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A B S T R A C T   

This study evaluates the effect of complete nationwide lockdown in 2020 on residential electricity demand across 
13 Indian cities and the role of digitalisation using a public smart meter dataset. We undertake a data-driven 
approach to explore the energy impacts of work-from-home norms across five dwelling typologies. Our meth-
odology includes climate correction, dimensionality reduction and machine learning-based clustering using 
Gaussian Mixture Models of daily load curves. Results show that during the lockdown, maximum daily peak 
demand increased by 150–200% as compared to 2018 and 2019 levels for one room-units (RM1), one bedroom- 
units (BR1) and two bedroom-units (BR2) which are typical for low- and middle-income families. While the 
upper-middle- and higher-income dwelling units (i.e., three (3BR) and more-than-three bedroom-units (M3BR)) 
saw night-time demand rise by almost 44% in 2020, as compared to 2018 and 2019 levels. Our results also 
showed that new peak demand emerged for the lockdown period for RM1, BR1 and BR2 dwelling typologies. We 
found that the lack of supporting socioeconomic and climatic data can restrict a comprehensive analysis of 
demand shocks using similar public datasets, which informed policy implications for India’s digitalisation. We 
further emphasised improving the data quality and reliability for effective data-centric policymaking.   

1. Introduction 

Digitalisation will play a vital role in decarbonising building energy 
systems while improving their sustainability and operational efficiency. 
Recent advances in digitalisation in building energy systems fuelled by 
artificial intelligence (AI) has paved new ways for fast and cost-effective 
data acquisition and advanced analytics. For example, non-intrusive 
load monitoring (NILM) is a popular approach to estimate appliance- 
level electricity consumption from cumulative consumption data of 
households (Beckel et al., 2014). Although the current NILM literature 
focuses mainly on algorithm and sensor development, examples of 
building energy management and policy design applications remain 

limited (Antonio Ruano et al., 2019). This study uses NILM data from 
smart meters in Indian households across 13 cities in five climatic zones 
for estimating the impact of COVID-19 reactive public policy measures 
like lockdowns on residential electricity demand. 

The use of NILM data for evaluating lockdown related demand shift 
at the household level is novel and timely to understand the effects of the 
COVID-19 pandemic in the energy sector. India has a unique occupancy 
characteristic for middle-income urban households. At least one family 
member will stay indoors during a typical workday and is never wholly 
empty (09:00 to 17:00 h) (Bardhan and Debnath, 2016). However, with 
pandemic induced work-from-home (WFH) norms, the structural shifts 
in residential demand are not known and remains a critical knowledge 
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gap for post-pandemic recovery scenarios. It calls for effective policy 
actions to save residential consumers from demand imbalance shocks 
that directly affect the household economy. For example, consumers 
claimed they were billed three to 15 times the usual levels, with bills for 
June 2020 reaching above INR 30,000 (~USD 403) (Anwesha Madhu-
kalya, 2020; Trends Desk, 2020). 

India went on a complete nationwide lockdown between March 25, 
2020 to May 31, 2020 as a reactive measure to contain the COVID-19 
pandemic (Debnath and Bardhan, 2020). Existing evidence shows that 
during the first week of lockdown, all India electricity consumption 
dropped by 22% (~2600 GWh) as compared to the peak demand of the 
previous week (~3600 GWh) (POSOCO, 2021; Prayas Energy Group, 
2020). As a result, the daily electricity consumption was 20–40% lower 
than its corresponding value in 2019 (Aruga et al., 2020). It began to 
reverse from May 2020 as the unlocking began in India. However, this 
reversal was asymmetrical across the commercial and residential sectors 
(Amritha Pillay, 2020). More specifically, it was reported that an in-
crease in summer temperatures due to heatwaves and people spending 
more time at home during lockdown resulted in 26% more residential 
electricity consumption in western India (Bielecki et al., 2021; Prayas 
Energy Group, 2020; PTI, 2020; Thomson Reuters, 2020). Concurrently, 
the ownership of air conditioners went up in the range of 22–114% 
compared to the pre-lockdown levels in the same region (Prayas Energy 
Group, 2020). 

Recent studies have shown that COVID-19 is shifting the burden of 
energy costs to households through increased WFH and teleworking (CJ 
Meinrenken et al., 2020; Hook et al., 2020). Moreover, home-based 
working patterns influence residential energy demand by increasing 
energy consumption for heating, cooling, lighting, cooking, IoT devices, 
and other uses (Hook et al., 2020). Therefore, it is essential to accurately 
estimate the net energy impacts of teleworking for a country like India, 
where the spatial energy inequality is high within the urban areas 
(Gupta et al., 2020). 

This paper employs a novel data-driven approach to investigate the 
effects of complete lockdown using NILM data from the Government of 
India Bureau of Energy Efficiency’s residential energy use monitoring 
portal called the National Energy End-use Monitoring (NEEM) dash-
board (BEE, 2021). We use the ‘dwelling typology’ of the residential 
units as an endogenous factor for exploring energy demand shifts due to 
WFH and heatwaves. In this purview, we hypothesise that the lockdown 
effects will be felt distinctly when compared with inter-dwelling and 
intra-dwelling effects regarding pre-pandemic electricity consumption 
levels. We further discuss the assumptions in detail in the methodology 
section. The specific research objectives of this study are, i) to investi-
gate the shift in electricity demand as per the dwelling typologies due to 
nationwide lockdown in 2020 and compare it with the pre-pandemic 
levels (2018 and 2019); ii) to investigate the inter-effect of dwelling 
typologies on electricity demand shifts in the pre-lockdown and 
deep-lockdown stages; iii) to investigate the intra-effect of dwelling ty-
pologies on electricity demand shifts in the pre-lockdown and 
deep-lockdown stages; and iv) to derive data-driven policy implications 
on dwelling typology and demand shocks for Indian residential sector. 

This study is divided into the following sections. Section 2 provides a 
background on the methodological approaches to NILM data analysis 
and its policy applications. It also expands on the energy and COVID-19 
related research from the available evidence base. Section 3 explains the 
adopted approach in detail, focusing on machine learning-based 
approach using Gaussian Mixture Models. Section 4 illustrates the re-
sults and expands them into a discussion in section 5. Finally, the 
conclusion and policy implications for post-pandemic consumption 
scenarios are drawn in Section 6. 

2. Background 

2.1. Current NILM-based approaches for building energy management 
and policy design 

Non-intrusive Load Monitoring (NILM) techniques are becoming a 
common approach for disaggregated energy consumption data acquisi-
tion. They provide a method to separate the individual consumption for 
certain appliances (Tabatabaei et al., 2017; Zeifman and Roth, 2011). It 
provides both consumer privacy and ease of implementation through 
already-deployed smart meters. The global push towards digitalisation 
has been a critical factor for the rise of NILM techniques. Digital energy 
programs associated with the Internet of Things (IoT), Smart Grids (SG) 
or Demand Response (DR) are heavily dependent on NILM methodolo-
gies for extracting information on digitised services to the end-user 
(Antonio Ruano et al., 2019; Hosseini et al., 2017). 

A significant application of NILM techniques in residential energy 
management is energy efficiency decisions through itemised energy 
information. Such digital itemisation gives feedback to the occupant and 
creates ‘energy awareness’ (Hosseini et al., 2017). The non-intrusive 
nature of the NILM approach and its easy utilisation through smart 
meters are its major advantages over conventional energy metering 
methods. NILM has also emerged as a critical digital technology for 
healthcare management in the pandemic for vulnerable population 
groups. In a residential energy management context, NILM has two 
major applications in Home Energy Management Systems (HEMS) and 
Ambient Assisted Living (AAL) (Antonio Ruano et al., 2019). Detailed 
literature review of NILM techniques can be referred from the following 
papers (Antonio Ruano et al., 2019; Hosseini et al., 2017; Tabatabaei 
et al., 2017; Zeifman and Roth, 2011). 

The main stages are NILM data analysis, as reported by Antonio 
Ruano et al. (2019), categorised into four distinct stages. It involves data 
collection, event detection, feature extraction and load identification. 
Our study relies entirely on the NEEM dashboard (BEE, 2021) for data 
collection and conducts event detection according to the dwelling ty-
pologies. Existing NILM literature classifies an event as any switch in a 
signal from a certain steady-state to a new state. Event detection typi-
cally consists of expert heuristic, probabilistic models and matched 
filtering (Anderson et al., 2012). Expert heuristics were a common 
approach in the 1990s and 2000s that involved creating a set of rules for 
each appliance (Hosseini et al., 2017). State-of-the-art methods in NILM 
event detection are probabilistic models that can be evaluated through 
supervised or unsupervised approaches (Liu et al., 2019). For example, 
Decision Trees (DT) and Long Short-Term Memory (LSTM) models are 
used for event detection with over 98.6& and 92.6% accuracy, respec-
tively (Le and Kim, 2018). Unsupervised classification and clustering 
algorithms are also used as a novel approach to event detection that 
pushes the boundaries of AI in NILM-based energy demand analysis 
(Alcalá et al., 2017; Beckel et al., 2014; Bonfigli et al., 2015). 

Unsupervised approaches define the current practical applications of 
the NILM approach for home energy management cases (Antonio Ruano 
et al., 2019; Hosseini et al., 2017). Over the last ten years, research ef-
forts have been focused on the development of real-time disaggregation 
algorithms for inferring the state of individual appliances and indicating 
the total energy consumption in an unsupervised manner (Abubakar 
et al., 2017; Antonio Ruano et al., 2019; Zoha et al., 2012). Load clas-
sification and load separation are two main types of unsupervised cat-
egorisation approaches in NILM literature. Recent systematic literature 
review of the unsupervised NILM classification can be referred here: 
(Abubakar et al., 2017; Bonfigli et al., 2015; Liu et al., 2019). Method-
ologically, state-of-the-art NILM algorithms have been proposed using 
variants of Hidden Markov Models (Jia et al., 2015; Kim et al., 2011; 
Kolter and Jaakkola, 2012; Makonin et al., 2016), Graph Signal Pro-
cessing (Sandryhaila and Moura, 2014; Zhao et al., 2015) and deep 
learning (Kelly & Knottenbelt, 2015, 2015, 2015; Zhang et al., 2019). 

In cases where the power level of each appliance is not known, 
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researchers have used event-based blind disaggregation algorithms 
using Gaussian mixture models (GMM) for clustering to automatically 
detect appliances from the aggregate data (Qureshi et al., 2021). The 
benefit of using GMM over other clustering methods is that they can 
automatically learn the statistical distributions present in the data 
(Abubakar et al., 2017; Antonio Ruano et al., 2019). However, present 
evidence shows that the existing disaggregation techniques often need 
some supervised learning and parameter tuning (Hosseini et al., 2019; 
Ridi et al., 2016). Therefore, for the first time, Qureshi et al. (2021), 
proposed a fully blind event-based disaggregation method using GMM. 
Furthermore, we innovatively build on their approach to disaggregate 
building energy use based on dwelling typology to explore the combined 
effect of lockdowns and heatwaves at a national scale for Indian cities. 

Very limited evidence exists on the role of NILM-based approaches in 
energy policy design. Recently, International Energy Agency emphas-
ised on the NILM as a digitalisation solution for better energy efficiency 
at a power system level. The authors emphasised on leveraging NILM at 
the policy impact monitoring and policy design stages (Jeremy Sung 
et al., 2021). Policy experiments were funded by the UK Government 
under the Smart Meter Enabled Thermal Efficiency Ratings (SMETER) 
Innovation Programme to better understand the role of NILM in 
measuring residential thermal performance to inform future policy 
(GOV.UK, 2018). Klemenjak et al. (2020) further stated that as a policy 
tool NILM can be used to perform diagnostics of household appliances 
and industrial components that can reduce operational costs. Similarly, 
Salani et al. (2020) in context of Swiss Government funded Lugaggia 
Innovation Community (LIC) project showed that NILM can be used 
effectively in distributed energy planning. NILM was also discussed as a 
critical public health tool through its integration in Ambient Assisted 
Living (AAL). AAL is the use of sensor-based intelligence to support 
people who needs critical care. It involves NILM of daily activities, 
monitoring the health deterioration at long term or producing alerts for 
short-term interventions (Hernández et al., 2019). Nonetheless, with 
advancement of sensor intelligence and computational methods, the 
critical policy design challenge lies with the privacy concerns of such 
monitored datasets that needs rigorous ethical assessment (Sangyoung, 
2020). 

2.2. COVID-19 effect on residential energy demand in India 

The International Energy Agency (IEA) stated that electricity de-
mand dropped quickly across Europe and India under lockdown but 
steadily recovered as measures were gradually softened. By July 2020, 
the weather corrected electricity demands stayed 5% below the 2019 
levels for the same month in most countries, except in India, where the 
recovery was more pronounced (IEA, 2021a). Data from India’s National 
Load Dispatch Centre shows that all India electricity consumption 
dropped by 22% in the first week of lockdown (25 March – April 1, 
2020) compared to the previous week’s peak (POSOCO, 2021; Prayas 
Energy Group, 2020). In contrast, during the lockdown, residential 
electricity consumption is expected to increase as people spend more 
time at home and summer temperatures. Although, the actual impact on 
electricity consumption is not yet clear (Prayas Energy Group, 2020). 

A recent survey showed that in 81 households in the Indian states of 
Maharashtra and Uttar Pradesh, the average daily increase in electricity 
consumption was 26% more than the pre-lockdown levels (Prayas En-
ergy Group, 2020). In addition, it showed that households with air 
conditioning (AC) showed an average daily increase in the range of 
45–60%. On the other hand, the households without AC showed a 
35–114% increase in average electricity consumption (Prayas Energy 
Group, 2020). This study also reported a 2–3 ◦C higher maximum 
temperature in the survey areas compared to the 2019 levels (Prayas 
Energy Group, 2020). 

A similar study involving single-phase smart meters in 93 urban 
households in Uttar Pradesh showed that electricity use was lower 
during the first three weeks of May 2020 (i.e., during the deep-lockdown 

period) but exceeded past consumption levels after 23 May (Pathak 
et al., 2020). The study reported fewer power cuts during May 2020 
(43.5 min/day/HH) than in May 2019 (72.5 min/day/HH). It was also 
reported that the relative drop in electricity use was highest amongst 
households with AC. Occupants’ interviews revealed that lower use of 
AC was due to adherence to public advisories against the use of AC and 
desert coolers to prevent the spread of coronavirus and also due to 
inability to get AC repaired during lockdown (Pathak et al., 2020; Shalu 
Agarwal et al., 2020). Occupants also revealed limiting usage of AC to 
lower the electricity bills during the lockdown as it was causing signif-
icant financial stress (Pathak et al., 2020; Shalu Agarwal et al., 2020). 

Aruga et al. (2020) found that the poorest states in India did not 
recover well compared to the wealthier states when nationwide lock-
down began to relax. The authors used an autoregressive distributive lag 
modelling approach to show that regions with higher income levels were 
more likely to recover their energy consumption to pre-lockdown levels 
faster than those with lower income levels (Aruga et al., 2020). How-
ever, their analysis did not disaggregate residential and commercial 
consumption, which remains its limitation. Our study presents such 
disaggregated analysis at an urban residential scale that can inform 
post-pandemic energy efficiency policies and strengthen India’s recov-
ery efforts. This study also informs how demand-side digitalisation using 
tools like smart meters can improve energy policy decision-making 
especially in low-and-middle income countries. 

3. Data and methods 

The overall data-driven methodological approach is illustrated in 
Fig. 1. It consisted of three key steps: i) Public non-intrusive load 
monitoring data collection and its pre-processing for weather normal-
isation, ii) Extraction of hourly electricity consumption data as per the 
dwelling typologies, its segmentation and dimensionality reduction and 
iii) Identification of typical daily electricity usage profiles as per the 
inter- and intra-dwelling units using Gaussian Mixture Modelling. 

3.1. Data source 

Non-Intrusive Load Monitoring (NILM) data was collected through 
the Bureau of Energy Efficiency (BEE), Government of India’s online 
public portal called National Energy End-use Monitoring (NEEM) 
dashboard (BEE, 2021). BEE reports NILM smart meter data of elec-
tricity end-use of 200 households across 13 cities in India at an hourly 
resolution (see Fig. 1). Detailed sample specifications are presented in 
Table A1 in Appendix. We collected 153 days data between March and 
July for pre-COVID (2018 and 2019) and deep-COVID (2020) periods. 
The specific timeframe of March to July accommodates this paper’s 
scope of evaluating nationwide lockdown impacts on residential elec-
tricity consumption. 

The dataset consisted of the 24-h load profile of the urban house-
holds based on their dwelling type. The data was pre-segmented into five 
dwelling typologies, namely, 1-bedroom (BR1), 2-bedroom (BR2), 3- 
bedroom (BR3), more than 3-bedroom (M3BR) and 1-room units 
(RM1) (BEE, 2021). We follow this nomenclature consistently 
throughout this study. The final dwelling-typology based sampling 
specifications are presented in Table A2 in the Appendix. 

BEE reports specific attributes to the NILM datasets on the NEEM 
website (BEE, 2021). For example, it states that higher weightage was 
given to upper and middle-income consumer profiles, and inverse allo-
cations were given to lower-income bands. Therefore, the scope of 
monitoring was directed towards upper and middle-income socioeco-
nomic classes (SECs) (BEE, 2021). To overcome this data scoping limi-
tation, we based our analysis on dwelling typologies as a key 
non-income driver (Debnath et al., 2019) of electricity demand in 
urban India. In addition, contrary to the common seconds or hertz (Hz) 
level granularity of the NILM dataset, BEE provides the data at hourly 
resolution at a whole building/dwelling-unit energy use level (BEE, 
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Fig. 1. Methodological framework of this paper.  

Fig. 2. Non-intrusive load monitoring locations across 13 cities and five climatic zones in India (Source: BEE, 2021).  
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2021). 
Total data points representing electricity demand (in kilowatt-hour 

(kWh) between March–July for the target years across the dwelling ty-
pologies were 52,107. We adopted the ratio based Degree-Day Nor-
malisation method for weather normalisation of the NILM datasets 
(ASHRAE, 1985). It generated weather normalised electricity con-
sumption by factoring out the effect of outdoor temperature. Thus, 
enabling comparison for electricity demand across five climate zones 
(see Fig. 2). The normalisation isolated the effects of weather change on 
energy performance by using the heating degree-day (HDD) and cooling 
degree-day (CDD) values. 

Degree-days represent the absolute value of the difference between a 
reference or base temperature of a given time (Beheshti et al., 2019). 
Bhatnagar et al. (2018) estimated the reference temperature for India, i. 
e., base temperature for cooling is 18.3 ◦C and heating is 17.4 ◦C, with an 
average base temperature for cooling and heating 18 ◦C. The normalised 
electricity consumption was calculated using eq (1) with 18 ◦C as the 
base reference temperature. 

Enormalised =
Eactual

(HDD + CDD)actual
× (HDD + CDD)average− year Eq. 1  

where Enormalised = Normalised energy consumption; Eactual = Actual en-
ergy consumption; (HDD + CDD)actual = Actual hourly heating degree 
day/cooling degree day of the energy use; (HDD + CDD)average− year =

“average year” degree-day value over 3 years (2018,2019, and 2020) for 
each day. The weather normalised electricity consumption data (in 
kWh) is illustrated in Fig. 3. 

[Note: x-axis shows dwelling type in each year. BR1_2018 = 1- 
bedroom unit in 2018; BR2_2018 = 2-bedroom unit in 2018; BR3_2018 
= 3-bedroom unit in 2018; M3BR_2018 = More than 3-bedroom unit in 
2018, and RM1_2018 = 1-room unit in 2018. This nomenclature is fol-
lowed for 2019 and 2020 as well]. 

3.2. Multi-dimensional scaling (MDS) 

The NILM data presented above have high dimensionality that was 
computationally costly for training the Gaussian Mixture Models 
(GMM). Here, we have used a multi-dimensional scaling (MDS) tech-
nique to reduce the dimensionality of the input data before performing 
the clustering analysis for reducing the computational costs. A similar 
approach was also suggested by (Bouveyron and Brunet-Saumard, 2014; 
K. Li et al., 2018). MDS is a robust dimensionality reduction technique 
that retains vital information in the raw data as compared to other 

well-known dimensionality reduction techniques such as piecewise 
aggregate approximation (PAA) and piecewise linear approximation 
(PLA) (T.F. Cox & M.A. Cox and Cox, 2020). In addition, MDS retains 
more useful information about the pairwise distance among the data 
points, which is critical for GMM-based clustering (R. Li et al., 2016). 
Thus, it is a widely used method for data pre-processing and visual-
isation of cluster analysis. 

To apply MDS to a q-dimensional raw dataset, each observation in 
the raw dataset was considered a point in the q-dimensional space. First, 
the distance matrix M was calculated for all pairwise distances among 
the points. Then, all the points in the original q-dimensional were pro-
jected into a p-dimensional space (p < q), such that the distance matrix 
of the points in the q-dimensional space M’ is similar to M as much as 
possible. Thus, the dimensionally reduced data can be reached by 
considering each point in the p-dimensional space as an observation in 
the p-dimensional dataset. 

The dissimilarity between M and M’ is measured using stress as 
defined in eq (2) (T.F. Cox & M.A. Cox and Cox, 2020), while the 
detailed working procedure was adopted from (W.S. Torgerson, 1952), 

Stress=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1, j=1

(
d

′

i,j − di,j

)2

i ∕= j
∑N

i=1, j=1
d2

i,j

i ∕= j

√
√
√
√
√
√
√
√
√
√
√

(2)  

where di,j and d′

i,j denote the distances between the ith and jth points in M 
and M′, respectively. 

3.3. Model-based clustering using Gaussian Mixture Models (GMM) 

Model-based clustering belongs to the category of unsupervised 
machine learning algorithms. It is soft partitioning where observations 
could exist in several clusters rather than be assigned strictly to a single 
cluster. Soft partitioning or clustering presents an advantage over hard 
clustering methods like K-means by estimating uncertainty measures 
about how much a data point is associated with a specific cluster (Kevin 
P. Murphy, 2012). The core assumption with this clustering approach is 
that there are k mixture components (i.e., clusters) in some feature space 
that comprise a mixture of probability distributions, p(x) (Waggoner, 
2020). 

Gaussian mixture models (GMM) are a special class of finite mixture 
models, where each component, k, is assumed to be normally 

Fig. 3. Spread of the weather normalised electricity demand in kilowatt hour (kWh) across dwelling type for the analysis period (Mar–July) in 2018, 2019 and 2020.  
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distributed. In deciding to fit a GMM for clustering, we are concerned 
with classifying electricity demand across various dwelling typologies 
(observations) into components (i.e., clusters). Therefore, we answer the 
following question from an unsupervised machine learning framework: 
what, if any, grouping exits in the dwelling type-based electricity demand 
feature space? 

Formally, the probability distribution, p(x), is comprised of the sum 
of all normally distributed components, k, see eq. (3) (after (Figueiredo 
and Jain, 2002)), 

p(x) =
∑G

k=1
αkN(x; μkσk) (3)  

where, αk is the probability weight, or mixture size, for component k, 

driving the assignment of observations to components, where 
∑G

k=1
αk =

1. The joint probability distribution, p(x), is defined by the weighted 
average of all individual components, k. The, N(x; μkσk) represents that 
in GMM we assumed a Gaussian distribution with μk representing mean 
and σk showing the variance. 

The soft clustering assignment of the observations based on the 
normal probabilistic distribution of GMM allows overlapping between 
components. The similarity between observations assigned to a 
component is now defined by similarities in the probability of obser-
vations being assigned to a given cluster, k. The mean (μk) and variance 
(σk) describe the shape of the components, and the complexity of the 
feature space, p(x). In a multivariate setting, there are 14 possible 
Gaussian models with different geometric characteristics through the 
parametrisation of volume, orientation, and shape of Σk. We use mclust 
version 5.4.3 (Scrucca et al., 2016) in R version 3.5.3 for model esti-
mation. The characteristic models are illustrated in details in Table A3 
and Fig A1 in the Appendix (Scrucca et al., 2016). 

The GMM fit criteria are to estimate the values of αk, μk and σk to 
ensure that the GMM has the maximum-likelihood. The Expectation – 
Maximisation (EM) algorithm is commonly used to fit GMM. It produces 
ML estimates of parameters when there is a many-to-one mapping from 
an underlying distribution to the distribution governing the observation. 

The implementation of EM consisted of three steps – initialisation, 
expectation step and maximisation step (as per (Figueiredo and Jain, 
2002; Moon, 1996)). The initialisation step consisted of a random se-
lection of parameters based on the number of components set at the 
initialisation step. An iterative step of expectation (E) and maximisation 
(M) step was then conducted to improve the estimation of model 
parameters. 

Each observation was assigned to one of the mixture components in 
the E step to assign the highest probability to this observation (Moon, 
1996). Then the relative probability of each observation, i, belonging to 
all possible components, k, is calculated and ranges between [0,1]. High 
values indicate the kth component is a good fit for i, and low values 
suggest the kth component is a poor fit for i. Based on this probability 
feature, the parameter (αk, μk and σk) of each mixture component, k, was 
updated in the M step. The algorithm was assumed to have converged 
when the updated parameters of all mixture components do not change 
further, and the EM step was terminated. 

The robustness of the clustering results was further improved by 
using the modified EM, proposed by (Banfield and Raftery, 1993; 
Muthén and Shedden, 1999). The modified algorithm automatically 
identified and removed the low probability observations in the mixture 
components. More recently, a similar approach was adopted by (K. Li 
et al., 2018). 

The optimal number of mixture components, G, was determined 
using the Bayesian Information Criterion (BIC) (Hsu, 2015; Neath and 
Cavanaugh, 2012). BIC is one of the most widely used tools for statistical 
model selection in GMMs. The lowest value of BIC is preferred for the 
GMM with optimal G value. In case of negative BIC numbers, the value 
that has the largest modulus indicated the preferred model. Thus, for 

both inter-and intra-dwelling clustering, the G value, which can mini-
mise BIC, was used as the optimal G number of GMM fitting. Existing 
evidence shows that optimal clusters for single inter-building typical 
energy usage generally ranges from 2 to 8 (Ma et al., 2018; Rhodes et al., 
2014; Yang et al., 2017), while for intra-building clustering, it ranges 
from 2 to 14 (K. Li et al., 2018). Relevant codes can be accessed from 
https://github.com/Ramit1201/EnergyProp. 

4. Results 

4.1. Shifting of daily residential load-curves 

The load profiles for the dwelling typologies can during their typical 
office working hours (09:00–17:00) and out of working hours is illus-
trated in Fig. 4 for 2020, 2019 and 2018. It shows significant shifts in the 
residential load curves for 2020 as compared to 2018 and 2019. For 
2020, the peak demand appears to occur stochastically during the 
daytime across the dwelling units, which is missing for the 2018 and 
2019 curves (see Fig. 4). 

The RM1 is 2020 observed its maximum peak demand (~6.56 kWh) 
between 05:00–11:00 h. A similar trend follows between 20:00–23:00 h. 
In the same period, the maximum demand for 2019 was approximately 
2.5 kWh and 2 kWh for 2018, which peaked at ~2.95 kWh for both the 
years during a typical office work hour (09:00–17:00) (see Fig. 4). Thus, 
the work-from-home (WFH) impact for one-room dwelling units (RM1) 
can be evaluated by a rise in maximum peak demand by approximately 
125% during daytime and approximately 100% during night-time. 

In addition, Fig. 5 further shows that for 2020 RM1 electricity de-
mand, there was no significant variance between working and non- 
working hours, whereas significant variance existed for 2018 and 
2019 electricity demand profiles. Thus, it further illustrates that work- 
from-home norms in RM1 is shifting the working hour-led electricity 
consumption patterns, and thus, affecting overall load curves. 

Interestingly for the one-bedroom unit (1BR) case, while the peak 
demand during daytime for 2019 and 2020 remain identical (~3.48 
kWh), the peak appears more frequently between the working hours for 
2020 (see Fig. 4). However, the load curves for 2020 also show an 
emergence of maximum night-time peak (~5 kWh) between 
20:00–23:00, which is a 43.67% rise for the same period in 2018 and 
2019. Like the RM1, we did not find any significant variance (see Fig. 5) 
between the demand for working and out of working hours for BR1, 
indicating the impact of WFH norms on daily practices. 

A substantial distortion of the load curves for two-bedroom units 
(2BR) in 2020 was also observed in Fig. 3. During non-working hours the 
maximum peak demand was ~5.38 kWh in 2020, compared to ~2 kWh 
for 2019 and 2018 (see Fig. 4). However, the variance in the working 
and out of work hours was not significant for 2020, as mentioned above 
(see Fig. 5). Thus, demonstrating changing electricity demand patterns 
in 2BR typologies due to WFH. 

The peak shifts in three-bedroom units (3BR) were even more sto-
chastic throughout the day for the lockdown period in 2020, as shown in 
Fig. 4. The maximum peak demand for work hours was ~8.98 kWh in 
2020, a ~290% increase in peak demand from 2019 to 2018 levels 
(~2.30 kWh). For the out-of-work hours, the maximum demand peaked 
at ~8.10 kWh in 2020, while ~2.58 kWh in 2019 and ~2.32 kWh in 
2018. In contrast to the other dwelling typologies, the variances in the 
working and non-working hour peak demands for 2020 in BR3 is sig-
nificant at 95% CI (see Fig. 5). Similarly, for more than three-bedroom 
units (M3BR), the variance in the peak electricity demand for work 
and out-of-work hours in 2020 is significant at 99.9% CI (see Fig. 5). In 
addition, the load curves and the peak demand was identical for 2020, 
2019 and 2018 (see Fig. 4). 

The 3BR and M3BR dwelling units represent a typical urban resi-
dential typology of upper-middle and higher-income Indian households. 
Significant variances in the peak demand shifts during work and out-of- 
work hours in lockdown show that work-from-home norms did not 
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Fig. 4. Daily load curves of dwelling typologies no lockdown (2018–2019) and deep-lockdown (2020) periods.  
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substantially affect the load curves in 2020 compared to 2019 and 2018 
(see Fig. 5). The median electricity consumption generally showed a 
decreasing trend over the lockdown (2020) and non-lockdown period 
(2019 and 2018), as illustrated in Fig. 5. 

Furthermore, a cross-sectional view of residential energy demand 
during the weekend and weekdays shows a decrease in consumption for 
RM1 and M3BR for 2020 compared to 2018 and 2019 (see Fig. 6). 
However, there are distinct shifts in hourly load profiles for all the 
housing typologies in 2020. For example, peak demand for RM1 hap-
pens at 16:00 h for the weekdays in 2020 while 15:00 h for the weekend 
(see Fig. 6). As a result, the peak demand for 2020 weekdays is ~55.45% 
lower and ~27.30% lower for the weekend compared to the 2018 and 
2019 levels. For 2BR typologies in 2020, Fig. 6 shows a peak shift and 
decrease in demand, i.e., ~45.50% for weekdays and ~9.09% for the 
weekend (compared to 2018 and 2019 values). Similar, decreasing peak 

shifts were observed for M3BR units. As a result, the weekend con-
sumption for M3BR is ~163% and ~222% (weekday) lower than that of 
the 2018 and 2019 levels (see Fig. 6). 

In contrast, a rise and shift in peak demand are observed for 1BR 
units in 2020, which is ~85% increase for weekdays and ~55% increase 
for weekend consumption levels compared to the 2018 and 2019 values 
(see Fig. 6). A similar pattern is observed for 3BR, with a distinct shift in 
the daily load curve between 09:00–16:00 (see Fig. 6). The rise in 
weekend peak demand for 3BR is around 6.77%, where the demand 
change is negligible for weekdays compared to the 2018 and 2019 
values (see Fig. 6). These cross-sectional results further demonstrated 
that different housing typologies experienced lockdown related demand 
shifts across India. Section 4.2 presents the granular results of these 
shifts using the GMM-clustering approach (as described in section 3.3). 

Fig. 5. Variance in daily electricity demand for work and out-of-work hours during deep-lockdown (2020) and non-lockdown period in 2018 and 2019 [Note: ns 
indicates p > 0.05; * indicates p ≤ 0.05; ** indicates p ≤ 0.01; *** indicates p ≤ 0.001]. 
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4.2. Intra- and inter-dwelling unit clustering 

Table 1 shows the GMM model fit summary with Bayesian Infor-
mation Criterion (BIC) and log-likelihood values and the determinant 
model for clustering the electricity consumption of the inter-and intra- 
dwelling types. The clustering profiles were extracted for the March-
–July in pre-pandemic (2018 and 2019) and nationwide lockdown 
stages (2020), as mentioned in section 1. The inter-dwelling type models 

illustrate 5-dimensional features based on the year and the dwelling 
units. In contrast, the values for intra-dwelling types show a single- 
dimensional model as it represents each dwelling typology in a spe-
cific year. Most of the clusters identified were elongated ellipses with 
outliers (see Fig. 7a) that supports our methodological assumption that 
hard-clustering approaches like k-means may not have worked well for 
our dataset. K-means has no built-in way of accounting for oblong or 
elliptical clusters (P.-N. Tan et al., 2005). 

Fig. 6. Weekday versus weekend aggregated energy demand (in kW) across the residential typologies. The y-axis represents the hour of the day (24-h scale).  

Table 1 
GMM model fit summary with BIC values for inter- and intra-dwelling type.  

Sl. no Inter-dwelling type 

Model name Best model Optimal cluster (G) Bayesian Information Criteria (BIC) Log likelihood Sample (n) [NA values are omitted] 

1 2018 VEE 9 − 16701.19 − 8074.27 1439 
2 2019 VEV 7 − 15634.19 − 7373.47 1440 
3 2020 VVE 8 − 4031.27 − 1693.30 770  

Intra-dwelling type 
4 BR1_2018 V 3 − 1390.21 − 668.52 770 
5 BR1_2019 V 2 − 1081.23 − 511.52 1440 
6 BR1_2020 V 4 − 905.87 − 2151.75 770 
7 BR2_2018 V 2 − 1630.86 − 775.43 1439 
8 BR2_2019 E 5 − 189.53 − 116.58 1440 
9 BR2_2020 V 6 − 612.41 − 269.65 770 
10 BR3_2018 V 3 − 1558.88 − 761.26 1439 
11 BR3_2019 V 2 − 2002.59 − 927.20 1440 
12 BR3_2020 V 2 − 1381.77 − 654.30 770 
13 M3BR_2018 V 2 − 713.10 − 338.37 1439 
14 M3BR_2019 V 3 − 1053.66 − 497.74 1440 
15 M3BR_2020 V 6 − 1925.94 1039.40 770 
16 RM1_2018 V 3 − 2582.27 − 3468.70 1439 
17 RM1_2019 E 2 − 2053.39 − 995.81 1440 
18 RM1_2020 V 6 40.91 47.04 770 

[Note: Optimal cluster (G) denote the value that fitted the GMM model value with lowest BIC values. Optimal G-values is in the range of 2–8 for inter-building 
clustering and a range of 2–14 for intra-building clustering. Log-likelihood values is used to validate the BIC-driven model fit. It is a function of sample size (n), 
and a higher value determines better fit (see section 3.3 for detail)]. 
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VEE was estimated to be the best model for the 2018 data, indicating 
nine-component mixtures with covariances having varying shape vol-
ume and orientation (see Fig. 7b). For 2019, VEV was estimated to be the 
best model fit with seven-component mixtures with covariances having 
variable volume and orientation but the equal shape (see Fig. 7b). 
Similarly, for 2020, the best BIC model fit was obtained for VVE. It 
shows eight-component Gaussian mixtures with covariance having 
variable volume and shape and equal orientation (see Fig. 7b). It is to be 
noted that these model fits are obtained at an inter-dwelling unit scale. 
Their varying shape characteristics denote that there were some differ-
ences in the residential electricity demand for each year. 

Table 1 further illustrated that the number of data points (n) for these 
years were different, which may have also contributed to the mixture 
components’ shape, volume, and orientation characteristics. We further 
investigate the impact of lockdowns at an intra-dwelling scale that 
shows the granularity of demand shifts across the dwelling typologies 
for 2018, 2019 and 2020. Fig. 8 illustrate the bivariate density estimates 
for the intra-dwelling units. The sharp peaks in 2020 represent the 
concentration of data points for all the dwelling typologies that further 
supports our hypothesis that lockdowns significantly impacted the res-
idential electricity demand through work-from-home. 

Fig. 9 shows the time point distribution of the cluster structures 
across the residential typologies across month. Consumption patterns for 
RM1, 2BR and more than 3BR (M3BR) housing units had more clusters 
for 2020 than the other years, illustrating greater variance in energy 

demand behaviour during the lockdown period (March–August, see 
Fig. 9). It is to be noted that the NEEM database is limited to lower- 
middle (RM1 and 1BR) to higher-middle-income (3BR and M3BR) 
household categories (see section 3), this result implicated that the 
consumption pattern shifts were more profound in the lower-middle- 
and middle-income dwelling typologies. Further typology-based gran-
ular details of the results are presented below. 

4.2.1. One-room unit (RM1) 
Table 1 shows that the three mixture components were extracted for 

RM1 in 2018 and two clusters for 2019, while six clusters for 2020. The 
cluster memberships are illustrated in Fig. 10, where for 2018 and 2019, 
the mean electricity demand follows a similar trajectory in cluster 1 and 
cluster 2. Cluster 1 shows a peak around 10:00 h, while cluster 2 shows 
series of the trough. However, this pattern is completely altered for 
2020, with five clusters showing peaks at different times of the day (see 
Fig. 10). In 2020, peaks were more frequent around 09:00–10:00 h, 
14:00–15:00 h and 20:00–23:00 h with a mean demand around ~1.5 
kWh. This shift further illustrates the effect of work-from-home on 
electricity demand in one-room dwelling units in urban India (see de-
mand across the lockdown period for 2020, as shown in Figs. 4 and 5). 

4.2.2. One-bedroom unit (BR1) 
Three mixture components were extracted for 2018, two for 2019 

and four for 2020 electricity demand profiles of BR1 dwelling typology 

Fig. 7. Derived cluster profiles at an inter-dwelling 
electricity demand. (a) Elliptical shape and the col-
oured boundaries denote the Gaussian clusters with 
outliers derived in two-dimension; (b) Bayesian In-
formation Criteria (BIC) plots for 14 models fitted to 
the electricity consumption data showing the geo-
metric characteristics of this multidimensional data 
and its covariance parametrisation. [Note: In one 
dimension, there are just two models: E for equal 
variance and V for varying variance. In the multi-
variate setting, the volume, shape, and orientation of 
the covariances can be constrained to be equal or 
variable across groups that result in 14 models (see 
Appendix: Fig A1 and Table A3).].   
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(see Fig. 11 and Table 1). Energy demand peaks twice in cluster 1 for 
2018 at 09:30 (~1.78 kWh) and 22:00 h (~1.94 kWh), where the other 
two clusters project troughs in the hourly load curves. No significant 
demand peaks were observed in cluster 1 for 2019 and 2020 (see 
Fig. 11). However, cluster 2 for 2020 show a rise in demand for the 
period between 10:00 and 17:00 h, emulating the demand for working 
hours (see Fig. 4). A similar trend was observed for cluster 2 in 2020 as 
well, between 09:00–15:00 h. In contrast, cluster 3 and cluster4 for 2020 
have a massive surge in electricity demand between 12:00 and 17:00, 
with peaks reaching up to 2.89 kWh (see Fig. 11). It further illustrates 
the stochastic shift in load curves due to WFH practices, also demon-
strated through the time point distribution in Fig. 9. 

4.2.3. Two bedroom-unit (BR2) 
Table 1 and Fig. 7 shows the optimal model fit and the cluster 

membership extraction for BR2 for 2018, 2019 and 2020. Cluster 1 for 
all three years shows a similar trend on the daily demand curve. How-
ever, there are contrasting differences in the rest of the clusters across 
the time scale (see Fig. 12). Interestingly, the six clusters for 2020 show 

sharp peaks around 9:00 a.m. in clusters 1 to 4 (see Fig. 12 2020 BR2), 
whereas the same cluster number for 2019 shows a fall in demand (see 
Fig. 12 2019 BR2). For clusters 5 and 6 in 2020, the demand profiles are 
rising for the entire day with a daily mean of ~0.87 kWh. 

4.2.4. Three-bedroom unit (BR3) and more-than-three-bedroom units 
(M3BR) 

The cluster membership functions for BR3 and M3BR is illustrated in 
Table 1 and Fig. 13. It can be observed from Fig. 13a that there is a 
significant peak in demand for the BR3 in 2020 throughout the day 
across cluster 1 and cluster 2, with mean demand reaching ~1.78 kWh 
and ~1.64 kWh, respectively. Such patterns were absent for this 
dwelling typology in 2018 and 2019 (see Figs. 13a and 8). Similarly, the 
inference earlier drawn for aggregated load curves in Fig. 3 for BR3 
showed a significant shift in daytime and night-time peak energy 
demand. 

Fig. 13b illustrates the clusters for M3BR that shows a characteristic 
rise in demand for the 2020 case, contrary to 2018 and 2019. While both 
2018 and 2019 follow similar demand patterns, clusters 1, 3, 4 and 5 in 

Fig. 8. Bivariate density estimates of intra-dwelling units per year.  
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2020 show demand spikes for 08:00–10:00 and 18:00–23:00 h in 2020 
(see Fig. 13b). Typically, 3BR and M3BR are characteristic dwelling 
units of upper-middle and higher-income households. Therefore, the 
load shift in the lockdown context in these households can imply higher 
electricity demand for cooling, cooking and teleworking activities. 

Results from section 4.1 and 4.2 showed that Covid-19 related 
lockdowns did affect the energy consumption across dwelling typol-
ogies, especially when contextualised with the work-from-home effects. 
Cross-sectional investigation of the weekend and weekday energy con-
sumption also showed that the dwelling typologies experienced different 
peak demand shifts during the lockdown months in 2020. The results 
demonstrated that RM1, 1BR and M3BR had the most variance in its 
temporal energy demand over the lockdown period in 2020. 

5. Discussion 

The results presented in section 4 demonstrated the effect of lock-
down on electricity demand in Indian residential households compared 
to the demand profiles for 2019 and 2018. We evaluated the effect 
through an intra-and inter-dwelling unit-level analysis that revealed 
granular details of a daily shift in peak demands. Section 4.1 showed the 
aggregated results of the NILM dataset with variances in working and 
out-of-work hours. Fig. 5 showed that peak demand in 2020 for specific 
dwelling typologies increased by over 150–300%. For example, the rise 
in maximum peak demand for RM1 was approximately 125% during 

daytime and approximately 100% during night-time, over 2018 and 
2019 levels. While the maximum daytime peak demand for BR1 in 2020 
remained identical to 2019 and 2018 levels, we observed a night-time 
increase of ~44%. 

However, in a cross-sectional and aggregated analysis of the changes 
in weekday and weekend demand over the lockdown period, it was 
found that residential typologies reacted distinctly by shifts in peak 
demand. For example, it can be seen in Fig. 6 that the peak demand for 
the RM1 2020 weekday is ~55.45% lower and ~27.30% lower for the 
weekend compared to the 2018 and 2019 levels. Similarly, for BR2 in 
2020, a decrease in demand was observed for weekdays (~45.50%) and 
~9.09% for the weekend (compared to 2018 and 2019 values). In 
contrast, results showed ã 85% increase for weekdays and ~55% in-
crease for weekend consumption in 2020 for BR1 typologies (see Fig. 6). 

A substantial distortion of the daily load curves was seen for 2BR 
units in 2020 for the night-time in Fig. 4. During the non-working hours, 
the maximum peak demand was ~5.38 kWh in 2020, compared to ~2 
kWh for 2019 and 2018. The peak shifts in three-bedroom units (3BR) 
were even more stochastic in the entire day during the lockdown period 
in 2020. The maximum daily peak demand was ~290% more than the 
2019 and 2018 levels (see Section 4.1). In contrast, the aggregated de-
mand profiles did not significantly rise in electricity demand for 3BR and 
M3BR typologies even during the lockdown. These typologies are 
characteristics of upper-middle- and higher-income households, which 
already have a higher energy intensity than the other dwelling types. 

Fig. 9. Temporal distribution of cluster structures demonstrating the variance in clusters (x-axis) across 2018, 2019 and 2020. The y-axis shows month from March 
(3) to August (8) as time points. 
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Section 4.2 presented a granular account of the electricity demand 
shift using the Gaussian Mixture Model-based clustering analysis (see 
section 3.3). The results were represented at an intra-dwelling unit level 
that specifically describes the shape of the load curves in specific clus-
ters. Although it was found that the general trend in demand clusters for 
2018 and 2019 remained similar across all dwelling typologies, there 
was a drastic shift in the demand profiles for 2020 (as also illustrated 
through bivariate density profiles in Fig. 7). These shifts were more 
profound for one room (RM1) (see Fig. 10), one-bedroom (BR1) (see 
Fig. 11) and two-bedroom (BR2) units (see Fig. 12) that typically house 
lower-middle and middle-income working populations. 

Occupancy is never zero during work hours for low- and middle- 
income dwelling typologies as at least one of the household members 
remains in the house (Bardhan and Debnath, 2016). The load curves for 
2018 and 2019 for RM1, BR1 and BR2 support this occupancy pattern 
(see Fig. 4). Additionally, Fig. 5 show significant variance in the work 
and out-of-work hours energy demand for these years, indicating a 
distinction between working and non-working phases. However, on 
analysing 2020 datasets, the clustering results for RM1, BR1 and BR2 
revealed emerging peak demand at three specific periods in 2020, 
09:00–15:00 h, 10:00–17:00 h and 18:00–23:00 h (see section 4.2). 

Fig. 5 also showed no significant variance in the electricity demand 
for work and non-working hours for these dwelling typologies. It sup-
ports our initial hypothesis that peak shifts can be attributed to the 
work-from-home and lockdown effects. In addition, it can be due to 
increased usage of display devices, cooling devices, telework equipment 

and electric cooking in specific dwelling typologies. However, we could 
not extract the exact appliance profiles from the load curves as it was 
beyond the scope of this study. 

A critical feature of this study demonstrated the role of digitalisation 
like smart meters and non-intrusive load monitoring in determining the 
shifting daily demand curves in urban India. Furthermore, with 
pandemic impacted changing working norms, this study shows that 
some dwelling typologies have experienced peak shifts that could have 
caused higher bills during lockdown periods. For example, post lock-
down in 2020, there were several newspaper reports of over 1000% rise 
in electricity bills for BR2 dwelling units in Indian megacities (see [1], 
[2]). 

6. Conclusion and policy implications 

This study evaluated the effect of lockdown on residential electricity 
demand in urban India by dwelling typology. We used a novel and 
publicly available non-intrusive load monitoring (NILM) dataset from 
13 cities across India. We used a climate normalised and a data-driven 
approach using unsupervised machine learning to investigate chang-
ing load curves as work-from-home demand response in specific 
dwelling typologies. We also show the importance of digitalisation, like 
NILM through smart meters, in preparing for post-pandemic energy 
demand and possible hybrid working scenarios. 

Our results showed that during the lockdown in 2020, maximum 
peak load overshoot by almost 150–200% across one-room units (RM1), 

Fig. 10. Extracted clusters of electricity demand with mean curves for one-room units (RM1) [Note: y-axis shows weather corrected energy demand in kWh].  
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one-bedroom units (BR1) and two-bedroom units (BR2). The Gaussian 
clusters further demonstrated that while the load curves for 2018 and 
2019 mirror each other in most cases, the 2020 curves are highly sto-
chastic across the residential typologies. For example, mean daily load 
curves for 2020 clusters have shown peaks around 09:00–15:00, 
10:00–17:00, and 18:00–23:00, which was a characteristic work-from- 
home effect absent in the 2018 and 2019 clusters where load peaked 
at 09:00–12:00 h. In addition, a cross-sectional and aggregated 

investigation of the weekend and weekday profile showed varied peak 
shits across the dwelling typologies with a general decreasing trend 
across RM1, BR2 and M3BR typologies. This aggregated behaviour is 
coherent with the existing literature. 

This study utilised a publicly available non-intrusive load monitoring 
dataset called NEEM, which the Government of India commissioned as a 
pilot study. Our data-driven approach revealed significant opportunities 
for future digitalisation efforts, mainly focusing on data quality, 

Fig. 11. Extracted clusters of electricity demand with mean curves for one-bedroom units (BR1).  
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reliability and accessibility. For example, no socio-demographic infor-
mation was publicly provided with the NEEM database. Furthermore, a 
disclaimer mentioned that the surveyed households were unbalanced as 
per the climatic zones and income categories. Therefore, it restricted our 
analysis from evaluating climate-driven energy demand correlations 
with the housing typologies. In addition, we could not normalise the 
energy use data concerning the income categories due to embedded 
selection biases. From a data policy perspective, a key conclusion is a 
need for sensitivity towards the accessibility of associated meta-data. It 
would improve the quality of any public datasets and improve the trust 
and reliability of digitalisation initiatives. 

Three critical policy implications can be drawn from the dependency 
of shifting load curves and peak demand on the residential housing ty-
pologies during the lockdown periods. First, in post-Covid hybrid work 
scenarios, daily load curves can shift significantly, and demand-side 
management may need appropriate adjustments, failing to cause an 
unexpected rise in electricity bills. It was observed in several Indian 
megacities during the first lockdown period. Second, extended work- 
from-home or hybrid scenarios may demand restructuring tariff mech-
anisms across urban India as our results showed that the number of 
rooms determines energy demand. Due to data restrictions, we could not 
establish a correlation between room size, income categories, and en-
ergy consumption in work-from-home conditions. However, we found 
that single room and more-than-three-bedroom dwelling units experi-
enced the most significant variances in the energy demand. The third 

implication is the need for rapid smart metering and digitalisation in 
India to understand better factors that shape residential electricity de-
mand. Improved data quality and reliability are critical in a digitised 
power system that can empower citizens, policymakers, and researchers. 

The methodological approach adopted in this study is highly scalable 
and can be replicated in large scale analysis due to its data-centric na-
ture. However, key learning from this paper is that socioeconomic 
metadata of the end-users is equally critical for deriving meaningful 
interpretation from large data streams. The public NEEM dataset used in 
this study restricted access to the socioeconomic metadata like house-
hold income range, age distribution, appliance ownership and employ-
ment type, which limited us from deriving a comprehensive 
understanding of the disruptive shocks (like COVID-19 lockdowns) on 
the residential electricity demand. Additionally, despite a broad spread 
of monitoring points across 13 cities and five climatic zones, this paper 
could not specifically utilise the embedded climatic dependencies due to 
a lack of access to local weather data. We further note that such climate- 
related metadata can help in comprehensive analysis. Nonetheless, our 
study provides critical data policy-related evidence in the context of 
digitalisation that public data infrastructure should be accompanied 
with contextual meta-data to enable data-centric policymaking. 

Digitalisation in countries like India is in an experimental stage, and 
this paper provides an analytical route to leverage early-stage data 
infrastructure like the NEEM database. However, incomplete datasets 
and lack of contextualised metadata pose severe challenges handled 

Fig. 12. Extracted clusters of electricity demand with mean curves for two-bedroom units (BR2).  
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through several assumptions that limit this paper’s generalisability. For 
example, an assumption was made regarding the stiff working hours 
following the 9 to 5 work norms which is subjective to the personal and 
professional characteristics of the user. Similarly, we did not know how 
many residents worked remotely or the employment characteristics of 

the households. Moreover, the data resolution was set to hours by the 
NEEM portal, which led to disregard the unavoidable differences in the 
energy consumption of the installed electrical office equipment (like the 
number of monitors, computers, laptops, and other IT devices) and 
household appliances. A hertz or seconds level granularity of this 

Fig. 13. Cluster memberships for 3BR and M3BR dwelling typologies.  
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consumption data could have given us more information about the 
appliance characteristics. The Gaussian Mixture Model based-approach 
presented in this paper can further enhance the detection of 
appliance-led demand shifts, which emphasises the future compatibility 
of our methodological approach. 

As mentioned above, the lack of socioeconomic and local weather 
data of the monitored households further restricted the holistic treat-
ment of the lockdown effects. Therefore, future policy studies using such 
a public dataset should emphasise its socioeconomic and climatic con-
textualisation, which can aid in better demand forecasting and energy 
management. 
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Appendix  

Table A1 
Bureau of Energy Efficiency’s sample specification across the five climatic zones (Source: BEE (2021))  

Climatic Zone Population Proportion Number of Cities Sample Sample Percentage Allocation 

Hot-Dry 17% 2 30 15% 
Temperate 4% 1 20 10% 
Composite 37% 5 70 34% 
Warm-Humid 41% 4 70 34% 
Cold 1% 1 15 7% 
Total 100% 13 205 100%   

Table A2 
Bureau of Energy Efficiency’s sample specification across dwelling typologies (Source: BEE (2021))  

City Sample Census data Sample as emergent as per dwelling types 

1RM 1BR 2BR 3BR M3BR 1RM 1BR 2BR 3BR M3BR 

Ahmedabad 15 36% 33% 18% 7% 4% 5.40 4.95 2.70 1.05 0.60 
Bangalore 10 30% 31% 19% 8% 5% 3.00 3.10 1.90 0.80 0.50 
Chandigarh 5 38% 26% 19% 9% 7% 1.90 1.30 0.95 0.45 0.35 
Chennai 25 37% 32% 17% 6% 4% 9.25 8.00 4.25 1.50 1.00 
Guwahati 5 24% 28% 20% 13% 13% 1.20 1.40 1.00 0.65 0.65 
Hyderabad 15 33% 33% 20% 8% 4% 4.95 4.95 3.00 1.20 0.60 
Indore 10 25% 32% 19% 12% 10% 2.50 3.20 1.90 1.20 1.00 
Jaipur 15 26% 29% 19% 13% 11% 3.90 4.35 2.85 1.95 1.65 
Kolkata 20 42% 32% 14% 6% 4% 8.40 6.40 2.80 1.20 0.80 
Lucknow 10 31% 31% 17% 11% 8% 3.10 3.10 1.70 1.10 0.80 
Mumbai 25 42% 28% 15% 6% 4% 10.50 7.00 3.75 1.50 1.00 
New Delhi 35 32% 30% 20% 10% 6% 11.20 10.50 7.00 3.50 2.10 
Shimla 10 27% 30% 17% 12% 12% 2.70 3.00 1.70 1.20   

Fig. A1. Ellipses of isodensity for each of the 14 Gaussian models obtained by eigen-decomposition in case of three groups in two dimensions (Source: (Scrucca 
et al., 2016)).  

Table A3 
Parameterisation of the within-group covariance matrix for multidimensional data available in the mclust package and the corresponding geometric 
characteristics (Source: (Scrucca et al., 2016))  

Model Σk Distribution Volume Shape Orientation 

EII λI Spherical Equal Equal – 
VII λkI Spherical Variable Equal – 
EEI λA Diagonal Equal Equal Coordinate axes 
VEI λkA Diagonal Variable Equal Coordinate axes 
EVI λAk Diagonal Equal Variable Coordinate axes 

(continued on next page) 
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Table A3 (continued ) 

Model Σk Distribution Volume Shape Orientation 

VVI λkAk Diagonal Variable Variable Coordinate axes 
EEE λDADT Ellipsoidal Equal Equal Equal 
EVE λDAkDT Ellipsoidal Equal Variable Equal 
VEE λkDADT Ellipsoidal Variable Equal Equal 
VVE λkDAkDT Ellipsoidal Variable Variable Equal 
EEV λDkADT

k Ellipsoidal Equal Equal Variable 
VEV λkDkADT

k Ellipsoidal Equal Variable Variable 
EVV λDkAkDT

k Ellipsoidal Variable Equal Variable 
VVV λkDkAkDT

k Ellipsoidal Variable Variable Variable  
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Alcalá, J., Ureña, J., Hernández, Á., Gualda, D., 2017. Event-based energy disaggregation 
algorithm for activity monitoring from a single-point sensor. IEEE Trans. Instrum. 
Meas. 66 (10), 2615–2626. https://doi.org/10.1109/TIM.2017.2700987. 

Anderson, K.D., Bergés, M.E., Ocneanu, A., Benitez, D., Moura, J.M.F., 2012. Event 
detection for Non Intrusive load monitoring. In: IECON 2012 - 38th Annual 
Conference on IEEE Industrial Electronics Society, pp. 3312–3317. https://doi.org/ 
10.1109/IECON.2012.6389367. 

Aruga, K., Islam, M.M., Jannat, A., 2020. Effects of COVID-19 on Indian energy 
consumption. Sustainability 12 (14), 5616. https://doi.org/10.3390/su12145616. 

ASHRAE, 1985. ASHRAE Handbook: 1985 Fundamentals. Atlanta. 
Banfield, J.D., Raftery, A.E., 1993. Model-based Gaussian and non-Gaussian clustering. 

Biometrics 49 (3), 803–821. https://doi.org/10.2307/2532201. 
Bardhan, R., Debnath, R., 2016. Towards daylight inclusive bye-law: daylight as an 

energy saving route for affordable housing in India. Energy for Sustainable 
Development 34, 1–9. https://doi.org/10.1016/j.esd.2016.06.005. 

Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., Santini, S., 2014. The ECO data set 
and the performance of non-intrusive load monitoring algorithms. Proceedings of the 
1st ACM Conference on Embedded Systems for Energy-Efficient Buildings 80–89. 
https://doi.org/10.1145/2674061.2674064. 

BEE, 2021. National Energy End-Use Monitoring (NEEM). Bureau of Energy Efficiency, 
Minsitry of Power, Government of India. https://neemdashboard.in/index.php. 

Beheshti, S., Sahebalam, A., Nidoy, E., 2019. Structure dependent weather 
normalization. Energy Science & Engineering 7 (2), 338–353. https://doi.org/ 
10.1002/ese3.272. 

Bhatnagar, M., Mathur, J., Garg, V., 2018. Determining base temperature for heating and 
cooling degree-days for India. J. Build. Eng. 18, 270–280. https://doi.org/10.1016/j. 
jobe.2018.03.020. 

Bielecki, S., Skoczkowski, T., Sobczak, L., Buchoski, J., Maciąg, Ł., Dukat, P., 2021. 
Impact of the lockdown during the COVID-19 pandemic on electricity use by 
residential users. Energies 14 (4), 980. https://doi.org/10.3390/en14040980. 

Bonfigli, R., Squartini, S., Fagiani, M., Piazza, F., 2015. Unsupervised algorithms for non- 
intrusive load monitoring: an up-to-date overview. In: IEEE 15th International 
Conference on Environment and Electrical Engineering (EEEIC), pp. 1175–1180. 
https://doi.org/10.1109/EEEIC.2015.7165334, 2015.  

Bouveyron, C., Brunet-Saumard, C., 2014. Model-based clustering of high-dimensional 
data: a review. Comput. Stat. Data Anal. 71, 52–78. https://doi.org/10.1016/j. 
csda.2012.12.008. 

Cox, T.F., Cox, M.A., 2020. Multidimensional Scaling. CRC Press. 
Debnath, R., Bardhan, R., 2020. India nudges to contain COVID-19 pandemic: a reactive 

public policy analysis using machine-learning based topic modelling. PLoS One 15 
(9), e0238972. https://doi.org/10.1371/journal.pone.0238972. 

Debnath, R., Bardhan, R., Sunikka-Blank, M., 2019. How does slum rehabilitation 
influence appliance ownership? A structural model of non-income drivers. Energy 
Pol. 132, 418–428. https://doi.org/10.1016/j.enpol.2019.06.005. 

Desk, Trends, 2020, June. People share memes on social media after getting high 
electricity bills post-lockdown. The Indian Express. https://indianexpress.com/a 
rticle/trending/trending-in-india/high-electricity-bills-post-lockdown-period-me 
mes-6516281/. 

Figueiredo, M.A.T., Jain, A.K., 2002. Unsupervised learning of finite mixture models. 
IEEE Trans. Pattern Anal. Mach. Intell. 24 (3), 381–396. https://doi.org/10.1109/ 
34.990138. 

Gupta, S., Gupta, E., Sarangi, G.K., 2020. Household energy poverty index for India: an 
analysis of inter-state differences. Energy Pol. 144, 111592. https://doi.org/ 
10.1016/j.enpol.2020.111592. 
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