base Case Real observations
Real

observations
Not included

Random Lock Failures
Randomly
generated

Real
observations

Not included

Spatio-temporal model
Real

observations
Predictions
from model

Interpolated
from model

Table 2.3: Detail on simulation scenarios

Figure 2.6: Instantaneous plotting information while simulation is running on NetLogo

of carried products (in kilo tons). The number of extreme events (disruptions) faced by

the vessels is shown, where a disruption occurs in our setting whenever the water level

exceeds a predefined threshold. The total delay (in hours) caused by such disruptions and

the distance traveled by vessels are also recorded. Some of these statistical summaries are

plotted such as the ones in Figures 2.7–2.9 showing a boxplot of the distributed time to

destination, a bar chart of number of extreme events by vessel category, and a boxplot of

average speed of each vessel category, respectively. The outputs of the simulation model

also include detailed information about all vessels appeared in the model. Like the records

mentioned before, the detailed information includes the product type carried, category of

the vessel, total weight of the product, and a defined ID for each vessel (modeled as a turtle).

Also registered, each vessel’s start time, time of departure from its origin, and its end time

(time of arrival at its destination). These records can help extend the simulation analysis

and contribute to the model’s debugging and validation. Table 2.7 shows summary statistics

for trucks traveled from all ports to four defined exit points labeled as cardinal directions

30

(i.e., East, West, North, and South) located at the edges of the studied area. For example,

we have 16 fleets of trucks that have traveled from the Fort Smith port to the eastern exit

point with an average speed of 71.57 mph. Trucks that reach these boundary points are

assumed to have left the area to other states to deliver goods. There are four random chosen

boundary points located at the east, west, south and north of the studied area map. To

model possible delays (disruptions) of trucking-delivery of goods, possible congestion on the

highways is represented using “slow down points” which are sections where truck speed is

reduced, generating a similar behavior of possible congestion on the road. This feature of

the simulation model is useful when considering commodity flow planning with information

about traffic data. These results are available with additional detailed information about

the trucks, as shown in Table A.1 in Appendix.

From To
Product

type

Vessel

cate-

gory

Vessel

count

Weight

(ktons)

Avg.

Speed

(mph)

Extr.

events

Distance

(miles)

Total

delay

(hours)

Baton

Rouge
Helena Petroleum 1 1 18 3.79 0 540.69 0

Baton

Rouge
Helena Petroleum 2 1 12 7.83 0 540.30 0

Baton

Rouge
Helena Petroleum 3 1 6 10.65 0 548.47 0

Baton

Rouge
Mississippi Crops 1 3 54 4.20 1 355.04 1

Baton

Rouge
Mississippi Crops 2 4 48 9.06 0 376.49 0

Baton

Rouge
Mississippi Crops 3 8 48 10.88 3 360.63 2.5

Baton

Rouge
Mississippi Petroleum 1 1 18 3.53 1 356.43 1

Baton

Rouge
Mississippi Petroleum 2 1 12 8.74 0 342.95 0

31

Baton

Rouge
Mississippi Petroleum 3 1 6 10.90 0 375.89 0

Helena
Baton

Rouge
Petroleum 1 1 18 4.41 0 549.37 0

Helena
Baton

Rouge
Petroleum 2 1 12 8.04 0 552.42 0

Helena
Baton

Rouge
Petroleum 3 1 6 10.76 0 546.18 0

Helena Mississippi Crops 1 1 18 3.79 0 186.45 0

Helena Mississippi Crops 2 1 12 6.35 0 182.55 0

Helena Mississippi Crops 3 1 6 10.11 0 164.31 0

Helena Mississippi Petroleum 1 1 18 3.90 0 170.69 0

Helena Mississippi Petroleum 2 1 12 6.94 0 173.61 0

Helena Mississippi Petroleum 3 1 6 10.42 0 198.04 0

Helena St. Louis Crops 1 3 54 3.69 0 603.78 0

Helena St. Louis Crops 2 4 48 8.72 0 604.63 0

Helena St. Louis Crops 3 7 42 10.44 0 600.64 0

Little

Rock
Helena Crops 1 12 216 4.40 0 222.02 0

Little

Rock
Helena Crops 2 18 216 7.67 0 221.72 0

Little

Rock
Helena Crops 3 31 186 10.25 0 222.14 0

Mississippi
Baton

Rouge
Crops 1 6 108 3.75 2 381.82 1.5

Mississippi
Baton

Rouge
Crops 2 8 96 9.06 3 380.19 3

Mississippi
Baton

Rouge
Crops 3 16 96 11.03 1 382.06 1

Mississippi
Baton

Rouge
Petroleum 1 1 18 4.07 1 379.89 1

Mississippi
Baton

Rouge
Petroleum 2 1 12 8.43 0 381.25 0

32

Mississippi
Baton

Rouge
Petroleum 3 1 6 10.38 1 378.96 0.5

Mississippi Fort Smith Petroleum 1 1 18 4.33 0 445.88 0

Mississippi Fort Smith Petroleum 2 1 12 7.65 0 441.58 0

Mississippi Fort Smith Petroleum 3 1 6 11.42 0 445.21 0

Mississippi St. Louis Crops 1 10 180 4.01 0 766.42 0

Mississippi St. Louis Crops 2 15 180 8.12 0 766.67 0

Mississippi St. Louis Crops 3 29 174 10.29 0 765.51 0

Tulsa
Baton

Rouge
Petroleum 1 5 90 4.64 4 992.74 4

Tulsa
Baton

Rouge
Petroleum 2 7 84 8.13 2 989.29 2

Tulsa
Baton

Rouge
Petroleum 3 13 78 10.87 6 994.07 6

Tulsa Helena Petroleum 1 1 18 4.26 0 621.25 0

Tulsa Helena Petroleum 2 1 12 8.01 0 612.57 0

Tulsa Helena Petroleum 3 2 12 10.26 0 620.40 0

Tulsa Memphis Petroleum 1 2 36 4.42 0 691.78 0

Tulsa Memphis Petroleum 2 3 36 8.02 0 693.74 0

Tulsa Memphis Petroleum 3 6 36 10.32 0 693.14 0

Tulsa Mississippi Petroleum 1 3 54 4.73 0 613.82 0

Tulsa Mississippi Petroleum 2 5 60 8.30 0 624.32 0

Tulsa Mississippi Petroleum 3 9 54 10.70 0 625.59 0

Tulsa St. Louis Petroleum 1 4 72 4.08 3 1,222.94 107.5

Tulsa St. Louis Petroleum 2 6 72 7.44 1 1,217.46 190.5

Tulsa St. Louis Petroleum 3 12 72 8.54 4 1,217.97 820.25

Table 2.4: Summary of vessels’ statistics for the base-case simulation runs

From To
Product

type

Vessel

cate-

gory

Vessel

count

Weight

(ktons)

Avg.

Speed

(mph)

Extr.

events

Distance

(miles)

Total

delay

(hours)

33

Baton

Rouge
Helena Petroleum 1 1 18 3.79 0 536.62 0

Baton

Rouge
Helena Petroleum 2 1 12 7.79 0 541.13 0

Baton

Rouge
Helena Petroleum 3 1 6 10.66 0 559.80 0

Baton

Rouge
Mississippi Crops 1 3 54 4.16 2 361.48 2

Baton

Rouge
Mississippi Crops 2 4 48 8.79 3 364.60 2.75

Baton

Rouge
Mississippi Crops 3 8 48 10.85 2 354.17 2

Baton

Rouge
Mississippi Petroleum 1 1 18 3.49 1 372.51 1

Baton

Rouge
Mississippi Petroleum 2 1 12 8.79 0 362.73 0

Baton

Rouge
Mississippi Petroleum 3 1 6 10.86 0 361.19 0

Helena
Baton

Rouge
Petroleum 1 1 18 4.41 0 537.93 0

Helena
Baton

Rouge
Petroleum 2 1 12 8.00 0 539.78 0

Helena
Baton

Rouge
Petroleum 3 1 6 10.75 0 548.47 0

Helena Mississippi Crops 1 1 18 3.74 0 187.75 0

Helena Mississippi Crops 2 1 12 6.20 0 175.08 0

Helena Mississippi Crops 3 1 6 10.34 0 191.32 0

Helena Mississippi Petroleum 1 1 18 3.90 0 164.87 0

Helena Mississippi Petroleum 2 1 12 7.07 0 178.47 0

Helena Mississippi Petroleum 3 1 6 10.34 0 180.94 0

Helena St. Louis Crops 1 3 54 3.68 0 606.06 0

Helena St. Louis Crops 2 4 48 8.73 0 601.40 0

Helena St. Louis Crops 3 7 42 10.45 0 601.31 0

34

Little

Rock
Helena Crops 1 12 216 4.38 0 224.75 0

Little

Rock
Helena Crops 2 18 216 7.63 0 226.20 0

Little

Rock
Helena Crops 3 31 186 10.33 0 224.12 0

Mississippi
Baton

Rouge
Crops 1 6 108 4.11 3 382.48 3

Mississippi
Baton

Rouge
Crops 2 8 96 8.49 3 381.50 3

Mississippi
Baton

Rouge
Crops 3 16 96 10.92 5 382.18 4

Mississippi
Baton

Rouge
Petroleum 1 1 18 4.12 0 381.25 0

Mississippi
Baton

Rouge
Petroleum 2 1 12 8.43 0 379.39 0

Mississippi
Baton

Rouge
Petroleum 3 1 6 10.48 0 379.89 0

Mississippi Fort Smith Petroleum 1 1 18 4.32 0 442.14 0

Mississippi Fort Smith Petroleum 2 1 12 7.64 0 445.21 0

Mississippi Fort Smith Petroleum 3 1 6 11.38 0 440.96 0

Mississippi St. Louis Crops 1 10 180 4.00 0 767.11 0

Mississippi St. Louis Crops 2 15 180 8.23 0 766.19 0

Mississippi St. Louis Crops 3 29 174 10.23 0 768.11 0

Tulsa
Baton

Rouge
Petroleum 1 5 90 4.45 2 992.51 2

Tulsa
Baton

Rouge
Petroleum 2 7 84 8.35 3 994.31 1.75

Tulsa
Baton

Rouge
Petroleum 3 13 78 10.93 3 990.76 2.5

Tulsa Helena Petroleum 1 1 18 4.77 0 612.57 0

Tulsa Helena Petroleum 2 1 12 8.14 0 614.94 0

Tulsa Helena Petroleum 3 2 12 10.81 0 617.21 0

35

Tulsa Memphis Petroleum 1 2 36 4.64 0 692.79 0

Tulsa Memphis Petroleum 2 3 36 7.11 0 692.13 0

Tulsa Memphis Petroleum 3 6 36 10.45 1 692.36 1

Tulsa Mississippi Petroleum 1 3 54 4.71 0 631.48 0

Tulsa Mississippi Petroleum 2 5 60 7.87 1 631.82 1

Tulsa Mississippi Petroleum 3 9 54 11.13 0 634.82 0

Tulsa St. Louis Petroleum 1 4 72 4.02 0 1,217.46 0

Tulsa St. Louis Petroleum 2 6 72 7.71 3 1,222.25 231.75

Tulsa St. Louis Petroleum 3 12 72 7.54 5 1,221.08 1216.75

Table 2.5: Summary of vessels’ statistics for the random lock failure case

From To
Product

type

Vessel

cate-

gory

Vessel

count

Weight

(ktons)

Avg.

Speed

(mph)

Extr.

events

Distance

(miles)

Total

delay

(hours)

Baton

Rouge
Helena Petroleum 1 1 18 3.79 0 540.69 0

Baton

Rouge
Helena Petroleum 2 1 12 7.81 0 541.12 0

Baton

Rouge
Helena Petroleum 3 1 6 10.66 0 541.13 0

Baton

Rouge
Mississippi Crops 1 3 54 4.19 0 372.45 0

Baton

Rouge
Mississippi Crops 2 4 48 9.05 0 368.37 0

Baton

Rouge
Mississippi Crops 3 8 48 10.94 0 359.85 0

Baton

Rouge
Mississippi Petroleum 1 1 18 3.53 0 382.63 0

Baton

Rouge
Mississippi Petroleum 2 1 12 8.73 0 340.31 0

36

Baton

Rouge
Mississippi Petroleum 3 1 6 10.89 0 362.05 0

Helena
Baton

Rouge
Petroleum 1 1 18 4.41 0 549.37 0

Helena
Baton

Rouge
Petroleum 2 1 12 8.02 0 555.68 0

Helena
Baton

Rouge
Petroleum 3 1 6 10.67 0 557.39 0

Helena Mississippi Crops 1 1 18 3.79 0 186.45 0

Helena Mississippi Crops 2 1 12 6.32 0 172.26 0

Helena Mississippi Crops 3 1 6 10.11 0 161.73 0

Helena Mississippi Petroleum 1 1 18 3.93 0 167.99 0

Helena Mississippi Petroleum 2 1 12 6.73 0 159.89 0

Helena Mississippi Petroleum 3 1 6 10.43 0 185.07 0

Helena St. Louis Crops 1 3 54 3.68 0 605.75 0

Helena St. Louis Crops 2 4 48 8.72 0 608.37 0

Helena St. Louis Crops 3 7 42 10.45 0 606.94 0

Little

Rock
Helena Crops 1 12 216 4.40 0 224.23 0

Little

Rock
Helena Crops 2 18 216 7.67 0 221.62 0

Little

Rock
Helena Crops 3 31 186 10.26 0 221.21 0

Mississippi
Baton

Rouge
Crops 1 6 108 3.76 0 382.54 0

Mississippi
Baton

Rouge
Crops 2 8 96 9.12 0 384.15 0

Mississippi
Baton

Rouge
Crops 3 16 96 11.05 0 382.47 0

Mississippi
Baton

Rouge
Petroleum 1 1 18 4.12 0 390.17 0

Mississippi
Baton

Rouge
Petroleum 2 1 12 8.40 0 377.97 0

37

Mississippi
Baton

Rouge
Petroleum 3 1 6 10.40 0 390.17 0

Mississippi Fort Smith Petroleum 1 1 18 4.33 0 445.88 0

Mississippi Fort Smith Petroleum 2 1 12 7.65 0 441.58 0

Mississippi Fort Smith Petroleum 3 1 6 11.41 0 442.14 0

Mississippi St. Louis Crops 1 10 180 4.01 0 766.41 0

Mississippi St. Louis Crops 2 15 180 8.12 0 767.70 0

Mississippi St. Louis Crops 3 29 174 10.29 0 765.47 0

Tulsa
Baton

Rouge
Petroleum 1 5 90 4.65 0 995.40 0

Tulsa
Baton

Rouge
Petroleum 2 7 84 8.14 0 992.99 0

Tulsa
Baton

Rouge
Petroleum 3 13 78 10.92 0 993.82 0

Tulsa Helena Petroleum 1 1 18 4.26 0 612.57 0

Tulsa Helena Petroleum 2 1 12 8.01 0 612.57 0

Tulsa Helena Petroleum 3 2 12 10.25 0 619.71 0

Tulsa Memphis Petroleum 1 2 36 4.43 0 692.60 0

Tulsa Memphis Petroleum 2 3 36 8.02 0 692.70 0

Tulsa Memphis Petroleum 3 6 36 10.31 0 690.98 0

Tulsa Mississippi Petroleum 1 3 54 4.71 0 619.98 0

Tulsa Mississippi Petroleum 2 5 60 8.31 0 634.12 0

Tulsa Mississippi Petroleum 3 9 54 10.70 0 630.51 0

Tulsa St. Louis Petroleum 1 4 72 4.09 1 1,222.59 106.5

Tulsa St. Louis Petroleum 2 6 72 7.44 1 1,219.24 191.5

Tulsa St. Louis Petroleum 3 12 72 8.54 4 1,221.53 824.25

Table 2.6: Summary of vessels’ statistics for the spatio-temporal model

Comparing the results for the base-case scenario with the random lock failures (shown

in Table 2.5), one can observe an overall increase in the total delay hours for random lock

failures. In fact, the total delay in hours for the base-case scenario is about 1,141 hours

compared to approximately 1,474 hours for the case of random lock failure. This shows

38

that the model responds as expected to changes across simulation runs. For the third case

(i.e.,spatio-temporal predictions) shown in Table 2.6, one can see that there is no significant

difference between the model’s final output of approximately 1,122 hours of delay compared

to the base-case one with 1,141 hours. This shows that the developed spatio-temporal

statistical model is predicting close water levels compared to the actual data available used

in the base-case run. In addition, to validate the spatio-temporal model predictions of water

levels, Figure 2.10 compares the predicted values (with a 90% point-wise confidence band) to

the real observed data in two selected sites. Two important elements can be seen in Figure

2.10: (1) the prediction captures the seasonality of the actual data and (2) the trend of

the spatio-temporal statistical model behaves as the actual data. Specially, the developed

statistical model captures both trend and seasonality with a low mean squared error (MSE)

of 1.7 ft2 for the fitted values vs. the GH observations.

From Product Type Destination Count Avg. Speed (mph)

Fort Smith Petroleum E 16 71.57
Fort Smith Petroleum N 2 68.99
Fort Smith Petroleum S 2 67.42
Helena Crops E 61 68.32
Helena Crops N 61 68.78
Helena Crops S 61 61.41
Helena Petroleum E 16 66.25
Helena Petroleum N 2 69.35
Helena Petroleum S 2 57.92

Table 2.7: Summary of trucks’ statistics for the base-case simulation runs

2.1.5 Conclusions and future research

In this study, multiple contributions are made to the ICIs risk analysis and commodity

flow literature. First, a spatio-temporal statistical model was developed to capture extreme

natural events causing disruptions in inland waterways and predict them in the future to

facilitate commodity flow planning and response actions. The developed statistical model

can also handle missing data without a noticeable degradation in its overall performance. In

39

●

●
●●●●

0

100

200

300

400

1 2 3
Vessel type

T
im

e
−

 h

Distribution of elapsed time to destination

Figure 2.7: Simulation model output of time to reach destinations for vessels in different
categories (in hours)

0

5

10

15

1 2 3
Vessel type

N
o.

 o
f E

xt
re

m
e

E
ve

nt
s

Number of extreme events per vessel type

Figure 2.8: Number of extreme events for vessels in different categories

40

●

●

●

●●●●

2.5

5.0

7.5

10.0

1 2 3
Vessel type

A
ve

ra
ge

 s
pe

ed
 −

 m
ph

Distribution of average speed per vessel type (3 is the fastest)

Figure 2.9: Average speeds of vessels in different categories (mph)

addition, the statistical model was developed and tested on the lower Mississippi River and

the MKARNS. Second, a simulation tool is built to capture the effect of inland waterways

disruptions on the commodity flow through other ICIs, which provides a broad understanding

of the multimodal transportation system interdependencies in action. Third, access to the

most recent version of the simulation model is currently available as an open-sourced tool

for researchers, decision-makers, and other stakeholders to advance research in multimodal

transportation [50].

The current version of the model has limitations that can be reduced by this research

team or potential users of this open-sourced tool. Especially, distributing vessels uniformly

over time might not be the best representation of real demand as it most likely is not

stationary and presents some forms of seasonality. This is a promising research direction

that can be explored in the future. Another limitation is the capability of the statistical

model for emulating outliers in predicting GH measurements. The current model uses a

Bayesian Gibbs sampling approach that relies on the mean of sampled predictions. This

41

−10

0

10

20

30

40

2016−07 2017−01 2017−07 2018−01
Date and Time

G
au

ge
 H

ei
gh

t
GH Model Fit

Gauge Height for site 8

−10

0

10

20

30

40

50

2016−07 2017−01 2017−07 2018−01
Date and Time

G
au

ge
 H

ei
gh

t

GH Model Fit

Gauge Height for site 10

Figure 2.10: Water levels (in ft) predicted by the Spatio-temporal statistical model vs. actual
data at some selected sites

42

may lead to conservative estimates. Clearly, emphasis on this limitation can be another

valuable research direction.

This work could be extended to support emergency service response and detailed analysis

of ports operations. In addition, national economic and transportation studies centered on

inland waterways and their interdependency with ground transportation can be investigated

by extending the developed simulation tool to include features such as private trucking

companies routes, real-time traffic data, and railroads information. An economic study

based on the developed simulation tool covering the current case study is among the near

future research directions.

2.2 Extensions to the Inland Waterway Transportation Simulation Model

As part of the explored applications of simulation in ICIs contexts, developing the NetLogo

simulation tool was a crucial step in creating a testbed to quantify the impact of disruptions

due to failures in Locks along the MKARNS corridor. The additional developments of this

tool are centered on adding flexibility in the simulation logic while garnering computational

efficiency such that the simulation environment becomes useful for exploring data-driven so-

lutions in decision-making related to inspection, maintenance, and repair operations related

to the continuous control of the locks system in along the Arkansas River. With this goal

in mind, the additional developments follow two main routes. The first one is defining a

new paradigm for the simulation logic such that the codebase is organized around trans-

portation entities, with capabilities for seamless integration with new transportation modes

and elements in the transportation process, and unifying the control logic such that fur-

ther improvements are feasible within reasonable development timelines. The second route

is creating a DRL environment that connects this new simulation model with state-of-the-

art continuous control algorithms using data-driven decision-making through Reinforcement

Learning.

43

Figure 2.11: Updated Graphic Interface for the Simulation Model

2.2.1 New Paradigm: Barges as Minimal Transportation Unit

The new simulation emphasizes using barges as the minimal transportation unit. In practical

terms, this means that most of the quantities that are tracked during runtime and after a

simulation interval is finished are related to statistics about barges. From counting barges in

traffic per route, barges that are in transit, barges affected by extreme events, and service and

travel times related to barges. A barge becomes the smallest unit that can be transported,

and one tow boat can move several barges simultaneously. There is now a correspondence

between the types of commodities transported and the quantities of these commodities on

each barge. This exists now in opposition to the previous paradigm where the smallest

transportation unit was the towboat, and as a proxy for the number of barges that each

towboat carried, three vessel categories were defined. These categories encapsulated the

number of barges carried by each towboat, with the most significant category corresponding

to having the most barges while not explicitly keeping track of the number or service times

affecting them. Additionally, the graphic interface was also updated; the current version

looks as in Figure 2.11.

The redefined paradigm focuses the event control logic on the flow of barges along the

system. Specific agents and entities now control all events in the simulation, and a unified

event flow logic is proposed. This is expected to grant future developmental advantages in

the flexibility of the code base to new additions and readability and faster integration of new

entities due to the standardized event control logic.

44

2.2.1.1 Setup Reorganization

The simulation setup has been overhauled to remove repetitive steps in the previous code

base as efficiently as possible. While some of the fixed infrastructural elements were loaded

only once at the beginning of the simulation, others were constantly called during each step.

Some fixed elements were even called on each step by each active towboat entity, resulting

in multiple unnecessary calls to repetitive steps. Reducing these inefficiencies has led to

significant speed ups and now the simulation setup is timed on a regular PC in around 10

seconds, in opposition to previous results where each setup was closer to 5 minutes.

2.2.1.2 Modules Reorganization

The codebase is now separated into modules and submodules based on functionality. This

allows for increased readability, friendlier and maintainable code, and easier identification

of bugs and errors by grouping similar functions. The main modules are separated in the

following structure:

• Entities: code related to agents and objects in the simulation

– Turtles: general properties for entities

– Routes: definition of source, destination, and paths to follow along waterways

– Commodities: defining the classes and properties of the transported cargo

– Barges: minimal transportation unit. Barges flow along the waterways to carry

cargo

– Boats: towboats carrying barges along the waterways

– Nodes: river segments that define the minimal geographical unit along the water-

ways

– Sites: locations with available information about water levels along the waterways

45

– Ports: source and destination locations used to define the start and end points of

routes along the waterways

– Reroutings: particular geographical points controlling the logic of redirecting traf-

fic under extreme events

• Initialization: code related to the simulation setup

– Constants: centralizing all constant values in the simulation

– Setup: creating the simulation environment

– Display: creating the visual interface for the simulation

• Logic: code related to the flow of events

– Simulate: code controlling the step logic

– Move: code controlling the transportation logic

– Go: code controlling the geographical distance logic

– Random Variables: code related to the generation of random variates

• Results: code related to displaying the metrics tracked during runtime

– Plots: visual representation of results

– Outputs: reports and files generated after simulation

• Utilities: various auxiliary functions

– File reading: reading external files

– Utilities: miscellaneous functions

2.2.1.3 Logic Reorganization

In this new paradigm, the flow of events is controlled by the different entities. A global

simulation step calls a general update to all entities with an internal simulation step. This

46

internal simulation step checks the start and end of individual events, which governs the event

flow logic. Some entities do not have an internal step and thus are static during the whole

simulation interval. Using this idea, a previously static entity can be granted properties

that evolve dynamically over time by adding an internal simulation step and including its

entity class in the call from the global update step. Additionally, some efficiency is gained

through this as not all entities need an update step, and thus selecting which ones do, and

even for those that do update, conditions, and checks can be added in the individual step

to skip updates if they are not relevant for a given time interval, therefore saving some

computational resources and gaining efficiency.

2.2.2 New Entities

The entities included in the simulation can be classified as transportation entities and in-

frastructure entities. Transportation entities move along the system and control the logic for

this movement. This includes barges, towboats, commodities, and routes. For these entities,

reporter functions are created to keep track of relevant statistics. Infrastructure entities do

not flow along the system but control most of the logic related to spatial positions, and some

events turn the flow on or off through the system. This includes ports, locks, river segments

(nodes), sites (water level measurement locations), and rerouting points.

2.2.2.1 Transportation Entities

• Barges: smallest transportation unit. The number of barges transported by each

towboat is generated randomly. The commodity type carried is selected randomly

depending on factors such as the route to which this barge belongs. Statistics are kept

for the number of barges generated, in transit, and successfully arrived at destination.

• Towboats: boats carry multiple barges along the waterways. The distribution of barges

per boat is controllable depending on the selected route. The generation of boats is

controlled with random numbers and is also parameterizable depending on each specific

47

route. Statistics are kept for the number of boats generated, in transit, and successfully

arrived at destination.

• Commodities: each barge carries one commodity type. These commodities are defined

in the configuration files. The distribution of the proportion of each type is defined in

the configuration files and can be specified generally for all routes or individually for

specific routes. Statistics are kept for the number of barges of each commodity type

generated, in transit, and successfully arrived at the destination.

• Routes: these entities define the sources and destinations for towboats in transit.

Routes also define the path that each towboat will follow along the waterways as a

sequence of node entities that the boat will visit along the way, depending on road

conditions such as water levels and inherent properties such as speed. Statistics are

kept for the number of boats, barges, and commodities generated, in transit, and

arrived on each route.

2.2.2.2 Infrastructure Entities

• Nodes: river segments along the waterways. The smallest geographical unit in the

transportation simulation along the waterways. All other infrastructure elements are

assigned to one of these elements to keep track of spatial locations.

• Ports: source and destination locations used to define the start and end points of routes

along the waterways.

• Locks: infrastructure that assists the flow of towboats along the waterways by moving

them from different elevation levels using gravity and the available water levels. For the

purposes of this simulation, locks are treated as a multiple server single queue system,

with a configurable number of servers and specifications on the service time distribu-

tions. The current logic makes the service dependent on the number of barges each

48

serviced towboat carries. Statistics are tracked for the number of serviced towboats

and barges.

• Sites: points along the waterways with information about water level measurements.

The available data in these points controls traversability logic along the waterways,

dependent on the water levels within specified thresholds. If the observed water level

is not in the allowed range, the given river segment is considered as not traversable,

and the flow of towboats is stopped until the water level changes.

• Reroutings: points along the waterway that can be utilized to reroute vessels to dif-

ferent destinations, following pre-specified policies. Reroutings have been previously

used to redirect traffic flow in case of disruptions due to extreme water level events or

interrupted lock system service.

2.2.3 New Simulation Logic

The new event control logic is centered around the entities in the simulation. All entities

that change over time have an internal simulation step that is called from a class simulation

step, and all class simulation steps are called from a global simulation step. This allows for

controlling events in non-static entities with a unified event control framework while allowing

the integration of multiple events on each agent.

2.3 Decision-making using DRL

Further extending this work, optimal control of maintenance, repair, and inspection deci-

sions using DRL is explored in [6], [7]. This author’s contributions include developing the

simulation model used in both pieces of work and the majority of the Python interface con-

necting the NetLogo simulation with the DRL environment, the DRL environment itself,

the training scheme, the results display, and the processing of outputs. The main goal of

these works is to develop a data-driven maintenance and repair operations control for the

49

infrastructure network of locks along the waterway corresponding to the MKARNS corridor.

2.3.0.1 Problem Description

The locks in the lock network are prone to failure and follow some time-to-failure distribu-

tion for a binary status and a single failure mode, with individual parameters that evolve

independently for each lock. Consider a set of actions, call them action space, that can be

performed on each lock to modify the parameters of these distributions or return the status

of each lock from failure to operational. A DRL agent is developed as a control model that

optimally allocates resources in a sequence of actions to maximize the traffic flow through the

system by prioritizing the availability of relevant locks in the system, subject to feasibility

and budget constraints.

For this problem, these actions include “do nothing”, “maintenance,” “inspection,” and

“repair.” There is a limited number of resources, called the “repair crew”, and to perform

each action, it is necessary to take hold of one available repair crew and to temporarily

set the lock as out of commission while the action is performed. A limited action budget

constrains the number of actions that can be performed at a determined time interval, for

example, a year of simulation time. Another constraint limits the number of maintenances

by enforcing a minimum time interval between maintenances for each lock. Each specific

action, at any time step, can only be carried out if feasible for a given lock: repairs are only

enacted on failed locks, and maintenance and inspections only on operational locks. For the

version presented in [6], repairs are compulsory and pre-specified by a policy prioritizing locks

with higher traffic volume. Repairs are compulsory for [7], but the DRL agent developed

has the freedom to specify which failed lock will be repaired first. Due to the ample action

space and the combinatorial nature of the sequence of actions in the allocation of repairs,

maintenance, and inspections, together with the stochasticity in the transportation network

and locks statuses, approaching this problem using DRL is considered a reasonable course

of action.

50

The results presented in [6], [7] will be further extended to incorporate more complex

logic and eventually make the number of repair crews part of one of the actions that the

agent can modify to service the lock network, effectively transforming the problem into a

scheduling problem with seasonal use of resources.

2.3.1 Conclusions

The modifications to the NetLogo simulation model are crucial to using data-driven decision-

making tools, such as DRL, as the gains in computational efficiency enable this interaction

between the emulation of the waterway transportation system and the statistical learning

tool while using reasonable amounts of computational resources. The new simulation logic

represents an increase in the fidelity of the modeling of the transportation logic and enables

additional customization and flexibility in simulating different scenarios and operation condi-

tions along the waterway system. These contributions are expected to further enable research

in the area of optimal maintenance control by extending the viability of incorporating DRL

by creating a testbed environment where the policies can be learned and evaluated.

51

3. Prognostics and Health Management

52

3.1 Prognostic Using Dual-Stage Attention-Based
Recurrent Neural Networks

3.1.1 Introduction

A system usually undergoes a transition through multiple degraded states before failure [57].

In practice, it is crucial to accurately assess the status of such a system and make the right

decision on maintenance and spare parts inventory planning. Condition monitoring aims

at observing the system’s behavior to gauge the system’s reliability and take appropriate

actions. In particular, one of the most important tasks of condition monitoring is to estimate

the Remaining Useful Life (RUL) of the system during operation.

This paper proposes the use of a Dual-Stage Attention-Based Recurrent Neural Network

(DA-RNN) to estimate the RUL of turbine engine units [58] in a prognostics setting. These

turbine engines belong to a non-linear complex system monitored by multiple sensors under

different operational settings. A data-driven approach will be used in this paper to map

multiple sensor readings to the RUL of an engine. The main focus will be on the performance

and prediction capabilities of the model.

The variety of methods previously used to map the RUL as a function of selected sensor

variables and the operational settings is remarkable [59]. However, even though the decisions

that drove them were based on data and defined on clear rules, manual selection in some of

the approaches would require additional inspection to migrate them to any other problem

settings.

This paper is focused on the development of an adaptive algorithm handling multiple

sensor measurements for RUL prediction. In particular, the goal is to apply a prognostics

model capable of mapping the multidimensional sensor input variables to the RUL through

an adaptive selection of driving features.

The main focus of this work will be on the desired capabilities of the model:

1. Identify automatically the relevant sensor inputs for prediction

53

2. Capture time dependencies between variables

3. Enable working with varying length time series for prediction

3.1.2 Problem Statement

The data, which is part of the C-MAPSS (Commercial Modular Aero-Propulsion System

Simulation) Turbofan datasets, represents a series of run-to-failure simulations of turbine

engine units. The dataset was used as training and test sets and is referred to as ”5T” in

[59]. The authors in [59] offer a good clarification about the different C-MAPSS datasets and

also present a framework to understand the known approaches and viable comparisons of the

algorithms explored on them. The selected dataset has been widely used for benchmarking

of prognostic methods: there are over 60 publications using it [58]. There are 6 datasets

derived from C-MAPSS. Datasets 1 to 4 are referred to as ”Turbofan data” and numbers

”5T” and ”5V” as the ”PHM 2008 Data Challenge”. The differences between each dataset

lie in the number of failure modes simulated, the number of operation conditions, and the

number of units in training and test segmentations [59].

To evaluate the performance of a prediction method, the following criterion is considered:

s =

n∑

i=1

e
−di
a1 − 1 di < 0

n∑
i=1

e
di
a2 − 1 di ≥ 0

(3.1)

di = R̂UL−RUL (3.2)

where a1=13 and a2=10. The evaluation metric shown in Eqn. (3.1) is defined as a loss

function that penalizes deviations in the predicted RUL from the true value. In Eqn. (3.2),

di represents the difference between the estimation and the true value of the RUL. The

penalization is asymmetric: over estimating the RUL grants higher scores. Lower scores

represent more accurate predictions.

54

3.1.3 Data

The data is comprised of 218 multivariate time series in the Training and Test data sets,

corresponding to a total of 436 turbine engines. Each engine unit has 21 associated sensor

measurements per run cycle and 3 additional variables that encode the 6 operational settings.

These variables make the mutivariate time series where, for a given unit, each cycle is a

point in time where the measurements are obtained. The time interval between cycles is

not available in the data, and therefore will not be used in the prognostic calculations. The

shortest series in the training and test samples are 128 and 15 cycles long; the longest series,

357 and 364.

The obtained score will be computed on the test data set using the NASA data repository

website [58] for benchmarking on the held out RUL. All test evaluations are on dataset 5T-

Test. This allows to have a comparable benchmarking to the methods mentioned in [59].

3.1.3.1 Previous Work

The authors in [60] use a Multi-layer Perceptron (MLP) and a Kalman Filter (KF) to create

ensembles of the best predictions and capture the time related features of the same. [61]

uses a Recurrent Neural Network (RNN) for RUL prediction. A Similarity Based Approach

is presented in [62]. An analysis is carried out to group units on the training set that have

a similar pattern in sensor trends and operational conditions. The relevant variables used

for prediction were selected manually considering how seemingly smooth and continuous the

plots of said variables look over cycle time. Regressions were created for each operational

condition and then fused together using rules defined by the observed values of the RUL order

statistics and expert criterion. The predicted values were manually capped on a threshold

selected based on changes on the test score.

55

3.1.4 Proposed Method

3.1.4.1 Model

The considerations previously exposed led to the proposed model, the Dual-Stage Attention-

Based Recurrent Neural Network (DA-RNN), which follows the architecture proposed by [63].

It was designed for multivariate time series data analysis to approach problems of the type

known as Nonlinear Autoregressive Exogenous Models (NARX). This implies predicting a

time series of interest using several exogenous driving time series as predictors. The main

strengths of this model match with the capabilities desired: adaptively selecting the relevant

time series for prediction and capturing long-term temporal dependencies. The model is

composed of two Attention Mechanisms connected in series. The first one maps the multiple

exogenous variables to the response series, learning the relevance of each of them in the

feature space. This is the Input Attention Mechanism. The Temporal Attention Mechanism

maps the time dependent components of the response variable at a given point in time to

its future state.

The following equations define the components of the Input Attention Mechanism:

X = (x1,x2, ...,xn)⊺ = (x1
T ,x

2
T , ...,x

n
T)

⊺ (3.3)

ekt = v⊺
e tanh

(
We[ht−1; st−1] +Uex

k
)

(3.4)

αk
t =

exp
(
ekt
)∑n

i=1 exp(e
i
t)

(3.5)

x̃t = (α1
tx

1
t , α

2
tx

2
t , ..., α

n
t x

n
t)

⊺ (3.6)

where [· ; ·] represents concatenation.

The encoder adaptively selects the relevant driving series among the multidimensional

input (3.3). The encoder maps the relationship between the input and the hidden states.

It is composed of three different layers in sequence: an MLP (3.4), a softmax (3.5) and a

Long-Short Term Memory Network (LSTM) (3.7) to capture long-term dependencies. The

56

LSTM layers are composed of a memory cell with hidden states st, and access to this cell is

controlled by the forget (3.8), input (3.9) and output (3.10) gates. As a major adaptation

from the original work, in the proposed model 3 LSTM layers are stacked. This makes the

encoder a Deep Neural Network.

A single LSTM layer in the encoder is defined with the following equations:

ht = f1(ht−1, x̃t) (3.7)

ft = σ(Wf [ht−1;xt] + bf) (3.8)

it = σ(Wi[ht−1;xt] + bi) (3.9)

ot = σ(Wo[ht−1;xt] + bo) (3.10)

st = ft ⊙ st−1 + it ⊙ tanh(Ws[ht−1;xt] + bs) (3.11)

ht = ot ⊙ tanh(st) (3.12)

The decoder captures the relevant encoder hidden states acrosss all time steps [63]. For

this, it uses another LSTM layer (3.17) and input attention mechanisms (3.13). The attention

weights βi
t represent the importance of the hidden states steps (3.14). The context vector is

the weighted sum of said states (3.15). After this, adapting the original work to be feasible

in the prognostics setting, the context vectors are combined with the number of elapsed

cycles, ẏt−1, in Eqn. (3.16). In the original work, it was combined with the previous value

of the series of interest. In this case, as the RUL will be unknown on the test units, we use

instead the number of elapsed cycles. An estimation for the RUL value on the previous step

is obtained and used to update the hidden states of the LSTM layer. Then, for the final

prediction Eqn. (3.23) weighs the final hidden states and context vector using an MLP. As

an additional step used to improve the predictions, a Kalman Filter was used to smooth the

predicted RUL values.

The following equations define the components of the Temporal Attention Mechanism,

including its LSTM layer:

57

lit = v⊺
d tanh(Wd[dt−1; s

′
t−1] +Udhi), 1 ≤ i ≤ T (3.13)

βi
t =

exp(lit)∑T
j=1 exp

(
ljt
) (3.14)

ct =
T∑
i=1

βi
thi (3.15)

ỹt−1 = W̃[ẏt−1; ct−1] + b̃ (3.16)

dt = f2(dt−1, ỹt−1) (3.17)

f ′t = σ(W′
f [dt−1; ỹt−1] + b′

f) (3.18)

i′t = σ(W′
i[dt−1; ỹt−1] + b′

i) (3.19)

o′
t = σ(W′

o[dt−1; ỹt−1] + b′
o) (3.20)

s′t = f ′t ⊙ s′t−1 + i′t ⊙ tanh(W′
s[dt−1; ỹt−1] + b′

s) (3.21)

dt = o′
t ⊙ tanh(s′t) (3.22)

ŷT = v⊺
y tanh(Wy[dT ; cT] + bw) + bv (3.23)

3.1.4.2 Training

The algorithm is implemented in Python using the PyTorch deep learning framework [64].

Pytorch was chosen because the use of GPU for calculations seemed easy to implement and

the use of tensor data types and the efficient memory management are possible. A working

example of an initial implementation [65] was adjusted. Following the work in [63], minibatch

stochastic gradient descent (SGD) was used to train the model through backpropagation.

The optimization method used was QH-ADAM [66]. The size of the minibatch is 10 and the

learning rate was set to a determined schedule: it starts from 0.005 and is reduced 10% after

every 10K iterations. The size of the encoder and decoder hidden layers was set to 512. The

objective function chosen was the mean squared error (MSE).

58

0 25 50 75 100 125 150 175 200
Training Epoch

2 × 103

3 × 103

4 × 103

M
SE

Train
Validation
Val-KF

Figure 3.1: Evolution of MSE

25 50 75 100 125 150 175 200
Cycle

0

50

100

150

200

RU
L

Series
Prediction
RemainingUsefulLife

Figure 3.2: RUL estimation for Unit 100

A held out validation dataset was created as a subset of dataset 5T-train. 30% of the

units in the sample were selected using a stratified sample, preserving the proportion of

different series lengths on the training and validation sets.

All the models were trained on a laptop computer with 8 GB of RAM, an Intel Core

i7-8750H processor and a NVIDIA GeForce GTX 1060 with Max-Q Design GPU was used

for the backpropagation calculations. Using this setup, the time used for training 1 model

during 200 epochs is around 22 hours, including validations on each epoch.

3.1.5 Results

The evolution of the training and validation MSE for the selected configuration is shown in

Fig. 3.1. The MSE was computed at each epoch for the training and validation subsets. For

the validation, the MSE previous to applying the Kalman Filter was also computed on each

epoch. As expected, the error while training is lower than the validation error, and the KF

decreases the error.

The prediction for unit 100 in the 5T-train dataset is shown in figure 3.2. This plot

shows the RUL in the vertical axis and the number of elapsed cycles in the horizontal axis.

For units in the train sample, this will always look like a diagonal line with negative slope,

starting with RUL equal to the total number of cycles in the Run-to-Failure and ending in

zero. It seems necessary to emphasize that even when this plot looks linear, the relationship

59

between the multiple sensor measurements and the RUL is not necessarily linear. This plot

shows that the prediction is accurate on early to mid-life stages, but it tends to overestimate

the RUL on cycles that are close to the failure event. The predictions for the units in the

training sample follow a similar pattern. With these predictions, the evaluation metric is

s = 11, 556, which is good enough as the top 25 approach in the ranking presented in [59].

However, there is still room for improvement.

3.1.6 Conclusion

The DA-RNN model provides a novel and robust approach in prognostics. However, there

are still some improvement opportunities to address so this model will be on the same level as

the top approaches presented in [59]. Some of the model identified strengths are the good fit

on RUL estimation for early to mid-life cycles. In addition, the model seems to capture well

the time-dependent nature of the RUL values. Additional experiments will test variations in

hyperparameter combinations, using a systematic search like Bayesian Optimization. Indeed,

the potential of the proposed DA-RNN and the technical modifications that may arise as

research progresses are expected to be of great benefit for the advancement of data-driven

prognostics methods.

60

4. Study on All-Terminal Network Reliability

61

4.1 Deep Reinforcement Learning and All-Terminal Network Reliability

4.1.1 Introduction

Infrastructure networks, such as highways, communication networks, power networks, and

water networks, play an essential role in our daily activities. Unfortunately, natural disasters

and malicious attacks pose serious threats to these infrastructure networks. Historically,

many failures in infrastructure networks occurred which have caused issues for many people.

One well-known example is the 2003 Northeast blackout that affected fifty million people in

the United States and Canada [67]. Another failure in infrastructure networks include the

levee failure in Louisiana during Hurricane Katrina [68]. The levees in Louisiana were not

adequately prepared to handle the water from Hurricane Katrina, thus, they breeched due

to the pressure and caused much of New Orleans to flood. Clearly, these examples show how

essential it is to ensure infrastructure networks are reliable.

To quantify the reliability of an infrastructure network, one essential task is to investi-

gate the connectivity of components in the network. Mathematically, the problem can be

formulated as an all-terminal network reliability problem. In practice, quite a few infrastruc-

ture networks can be modelled as an all-terminal network, such as highways, communication

networks, power networks and water networks. To calculate all-terminal network reliability,

numerous methods have been used. These methods provide either an exact value or an es-

timate of the reliability. Ball et al. [69] summarizes exact methods for calculating network

reliability such as exponential time exact algorithms for general networks and polynomial

time exact algorithms for restricted classes of networks, as well as other methods such as

bounds on network reliability, and Monte Carlo simulation. Gaur et al. [70] also detailed

many different network reliability methods including state enumeration, minimal cut, and

neural networks, and they discussed the limitations of each method. Technically, cut enu-

meration entails enumerating the minimal subsets of links whose failure causes the network

to fail. This method is an exact method and very useful for small networks, but it reaches

62

its computational limitations very quickly. Monte Carlo simulation (MCS) methods choose

a random sample of states to explore and estimate the network reliability as the proportion

of sampled states in which the network is functioning properly. Karger [71] found one of the

flaws of the MCS approach is that it is very slow when the probability of failure is very low.

Cardoso et al. [72] studied Monte Carlo simulation in conjunction with neural networks to

investigate the structural reliability of different structures. MCS only allows one network

structure to be calculated at a time, so it can be very time consuming to calculate the relia-

bility. As a solution, they combined neural networks with MCS which allowed them to save

computational time and obtain more precise reliability measurements.

Srivaree-ratana et al. [73] used an Artificial Neural Network (ANN) to estimate network

reliability. In their study, they trained the ANN using a set of network topologies and link

reliabilities. They then used the ANN to estimate the network reliability based on the link

reliabilities and the topology in finding the optimal network topology by simulated anneal-

ing. They demonstrate that their approach performs well empirically through comparisons

to an exact approach as well as to an upper bound derived from a polynomial time algo-

rithm. However, the disadvantages of their method are that the training of ANN needs to

be performed first for a topology of a fixed number of nodes and optimal network design

can be carried out only for this topology. It would be more useful to develop a method that

finds the optimal network via reliability evaluation and learning without such limitations.

In this paper, a new method based on Deep Reinforcement Learning (DRL) along with

the use of a reliability polynomial is proposed for maximizing the all-terminal reliability of a

network under the constraints on total budget and available types of edges for each step. To

demonstrate the use of the proposed method, the initial structures of example networks are

in the form of all nodes being connected in series. It is worth pointing out that although this

paper focusses on maximizing the all-terminal reliability of a network by adding additional

links, the proposed method can be extended to solve network design problems with the

flexibility of adding additional nodes.

63

The remainder of this paper is organized as follows. Section 2 describes the reliability

model for an infrastructure network and the method of calculating all-terminal reliability

using a reliability polynomial. Section 3 introduces the proposed DRL method for network

reliability improvement and elaborates on several important computational issues. Section

4 provides numerical examples to illustrate the use of the proposed method in improving

infrastructure network reliability. Finally, we summarize our results and draw conclusions

in Section 5.

4.1.2 Reliability model for an infrastructure network

An infrastructure network can be described by a network model, which in its simplest form is

a collection of nodes connected by edges. Chartrand [74] formally defines a general network

using the notation N = (V,E,w), where V is the set of nodes (e.g., v1, v2, . . . , vn) and E is

the set of edges (e.g., e1,2, . . . , ei,j, . . . , en−1,n) with the corresponding weights given in w.

In this paper, the weights of the edges are the corresponding reliability values. Moreover,

networks can either be directed or undirected. In this work, an infrastructure network is

modelled as an undirected network, and reliability improvement decisions are made with

respect to the network’s all-terminal reliability.

4.1.2.1 All-terminal reliability of a network

The probability that a network is performing its intended function at a given point in time is

known as its reliability. Specially, the two-terminal reliability of a network is the probability

of having at least one operational path between the source and end nodes. Consider the

simple undirected network shown in Figure 4.1. The network has four nodes and five links

with corresponding reliability values. If node 1 and node 4 are the source and end nodes,

respectively, and the nodes are perfectly reliable, the two-terminal reliability of the network

can be calculated by considering three possible paths: for path 1-3-4, the reliability is R1 =

0.85(0.8) = 0.68; for path 1-4, the reliability is R2 = 0.95; for path 1-2-4, the reliability is

64

R3 = 0.9(0.75) = 0.675. Since the three paths are in parallel, the two-terminal reliability of

the network is simply R = 1–(1−R1)(1−R2)(1−R3) = 0.9948.

Figure 4.1: An example of simple series-parallel network.

Unlike two-terminal reliability problems, all-terminal reliability problems are interested

in that every node in the network is connected to every other node, and the reliability is

defined as the probability that the network is fully connected. Consider an n-node network

(V,E,w) with edge topologyX = [x1,2, . . . , xi,j, . . . , xn−1,n] with xi,j= 1, if edge ei,j is present;

0, otherwise. Let p(xi,j) be the reliability of edge ei,j. Then, the all-terminal reliability of

the network can be expressed as in Equation 4.1 [73].

R =
∑
X′∈Ω

 ∏
(i,j)∈X′

p(xi,j)

 ∏
(k,l)∈(X\X′)

(1− p(xk,l))

 (4.1)

In Equation 4.1, Ω consists of all operational states (i.e., edge subsets X ′ ⊂ E that

connect all nodes in the network). For example, to calculate the all-terminal reliability of the

network in Figure 4.1, we can simply calculate the probabilities of all network configurations

where all nodes remain connected even if one or more edges fail. Then, after adding all the

probabilities together, we obtain the all-terminal network reliability to be 0.9414. Clearly, it

becomes more difficult to calculate all-terminal reliability for complex networks with more

nodes and edges [75].

65

4.1.2.2 Reliability polynomial for all-terminal reliability evaluation

The all-terminal reliability of a network can be expressed as a function of the edge reliabilities.

This expression is a property arising from the network topology, and it is often known as the

reliability polynomial of the network. For a network N, when all edges have identical and

constant reliability of r, the all-terminal reliability is equivalent to Equation 4.2 [76].

RP (r) = rn−c(1− r)m−n+cT (1, (1− r)−1) (4.2)

In Equation 4.2, n is the number of nodes, m is the number of edges, and c is the number

of connected components. T is the Tutte Polynomial of the network, a property arising from

the network topology, defined as in Equation 4.3 [77].

T (x, y) =
∑

ti,jx
iyj (4.3)

In Equation 4.3, ti,j represents the number of spanning trees of the network whose internal

activity is i and external activity is j. The summation is over all the subgraphs in the network

[77].

4.1.2.3 Basic method

While this polynomial can be computed using Equation (2) for the identical reliability case,

our algorithmic procedure keeps track of the individual link reliabilities. The resulting expres-

sion of the all-terminal reliability is an equation that takes the link reliabilities as arguments.

Using an algorithmic procedure to create a symbolic representation of this polynomial, we

can automate the algebraic expression for any arbitrary network N . This allows for comput-

ing the polynomial once per every network configuration. It is enough for any specific edge

reliability values to replace the appropriate variables in the reliability polynomial to calcu-

late the all-terminal reliability. As computing time grows with the number of edges, in our

experiments, we limit our networks to at most 10 nodes and 20 edges with no parallel edges

66

between any two nodes. For the network topology presented in Figure 4.1, the reliability

polynomial that represents the all-terminal reliability if all the identical links are identical

is as in Equation 4.4.

RP (r) = 4r5 − 11r4 + 8r3 (4.4)

For a more general case with nonidentical links, the reliability polynomial is as in Equa-

tion 4.1.2.3. By substituting the link reliability values as shown in Figure 4.1 into this

equation, we arrive at the same network reliability value of 0.9414 as we obtained earlier.

RP (r12, r13, r14, r24, r34) = 4r12r13r14r24r34 − 2r12r13r14r24 − 2r12r13r14r34

+r12r13r14 − 3r12r13r24r34 + r12r13r24

+r12r13r34 − 2r12r14r24r34 + r12r14r34

+r12r24r34 − 2r13r14r24r34 + r13r14r24

+r13r24r34 + r14r24r34

(4.5)

4.1.2.4 Computational Algorithm

We have tested computing the polynomial using recursive and enumerative methods. The

recursive methods rely on finding the subgraphs by contracting or removing edges in the

network and applying the same procedure to each substructure until reaching disconnected or

fully connected states while keeping track of the symbolic multiplications. The enumerative

methods list all the possible states on which the edges can be configured, remove the ones

that result in a disconnected network, and apply the appropriate operations on the reliability

variables to obtain the polynomial.

In Algorithm 2, the PossibleStates are composed of arrays of zeros and ones that denote

if the corresponding edges present or not. Each of these arrays is considered a Combination

67

Algorithm 1 Recursion-based Reliability Polynomial

1: Input ← N = {V = {1, 2, . . . , n} , E = {eij} , R = {rij = p(xij)}}
2: function RecursiveReliabilityPolynomial(N)
3: if N is not connected then
4: Output ← 0
5: else if |V | > 0 then
6: ekl ← First element in E
7: Ncontracted ← N with ekl contracted
8: Ndeleted ← N with ekl removed
9: RPcontracted ← RecursiveReliabilityPolynomial(Ncontracted)
10: RPdeleted ← RecursiveReliabilityPolynomial(Ndeleted)
11: RPN ← rklRPcontracted + (1− rkl)RPdeleted

12: Output ← RPN

13: else
14: Output ← 1
15: end if
16: return Output
17: end function

and each combination is composed of states sij that represent if the edge is included in the

configuration or not. As a connected network needs at least nnodes − 1 edges, we filter those

combinations that are guaranteed to lead to disconnected configurations before evaluation.

The recursive algorithm is based on a similar approach designed for the case with identical

links [78]. We have modified this procedure to account for the individual edge reliability

values. The final algorithm keeps track of the individual edges. We use the enumeration-

based version to validate our results. To further exploit reusing these polynomials, we use

a NoSQL database based on MongoDB [79] to store the precomputed representations. To

account for the potentially large equations, we also use GridFS for a distributed storage of

files [80].

4.1.3 Reliability improvement using deep reinforcement learning

ANNs are based on the biological neural networks within the human body. Just like the brain,

the components of ANNs work together in parallel and series to learn based on experiences.

This learning occurs using a training set which is a set of inputs with known, target outputs.

68

Algorithm 2 Enumeration-based Reliability Polynomial

1: Input ← N = {V = {1, 2, . . . , n} , E = {eij} , R = {rij = p(xij)}}
2: nnodes ← |V |
3: nedges ← |E|
4: PossibleStates ←

∏nedges

i=1 {0, 1}i = {0, 1}1 × {0, 1}2 × · · · × {0, 1}nedges

5: FeasibleStates←{Combination = {sij} ∈ PossibleStates :
∑

Combination ≥ (nnodes − 1)}
6: Terms ← ∅
7: for all Combination ∈ FeasibleStates do
8: Ntemp ← {V = {1, 2, . . . , n} , E = {eij : sij = 1} , R = {rij = p(xij)}}
9: if Ntemp is connected then
10: Result ← 1
11: for all sij ∈ Combination do
12: if sij = 1 then
13: Result ← rijResult
14: else if sij = 0 then
15: Result ← (1− rij)Result
16: end if
17: end for
18: else
19: Result ← 0
20: end if
21: Append Result to Terms
22: end for
23: Output ←

∑
Terms

69

In sequential decision-making, ANN can be used to create functional maps from system

states or observations to the best action among a finite set of possible actions. In general,

when the decision system is trained in a loop that assigns rewards to any of the actions

taken, and the system learns the mapping from actions and observations to rewards, this

is known as Reinforcement Learning (RL). When the function mapping the relationship

between actions, observations, and rewards is an ANN, it is known as Deep Reinforcement

Learning (DRL) [81].

4.1.3.1 Problem Formulation

For reliability improvement, this takes the form of deciding the best next edge to add to an

infrastructure network to maximize the all-terminal reliability. When it is also possible to

choose the quality of the new edges, the decision space grows. By considering cost constraints

on the decision problem, the edge quality affects the reliability value and the added cost of

the decision. Then, a finite sequence of edge decisions that will maximize the all-terminal

reliability exists. Mathematically, the problem can formulated as follows:

max
At|Ot

Rt = lnRnetwork,t − ln(1−Rnetwork,t) + λRt−1 (4.6)

At = [xij, qij] (4.7)

Ot = [xij, cij, Ct−1] (4.8)

rij = p(xij, qij) (4.9)

s.t. (4.10)∑
i

∑
j

cijxij = Ct ≤ B (4.11)

On each decision step t, the agent decides which set of actions At will maximize the

reward Rt given the observations from the environment Ot. The reward is a function of

the current all-terminal reliability and the value on the previous time step, discounted by a

70

factor λ. The actions include the new edge to add, xij, and its quality level qij. Observations

include the edges already in the network, the cost associated with each edge in the network,

cij, and the total cost of the network at the previous time step Ct−1. The budget constraint

keeps the current cost of the network Ct within the the budget, B.

The current implementation uses the log-odds of the system being connected for the

reward function: a transformation of the all-terminal reliability. It is worth pointing out

that our initial experiments used the all-terminal reliability. We found more consistent

performance using the negative log of the unreliability, and after further experiments, this

led to using the log-odds of the system being connected. For actions, the options are the

links not yet in the network and the quality level, with discrete options defining the edge

reliability value. For the observations, the states, we propose the network topology, the cost

of each link in the network, and the total cost of the current configuration. A cost constraint

defines the budget for the added links limiting the number and quality of the added edges.

4.1.3.2 Implementation Framework

For the implementation, we base our training environment on the OpenAI-Gym framework

[82]. This provides the basic elements to train and test DRL models. As there is a common

interface for the models to train on, this allows for quick prototyping and testing.

Stable Baselines [83] is a set of DRL models that can be tested using the OpenAI-Gym

interface. This grants access to a collection of algorithms that can be explored using an

appropriate training environment. Each model is a different agent that can learn from the

tuples of observations, actions, and rewards: striving to maximize the defined rewards while

adjusting to the conditions posed by the environment, such as conditions for stopping and

feasible actions.

4.1.3.2.1 Training Environment An environment requires four basic elements: obser-

vations, rewards, actions, and a way to evolve. The current environment starts with a path

network with n nodes, and the n − 1 links all have a reliability value of r0, this makes the

71

initial all-terminal reliability rn−1
0 . Then, the possible actions are (n2−n)/2−(n−1) link op-

tions to add, with qij = 1, 2, . . . ,m, m is the number of quality levels, with rij = 1−(1−r0)qij ,

which is equivalent to considering each quality level to having qij basic links in parallel. This

translates into each link cost as cij = qij. On each decision step, a DRL agent observes the

state of the network, the connected links, the cost of each link, and the total cost. Then,

it can choose one of the links to add, and one of the quality levels, if it is within budget.

After adding the link, the reliability is computed from the corresponding polynomial and

the different edge probabilities and the agent receives the associated reward. If the budget

has not been exhausted, and there are feasible edges that can be added, the next decision

step proceeds; otherwise, the episode stops.

4.1.3.3 Selected model

For our experiments, we work with a variant of Proximal Policy Optimization (PPO) [84].

PPO is a DRL model that explores decision policies in sets of actions that tries to balance

the exploration of new decision policies with the optimization of a surrogate objective func-

tion. Specifically, it is a Policy Gradient method that limits itself to exploring points in

a neighboring policy space by taking small incremental steps when the actions lead to an

advantageous increase in rewards but is clipped, restricted to a neighboring range, when a

disadvantageous direction is found [84]. This is designed to avoid stalling the decision in

regions difficult to escape.

The variant used is a Maskable Proximal Policy Optimization (M-PPO) [85], an algo-

rithm that considers the feasibility constraints posed by the training environment. For the

formulated problem, this is equivalent to restricting the action space only to those links that

are not yet in the network and are within budget. The M-PPO model uses a validity mask,

a vector that keeps track of the valid actions, and operates it with the probability of taking

a given action before updating the weights on each training step. This is useful to ensure

the agent only learns to take feasible action and, for our problem of interest, guarantees that

72

the network reliability increases on every decision step.

4.1.4 Numerical examples

Experiments for different network configurations are conducted in this section. The results

presented correspond to networks with n = 7 and n = 10 nodes. r0 = 0.8, and there are

m = 3 levels of edge reliability: 0.8, 0.96, and 0.992. The budget is set on B = 5, so at most

five links can be added.

(a) (b) (c)

Figure 4.2: Results for the 7-node network with B = 5

Figure 4.2 shows the results for n=7. The first network (a) is the original configuration.

The black edges represent the original n − 1 edges in the path network. The red edges

represent those with qij = 1. For this case, the DRL agent only chose to add red links: it chose

to maximize connectivity versus edge quality. The second network (b) is the configuration

after one decision step and the third network (c) is the configuration at the final step. The

all-terminal reliabilities are 0.26, 0.58, and 0.88 respectively. With the current approach,

training the DRL agents while evaluating the reliabilities with no precomputed polynomials

takes around 1.35 hours for 6144 training episodes of this experiment. This leads to an

average of 0.8 seconds per training episode. The number of episodes was an arbitrary choice

and further experiments are needed to decide the appropriate number of training steps, as

well as to quantify the learning progress on the model. Further comparisons with baselines,

such as total enumeration, are required to identify the optimality gap of the current approach.

73

(a) (b) (c)

Figure 4.3: Results for the 10-node network with B = 5

Figure 4.3 shows the results for n=10. The first network (a) is the original configura-

tion. Again, for this case, the DRL agent only chose as many low-quality links as possible:

maximizing connectivity. The second network (b) is the configuration after one decision

step, and the third network (c) is the configuration at the final step, exhausting the budget.

The all-terminal reliabilities are 0.1342, 0.3490, and 0.6722 respectively. With the current

approach, training the DRL agents while evaluating the reliabilities with no precomputed

polynomials takes around 4.36 hours for 6144 training episodes of this experiment. This

leads to an average of 2.56 seconds per training episode. Similar to the previous experiment,

more informed decisions about the number of episodes and procedures to performance are

required.

4.1.5 Conclusions

The DRL method proposed in this paper enables reliability improvements of infrastructure

networks. As a promising alternative to total enumeration and evolutionary optimization

methods, the proposed method along with the use of reliability polynomial take advantage

of machine learning capability in finding the best design of a general network with respect to

all-terminal reliability. The polynomial computation is exact and challenging to scale, but

as it only has to be computed once per network topology, it can be reused for different edge

reliability values. This, combined with the permanent NoSQL database, allows for faster

74

training of the DRL agents. The M-PPO model for network reliability improvement is a

data-driven approach that learns to solve the sequential decisions for the network topology

while considering constraints on the feasible actions. For the experiments considered, it

learns to optimize the choice of edges, maximizing connectivity, and quickly improving the

all-terminal reliability of the networks of interest.

For future research directions, the computed polynomial can be used to generate datasets

mapping network topologies and individual edge reliabilities to all-terminal network relia-

bility. These datasets can then be used to train surrogate models capable of approximately

estimating the network reliability. The DRL agents can also be used to sequentially improve

the network reliability in scenarios where each link can degrade over time and eventually fail

and become disconnected. The objective is now to maximize the network reliability while

managing the new and degrading edges. For further complexity, we can include inspections,

maintenance, and repairs of links among the set of actions. We are optimistic that DRL

agents can handle this type of maintenance problem and be competitive in comparison with

traditional process control methods.

4.2 Stochastic Variational Inference Neural Networks for All-Terminal Network
Reliability

4.2.1 Introduction

Interconnected infrastructures provide critical services for the general population. Such

critical infrastructures can take the form of power networks, communication networks, water

networks, and transportation networks. Like other physical entities, these networks are

prone to failure due to natural degradation and adverse events. An essential task in practice

is to evaluate the reliability of an infrastructure network in terms of the connectivity of

its components. Focusing on the probability that all components remain communicated

with each other, the requirement can be conceptualized as the all-terminal reliability of the

network [86].

75

Consider an n-node network (V,E) with edge topology X = [x1,2, . . . , xi,j, . . . , xn−1,n]

with xi,j = 1, if edge ei,j is present; 0, otherwise. Let p(xi,j) be the reliability of edge (i, j),

and Ω be all operational states with all nodes being connected. Then, the general equation

for computing the all-terminal network reliability is [87]:

R =
∑
X′∈Ω

 ∏
(i,j)∈X′

p(xi,j)

 ∏
(k,l)∈(X\X′)

(1− p(xk,l))

 (4.12)

The computational effort of exact algorithms for computing the all-terminal reliability of

a network scales exponentially as the number of edges and nodes increases and eventually

becomes prohibitive [88]. As a result, this computational step can become burdensome

in applications that require repeated computations of all-terminal reliability for different

network configurations. As an alternative to exact methods, approximate methods have been

developed with varying degrees of precision. The gamut of such methods includes simulation-

based methods such as Monte Carlo simulation [89], surrogate models like Artificial Neural

Networks (ANNs) [87], and highly flexible models such as Deep Neural Networks (DNNs)

supported by Graph Embeddings [87].

Beyond network reliability evaluation, improving the all-terminal reliability of a network

is an essential task and can be implemented in different ways. These include, but are not

limited to, Dynamic Programming and evolution-based methods [[90] such as Simulated

Annealing, Ant Colony Optimization, and Artificial Bee Colony algorithm. By taking ad-

vantage of machine learning methods, it would be practically valuable and more efficient to

tackle the network reliability improvement problem using machine learning.

In this work, our goal is to develop a machine learning-based framework for evaluating

and improving all-terminal network reliability. In particular, the reliability improvement

problem focuses on data-driven network design optimization, for which for an initial network

structure, we determine the best sequence for adding links to maximize the metrics related

to the all-terminal reliability over a finite time horizon.

It is worth pointing out that for our problem of interest, the complexity of the problem

76

is heightened by making the design space larger, as multiple link options of varying quality

are considered. Additional practical constraints, such as budget constraints, pose tracking

the feasibility of each action as an essential factor to consider in algorithm development.

Given these, we consider the network design as a Reinforcement Learning (RL) problem.

Furthermore, by using Deep Neural Networks to model network reliability, we frame the

design problem as a Deep Reinforcement Learning (DRL) problem [91].

4.2.2 Related Work

With the extent of interconnected networks in everyday life, there is an essential need to

understand network reliability and achieve better resilience in such critical infrastructures.

Numerous studies in this area try to maximize all-terminal network reliability, and such

problems are classified as NP-hard problems [88]. Indeed, in solving such problems, calcu-

lating all-terminal network reliability, and optimizing the network structure are of the most

computational challenges.

Dengiz et al. [90] used a genetic algorithm to maximize a network’s all-terminal reliability.

Ramirez-Marquez and Rocco [89] suggested a novel algorithm based on hybrid optimization,

which combines a probabilistic solution discovery with a Monte Carlo simulation to estimate

the all-terminal reliability of the network. Recently, Goharshady and Mohammadi [92] sug-

gested an innovative method for computing reliability for networks with small treewidth (as

in subway networks), which can be scaled to networks with a higher count of vertexes.

Scholars have attempted to estimate network reliability by developing ANNs as surrogate

models. Srivaree-Ratana and Smith [87] developed an ANN model that used link reliability

and a reliability upper bound as inputs and computed the all-terminal reliability as its

target value for a network with ten nodes. Davila-Frias et al. [93] proposed an approach

to predict the network’s reliability with varying graph sizes. They used different graph

embedding methods to represent the network as the input of the DNN model. Recently,

Davila-Frias and Yadav [94] addressed all-terminal reliability estimation using Convolutional

77

Neural Networks (CNNs). They defined a multi-dimensional vector representing the network

adjacency matrix, link reliability, and topological attributes as the input of the CNN model.

The output layer is a regression preceded by a sigmoid layer that predicts the network’s

reliability. This allows for exploiting the power of CNNs to identify correlations in the

spatial patterns of the adjacency matrix that might be relevant for minimizing the loss

function during training.

4.2.3 Methodology

DNN models are a powerful tool for creating a surrogate model for all-terminal reliability.

We propose using a Bayesian variant of a DNN model to estimate the reliability of networks

with vertex counts in a defined range. Exploiting the flexibility of this type of models to

estimate all-terminal reliability will be balanced by the regularization capabilities of the

Bayesian component in the inference procedures.

A sequence of subtasks will be tackled before obtaining a viable surrogate model. We

first create a dataset comprised of several sample networks with a relatively wide range of

all-terminal and individual edge reliability values. Then, the all-terminal reliability is calcu-

lated using an exact state enumeration algorithm. Next, we create a tensor representation

of these networks based on adjacency matrices and spectral analysis. As these tensors arise

from 2-dimensional arrays, we consider they encode relevant spatial information that can be

extracted. To exploit this in a data-driven fashion, we train a baseline CNN model to create

two desired outputs: an initial estimation of the all-terminal reliability and a data-driven

embedding of the sample networks. We then train a DNN model in a Bayesian framework

using Stochastic Variational Inference with the CNN embedding as input. This procedure

enables inference on the all-terminal reliability values while quantifying the uncertainty of

the estimates through Bayesian reasoning by sampling from the posterior distributions us-

ing DNNs as learnable transformations conditioned on the observed data. The complete

modeling pipeline from tensor representation to SVI+DNN is now the surrogate model.

78

One of the most valuable use cases for this surrogate model is to speed up network design

optimization tasks. Furthermore, as this approximation is not as computationally expensive

as those exact methods, we can use iterative optimization methods and take sequential

samples from the decision space. To take full advantage of this, we propose using a Deep

Reinforcement Learning framework in a setup where it will actively learn from observed

sequences of network designs while maximizing all-terminal network reliability.

4.2.3.1 Dataset Generation

Network graphs are generated with sizes of 8, 9, and 10 nodes with random numbers of

undirected edges. We generate n graphs of each size for a total N = 3n samples. We consider

all nodes to be perfectly reliable, all edge failures are independent, and edge reliabilities can

take varying values on pre-defined levels. Any given edge connecting two nodes is included

with a random uniform chance defined by padd. Link reliabilities are randomly assigned and

uniformly chosen from a list of values rlist. For this dataset, all the graphs are connected:

all nodes can communicate with each other, so their all-terminal reliability values are always

non-zero.

The all-terminal reliability is first computed using an enumeration algorithm. This cal-

culation is validated by another automated procedure developed to compute the reliability

polynomial of an arbitrary graph [86]. Finally, the pairs of graphs and their exact all-

terminal reliability values are stored for each sample. The generated sets of random graphs

have varying numbers of edges and nodes, topology, and edge reliability configurations. This

procedure was inspired by the work in [87] and [94]. However, more complexity was added by

including multiple vertex counts in a single modeling pipeline and by making link reliability

values vary both within a single graph and across graphs.

79

4.2.3.2 Tensor representation

For each of the generated graphs in the dataset, we created a tensor of size 10×10×3 com-

prised of three matrices of encoded information about the network structure. Each matrix

is of size 10×10 as the largest vertex count in our samples is ten nodes. For graphs with 8

and 9 nodes, we added zeroes on the last 1 or 2 rows and columns correspondingly.

The adjacency matrix encoding the network edge and node structure is the first matrix.

The second matrix is analog to the adjacency matrix but replaces the encoded values for

each edge with their corresponding reliability values. We refer to this as the edge reliability

matrix in this paper. The third matrix is the normalized Laplacian matrix. Given the

adjacency matrix A and the node degrees in diagonal matrix form D, the Laplacian matrix

L and normalized Laplacian matrix N are computed by:

L =D−A (4.13)

N =D−1/2LD−1/2 (4.14)

We hypothesize that as this matrix encodes spectral information about the graph struc-

ture, it is a suitable input for a data-driven model with capabilities for exploiting spatial

information. Therefore, the spatial information is encoded in the matrix arrays and will be

used for the CNN embedding.

4.2.3.3 CNN embedding

Inspired by the work in [94], we use a CNN architecture for obtaining baseline estimation of

all-terminal reliability. The following is a list of the sequential layers in this model:

• Convolution: 8 filters, 3×3×3

• Leaky ReLU

80

• Average Pool 2×2

• Convolution: 16 filters, 3×3×8

• Leaky ReLU

• Average Pool 2×2

• Convolution: 32 filters, 3×3×16

• Leaky ReLU

• Average Pool 2×2

• Convolution: 32 filters, 3×3×32

• Leaky ReLU

• Average Pool 2×2

• Fully Connected Layer (288,512)

• Leaky ReLU

• Fully Connected Layer (512,1024)

• Leaky ReLU

• Fully Connected Layer (1024,1)

• Sigmoid

We use a sigmoid function as the final activation to guarantee that the output is a real

number between 0 and 1. We hypothesize that the three final fully connected layers work as

a latent space embedding of the features extracted from the tensor representation.

The outputs of the second to last fully connected layer are used as a representation of

the graph in the latent space. We refer to this as the data-driven CNN embedding in this

81

paper. This vector of size 1024, together with the baseline estimates, is used as the input

for the SVI+DNN model.

4.2.3.4 SVI+DNN surrogate model

To create a surrogate model for calculating all-terminal reliability, we use a Bayesian frame-

work to train the DNN model [95]. In addition, we selected the Pyro probabilistic program-

ming framework [96] and used their proposed terminology to describe the procedures.

On the weights and biases of the layers of the DNN, we place probabilistic priors. Condi-

tioning this on the observed data will lead to an intractable posterior formulation. To resolve

the challenge, sampling methods such as Hamiltonian Monte Carlo (HMC) can be applied.

However, such an approach using Stochastic Variational Inference (SVI) [97] This involves

optimizing the Evidence Lower Bound (ELBO) using stochastic gradient steps, where the

said lower bound is related to the Kulback-Leibler (KL) divergence of a proposed surrogate

distribution function, called guide, and the true posterior. This proposed guide is based

on the DNN model and a selected family of probability distributions. As the distribution

family, we selected the Delta distribution, leading to Maximum a Posteriori estimates of the

posterior distribution parameters.

The following equation shows the ELBO as an expectation with regards to the guide

distribution:

ELBO = Eqϕ(z) [log pθ(x, z)− log qϕ(x, z)] (4.15)

In Equation 4.2.3.4, observations are represented by x and latent random variables z.

and pθ(x, z) is their joint probability distribution with parameters θ. qϕ(x, z) is the guide

distribution with parameters ϕ. Stochastic Gradient Descent is performed in the parameter

space for ϕ to find a guide to decrease the divergence between the guide and posterior.

As this approximation would scale inefficiently for fully parameterized guides, we ex-

82

ploited the idea of amortization, which involves using a DNN to map the inputs to the

required parameters in the guide model to reduce the number of trainable parameters. It is

an exchange of parameters for a functional mapping.

This framework allows for estimating predictive distributions for all-terminal network

reliability using the network CNN embedding and the baseline estimates as the inputs. The

architecture of the model network is as follows:

• Bayesian Linear Layer (1025, 128)

• Leaky ReLU

• Bayesian Linear Layer (128, 128)

• Leaky ReLU

• Bayesian Linear Layer (128, 2)

• Sigmoid → (Output [1], Output [2])

• Normal Distribution

– Mean: initial estimation + Output [1]

– Variance: Output [2]

4.2.3.5 DRL for network design optimization

We use DRL to solve the sequential network design problem. The choice for DRL stems

from the sequential nature of the design problem. Technically, feasibility constraints are

factored-in by using Maskable Proximal Policy Optimization (M-PPO) as our optimization

algorithm [98], which is a variant of Proximal Policy Optimization (PPO) that can take into

account rule-based action feasibility.

We formulate the design problem with a reliability improvement objective. The DRL

agent will decide the best next edge to be included in the graph for a given initial network to

83

maximize the all-terminal reliability. We enable discrete levels of edge quality with varying

levels of cost and reliability. Moreover, we also consider a cost constraint such that a budget

limits how many edges can be added. The agent must find a finite sequence of edge decisions

that maximize its reward. Mathematically, the problem is formulated as:

max
At|Ot

Rt = lnRt − ln(1−Rt) + λRt−1 (4.16)

At = [xij, qij] (4.17)

Ot = [xij, cij, Ct−1] (4.18)

rij =p(xij, qij) (4.19)

s.t. (4.20)∑
i

∑
j

cijxij =Ct ≤ B (4.21)

For all decision steps t. the DRL decides the actions At to take given the observations Ot

to maximize the reward Rt which depends on the all-terminal reliability Rt and a discount

factor λ that balances the cumulative rewards. The available actions include adding a new

edge xij with a chosen quality level qij. The quality level affects the cost of adding said

link, cij, and the link reliability value. rij. The observations include the graph topology

represented by the links in the network, the cost of each of the present links, and the total

cost of the network up to the previous decision step Ct−1. The last equation shows the

budget constraint to keep the total cost below B.

For implementation, we created an environment using the OpenAI-Gym [99] framework

and trained the agents based on the Stable Baselines specified models [100]. The SVI+DNN

surrogate model is used to approximate the all-terminal reliability to speed up the required

computations.

84

4.2.4 Numerical Experiment

We conducted a numerical experiment by creating a dataset with N = 6000 randomly

generated networks with vertex counts of 8, 9, and 10 nodes (i.e., n = 2000). Edge cre-

ation probability is padd = 0.3. We considered five options for the levels of edge reliability:

rlist = [0.8, 0.85, 0.9, 0.95, 0.99]. For model validation purposes, we separate these samples

into “train,” “validation,” and “test” subsets, with proportions of 75%, 15%, and 10%,

respectively.

We run our experiment on a Google Colaboratory Virtual Machine with 8 Intel Xeon

processors with 4-Cores@2.2Ghz and 51GB of RAM. First, all the graphs in the sample

were transformed to their respective tensor representation. This step took between 4ms and

6ms per graph. The initial CNN model was adjusted on the training set using an Adam

optimizer to minimize an MSE loss metric. The learning rate was set on 0.002 following

a cosine annealing schedule until 0.001. We use mini-batch updates of 128 samples during

1000 epochs. This procedure took 13m and 46s (i.e., 0.8s per epoch). This step output the

initial estimation and the CNN embedding. For a new tensor representation, obtaining an

initial estimation and embedding took between 4 and 8ms.

We trained the SVI+DNN model during 20 optimization steps, using mini-batch updates

of 32 graphs and a ClippedAdam optimizer. The learning rate was set to 0.001. The training

took 14m and 51s with around 40s per step for training and 5s per step to evaluate perfor-

mance on the validation set. We sampled 100 times from the predictive posterior distribution

for estimations and use the mean as the final prediction. Given a graph, executing the com-

plete estimation from tensor representation to the surrogate model took around 200ms. For

graphs of similar size, our implementation of the enumeration algorithm took 30s for an

exact calculation of the corresponding all-terminal reliability.

Figure 4.4 shows the predictions on the training set (blue line) compared to the sorted

actual values (black line). The shaded area around these lines represents the 90% credible

interval for the posterior estimates. One can see that the predictions are generally close to

85

the true values. For example, the RMSE values of the predictions on the train, validation,

and test sets are 0.003, 0.08, and 0.08, respectively. Compared to the results presented in

the related studies [87], our proposed methodology achieves adequate precision in tackling

a more difficult task of estimating all-terminal network reliability for sets of graphs with

varying node counts and edge reliability values on a single modeling pipeline.

Figure 4.4: Prediction comparison

After completing the surrogate model, the model was used to estimate the reliability of

sequential graphs during the training of our M-PPO agents. We defined a DRL environment

with an initial path network with eight nodes. For the initial edges, the reliability was set

to be 0.8. For any given decision step, the agent can add edges with one of three quality

levels: 0.9, 0.95, and 0.99, and these edges have costs of 1, 2, and 3 units. Moreover, there

is a maximum budget of 10 units of cost, and the agent stops adding edges when the budget

is exceeded.

We trained the M-PPO agent during 5000 episodes, and it was completed in 24m and

42s. For a similar setup using a Reliability Polynomial for the all-terminal exact calculations,

the observed training time was close to 16 hours.

The designed final network prioritizes connectivity over individual edge quality. This is

observed from the exclusive use of links with the lowest quality and cost. The reliability

estimated by the surrogate model is 0.9452, and the exact calculation is 0.9927, within the

86

Figure 4.5: Initial (left) and final (right) graphs

bounds of our validation error. Similar designs maximizing connectivity are also preferred

by the M-PPO agent when the training is done using the exact computations in similar

problem setups. Figure 4.5 shows the initial and final graphs for the best solution found

after training, where the black links represent the existing edges initial network.

4.2.5 Case Study

To further illustrate the proposed methodology, we conduct a case study involving budget

constraints. We focus our attention on the backbone computer network of the Gazi University

in Ankara, Turkey [101]. The computer network with 11 nodes is shown in Figure 4.6. Three

types of links can be chosen with individual edge reliability values of [0.99, 0.995, 0.999]. The

quality level of each edge has an associated cost per meter of distance covered: [$12, $17,

$28].

Figure 4.6: Initial (left) and final (right) graphs for the Case Study

Before applying our method, some adjustments to the original formulation are made.

First, to apply the current surrogate model, we merge one of the nodes in the network to

87

its neighbor for simplicity. Second, we assume that all the links in the original network are

at the same quality level (set it at the lowest value). We use a budget value of $218,635,

as in the solution with the lowest cost in the original formulation. Third, while the lengths

of existing edges were provided in [101], to compute the distances not considered in the

original formulation, we located the university buildings using Google Earth and measured

the related distances so that the associated costs for adding new edges can be calculated.

We created a DRL agent to maximize the all-terminal reliability of the Gazi Network by

adding new edges between nodes. The best solution in the original formulation [101] had an

all-terminal reliability of 0.9945 and a cost of $322,865. This solution did not modify the

network topology. Our best solution found has a higher reliability of 0.9998, and it is shown

in Figure 4.6 as the final (right) network. The total cost is $199,140. It is worth pointing out

that our solution added edges and modified the network topology. Moreover, our solution

maximizes the number of edges by choosing the lowest quality level and adding edges with

the lowest distances between pairs of nodes not yet in the network.

4.2.6 Conclusions

In this paper, we proposed a surrogate model to efficiently evaluate all-terminal network

reliability. With the goal of improving the all-terminal reliability of a network, a DRL en-

vironment defining the action space, the per-period rewards, feasibility constraints, system

evolution conditions, and state transition dynamics was developed for solving the network

design problem. The practical value of this work is twofold. First, the Bayesian data-driven

model is flexible enough to approximate the all-terminal network reliability of arbitrary

graphs of varying sizes. It can work with varying edge reliability values and does not need

additional computations as input, such as reliability upper bounds. The SVI framework

allows for quantifying estimation uncertainty and incentivizing regularization to avoid over-

fitting. Second, enhanced and supported by the SVI+DNN approximation method, exploring

the use of DRL for network reliability improvement provides a useful data-driven algorithm

88

capable of tackling complex design problems in ample design spaces.

Our future work will be focused on validating the network design solutions by diagnos-

ing convergence and identifying suitable conditions. Indeed, validating such a data-driven

model is challenging, but quantifying the optimality gap using total enumeration for small-

scale problems is still possible. Furthermore, we have identified research opportunities for

leveraging the estimation uncertainty naturally arising from the Bayesian model. We will ex-

ploit this by using other optimization methods such as Bayesian Optimization with Gaussian

Process surrogate models or Thompson Sampling. In another direction, we will explore pos-

sibilities of balancing maximizing reliability with other objectives such as the equity across

a network in humanitarian applications.

4.3 Dynamic Control using Deep Reinforcement Learning

4.3.1 Optimal Control for Dynamically Evolving Networks

Similar to the work presented in [4], where a surrogate model is developed and used to

estimate the all-terminal reliability of an arbitrary structured graph and then applied to an

optimization problem of network design to maximize the reliability metric, a similar research

thread is developed in [10]. In this work, the first author developed a surrogate model based

on Graph Neural Networks (GNNs) to estimate an arbitrary network’s reliability with great

precision. This surrogate model is so powerful and versatile that it shows accurate capabilities

of interpolation and extrapolation in the context of incomplete data.

Furthermore, an optimal control problem is established for dynamically evolving net-

works, and the ability of the surrogate GNN model to efficiently generate approximations

for the all-terminal network reliability is combined with a Maskable Proximal Policy Op-

timization (M-PPO) DRL agent that controls a specified set of actions to maximize the

all-terminal reliability. The online monitoring and control of actions make the action space

large and combinatorial in nature, making DRL a reasonable approach. This, combined

89

with the dynamically evolving network due to the edges aging and failing as time progresses,

makes the DRL decision-making system relevant as it can react to changes in the network

structure by learning from previous observations of the system evolution and reactions to

control actions. This author’s contribution to the work in [10] entails the simulation of dy-

namically changing edges in the network; the DRL environment to generate observations

and rewards as outputs of actions that the agent takes; and the training and monitoring

procedures to create and evaluate the M-PPO models. The problem and some numerical

results are shown in the following sections.

4.3.2 Problem Description

We define four main elements of the control problem in dynamically evolving networks and

formulate them in the context of DRL: evolution dynamics, action space, observation space,

rewards, and termination condition. The network evolves on discrete simulation steps, and

the agent can take actions on regular cycles after a pre-specified number of simulation steps.

Call this mission cycle. During these mission cycles, the system evolves freely until the agent

is allowed to take another action. For now, these cycles are pre-specified and fixed; it is a

condition given in the problem. For future work, controlling the timing of these mission

cycles could be included as part of the action space. A budget constraint on the number of

actions taken is considered, and different costs for different actions can be included. Also,

if these actions depend on a weighting variable for each edge (e.g., distance), this can be

included in the current version. An initial budget and a replenishment of this budget during

each mission cycle are included in the current formulation.

The system dynamics represent how the elements in the network change over time. For

this work, the edges in the network age on each simulation step. The edges are considered

as a binary state single failure mode element, and the time-to-failure is modeled using a

Weibull distribution with individual and independent parameters for each edge. Using a

three-parameter Weibull distribution with scale η, shape β, and location γ. These parame-

90

ters are all initialized with the same values for all edges, with γ = 0 in all examples, but can

be changed by specific actions depending on the allocation of sequences that the DRL agent

performs. During each time step, the edge status is sampled using the conditional probability

of failure for an additional time step. Feasibility of actions is tracked using edge status, avail-

able edges to include, and budget constraints. For future work, considering interdependent

parameterization between edges could be a valuable research thread to explore.

The action space represents the set of control activities the agent can undertake on a

given action step, and for now, it is limited to one action per mission cycle. These actions

include doing nothing, adding, maintaining, improving, and repairing edges. Doing nothing

is just a placeholder for not taking any other actions. Adding edges implies changing the

network structure by including a connection between two nodes that was not previously

present. This connection is initialized at age zero, with default parameterization for the

Weibull distribution. Edges included in the network can now be affected by the appropriate

actions. Maintaining edges applies to edges already in the network and in operational status.

Maintenance resets the selected edge’s age and multiplies the β parameter by a factor of

δm > 1, and now the component is more prone to failure due to an increase in the failure

rate. Improving an edge is also an action that is available for edges included in the network

and with operational status. This action effectively increases the Mean Time to Failure

(MTTF) of the selected age by modifying the η parameter by a multiplier δi > 1. Repairing

an edge is only available for edges already included in the network but with failed status.

This action restores the edge to operational condition with age zero and returns it to the

initial parameters. If the edge has been improved before, it keeps the improved η parameter.

The observation space represents all the elements in the system status that are available

for the M-PPO agent to use as inputs to a learned policy or to a surrogate value function.

The current version includes the following observations for each simulation step: network

structure, the age of the edges, the reliability of each edge, the estimation of all-terminal

reliability, the current budget, the current accumulated cost, the cost of each action per

91

weight, the weight of each edge, and the current reward. These observations are the inputs

to the deep learning networks in the agents’ training scheme.

The reward function is a transformation of the all-terminal reliability into a mapping

that sets all values between -1 and 1. For reliability values below 0.5, the reward is negative,

and it gets closer to 1 as the reliability gets closer to one. The current functional form chosen

has the advantage of larger derivative values as the reliability value is closer to 0.5, quickly

incentivizing network reliabilities with larger values than 0.5 in the deep learning training

scheme. Empirical advantages of using this mapping versus the network reliability value have

been observed, although further numerical comparisons and mathematical justifications are

still in development. The surrogate GNN model is used on all action steps to approximate

the all-terminal reliability value for the computation of the reward function, similar to the

work presented in [4]. Therefore, there are as many calls to the surrogate model as action

steps. The current termination condition is just completing a pre-specified number of mission

cycles.

4.3.3 Problem Formulation

The following is a mathematical formulation of the Optimal Control for Dynamically Evolv-

ing Networks problem. It includes the action sequences A1:t, the observation sequences O1:t,

and the cumulative rewards Rt.

max
A1:t|O1:t

Rt =tanh [lnRt − ln(1−Rt)] + λRt−1 (4.22)

=
1−

(
1−Rt

Rt

)2

1 +
(

1−Rt

Rt

)2 + λRt−1 (4.23)

A1:t = {Ak}tk=1 (4.24)

Ak = [Am,ij]k ,m ∈ Actions (4.25)

Actions ={nothing, add,maintain, improve, repair} (4.26)

92

Am,ij ∈{0, 1} (4.27)∑
ij

∑
m∈Actions

[Am,ij]k =1,∀1 ≤ k ≤ t (4.28)

O1:t = {Ok}tk=1 (4.29)

Ok = [Ol]
p
l=0 (4.30)

rij =R(τij|ηij, βij) (4.31)

s.t.

Ck =
∑
ij

∑
m∈Actions

cmwij[Am,ij]k,∀1 ≤ k ≤ t (4.32)

Bt =B0 + tb−
t∑

k=1

Ck (4.33)

Ck ≤ Bk,∀1 ≤ k ≤ t (4.34)

In this formulation, actions are represented as binary variables representing the action

type selected and the edge affected. This is captured in the Am,ij variables that reflect the

action type, m, and the edge affected ij. The observations are represented by a collection

of Ol variables in p total observations. In this formulation, the reliability of each edge rij is

a Weibull function of the age of the edge τij and the individual parameters ηij and betaij.

In the cost evaluation, cm represents the unweighted cost of each action, wij is the weight of

each edge and Ck represents the total cost on each action step. B0 is the initial budget and

b is the replenishment value that is added to the budget on each action step.

4.3.4 Numerical Results

Simulated results are presented for a sample network with 12 nodes and a case study using

the structure of an actual communication network with 11 nodes, including spatial locations

for the nodes and, in consequence, distance weights for the possible edges. The 12 node

network is initialized as a path network with 11 edges. The case study network is initialized

to the configuration encountered in the original source material [10]. For both examples,

93

the dynamics for the Weibull distributions are set using βij = 2, and ηij = 400, and mission

cycles of 10 time steps. For the 12 node network, this makes it so that the all-terminal

reliability after the first mission cycle is close to 0.5.

For the 12 node network, the action costs are 2 units for maintenance, 5 units for im-

provements, 10 units for adding an edge, and 7 units for repairs. The initial budget is set to

50 units, enough for adding 5 additional edges. The budget replenishment per action step is

5 units, enough for one improvement per each action step. The current mission cycle is of

10 time steps and the termination condition is 10 mission cycles.

Figure 4.7: Example 12 node network after 500 (left) and 999 (right) simulation steps

Figure 4.7 shows a comparison of a sample replication after 500 and 999 simulation

steps. The results of training an M-PPO agent over 10 replications and testing it over 100

replications are shown in Figure 4.8. On each plot in this figure, the solid lines represent

the mean value across replications, the dotted lines represent the median across replications,

the lighter shaded area represents a 95% variation interval across replication, and the darker

shaded areas represent a one standard deviation around the mean variation. The top left plot

represents the evolution of the reward values, and the bottom left represents the evolution

of the estimated all-terminal reliability. The top right plot represents the evolution of the

available budget. The bottom right figure shows the cumulative number of actions taken

on each action step, each color representing a different action. The current results show

a consistent increase in all-terminal reliability with a median closer to 1 as the time steps

progress.The budget is not completely exhausted in most cases, but it stabilizes at around

10 units. The actions are consistently composed of additions in the early action steps, with

94

a constantly growing number of maintenance and improvements, and a later increase in the

use of repairs. This would make intuitive sense as the repairs become necessary as edges age

out.

Figure 4.8: Example 12 node network: results for 100 replications

For the case study node network, the action costs are the same as in the 12 node network,

but now costs are affected by the weight of each edge and this is proportional to the distances

between nodes. The initial budget is set to 50 units times the mean distance value between all

nodes, this is enough for adding 5 additional average size edges. The budget replenishment

per action step is 5 units weighted by the mean distance between nodes, enough for one

average sized improvement per each action step. The current mission cycle is of 10 time

steps and the termination condition is 10 mission cycles.

Figure 4.8 shows a comparison of a sample replication after 500 and 999 simulation

steps. The results of training an M-PPO agent over 10 replications and testing it over 100

95

Figure 4.9: Example case study network after 500 (left) and 999 (right) simulation steps

replications are shown in Figure 4.10. On each plot in this figure, the solid lines represent

the mean value across replications, the dotted lines represent the median across replications,

the lighter shaded area represents a 95% variation interval across replication, and the darker

shaded areas represent a one standard deviation around the mean variation. The top left plot

represents the evolution of the reward values, and the bottom left represents the evolution

of the estimated all-terminal reliability. The top right plot represents the evolution of the

available budget. The bottom right figure shows the cumulative number of actions taken

on each action step, each color representing a different action. The current results show

a consistent increase in all-terminal reliability with a median closer to 1 as the time steps

progress.The budget is not completely exhausted in most cases, but it seems to remain above

2000 units in most cases. The actions are consistently composed of additions in the early

action steps, with a constantly growing number of maintenance and improvements, and a

later increase in the use of repairs. This would make intuitive sense as the repairs become

necessary as edges age out.

4.3.5 Conclusions

The current results show a promising outlook for using DRL models in the context of optimal

control of dynamically evolving networks. Assisted by the developed surrogate model for the

estimation of all-terminal reliability, the current model manages to keep the reliability of

the network in high values through the use of timely maintenance, repairs, edge additions,

and improvements. This extension of the network design problem, instead of maximizing

96

Figure 4.10: Example case study network: results for 100 replications

the static all-terminal reliability of a given network configuration, to control the dynamic

evolution of the network over multiple mission periods poses as a valuable application that

can be extended to different domains. These developments explore the promising outlook of

data-driven decision making tools for responsive maintenance and control in the context of

interconnected infrastructures.

4.4 Need-Based Sampling for All-Terminal Reliability Models

4.4.1 Motivation

Following a similar setup to [4], consider the case for interconnected infrastructures that

provide critical services for the general population. However, like other physical entities,

these networks are prone to failure due to natural degradation and adverse events. Therefore,

97

finding the reliability of a network is a crucial task necessary to understand the network’s

resiliency. One of the well-known measurements in this area is all-terminal reliability.

All-terminal reliability is the probability that all the nodes remain interconnected in a

network. However, calculating all-terminal reliability is a computationally intensive problem;

we used a data-driven surrogate model to approximate the all-terminal reliability compu-

tation. However, the performance of such data-driven models is highly dependent on the

observed data and network complexity. Therefore, it becomes necessary to devise a frame-

work capable of adaptively collecting samples to improve the accuracy of the estimations.

Exploiting the estimation of uncertainty associated with the current state of the Bayesian

Neural Network might be a key element to achieving this. Since a data-driven model de-

pends on the selected training samples, when a surplus of data points is available, sieving

appropriate training samples influences the model’s estimation performance. In this work,

we consider using additional samples to augment the observations used to fit a preliminary

model and develop a method for effective improvement through active learning under a bud-

get constraint. This approach is referred to as “need-based sampling.” One of the main

questions of this thread of research is, given a finite budget to collect additional samples,

how can we ensure that the extra samples grant the surrogate model an improved estimation

of the reliability function? An initial outline is provided in the following sections.

4.4.2 Conceptualization

Consider sequentially sampling from a generator of random connected graphs with a specific

number of nodes, a range of edge densities, and associated edge reliability values for each

edge. We will use these samples to augment the observations used to fit a data-driven model

and thus develop a method for effective improvement through additional data points. We

define a finite budget for these extra samples and quantify the usefulness for improving our

estimation of the reliability function. Said usefulness metric will be defined in section 4.4.4.3.

Moreover, we initially define a data-driven acquisition function based on similarity criteria

98

to decide if a given candidate sample will be included in the augmented data set.

We collect an initial sample of random graphs to initialize our active-learning procedure

and generate additional samples without evaluating their all-terminal reliability unless the

sample is deemed necessary for training. If a new sample is selected, it is added to the

training set, and the model is adjusted until the budget for additional samples is exhausted.

This results in expanding our observation space to include characteristics not present in the

initial sample and improving the performance of our surrogate model.

Algorithm 3 Need-based Sampling for Surrogate Reliability Models

Precondition: D0 = {(Gi, Ri)}n0
i=1 ▷ Initial sample

Precondition: τ =
[
{rk}Kk=k, {nk}Kk=k, p

]
▷ Generator Parameters

Precondition: G(τ) ▷ Graph generator function
Precondition: fR(·) ▷ Exact Reliability Evaluation function
Precondition: f̂R(·) ▷ Surrogate Model
Precondition: E(·) ▷ Model Performance Evaluation function
Precondition: A(·) ▷ Acquisition function
Precondition: n0 > 0 ▷ Initial sample size
Precondition: nb > 0 ▷ Budget for additional samples
1: j ← 0. Initialize sample indexes
2: f̂R

j (·)← f̂R(D0). Initial model fit

3: Aj(·)← A(E(·), f̂R
j (·),Dj, nb). Define initial acquisition function

4: while j ≤ nb do
5: Gj ← G(τ). Get one sample graph
6: aj ← Aj(Gj). Acquisition decision
7: if aj = 1 then
8: Rj = fR(Gj). Evaluate reliability
9: Dj ← {Dj, (Gj, Rj))}. Update data

10: f̂R
j (·)← f̂R

j (Dj). Update model

11: Ej ← E(f̂R
j (·),Dj). Evaluate model

12: j ← j + 1
13: end if
14: end while

In Algorithm 4.4.2, D0 = {(Gi, Ri)}n0
i=1 is the initial sample from the available data, with

n0 as the total number of observations in this sample, composed of graphs Gi with associated

all-terminal reliability values Ri. τ represents the set of parameters in the graph generator;

this defines the population of graphs from which we can sample.fR(·) is the function to

99

evaluate all-terminal reliability, usually computationally costly. f̂R(·) is the surrogate model

to be trained. E(·) is a function to evaluate model performance, such as the mean squared

error or any comparison of the reliability values predicted by the surrogate model and the

true values. Aj(·) is the function that will decide if any new sample should be acquired into

our pool of available samples based on the value that this potential sample represents for

improving the model performance.

4.4.3 Literature Review

Current search terms and threads have not returned any other results with similar goals

to the current endeavor of sequential need-based sampling. However, terms like “adaptive

augmentation”, “category discovery,” “representation learning,” and “deep clustering” have

returned various interesting works that do not share the same objectives but could be im-

plemented as building blocks of a sequential need-based sampling scheme. The following

paragraphs explore some of these ideas and outline how these could be used in a need-based

sampling framework.

4.4.3.1 Adaptive Augmentation

The work presented in [102] aims to overcome data deficiencies and make robust deep-learning

models while facing noisy data. They propose an adaptive augmentation of observations to

improve selected performance metrics. The focus is on protecting the model performance

from adversarial attacks using noise in image classification tasks. This is very close to the

current concept of need-based sampling because they are trying to improve the models by

augmenting the observation space. However, it also diverges from our current objective as it

is not focused on gaining new observations on a constrained budget but rather on exploiting

variations in the current data to gain robustness in unexpected variations on unobserved

data and even malicious adversarial examples. The authors use an iterative pipeline of

classification and re-classification with a measure of “Peak Signal to Noise Ratio” to quantify

100

the similarity of images and then decide if they should be included in the training data or

the augmented set. Using signal-to-noise metrics to quantify similarity could be exploited in

our need-based sampling framework.

4.4.3.2 Representation Learning and Clustering

Using unsupervised learning to identify categories in the data while evaluating representation

learning loss constitutes a joint approach to multiple tasks using the same data. The work

in [103] presents a model following this idea. The authors introduce a framework that learns

to cluster in the forward pass and does representation learning in the backward pass. Then,

they use the learned clusters and representations to improve performance on supervised

tasks. This idea could be applied to the need-based sampling work by doing clustering and

representation learning simultaneously, then using these classes in the supervised task of

all-terminal reliability estimation. After this, whenever there is a sample of a new network

structure, classify it before evaluating reliability and use it for learning if it is not part of

any of the predominant clusters or if the performance in the corresponding cluster is poor.

4.4.3.3 Discovering Categories

Ideas from category discovery could be used similarly to the previous subsection. By dis-

covering categories from the data, we can choose to oversample the categories that are not

predominant in the original training data. The work of [104] discovers categories from the

data using self-supervised learning and adaptive prototypes. They use a feature extractor

to create the prototypes and then use self-supervised learning to refine the categories. This

idea could be applied to need-based sampling to discover classes from the data using the

prototypes and then oversample the less predominant classes.

The work in [105] uses a similar idea by discovering categories using deep embeddings

for clustering. Learning both representations and clusters in a single model. They use KL

divergences for the clustering objectives. Again, this could be used to discover categories

101

from the data and then oversample the categories that are either not as predominant or that,

within that category, have poorer performance metrics.

4.4.3.4 Deep Clustering

On a similar approach, creating clusters using deep learning is possible, such as in works

like [106], where the focus is on doing feature learning and clustering assignments simultane-

ously. They use random transformations in the data to grant robustness to the features and

clusters learned. By relating the unsupervised learning of clusters to supervised learning,

they naturally incorporate data augmentation. They use an estimation of the clustering con-

fidence to decide if further refinements in the classes are needed by gradually adding “easy”

to classify examples. They name this approach “adaptive self-paced learning”. Similarly

to previous references, this could be used to create data-driven clusters and oversample the

ones not predominant in the training set or those with lower performance metrics within a

given cluster.

The work in [107] does representation learning and clustering simultaneously while pre-

serving geometric features of the original data. Their method can be applied to generalized

data and is not constrained to 2D images. This could be useful as geometric features are

potentially relevant not only for clustering but could also be used in the all-terminal relia-

bility estimation model as additional inputs. For example, these refined geometric features

could replace the latent representation vector currently extracted from the CNN model.

4.4.4 Proposed Research Direction

4.4.4.1 Cluster discovery

Based on the literature, using a cluster discovery approach can lead to advantages. This

would allow creating data-driven classes and categorizing each of the existing new samples

into this unsupervised labeling scheme. Then, evaluating performance within and across

clusters is a possibility. Also, by clustering using features from the network structure, it is

102

possible to apply the sequential sampling idea before evaluating the all-terminal reliability

of the chosen samples.

4.4.4.2 Similarity Criteria

Based on the literature related to deep clustering, there seems to be a variety of effective

approaches to measuring similarity. A wide array of choices exist, from KL divergences to

simple Euclidean distances in latent spaces. A simple metric with a known range, like cosine

distance for latent vector representations, can be explored for the current work.

4.4.4.3 Usefulness Metric

For initial experiments, we can define the usefulness metric of a given new sample consider-

ing a balance between exploration, exploitation, and innovation. Exploration would refer to

acquiring samples from clusters with few observations in the training data. This is equivalent

to preferring samples that belong to minority clusters. Exploitation would refer to selecting

samples corresponding to clusters that have, as a group, poor performance. For example,

using this criterion, sampling clusters with higher MSE in their observations would be pre-

ferred as it can potentially benefit the overall learning of the model. Finally, the innovation

metric would refer to preferring new observations that, while belonging to already predomi-

nant clusters, are significantly different from observations already in the sample. This would

target the within clusters variation and would be computed by using the similarity metric

defined before. This would allow for learning to estimate the reliability function of network

structures not observed, even if they are deemed to belong to clusters already explored.

4.4.4.4 Potential Advantages and Issues

For advantages, this author considers that attacking multiple tasks such as learning rep-

resentations, discovering clusters, and fitting the estimations from the same data can have

synergistic effects. Some of the representations can benefit the estimation of all-terminal

103

reliability, the discovered clusters can help refine the different estimations, and the learned

estimation can further help to refine the clustering. However, as a data-driven approach, the

risk of overfitting the training data is always present. Applying multiple tasks to the same

data can lead to attempting to estimate a larger set of parameters from fewer observations.

Balancing the number of additional weights and biases with the obtained data becomes

relevant. Methods for regularization and estimation of uncertainties might be needed.

4.5 All-Terminal Reliability using Quantum Computing

4.5.1 Existing Algorithm

4.5.1.1 Motivation

The potential of using frameworks as novel and in the vanguard of research, such as Quan-

tum Computing, has become a personal interest of this author in recent years. In particular,

methodologies such as the work in [11] present ideas to combine Variational Inference with

groundbreaking technologies such as Quantum Computing and simulation of quantum sys-

tems. While the complete understanding of the inner workings of these methodologies is

beyond this author’s current formation, efforts in this direction could lead to fruition as

these novel methods are being tested in problems closely related to network design contexts.

Specifically, it seems that problems related to large combinatorial spaces are good candidates

to be tackled using quantum computing ideas. Furthermore, as these technologies come to

maturity, the design of algorithms to implement them to optimize all-terminal network reli-

ability might become valuable. Research efforts exploring this venue of ideas are presented

in the following section.

4.5.1.2 Paper Review

The authors in [108] develop an algorithm to estimate network reliability using quantum

computation. Their method can be generalized to k-terminal network reliability, although

104

the fully developed concept is for all-terminal network reliability. In this article, the authors

start by defining all-terminal network reliability and classifying the computation of this

metric as a #P-complete problem.

For the goals of this article, their target is developing an algorithm exploiting the prop-

erties of quantum bits, qubits [109], in a computational circuit to perform network reliability

calculations with advantages over algorithms using classical computation. The main advan-

tage of using qubits is that they are, in essence, analog units of computation that could

be considered, as per my current understanding, as physical manifestations of probability

distributions over defined states. In this sense, a qubit might encode multiple states simul-

taneously in what is known as superposition. Superposition is a qubit with some defined

probability in various states simultaneously. Applying operations to multiple qubits in a

quantum circuit, as they might exist in superposition states, the operations are applied to

all combinations of states simultaneously. Measurement of qubits is the step in the circuits

that reveals which states are available, and it is an intrinsically probabilistic result: the

result of a measurement depends on the probabilities (in the quantum context, probability

amplitudes) associated with each state and it will reflect these probabilities over repeated

measurements.

The authors outline their algorithm as a quantum circuit composed of gate operations. In

the physical implementation of quantum circuits, these gate operations represent interacting

with the qubits, usually in the form of rotations along specified axes. By expressing their

algorithm as a set of gate operations, they effectively describe a quantum circuit that can

be implemented in modern quantum computation libraries such as [110].

In this author’s opinion, the most clever part of the defined circuit is the definition of a

network reachability operator implemented as a set of quantum gates. It allows for translating

the logic of a connected network using qubits. After expressing this for all connections in a

given graph, the authors propose using an oracle that verifies if the network is connected by

checking that all nodes are reachable from an arbitrarily chosen starting node.

105

The authors define another clever element in their algorithm as the next step. They

connect a Grover Operator, a quantum circuit that amplifies the probabilities of an oracle

state to be observed. Using this operator, they search among all possible combinations of

states of the defined qubits for those representing a connected network. After this, they

proposed applying repeated measures on a “label” qubit, a qubit configured to have a value

of 1 if the network is connected after applying the Grover search algorithm. This allows for

estimating the all-terminal network reliability by finding the probabilities associated with

this label qubit being measured with a state of 1.

By using repeated measures of an intrinsically stochastic set of states, this algorithm

is similar to a Monte Carlo estimation of all-terminal network reliability with the added

advantage that the Grover operator combined with the defined oracle allows for a guided

search of the associated probability of the network being connected.

One of the most constraining limitations of the current state of quantum computers is the

number of qubits available for computation and the noisy nature of the gate operations. For

example, the current algorithm needs |E|+|V |+2 qubits. For IBM cloud quantum computers

with a maximum of 127 qubits, this implies that, at most, a 15-node fully connected network

can be evaluated using a physical machine.

The authors in [108] do not provide experimental results of their method. However, this

author developed their implementation of a modified version of this circuit using Qiskit [110]

in Python. Through preliminary experiments, the results have verified that the algorithm

produces good approximations in reasonable times, at least using simulators of quantum

computers provided by IBM. Section 4.5.1.4 presents a brief discussion of the results.

4.5.1.3 Literature Review

The work in [108] presents a use case of quantum computing applied directly to network

reliability estimation. At the moment of developing this review, using keywords and threads

of connected references, I have not found another article discussing a method of the same

106

nature. However, algorithms inspired by quantum computing and using Monte Carlo sim-

ulation are abundant. Additionally, methods for redefining all-terminal network reliability

into a quantum measure of network reliability are also available.

Following a similar research venue, some work applied to network reliability estimation

or network design optimization has taken some ideas from quantum computing to improve

existing methods. For example, quantum-inspired ideas to complement established modeling

paradigms have found their niche.

The work presented in [111] is an overview of quantum-inspired ideas for Machine Learn-

ing applied to communication networks. This includes optimization, network design, and

statistical analysis of multiple states using quantum computing. In addition, the authors

state that promising research directions include hybrid algorithms combining classical and

quantum-based algorithms.

Consider [112], where efforts are directed to assess the reliability of power systems. Using

Monte Carlo Simulation, the authors developed a quantum circuit for estimating reliability

indices in distribution systems.

The authors in [113] present a method to create bounds for network reliability assessment

using quantum computing. Their method relies on using quantum computing principles to

count network configurations accurately. They state that with the current state of the

development of physical quantum computers, validating their methods is possible by using

systems with tens of qubits.

The authors in [114] present the Internet of Things Quantum Computing Inspired Opti-

mization (IoT-QCiO) concept. The proposition entails using many sensors and optimizing

the data accuracy of their collected data by considering characteristics such as vicinity and

spacing. They present a case study where they monitor traffic using sensors and inform de-

cisions in a vehicle routing problem. The quantum computations are done using simulators.

The authors in [115] present ideas on reliability analysis using quantum dynamics, where

they “explored the concept of the reliability theory in the quantum domain and formalized

107

the concept of quantum reliability (as opposed to classical reliability)”. In their definition,

quantum reliability is the evaluation of the quantum superposition of states. After they

extended these ideas to repairable systems in [116] where they incorporate the ideas of time-

dependent probability amplitudes that can be affected by repair and maintenance.

While all of these efforts provide some new ground to advance the use of quantum com-

puting ideas in network reliability analysis, none of them is a direct application of a quantum

computing circuit to estimate all-terminal network reliability. In this sense, [108] remains a

unique algorithm among the identified relevant work.

4.5.1.4 Implementation and Numerical Examples

Using Qiskit [110], this author implemented an interpretation of the quantum circuit. A

sample schematic for a small network can be observed in Fig. 4.11. However, it can only be

categorized as an “interpretation” as some details of sub-components in the circuit are not

fully expressed in the diagrams and equations and had to be inferred. IBM local and cloud

simulators were used to compute all-terminal network reliability values for test graphs.

Figure 4.11: Sample circuit schematic in Qiskit

For example, consider a fully connected 7-node graph, as in Fig. 4.12, with edge reliability

108

values selected randomly from a predefined list. This leads to a total of |E| = n(n−1)
2

=

21 edges with reliability values rij ∈ [0.5, 0.75, 0.85]. Implementing a total enumeration

algorithm yields an exact calculation of 0.9987 in 14 minutes using Python on a Google

Colab machine. Using one of the IBM cloud quantum computer simulators with 32 qubits,

this reliability value is estimated at 0.9925 after taking 10,000 samples. The time for this

computation is around 27 minutes.

Figure 4.12: Fully Connected 7-node graph

In another example, consider a fully connected 12-node graph, as in Fig. 4.13 with

edge reliability values selected randomly from a predefined list. This leads to a total of

|E| = n(n−1)
2

= 66 edges with reliability values rij ∈ [0.5, 0.75, 0.85]. The same total enu-

meration algorithm can not compute the value after 20 hours of computation. The Qiskit

implementation returns a reliability value of 0.998 after taking 1000 measurements of the

circuit. The time to complete this calculation is around 48 minutes using one of IBM cloud

quantum computer simulators with 100 qubits.

4.5.1.5 Strengths and Weaknesses

Among the identified strengths of this method, I consider that the speed of the approximation

is an advantage. It is surprising how accurate the estimates are in the simulators. However,

109

Figure 4.13: Fully Connected 12-node graph

the precision in a real quantum machine should be lower due to the noise inherent in the gate

operations. I also consider that the fast progress in these technologies to achieve machines

with more qubits and more reliable gate operations will make this approach viable as an

estimation alternative in the near future.

Among the identified weaknesses of this method, this author considers that the number

of qubits required is the most relevant restriction for applying it to large networks with real

applications. At least when considering the use of simulators for calculations. However,

in theory, the most significant speed-up would come from using real quantum systems. In

that context, not only the number of available qubits is a constraint, but also the noise and

cumulative errors in the gate operations. In real quantum machines, additional safeguards

to guarantee the accuracy of the calculations are necessary. This could make this method’s

viability questionable if the objective is to differentiate it from other simulation-based meth-

ods.

One of the practical results from the observed experiments using Qiskit is that, although

both nodes and edges require one qubit each to be represented, the size of the circuit grows

faster with the number of nodes as the Grover Operator and Oracle are dependent on the

number of nodes. This results in a larger number of gates being added to the circuit for each

additional node, which can quickly become a restriction on resources while using simulators.

110

Likely, this will also become a bottleneck when using real quantum machines.

4.5.1.6 Research Directions

This work can be directly applicable to current research efforts in network reliability. Firstly,

as an alternative estimation of all-terminal network reliability for moderate-size graphs using

the Qiskit implementation. Second, The result from the quantum approximation can be

used as an additional input for surrogate models, similar to using upper or lower bounds

for the all-terminal reliability as part of the inputs; experiments on this research venue

are currently under preparation. Third, the quantum circuit can be used as an oracle for

Quantum Approximate Optimization Algorithms (QAOA). Adding another Grover operator

to search for the best configuration of edges to maximize network reliability would also be

a possibility, albeit the feasibility of this idea will be quickly constrained by the number

of qubits required to express the different alternatives for adding arcs into a given network

configuration. Even if the current technology is still in the very early stages, quantum

computing applied to all-terminal network reliability looks like a promising research thread

to be combined with the currently developed efforts.

111

5. Conclusions

112

This dissertation presented a framework for data-driven tools aiming to model and improve

Interconnected Critical Infrastructures in multiple contexts. The importance of ICIs for daily

human activities, and the large volumes of data being generated in the modern industries

grants relevance to research efforts in this direction.

In Chapter 2, the impact of disruptions in Multimodal Transportation Networks is ex-

plored from an application perspective. The explored research threads combine simulation

tools for decision-making with data-driven optimization paradigms to create tools that might

provide stakeholders with optimal policies based on a wide array of scenarios and conditions.

The flexibility of the developed simulation models together with cutting-edge technologies,

such as DRL, sets the foundation for further promising research efforts on Inland Waterway

Transportation Systems.

The exploration of data-driven models for condition monitoring and prognostics, in Chap-

ter 3 focused on using Deep Learning for predicting the Remaining Useful Life of Turbofan

engines using multiple sensors in sequential measurements as input. A myriad of approaches

exists for this type of problem and the main contribution for future efforts might be centered

around combining this type of data-driven methods with simulation tools and computational

methods in contexts of network resilience optimization.

Chapter 4 presented methods for data-driven estimation of all-terminal network reliabil-

ity for arbitrary graphs and outlined research directions for data-driven surrogate models.

Furthermore, the use of DRL for network design optimization maximizing all-terminal net-

work reliability was presented. This is a promising research venue that has been extended

to network reliability problems that involve dynamic systems. Additional developments in

this line of work are an active research interest of this author.

The outlined research presents various data-driven tools developed to collaborate in a

data-driven fashion in the context of modeling and improvement for Critical Infrastructures.

To achieve this goal, multiple research venues have been intertwined through the combination

of a variety of paradigms and methods. The final product is a line of research focused

113

on reliability estimation, design optimization, and prognostics and health management for

Interconnected Critical Infrastructures.

This author is optimistic in that expanding on the presented research threads will lead

to unified efforts giving rise to further developments in the field of systems reliability and

simulation of complex systems. The main contribution is making these various developed

tools collaborate in a data-driven fashion. Multiple methods and paradigms have been

combined to achieve a unified goal: the coalescence of the different research venues to create

a data-driven framework for reliability estimation, design optimization, and prognostics and

health management for Interconnected Critical Infrastructures, combining computational

methods and theory.

114

Bibliography

[1] J. C. H. Azucena, B. Alkhaleel, H. T. Liao, and H. Nachtmann, “Hybrid simula-
tion to support interdependence modeling of a multimodal transportation network,”
Simulation Modelling Practice and Theory, vol. 107, p. 102 237, 2021.

[2] J. C. H. Azucena and H. T. Liao, “Prognostic using dual-stage attention-based re-
current neural networks,” in Proceedings of the 11th International Conference on
Mathematical Methods in Reliability (MMR), Hong Kong, Jun. 2019.

[3] J. C. H. Azucena, H. Wells, H. T. Liao, K. Sullivan, and E. A. Pohl, “Applying deep
reinforcement learning to improve the reliability of an infrastructure network,” in Pro-
ceedings of the 60th European Safety, Reliability & Data Association (ESReDA) Sem-
inar, ser. Advances in Modelling to Improve Network Resilience, Grenoble, France,
May 2022, pp. 46–55.

[4] J. C. H. Azucena, F. Hashemian, H. T. Liao, and E. A. Pohl, “Applying machine
learning to improve all-terminal network reliability,” in Proceedings of the 69th Annual
Reliability and Mantainability Symposyum (RAMS), Orlando, FL, Jan. 2023.

[5] T. Bipasha, J. C. H. Azucena, B. Alkhaleel, H. T. Liao, and H. Nachtmann, “Hybrid
simulation to support interdependence modeling of a multimodal transportation net-
work,” in Proceedings of the Winter Simulation Conference (WSC), National Harbor,
MD, Dec. 2019, pp. 1390–1401.

[6] M. Aghamohammadghasem, J. C. H. Azucena, H. T. Liao, S. Zhang, and H. Nacht-
mann, “Preventive maintenance planning for an inland waterway transportation sys-
tem using deep reinforcement learning,” in Proceedings of the IISE Annual Conference
& Expo, Accepted. Awaiting for the conference, New Orleans, LA, May 2023.

[7] M. Aghamohammadghasem, J. C. H. Azucena, F. Hashemian, H. T. Liao, S. Zhang,
and H. Nachtmann, “System simulation and machine learning-based maintenance
optimization for an inland waterway transportation system,” in Proceedings of the
Winter Simulation Conference (WSC), Submitted. Awaiting for review, San Antonio,
TX, Dec. 2023.

115

[8] R. Xin, C. Zhong, Z. Chen, T. Takagi, M. Seltzer, and C. Rudin, “Exploring the whole
rashomon set of sparse decision trees,” in Neural Information Processing Systems
(NeurIPS), 2022.

[9] J. Liu, C. Zhong, M. Seltzer, and C. Rudin, “Fast sparse classification for generalized
linear and additive models,” in Proceedings of Artificial Intelligence and Statistics
(AISTATS), 2022.

[10] F. Hashemian, J. C. H. Azucena, H. T. Liao, and E. A. Pohl, “Machine learning-based
reliability improvement of all-terminal networks,” Forthcoming., 2024.

[11] D. Amaro, C. Modica, M. Rosenkranz, M. Fiorentini, M. Benedetti, and M. Lubasch,
“Filtering variational quantum algorithms for combinatorial optimization,” Quantum
Science and Technology, vol. 7, no. 1, p. 015 021, Jan. 2022. doi: 10.1088/2058-9565/
ac3e54. [Online]. Available: https://doi.org/10.1088%2F2058-9565%2Fac3e54.

[12] J. Ellis, D. Fisher, T. Longstaff, L. Pesante, and R. Pethia, “Report to the president’s
commission on critical infrastructure protection.,” Tech. Rep., Jan. 1997. doi: 10.
21236/ada324232.

[13] US Department of Transportation, Geospatial at the bureau of transportation statis-
tics, available via https://maps.bts.dot.gov/arcgis/home/index.html, Wash-
ington, DC., 2017.

[14] US Army Corps of Engineers, US Army Corps of Engineers: Navigation Data Center,
available via http://www.navigationdatacenter.us/, 2020. (visited on 03/03/2020).

[15] T. Bipasha, J. Azucena, B. Alkhaleel, H. Liao, and H. Nachtmann, “Hybrid simulation
to support interdependence modeling of a multimodal transportation network,” in
2019 Winter Simulation Conference (WSC), National Harbor, MD: IEEE, Dec. 2019,
pp. 1390–1401. doi: 10.1109/WSC40007.2019.9004813.

[16] R. Pant, K. Barker, and T. L. Landers, “Dynamic impacts of commodity flow disrup-
tions in inland waterway networks,” Computers and Industrial Engineering, vol. 89,
pp. 137–149, Nov. 2015, issn: 03608352. doi: 10.1016/j.cie.2014.11.016.

[17] P. R. Herr, “Approaches to mitigate freight congestion,” Washington, DC, Tech. Rep.,
2008, p. 12.

116

https://doi.org/10.1088/2058-9565/ac3e54
https://doi.org/10.1088/2058-9565/ac3e54
https://doi.org/10.1088%2F2058-9565%2Fac3e54
https://doi.org/10.21236/ada324232
https://doi.org/10.21236/ada324232
https://maps.bts.dot.gov/arcgis/home/index.html
http://www.navigationdatacenter.us/
https://doi.org/10.1109/WSC40007.2019.9004813
https://doi.org/10.1016/j.cie.2014.11.016

[18] Freight Research, “National cooperative freight research program: Current and com-
pleted projects,” Transportation Research Board, 2010.

[19] US Department of Transportation, “Freight facts and figures 2009,” Federal Highway
Administration, Office of Freight Management and Operations, Washington, DC.,
Tech. Rep., 2009, p. 274.

[20] Cambridge Systematics Inc., “National rail freight infrastructure capacity and invest-
ment study,” Cambridge, MA, Tech. Rep., Sep. 2007.

[21] US Department of Transportation. Maritime Administration, “America’s marine high-
way report to congress,” Washington, DC, Tech. Rep. April, 2011.

[22] J. Schweighofer, “The impact of extreme weather and climate change on inland water-
way transport,” Natural Hazards, vol. 72, no. 1, pp. 23–40, May 2014, issn: 0921030X.
doi: 10.1007/s11069-012-0541-6.

[23] S.-L. Wang and P. Schonfeld, “Scheduling interdependent waterway projects through
simulation and genetic optimization,” Journal of waterway, port, coastal, and ocean
engineering, vol. 131, no. 3, pp. 89–97, May 2005, issn: 0733-950X. doi: 10.1061/
(asce)0733-950x(2005)131:3(89).

[24] J. L. Carroll and M. S. Bronzini, “Waterway transportation simulation models: De-
velopment and application,” Water Resources Research, vol. 9, no. 1, pp. 51–63, Feb.
1973. doi: 10.1029/wr009i001p00051.

[25] Y. Triska, E. M. Frazzon, and V. M. D. Silva, “Proposition of a simulation-based
method for port capacity assessment and expansion planning,” Simulation Modelling
Practice and Theory, vol. 103, p. 102 098, 2020. doi: 10.1016/j.simpat.2020.
102098.

[26] R. Larson, A. Minkofft, and P. Gregory, A computer simulation model for fleet sizing
for the marine division of the New York City department of sanitation. Elsevier, Aug.
1991, vol. 9, pp. 267–276. doi: 10.1016/0734-242x(91)90017-2.

[27] J. Swedish, “Simulation of an inland waterway barge fleet distribution network,”
in 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274), vol. 2,
Washington, DC: IEEE, Dec. 1998, pp. 1219–1221. doi: 10.1109/wsc.1998.745982.

117

https://doi.org/10.1007/s11069-012-0541-6
https://doi.org/10.1061/(asce)0733-950x(2005)131:3(89)
https://doi.org/10.1061/(asce)0733-950x(2005)131:3(89)
https://doi.org/10.1029/wr009i001p00051
https://doi.org/10.1016/j.simpat.2020.102098
https://doi.org/10.1016/j.simpat.2020.102098
https://doi.org/10.1016/0734-242x(91)90017-2
https://doi.org/10.1109/wsc.1998.745982

[28] G. D. Taylor, T. C. Whyte, G. W. DePuy, and D. Drosos, “A simulation-based
software system for barge dispatching and boat assignment in inland waterways,”
Simulation Modelling Practice and Theory, vol. 13, no. 7, pp. 550–565, Oct. 2005,
issn: 1569-190X. doi: 10.1016/j.simpat.2005.02.005.

[29] F. Oztanriseven and H. Nachtmann, “Economic impact analysis of inland waterway
disruption response,” The Engineering Economist, vol. 62, no. 1, pp. 73–89, Apr. 2017,
issn: 0013-791X. doi: 10.1080/0013791x.2016.1163627.

[30] G. Desquesnes, D. Alves, E. Duviella, G. Lozenguez, and A. Doniec, “Simulation
architecture based on distributive MDP for inland waterway management,” in HIC
2018. 13th International Conference on Hydroinformatics, G. L. Loggia, G. Freni, V.
Puleo, and M. D. Marchis, Eds., ser. EPiC Series in Engineering, vol. 3, EasyChair,
2018, pp. 555–563. doi: 10.29007/fbmt.

[31] M. Ouyang, “Review on modeling and simulation of interdependent critical infras-
tructure systems,” Reliability Engineering & System Safety, vol. 121, pp. 43–60, Jan.
2014, issn: 09518320. doi: 10.1016/j.ress.2013.06.040.

[32] C. W. Howe, J. L. Carroll, A. P. Hurter Jr, et al., Inland waterway transportation:
studies in public and private management and investment decisions. Baltimore: Johns
Hopkins, 1969.

[33] M. D. Dai, “Delay estimation on congested waterways,” English, Ph.D. dissertation,
1991, p. 146.

[34] C.-J. Ting and P. Schonfeld, “Optimization through simulation of waterway trans-
portation investments,” Transportation Research Record: Journal of the Transporta-
tion Research Board, vol. 1620, no. 1, pp. 11–16, Jan. 1998. doi: 10.3141/1620-03.

[35] M. Ouyang, L. Hong, Z.-J. Mao, M.-H. Yu, and F. Qi, “A methodological approach to
analyze vulnerability of interdependent infrastructures,” Simulation Modelling Prac-
tice and Theory, vol. 17, no. 5, pp. 817–828, 2009. doi: 10.1016/j.simpat.2009.
02.001.

[36] A. Bush, W. Biles, and G. DePuy, “Iterative optimization and simulation of barge
traffic on an inland waterway,” in Proceedings of the 2003 International Conference
on Machine Learning and Cybernetics (IEEE Cat. No.03EX693), Winter Simulation
Conference, Piscataway, New Jersey: IEEE, 2004, pp. 1751–1756. doi: 10.1109/wsc.
2003.1261629.

118

https://doi.org/10.1016/j.simpat.2005.02.005
https://doi.org/10.1080/0013791x.2016.1163627
https://doi.org/10.29007/fbmt
https://doi.org/10.1016/j.ress.2013.06.040
https://doi.org/10.3141/1620-03
https://doi.org/10.1016/j.simpat.2009.02.001
https://doi.org/10.1016/j.simpat.2009.02.001
https://doi.org/10.1109/wsc.2003.1261629
https://doi.org/10.1109/wsc.2003.1261629

[37] W. Biles, D. Sasso, and J. Bilbrey, “Integration of simulation and geographic informa-
tion systems: Modeling traffic flow on inland waterways,” in Proceedings of the 2004
Winter Simulation Conference, 2004., IEEE, 2005, pp. 331–337. doi: 10.1109/wsc.
2004.1371477.

[38] C. Colon, S. Hallegatte, and J. Rozenberg, Transportation and Supply Chain Re-
silience in the United Republic of Tanzania, Assessing the Supply-Chain Impacts of
Disaster-Induced Transportation Disruptions. World Bank, Jun. 2019. doi: 10.1596/
31909.

[39] J. Verschuur, E. Koks, and J. Hall, “Port disruptions due to natural disasters: Insights
into port and logistics resilience,” Transportation Research Part D: Transport and
Environment, vol. 85, p. 102 393, 2020. doi: 10.1016/j.trd.2020.102393.

[40] W. Zhu, K. Liu, M. Wang, and E. E. Koks, “Seismic risk assessment of the railway
network of china’s mainland,” International Journal of Disaster Risk Science, vol. 11,
no. 4, pp. 452–465, 2020. doi: 10.1007/s13753-020-00292-9.

[41] N. A. C. Cressie and C. K. Wikle, Statistics for spatio-temporal data. Hoboken, N.J:
Wiley, 2011, p. 624, isbn: 9780471692744.

[42] P. C. Kyriakidis and A. G. Journel, “Geostatistical space-time models: A review,”
Mathematical Geology, vol. 31, no. 6, pp. 651–684, 1999, issn: 08828121. doi: 10.
1023/a:1007528426688.

[43] HSIP, Homeland Security Infrastructure Program (HSIP) data, available via https:

//hifld-dhs-gii.opendata.arcgis.com/, 2019. (visited on 03/20/2019).

[44] HIFLD,Homeland Infrastructure Foundation-Level Data (HIFLD), available via https:
//hifld-dhs-gii.opendata.arcgis.com/datasets?q=*dam&sort_by=relevance,
2020. (visited on 03/03/2020).

[45] HIFLD,Homeland Infrastructure Foundation-Level Data (HIFLD), available via https:
/ / data . navigationdatacenter . us / Locks / Public - Lock - Unavailability -

Detailed-Report/p3mn-gzqj, 2020. (visited on 03/03/2020).

[46] HIFLD,Homeland Infrastructure Foundation-Level Data (HIFLD), available via https:
//hifld-dhs-gii.opendata.arcgis.com/datasets?q=flood, 2020. (visited on
04/03/2020).

119

https://doi.org/10.1109/wsc.2004.1371477
https://doi.org/10.1109/wsc.2004.1371477
https://doi.org/10.1596/31909
https://doi.org/10.1596/31909
https://doi.org/10.1016/j.trd.2020.102393
https://doi.org/10.1007/s13753-020-00292-9
https://doi.org/10.1023/a:1007528426688
https://doi.org/10.1023/a:1007528426688
https://hifld-dhs-gii.opendata.arcgis.com/
https://hifld-dhs-gii.opendata.arcgis.com/
 https://hifld-dhs-gii.opendata.arcgis.com/datasets?q=*dam&sort_by=relevance
 https://hifld-dhs-gii.opendata.arcgis.com/datasets?q=*dam&sort_by=relevance
https://data.navigationdatacenter.us/Locks/Public-Lock-Unavailability-Detailed-Report/p3mn-gzqj
https://data.navigationdatacenter.us/Locks/Public-Lock-Unavailability-Detailed-Report/p3mn-gzqj
https://data.navigationdatacenter.us/Locks/Public-Lock-Unavailability-Detailed-Report/p3mn-gzqj
https://hifld-dhs-gii.opendata.arcgis.com/datasets?q=flood
https://hifld-dhs-gii.opendata.arcgis.com/datasets?q=flood

[47] NOAA, National Oceanic and Atmospheric Administration (NOAA Climate), avail-
able via https://www.noaa.gov/climate, 2020. (visited on 01/20/2020).

[48] MarTREC, Maritime Transportation Research and Transportation Center, available
via https://martrec.uark.edu/, 2020. (visited on 03/27/2020).

[49] MarTREC, Maritime Transportation Resource Data Bank — MarTREC — Univer-
sity of Arkansas, available via https://martrec.uark.edu/research/resource-

data-bank.php, 2020. (visited on 03/27/2020).

[50] MarTREC Simulation Tool, Data simulation to support interdependence modeling of
a multimodal transportation network, available via https://martrec.uark.edu/

data/index.php, 2020.

[51] K. S. Bakar, S. K. Sahu, et al., “spTimer: Spatio-temporal bayesian modelling using
R,” Journal of Statistical Software, vol. 63, no. 15, pp. 1–32, 2015.

[52] B. Matérn, Spatial variation. New York: Springer-Verlag, 1986, p. 153, isbn: 9781461578925.

[53] U. Wilensky, NetLogo, available via https://ccl.northwestern.edu/netlogo/,
Evanston, IL, 1999. (visited on 12/14/2019).

[54] S. Tisue and U. Wilensky, “Netlogo: Design and implementation of a multi-agent
modeling environment,” in Proceedings of the Agent 2004 Conference on Social Dy-
namics: Interaction, Reflexivity and Emergence, Chicago, IL, Oct. 2004, pp. 7–9.

[55] H. Nachtmann, K. N. Mitchell, C. E. Rainwater, R. Gedik, and E. A. Pohl, “Optimal
dredge fleet scheduling within environmental work windows,” Transportation Research
Record, vol. 2426, no. -1, pp. 11–19, 2014, issn: 03611981. doi: 10.3141/2426-02.

[56] National Weather Service, Advanced Hydrologic Prediction Service, available via https:
//water.weather.gov/ahps2/hydrograph.php?wfo=fsd&gage=lnni4, 2020.

[57] Z. Tian and M. J. Zuo, “Health condition prediction of gears using a recurrent neural
network approach,” IEEE transactions on reliability, vol. 59, no. 4, pp. 700–705, 2010.

[58] A. Saxena and K. Goebel. “Phm08 challenge data set.” (2008), [Online]. Available:
https : / / ti . arc . nasa . gov / tech / dash / groups / pcoe / prognostic - data -

repository/%5C#phm08%5C_challenge.

120

https://www.noaa.gov/climate
https://martrec.uark.edu/
https://martrec.uark.edu/research/resource-data-bank.php
https://martrec.uark.edu/research/resource-data-bank.php
https://martrec.uark.edu/data/index.php
https://martrec.uark.edu/data/index.php
https://ccl.northwestern.edu/netlogo/
https://doi.org/10.3141/2426-02
https://water.weather.gov/ahps2/hydrograph.php?wfo=fsd&gage=lnni4
https://water.weather.gov/ahps2/hydrograph.php?wfo=fsd&gage=lnni4
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/%5C#phm08%5C_challenge
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/%5C#phm08%5C_challenge

[59] E. Ramasso and A. Saxena, “Performance benchmarking and analysis of prognos-
tic methods for cmapss datasets.,” International Journal of Prognostics and Health
Management, vol. 5, no. 2, pp. 1–15, 2014.

[60] L. Peel, “Data driven prognostics using a kalman filter ensemble of neural network
models,” in 2008 International Conference on Prognostics and Health Management,
IEEE, 2008, pp. 1–6.

[61] F. O. Heimes, “Recurrent neural networks for remaining useful life estimation,” in
2008 international conference on prognostics and health management, IEEE, 2008,
pp. 1–6.

[62] T. Wang, J. Yu, D. Siegel, and J. Lee, “A similarity-based prognostics approach
for remaining useful life estimation of engineered systems,” in 2008 International
Conference on Prognostics and Health Management, IEEE, 2008, pp. 1–6.

[63] Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and G. Cottrell, “A dual-stage
attention-based recurrent neural network for time series prediction,” arXiv preprint
arXiv:1704.02971, 2017.

[64] A. Paszke, S. Gross, S. Chintala, et al., “Automatic differentiation in pytorch,” 2017.

[65] C. Zuo. “A pytorch example to use rnn for financial prediction.” (2017), [Online].
Available: https://github.com/chandlerzuo/chandlerzuo.github.io/tree/
master/codes/da%5C_rnn.

[66] J. Ma and D. Yarats, “Quasi-hyperbolic momentum and adam for deep learning,”
arXiv preprint arXiv:1810.06801, 2018.

[67] H. Editors, Blackout hits northeast united states, https://www.history.com/this-
day-in-history/blackout-hits-northeast-united-states, Accessed: 2022-05-
05, 2009.

[68] S. Pruitt, How levee failures made hurricane katrina a bigger disaster, https://www.
history.com/news/hurricane-katrina-levee-failures, Accessed: 2022-05-05,
2020.

[69] M. O. Ball, C. J. Colbourn, and J. S. Provan, “Network reliability,” Handbooks in
operations research and management science, vol. 7, pp. 673–762, 1995.

121

https://github.com/chandlerzuo/chandlerzuo.github.io/tree/master/codes/da%5C_rnn
https://github.com/chandlerzuo/chandlerzuo.github.io/tree/master/codes/da%5C_rnn
https://www.history.com/this-day-in-history/blackout-hits-northeast-united-states
https://www.history.com/this-day-in-history/blackout-hits-northeast-united-states
https://www.history.com/news/hurricane-katrina-levee-failures
https://www.history.com/news/hurricane-katrina-levee-failures

[70] V. Gaur, O. P. Yadav, G. Soni, and A. P. S. Rathore, “A literature review on network
reliability analysis and its engineering applications,” Proceedings of the Institution
of Mechanical Engineers, Part O: Journal of Risk and Reliability, vol. 235, no. 2,
pp. 167–181, 2021.

[71] D. R. Karger, “A randomized fully polynomial time approximation scheme for the
all-terminal network reliability problem,” SIAM Journal on Computing, vol. 29, no. 2,
pp. 492–514, 1999.

[72] J. B. Cardoso, J. R. de Almeida, J. M. Dias, and P. G. Coelho, “Structural reliability
analysis using monte carlo simulation and neural networks,” Advances in Engineering
Software, vol. 39, no. 6, pp. 505–513, 2008.

[73] C. Srivaree-Ratana, A. Konak, and A. E. Smith, “Estimation of all-terminal net-
work reliability using an artificial neural network,” Computers & Operations Research,
vol. 29, no. 7, pp. 849–868, 2002.

[74] G. Chartrand, Introductory graph theory. Courier Corporation, 1977.

[75] J. S. Provan and M. O. Ball, “The complexity of counting cuts and of computing the
probability that a graph is connected,” SIAM Journal on Computing, vol. 12, no. 4,
pp. 777–788, 1983.

[76] C. Godsil and G. F. Royle, Algebraic graph theory. New York: Springer Verlag, 2001,
vol. 207, pp. 354–358.

[77] N. L. Biggs, Algebraic graph theory, 2nd ed. England: Cambridge university press,
1993, ch. 13, pp. 97–105.

[78] R. Dougherty, Reliability polynomial calculation, https://codereview.stackexchange.
com/questions/131709/reliability-polynomial-calculation, Accessed: 2022-
05-05, 2016.

[79] I. MongoDB,How to use mongodb in python, https://www.mongodb.com/languages/
python, Accessed: 2022-05-05, 2022.

[80] I. MongoDB, Mongodb manual: Gridfs, https://www.mongodb.com/docs/manual/
core/gridfs, Accessed: 2022-05-05, 2022.

122

https://codereview.stackexchange.com/questions/131709/reliability-polynomial-calculation
https://codereview.stackexchange.com/questions/131709/reliability-polynomial-calculation
https://www.mongodb.com/languages/python
https://www.mongodb.com/languages/python
https://www.mongodb.com/docs/manual/core/gridfs
https://www.mongodb.com/docs/manual/core/gridfs

[81] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,
pp. 26–38, 2017.

[82] G. Brockman, V. Cheung, L. Pettersson, et al., “Openai gym,” arXiv preprint arXiv:1606.01540,
2016.

[83] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann, Stable
baselines 3, https://github.com/Stable-Baselines-Team/stable-baselines3-
contrib, Accessed: 2022-05-05, 2019.

[84] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[85] S. Huang and S. Ontañón, “A closer look at invalid action masking in policy gradient
algorithms,” arXiv preprint arXiv:2006.14171, 2020.

[86] J. C. H. Azucena, H. Wells, H. Liao, K. Sullivan, and E. A. Pohl, “Applying deep rein-
forcement learning to improve the reliability of an infrastructure network,” Advances
in Modelling to Improve Network Resilience, p. 46, 2022.

[87] C. Srivaree-ratana and A. E. Smith, “Estimating all-terminal network reliability us-
ing a neural network,” in SMC’98 Conference Proceedings. 1998 IEEE International
Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), IEEE, vol. 5,
1998, pp. 4734–4739.

[88] L. G. Valiant, “The complexity of enumeration and reliability problems,” siam Journal
on Computing, vol. 8, no. 3, pp. 410–421, 1979.

[89] J. E. Ramirez-Marquez and C. M. Rocco, “All-terminal network reliability optimiza-
tion via probabilistic solution discovery,” Reliability Engineering & System Safety,
vol. 93, no. 11, pp. 1689–1697, 2008.

[90] B. Dengiz, F. Altiparmak, and A. E. Smith, “Efficient optimization of all-terminal
reliable networks, using an evolutionary approach,” IEEE transactions on Reliability,
vol. 46, no. 1, pp. 18–26, 1997.

[91] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,
pp. 26–38, 2017.

123

https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

[92] A. K. Goharshady and F. Mohammadi, “An efficient algorithm for computing net-
work reliability in small treewidth,” Reliability Engineering & System Safety, vol. 193,
p. 106 665, 2020.

[93] A. Davila-Frias, S. Salem, and O. P. Yadav, “Deep neural networks for all-terminal
network reliability estimation,” in 2021 Annual Reliability and Maintainability Sym-
posium (RAMS), IEEE, 2021, pp. 1–7.

[94] A. Davila-Frias and O. P. Yadav, “All-terminal network reliability estimation using
convolutional neural networks,” Proceedings of the Institution of Mechanical Engi-
neers, Part O: Journal of Risk and Reliability, vol. 236, no. 4, pp. 584–597, 2022.

[95] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the local
reparameterization trick,” Advances in neural information processing systems, vol. 28,
2015.

[96] E. Bingham, J. P. Chen, M. Jankowiak, et al., “Pyro: Deep universal probabilistic
programming,” The Journal of Machine Learning Research, vol. 20, no. 1, pp. 973–
978, 2019.

[97] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational infer-
ence,” Journal of Machine Learning Research, 2013.

[98] S. Huang and S. Ontañón, “A closer look at invalid action masking in policy gradient
algorithms,” arXiv preprint arXiv:2006.14171, 2020.

[99] G. Brockman, V. Cheung, L. Pettersson, et al., “Openai gym,” arXiv preprint arXiv:1606.01540,
2016.

[100] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann, Stable
baselines3, 2019.

[101] F. Altiparmak, B. Dengiz, and A. E. Smith, “Optimal design of reliable computer
networks: A comparison of metaheuristics,” Journal of heuristics, vol. 9, pp. 471–487,
2003.

[102] E. Kim, J. Kim, H. Lee, and S. Kim, “Adaptive data augmentation to achieve noise
robustness and overcome data deficiency for deep learning,” Applied Sciences, 2021.
doi: 10.3390/APP11125586.

124

https://doi.org/10.3390/APP11125586

[103] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep representations
and image clusters,” arXiv: Computer Vision and Pattern Recognition, 2016.

[104] L. Zhang, L. Qi, X. Yang, H. Qiao, M. Yang, and Z. Liu, “Automatically discovering
novel visual categories with self-supervised prototype learning,” ArXiv, 2022. doi:
10.48550/ARXIV.2208.00979.

[105] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering
analysis,” 2016.

[106] X. Guo, X. Liu, E. Zhu, et al., “Adaptive self-paced deep clustering with data aug-
mentation,” IEEE Transactions on Knowledge and Data Engineering, 2020. doi: 10.
1109/TKDE.2019.2911833.

[107] L. Wu, Z. Liu, Z. Zang, J. Xia, S. Li, and S. Z. Li, “Deep clustering and representation
learning that preserves geometric structures,” arXiv: Learning, 2021.

[108] S. Pabst and Y. Nam, A quantum algorithm for network reliability, 2022. doi: 10.
48550/ARXIV.2203.10201. [Online]. Available: https://arxiv.org/abs/2203.
10201.

[109] IBM, The atoms of computation. [Online]. Available: https://learn.qiskit.org/
course/introduction/the-atoms-of-computation.

[110] A-tA-v, M. S. ANIS, Abby-Mitchell, et al., Qiskit: An open-source framework for
quantum computing, 2021. doi: 10.5281/zenodo.2573505.

[111] T. Duong, J. A. Ansere, B. Narottama, V. Sharma, O. Dobre, and H. Shin, “Quantum-
inspired machine learning for 6g: Fundamentals, security, resource allocations, chal-
lenges, and future research directions,” IEEE Open Journal of Vehicular Technology,
2022. doi: 10.1109/OJVT.2022.3202876.

[112] N. Nikmehr and P. Zhang, “Quantum-inspired power system reliability assessment,”
IEEE Transactions on Power Systems, pp. 1–14, 2022. doi: 10.1109/TPWRS.2022.
3204393.

[113] L. Dueñas-Osorio, M. Y. Vardi, and J. Rojo, “Quantum-inspired boolean states for
bounding engineering network reliability assessment,” Structural Safety, 2018. doi:
10.1016/J.STRUSAFE.2018.05.004.

125

https://doi.org/10.48550/ARXIV.2208.00979
https://doi.org/10.1109/TKDE.2019.2911833
https://doi.org/10.1109/TKDE.2019.2911833
https://doi.org/10.48550/ARXIV.2203.10201
https://doi.org/10.48550/ARXIV.2203.10201
https://arxiv.org/abs/2203.10201
https://arxiv.org/abs/2203.10201
https://learn.qiskit.org/course/introduction/the-atoms-of-computation
https://learn.qiskit.org/course/introduction/the-atoms-of-computation
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1109/OJVT.2022.3202876
https://doi.org/10.1109/TPWRS.2022.3204393
https://doi.org/10.1109/TPWRS.2022.3204393
https://doi.org/10.1016/J.STRUSAFE.2018.05.004

[114] M. Bhatia and S. K. Sood, “Quantum computing-inspired network optimization for
iot applications,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5590–5598, 2020.
doi: 10.1109/JIOT.2020.2979887.

[115] K. Lin, J. Zhu, and Y. Chen, “A non-hermitian quantum approach to reliability of a
two-state system,” Physics Letters A, 2020. doi: 10.1016/J.PHYSLETA.2019.126207.

[116] Y. Cui, K. Lin, Y. Chen, and J. Zhu, “A quantum-inspired model for statistical
analysis of repairable systems,” Computers & Industrial Engineering, 2021. doi: 10.
1016/J.CIE.2021.107613.

[117] United States Geological Survey, USGS Surface-Water Data for the Nation, available
via https://waterdata.usgs.gov/nwis/sw, 2020.

126

https://doi.org/10.1109/JIOT.2020.2979887
https://doi.org/10.1016/J.PHYSLETA.2019.126207
https://doi.org/10.1016/J.CIE.2021.107613
https://doi.org/10.1016/J.CIE.2021.107613
https://waterdata.usgs.gov/nwis/sw

A. Appendix

127

A.1 Chapter 2, Section 2.1

A.1.1 Introduction to the developed simulation tool

A.1.1.1 Simulation setup

A user can use model controls (Figures 2.3–2.4) to quickly adjust the settings of the initial

environment (see buttons, sliders, and other controls). To initiate a simulation run after

setting up the environment, the user can input various attributes through sliders, choosers,

and switches. The steps are as follows:

Step 1: First, click the “Spatial Temporal Analysis” button to run the spatio-temporal

model to generate predicted GH and lock availability data.

Step 2: Click the “Setup Environment” button. This button is used to initialize the

model, and it is a NetLogo “once-button” that runs its code once. After this

step, all maps will be drawn on the user interface.

Step 3: Click the “Add Ports” button to draw eight circles on the waterways that depict

the ports of interest in our model.

Step 4: Click the “Add Locks & Sites” button to initialize and draw all fifteen locks

and twenty-four sites with their variables. Then, click “Add Vessels” to draw

vessels on the ports based on the data. The vessels are categorized according

to their size and speed into three groups, and they carry two types of products

in the current setting: petroleum and crops.

After completing the above steps, a value for “Simulation-Time” needs to be set to

indicate the number of months the simulation will run. The available options are 3, 6, 9,

and 12 months. “Fleet-Size” provides the the number of trucks required to carry products

from one vessel through the highways when vessels reach to their destinations, and when

they are unable to move for a certain amount of time due to extreme events. The global

128

slider “GH-Threshold” may need to be adjusted to a reasonable value (higher than the

individual sites’ GHs which also can be adjusted as shown in Figure A.1). This value acts

as the threshold value of GH, which is being compared with the hourly value of GH at each

site. Such information about GH thresholds can be adopted from sources such as the United

States Geological Survey (USGS) [117]. We can change the value at runtime. There are

fifteen switches, each of which acts as a controller to turn on/off the corresponding lock.

The selection can also be changed during the runtime. When one lock is closed, the vessels

that are supposed to pass through the lock will wait in the previous node in the path and

will not move forward until the lock is reopened. If the ”LockRandomFailures” button

is set to ”On”, locks’ failure and repair events will be generated using random variates.

The mean time to these events is controlled by the parameters ”AvgTimeToLockFail” and

”AvgTimeToLockRepair”. After all the settings are completed, click the “Start Simulation”

button and the vessels at each port start moving towards their predefined destinations. Each

vessel checks for any unsafe circumstances at the locks and sites along its route and makes

decisions accordingly.

A.1.1.2 Model outputs

After running the simulation tool, multiple numerical outputs are generated for the user. The

outputs can be classified into summaries and detailed results. The summaries are shown in

Tables 2.4–2.7 and Figures 2.7–2.9. As mentioned in Section 2.1.4.2, Tables 2.4 and 2.7

show summary statistics for the vessels traveled between every two ports classified by the

vessel category. In addition, summarized vessel and truck tables such as Table 2.4 show the

number of vessels (trucks) that have traveled from ports, average speed of travel, product

type carried and other statistics that help the user understand the commodity flow changes

under each scenario. Each summarized table output is exported as a “CSV” file format that

can be used as an input file to other statistical software or programming languages for further

analysis. Furthermore, some of these statistical summaries are plotted using the NetLogo

129

R extension and exported as publication-quality “PDF” files such as the ones shown in

Figures 2.7–2.9. The outputs of the simulation tool also include detailed information about

all vessels appeared in the model (see Table ??). Like the records mentioned before, the

detailed information includes the product type carried, category of the vessel, total weight

of the product, and a defined ID for each vessel (modeled as a turtle). Also registered,

each vessel’s start time, time of departure from its origin, and its end time (time of arrival

at its destination). These records can help extend the simulation analysis and contribute

to the model’s debugging and validation. These results are tabulated and exported as a

“CSV” file with additional detailed information about the trucks, as shown in Table A.1.

The detailed information in Table A.1 is useful to identify individual trucks by their ID,

destination, departure (start) and arrival (end) times in the simulation along with distance

traveled in miles and average speed in mph for each truck. Such information becomes useful

in analyzing a given product’s current logistic plan and finding possible ways to alter and

improve the current one.

Figure A.1: Water level thresholds set by user for all sites to control extreme events criteria

130

ID
Product

type

Distance

traveled

(miles)

Start

time

(ticks)

End time

(ticks)
From To

Time

elapsed

(ticks)

Avg.

speed

(mph)

5000 Petroleum 524.7424833 103 110.75
Fort

Smith
E 7.75 67.71

5001 Petroleum 524.5594318 103 111.25
Fort

Smith
E 8.25 63.58

5002 Petroleum 524.5952797 103 110.25
Fort

Smith
E 7.25 72.36

5003 Petroleum 524.3400126 103 110.25
Fort

Smith
E 7.25 72.32

5004 Petroleum 524.3189491 103 110.5
Fort

Smith
E 7.5 69.91

5005 Petroleum 525.4226671 103 110.5
Fort

Smith
E 7.5 70.06

5006 Petroleum 524.7314365 103 110
Fort

Smith
E 7 74.96

5007 Petroleum 524.2494159 103 110.25
Fort

Smith
E 7.25 72.31

5008 Petroleum 524.4084918 103 110
Fort

Smith
E 7 74.92

5009 Petroleum 524.5227015 103 110.25
Fort

Smith
E 7.25 72.35

5010 Petroleum 524.5717312 103 110.5
Fort

Smith
E 7.5 69.94

5011 Petroleum 524.3143702 103 109.75
Fort

Smith
E 6.75 77.68

5012 Petroleum 524.2374395 103 110.5
Fort

Smith
E 7.5 69.90

5013 Petroleum 524.1374195 103 110.25
Fort

Smith
E 7.25 72.29

131

5014 Petroleum 524.6757786 103 110.25
Fort

Smith
E 7.25 72.37

5015 Petroleum 524.2429046 103 110
Fort

Smith
E 7 74.89

5016 Petroleum 167.7360173 103 105.5
Fort

Smith
N 2.5 67.09

5017 Petroleum 177.1946809 103 105.5
Fort

Smith
N 2.5 70.88

5018 Petroleum 443.1499304 103 109.75
Fort

Smith
S 6.75 65.65

5019 Petroleum 450.1915388 103 109.5
Fort

Smith
S 6.5 69.26

7000 Petroleum 242.3998382 142.5 146.5 Helena E 4 60.60

7001 Petroleum 239.7554172 142.5 146 Helena E 3.5 68.50

7002 Petroleum 243.9796093 142.5 146.5 Helena E 4 60.99

7003 Petroleum 240.2386683 142.5 145.75 Helena E 3.25 73.92

7004 Petroleum 241.5537637 142.5 146 Helena E 3.5 69.02

7005 Petroleum 239.2439371 142.5 146.25 Helena E 3.75 63.80

7006 Petroleum 240.4777264 142.5 145.75 Helena E 3.25 73.99

7007 Petroleum 241.2591156 142.5 146.25 Helena E 3.75 64.34

7008 Petroleum 241.0668822 142.5 146.25 Helena E 3.75 64.28

7009 Petroleum 242.7985141 142.5 146.25 Helena E 3.75 64.75

7010 Petroleum 241.4463379 142.5 146.25 Helena E 3.75 64.39

7011 Petroleum 239.9652814 142.5 146 Helena E 3.5 68.56

7012 Petroleum 243.0676827 142.5 146.25 Helena E 3.75 64.82

7013 Petroleum 243.2426233 142.5 146.5 Helena E 4 60.81

7014 Petroleum 238.8765655 142.5 145.75 Helena E 3.25 73.50

7015 Petroleum 239.9229721 142.5 146 Helena E 3.5 68.55

7016 Petroleum 394.0866412 142.5 148.5 Helena N 6 65.68

7017 Petroleum 386.0744743 142.5 147.75 Helena N 5.25 73.54

7018 Petroleum 262.8503073 142.5 147 Helena S 4.5 58.41

7019 Petroleum 258.4577559 142.5 147 Helena S 4.5 57.44

8000 Crops 240.4638423 47 50.5 Helena E 3.5 68.70

132

8001 Crops 385.549631 47 52.75 Helena N 5.75 67.05

8002 Crops 258.635328 47 50.5 Helena S 3.5 73.90

8003 Crops 241.2157411 52.75 56.25 Helena E 3.5 68.92

8004 Crops 385.151909 52.75 58 Helena N 5.25 73.36

8005 Crops 258.5213772 52.75 57.25 Helena S 4.5 57.45

8006 Crops 239.7437967 1021.25 1025 Helena E 3.75 63.93

8007 Crops 384.7920906 1021.25 1026.75 Helena N 5.5 69.96

8008 Crops 263.6299675 1021.25 1025 Helena S 3.75 70.30

8009 Crops 240.3038144 1026.75 1030.5 Helena E 3.75 64.08

8010 Crops 391.4770111 1026.75 1032.75 Helena N 6 65.25

8011 Crops 255.6389391 1026.75 1031.25 Helena S 4.5 56.81

8012 Crops 239.9652814 1032.75 1036.5 Helena E 3.75 63.99

8013 Crops 388.9339639 1032.75 1038.75 Helena N 6 64.82

8014 Crops 259.789386 1032.75 1036.25 Helena S 3.5 74.23

8015 Crops 242.9573568 1038.75 1042.25 Helena E 3.5 69.42

8016 Crops 383.1177057 1038.75 1044.25 Helena N 5.5 69.66

8017 Crops 255.8213064 1038.75 1043.5 Helena S 4.75 53.86

8018 Crops 242.8259393 1044.25 1047.5 Helena E 3.25 74.72

8019 Crops 390.222719 1044.25 1049.5 Helena N 5.25 74.33

8020 Crops 262.4966935 1044.25 1049 Helena S 4.75 55.26

8021 Crops 242.2872164 1049.5 1053 Helena E 3.5 69.22

8022 Crops 389.1117699 1049.5 1055.75 Helena N 6.25 62.26

8023 Crops 253.3064752 1049.5 1053.5 Helena S 4 63.33

8024 Crops 242.9258206 1056 1059.5 Helena E 3.5 69.41

8025 Crops 392.8540749 1056 1061.5 Helena N 5.5 71.43

8026 Crops 259.0699308 1056 1060.5 Helena S 4.5 57.57

8027 Crops 242.0606581 1061.5 1064.75 Helena E 3.25 74.48

8028 Crops 380.523792 1061.5 1067 Helena N 5.5 69.19

8029 Crops 259.2975286 1061.5 1065.25 Helena S 3.75 69.15

8030 Crops 242.3815963 2020.75 2024.25 Helena E 3.5 69.25

8031 Crops 386.7121652 2020.75 2025.75 Helena N 5 77.34

8032 Crops 257.3860023 2020.75 2025.25 Helena S 4.5 57.20

8033 Crops 243.0613488 2025.75 2029.25 Helena E 3.5 69.45

133

8034 Crops 384.1817111 2025.75 2031 Helena N 5.25 73.18

8035 Crops 258.8727207 2025.75 2030.25 Helena S 4.5 57.53

8036 Crops 242.2048536 2031 2034.75 Helena E 3.75 64.59

8037 Crops 394.453156 2031 2037.25 Helena N 6.25 63.11

8038 Crops 253.9643062 2031 2035.5 Helena S 4.5 56.44

8039 Crops 243.3186303 2037.25 2040.5 Helena E 3.25 74.87

8040 Crops 388.3791161 2037.25 2042.5 Helena N 5.25 73.98

8041 Crops 258.4626828 2037.25 2041 Helena S 3.75 68.92

8042 Crops 241.4879116 2042.5 2046.25 Helena E 3.75 64.40

8043 Crops 385.1115147 2042.5 2047.75 Helena N 5.25 73.35

8044 Crops 264.8154224 2042.5 2047 Helena S 4.5 58.85

8045 Crops 241.4091439 2047.75 2051.25 Helena E 3.5 68.97

8046 Crops 390.574694 2047.75 2053 Helena N 5.25 74.40

8047 Crops 254.1111329 2047.75 2052.25 Helena S 4.5 56.47

Table A.1: Detailed outputs for trucks

134

	Reliability Modeling and Improvement of Critical Infrastructures: Theory, Simulation, and Computational Methods
	Citation

	Introduction
	Overview
	Simulation of Inland Waterway Transportation Networks
	Prognostics and Health Management
	All-Terminal Reliability
	Conclusions and Future Research Directions

	Simulation of Inland Waterway Transportation Networks
	Hybrid simulation to support interdependence modeling of a multimodal transportation network
	Extensions to the Inland Waterway Transportation Simulation Model
	Decision-making using DRL

	Prognostics and Health Management
	Prognostic Using Dual-Stage Attention-Based Recurrent Neural Networks

	Study on All-Terminal Network Reliability
	Deep Reinforcement Learning and All-Terminal Network Reliability
	Stochastic Variational Inference Neural Networks for All-Terminal Network Reliability
	Dynamic Control using Deep Reinforcement Learning
	Need-Based Sampling for All-Terminal Reliability Models
	All-Terminal Reliability using Quantum Computing

	Conclusions
	Bibliography
	Appendix
	Chapter 2, Section 2.1

