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Abstract 

To perform long-term structural health monitoring (SHM), a method based on a Nonlinear 

Autoregressive Exogenous (NARX) network is used to learn the features present in signals acquired 

from a pristine structure. When a subsequent measured signal is input to the trained NARX network, 

the output is a prediction of the equivalent signal from a pristine structure. The residual when the pristine 

predicted signal is subtracted from the measured signal is used for defect detection and localization. A 

methodology of how to train, test and assess a NARX network for guided wave signals is introduced 

and applied to experimental data obtained over a period of 8 years from a sparse array of guided wave 

sensors deployed on a steel storage tank. A separate NARX model is trained for each sensor pair in the 

array using data captured in 2012. The method is first tested using data from a single pair of sensors. 

Defect signals are synthesized by superposing simulated responses from defects onto later experimental 

signals obtained from the real structure. The test results for the NARX method show better detection 

performance than those from the Optimal Baseline Selection (OBS) method, in terms of Receiver 

Operating Characteristic (ROC) curves. The detection performance of NARX method is further 

assessed on signals from the whole sensor array, again with simulated defect responses superposed. It 

is shown that good detection and localization performance can be achieved by combining the NARX 

residual signals from different sensor pairs. The NARX method is tested on experimental data acquired 

at intervals over the following 7 years as the condition of the tank naturally degrades. Indications from 

localized corrosion are observed. Finally, an artificial localized anomaly is added to the tank and is 

visible at the correct location in the image formed using the NARX method. 

1 INTRODUCTION  

Guided wave structural health monitoring (GWSHM) has the potential to enable complete inspection 

coverage of large structures with a sparse array of permanently installed transducers. GWSHM has been 

investigated for monitoring high-pressure vessels, oil and gas pipelines, railways, and aerospace 

structures [1-6]. In the generic GWSHM sparse sensor array considered here, each sensor can act as 

either a transmitter or receiver and an automated data acquisition system periodically records the time-

domain signal from each possible transmit-receive sensor pair in the array. The received signals are 



normally dominated by the direct transmission from a transmitter and subsequent reflections from 

benign structural features, such as edges and flanges. Because of the inherent complexity of signals 

resulting from these structural responses, defect detection is generally achieved by subtracting a 

baseline signal from the measured signal, where the baseline was acquired early in the life of the 

structure when it is assumed pristine. It is well known that this subtraction process is challenging due 

to the presence of changing environmental and operational conditions (EOCs) that alter measured 

guided wave signals even in the absence of any damage [7]. In particular, temperature variance is one 

of the dominant factors that leads to mode-dependent changes in guided wave characteristics such as 

wave velocity and attenuation. These effects must be compensated for to ensure baseline subtraction 

can achieve sufficient suppression of structural responses to reveal the presence of additional weak 

signals due to damage [8]. One solution is to use optimal baseline selection (OBS) [9]. In this approach, 

the baseline that best matches the current measurement is selected from an ensemble collected under 

varying EOCs for each sensor pair. A baseline may also be subjected to further manipulation (e.g. 

amplitude scaling, time dilation, time delay and phase adjustment) to improve the match. Such 

manipulations can be described as global manipulations, in that they are applied consistently to the 

whole baseline signal, which is then subtracted from the current measurement. Therefore, the implicit 

assumption in this approach is that EOCs lead to global distortions of the guided wave signal that can 

be described by a small number of parameters [10]. For spatially homogeneous variations in 

temperature, this is a reasonable assumption. The consequence is that the full range of EOCs can be 

assumed to be spanned by a modest-sized set of baselines and fine-tuning by global manipulation of the 

best-matched baseline is justified. However, the reality in most cases is that EOCs cause local rather 

than global distortions of signals and require a large number of parameters to be adequately described. 

Obtaining sufficient baselines to adequately span the multi-dimensional parameter space of EOCs is 

challenging (especially since the number of dimensions is not known) and global manipulations of 

baseline signals to improve the match are less effective. Compensation of local rather than global 

changes in baseline signals has been used in more recent methods of baseline signal manipulation such 

as the Location Specific Temperature Compensation method and dynamic time warping method [11-

13].  



In the current article, data-driven machine learning is applied to the problem of baseline signal 

subtraction. Several researchers have previously applied data-driven machine learning algorithms to 

different aspects of GWSHM problems. Ying et al. used adaptive boosting and a support vector machine 

(SVM) to develop a defect classifier for damage feature identification and automatic selection [14]. Liu 

transformed GW signals to short time Fourier transform (STFT) spectrum images and used them to 

train a convolutional neural network (CNN) to detect notch-type cracks in thin plate structures [15]. 

Hesser et al. used simulated impact damage to train a multi-layer perceptron to localize the impact 

positions in a plate [16]. Todd et al. employed a Bayesian neural network surrogate model with 

variational inference, learning latent damage features to monitor length of unexpected gaps between the 

lock wall and the quoin block in cargo ships [17]. Although these works present quite high detection 

accuracy in short-term random tests, the classification models employed cannot guarantee good 

performance in long-term tests with realistic variance of EOCs.  

Defect detection based on classifier models has two intrinsic problems. First, they have to be designed 

to detect specific types of defect at specific locations and orientations (e.g. notch-type cracks [15], 

impact damage [16]). Training the classifiers therefore requires both pristine (defect-free) data and data 

containing defect responses at multiple locations and orientations. The latter is extremely costly to 

acquire experimentally on real structures, and modelling is also challenging since the parameter space 

of possible defect types, locations and orientations is very large. Secondly, both the pristine and defect 

data needed for training should also contain the appropriately varying EOCs if the classifier is to be 

used for long-term surveillance.  

In the current paper, a fundamentally different machine learning approach is applied that avoids the 

requirement for training data from structures containing defects. Instead, a neural network is trained to 

predict the pristine guided wave signal from a structure given a measured guided wave signal as input. 

The predicted pristine signal is then subtracted from the measured signal to reveal the presence of any 

defect responses. The advantage of this approach is that the training can be performed entirely from 

measured signals recorded in the early stages of monitoring when a structure is assumed to be pristine. 

In this respect, the approach is similar to OBS, but instead of recording baseline signals in the pristine 

state and using these later, the baseline signals are used to train a neural network; instead of subtracting 



the best-matched measured baseline, the pristine signal predicted by the trained neural network is 

subtracted. The hypothesis is that a neural network trained using pristine signals obtained under varying 

EOCs can learn a better representation of the effect of EOCs with local variations in baselines than the 

OBS approach. From this starting point, the first question is to decide the type of neural network to use 

and crucially how to train it. In the training stage, the input to the neural network is a measured signal 

from the pristine structure and the desired output is a prediction of the same, hence the training objective 

is to minimize the difference between the two. The neural network must be forced to make some sort 

of prediction of every value in the output signal to prevent it simply learning to make the output an 

exact copy of the input. In theory, this could be achieved by an autoencoder neural network with a 

sufficiently large latent parameter space to describe the EOCs, but the number of parameters is unknown 

a priori. Instead, the inherent causality in a time-domain guided wave signal is exploited: if a defect is 

introduced into a structure it cannot introduce any change into a measured guided wave signal before a 

certain instant in time associated with the propagation delay of a guided wave travelling from the 

transmitting sensor to the defect location and back to the receiving sensor. Therefore, a neural network 

(trained on pristine data) to predict future values in a time-domain signal from previous values will not 

be able to predict the start of the change in signal due to the presence of a defect. The prediction of 

future values in a time series is a nonlinear auto-regression problem and for this reason, a recurrent 

neural network (RNN) architecture is selected, as they can be applied to capture the dynamic behavior 

patterns from recursive lagged input terms (and lagged output terms if necessary) [3]. Here, a Nonlinear 

Autoregressive Exogenous (NARX) architecture is used, as this has been used to produce a RNN that 

can be efficiently trained for broadly similar applications. For example, Zhang et al. applied a NARX 

network to the analysis of acoustic emission signals to detect cracks in rail [18]. Yan et al. developed a 

damage detection approach for vibrational systems based on a NARX network. A statistical indicator 

based on F-test was employed with the prediction error calculated using NARX to identify abrupt 

changes of the prediction error variance from structural damage [19]. Baca Ruiz showed that exploiting 

the exogenous data input to a NARX network enabled more efficient training and accurate prediction 

when compared to an equivalent plain non-linear autoregressive network [20].  



In the current paper, NARX processing is applied to GWSHM data obtained at various intervals over 

an 8-year period from a sparse array of piezoelectric sensors installed on a steel water tank. The NARX 

network design and tuning is described and the network is trained on 20 datasets obtained in 2012. In 

the current paper, the tuning of the NARX network is determined using mutual information and Cao’s 

method [21]. The NARX performance is quantitatively assessed and compared to OBS using simulated 

defect responses superposed onto measured signals obtained in subsequent years. The detection 

performance comparison is performed using receiver operating characteristic curves (ROCs) initially 

for a single sensor pair in the SHM system. The ROCs for all sensor pairs in the sparse array are then 

computed and compared. The detection performance of the whole sensor array is demonstrated on data 

acquired over the following 7 years as the condition of the tank naturally deteriorates. Finally, an 

artificial localized anomaly is introduced into the structure and it is shown that the NARX method 

enables it to be detected and localized by the GWSHM sensor array.  

2 METHODOLOGY OF DEFECT DETECTION USING GUIDED WAVES 

2.1 Overview of defect detection process 

Fig. 1(a) shows a schematic diagram of the general process of defect detection using either the OBS or 

NARX method. For a sparse array of sensors, the methods are applied separately to data from each pair 

of sensors, hence in this section the sensor indices are omitted for brevity. 

For both methods, the input is a measured time-domain guided wave signal, 𝑠(𝑡) and the objective is to 

obtain the equivalent pristine baseline signal, �̂�(𝑡), such that the residual signal, 𝑒(𝑡) = 𝑠(𝑡) − �̂�(𝑡), is 

zero if no defect responses are present in the measured signal. Both methods rely on a library of 𝑁𝑡𝑟𝑎𝑖𝑛 

signals, 𝐬(𝑡𝑟𝑎𝑖𝑛) = {𝑠𝑘𝑡𝑟𝑎𝑖𝑛(𝑡)} where 𝑘𝑡𝑟𝑎𝑖𝑛 = 1…𝑁𝑡𝑟𝑎𝑖𝑛 , recorded under varying EOCs when the 

structure is assumed to be pristine. The basic principle of the OBS method is to obtain the equivalent 

pristine baseline signal, �̂�(𝑂𝐵𝑆)(𝑡), by selecting the signal in 𝐬(𝑡𝑟𝑎𝑖𝑛) that, after some manipulation, best-

matches 𝑠(𝑡). This is described in more detail in Section 2.2. Conversely, in the NARX method, the 

data in 𝐬(𝑡𝑟𝑎𝑖𝑛) is used to train a NARX network to predict the equivalent pristine baseline signal, �̂�(𝑡), 

when a new signal, 𝑠(𝑡), is input. 



2.2 Optimal baseline selection method 

The OBS methodology used in the current paper is summarized below; further details of how the time-

dilation is implemented numerically may be found in [9]. Given a measured signal, 𝑠(𝑡), the optimal 

baseline, �̂�(𝑂𝐵𝑆)(𝑡), is given by: 

�̂�(𝑂𝐵𝑆)(𝑡) = 𝐴𝑚𝑠𝑘𝑚(𝛽𝑚 𝑡), (1) 

where 

{𝐴𝑚, 𝑘𝑚, 𝛽𝑚} = argmin
{𝐴,𝑘𝑡𝑟𝑎𝑖𝑛,𝛽}

(max
𝑡
|𝑠 − 𝐴𝑠𝑘𝑡𝑟𝑎𝑖𝑛(𝛽𝑡)|). 

The index 𝑘𝑚 represents the index of the best-matched baseline in 𝐬(𝑡𝑟𝑎𝑖𝑛) to the current measured 

signal. The terms 𝐴𝑚 and 𝛽𝑚 are respectively the optimal values of the amplitude scaling and time 

dilation of the best matched baseline signal to improve the match. Ideally, the residual signal from the 

subtraction 𝑠 − �̂�(𝑂𝐵𝑆) suppresses reflections from benign structural features but preserves additional 

signals due to scattering from defects that are not present in the pristine structure. Note that a 

computationally less demanding version of the OBS approach is to first identify the best-matched 

unaltered baseline and then optimize the time-dilation and amplitude scaling of that baseline to improve 

the match. In the approach used here, the selection of baseline, amplitude scaling and time-dilation are 

optimized together, which is guaranteed to achieved equal or superior performance. 

2.3 Nonlinear Autoregressive Exogenous (NARX) method 

It is more appropriate in this section to use discrete time notation denoted by square brackets where 

[𝑛] ≡ (𝑛∆𝑡). The objective is to obtain a neural network that approximates the function 𝑓 such that 

𝑠[𝑛 + 1]  = 𝑓(𝑠[𝑛 − 𝑛ℎ], … , 𝑠[𝑛]), where 𝑛ℎ is the number of previous values considered. This is a 

nonlinear autoregression problem. To facilitate efficient design of a network, Takens’ embedding theory 

is exploited [23]. This enables full use to be made of the computational ability of the NARX structure 

to solve the latching problem, caused by the vanishing gradient in time, determine hyperparameters, 

and learn long-term dependencies in the input efficiently. It has been previously shown [24] that a 

nonlinear autoregression network compatible with this formulation can be implemented in the Matlab 



Deep Learning Toolbox using the architecture of a Nonlinear Autoregressive Network with eXogeneous 

inputs (NARX) with a single hidden layer. The exogeneous input to a NARX network enables the 

previous values of the input sequence to be passed in the appropriate form. For consistency with 

previous work [18, 25] this is referred to here as a NARX network, even though its overall functionality 

in terms of input and output does not involve any exogeneous data. 

A schematic diagram of the NARX network in the training stage is shown in Fig. 1(b). The input signal 

to the NARX network is always normalised by its own maximum at the beginning of the NARX process 

and this is indicated by the pre-processing in Figs. 1(a) and (b). 
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Figure. 1 The schematic diagram of; (a) a general process of defect detection, (b) NARX training 

and (c) the architecture of the NARX model. 𝐬(𝑠𝑦𝑛,𝛼) in (a) contains synthetic datasets 

made by superposing different simulated defect responses, 𝐬(𝑑𝑒𝑓,𝛼) , 𝛼 = 1,2  to 

baselines, explained in detail in section 3.3. 

The NARX network architecture used is shown in Fig. 1(c). The network has three layers, an input 

layer, a hidden layer, and an output layer. In general terms the operation is as follows. A certain 

collection of 𝑛ℎ values from the input sequence, 𝐬, up to and including 𝑠[𝑛] are first extracted and re-

grouped to form the input layer. The information is passed through the hidden layer and the output layer 

to deliver the predicted value, �̂�[𝑛 + 1]. The process is repeated for each value of 𝑛 to build up the 

predicted signal, �̂�  (which is 𝑛ℎ  elements shorter than 𝑠 , because the first predicted value in �̂� is 

equivalent to the (𝑛ℎ + 1)
th value in 𝑠 ; the first 𝑛ℎ  values in 𝑠  are therefore discarded prior to 

evaluating the residual 𝑒 = 𝑠 − �̂�).  

The distinguishing feature of the network that can be implemented within a NARX architecture is the 

way in which the input layer values are selected from {𝑠[𝑛 − 𝑛ℎ],… , 𝑠[𝑛]}  to enable Takens’ 

embedding theorem to be exploited. The input layer is connected to two tapped delay lines, 𝐮 and 𝐲. In 

the general case of predicting the series at 𝑠[𝑛 + 𝑛𝑓] (i.e. 𝑛𝑓 points ahead of the current point) the input, 

𝐲, contains known past values from the series and the previously predicted future values, i.e. 𝐲 ≡

{𝑠[𝑛 − 𝑛𝑙 + 1],… 𝑠[𝑛], �̂�[𝑛 + 1], … , �̂�[𝑛 + 𝑛𝑓 − 1]}, where 𝑛𝑙 is termed the time delay and is defined 

below. The second input, 𝐮, would normally contain tapped delay lines from one or more exogenous 



sources. Here, this contains 𝑛𝑙  tapped delay lines, 𝐮 = {𝐮𝑙}, where 𝑙 = 1…𝑛𝑙 , each containing 𝑛𝑢 

previous values of 𝐬 according to: 

𝐮𝑙 = {𝑠[𝑛 + 𝑙 − 𝑛𝑙 − 𝑛𝑢],… , 𝑠[𝑛 + 𝑙 − 𝑛𝑙 − 1]}, (2) 

The quantity 𝑛𝑢 is termed the embedding dimension. In the general case of multi-step ahead prediction 

the input layer of the network is connected to {𝐮, 𝐲}. Here, only the next point is predicted (i.e. 𝑛𝑓 = 1), 

hence the input to the network is: 

{𝐮, 𝐲} =

{
 
 

 
 

𝑠[𝑛 + 1 − 𝑛𝑙 − 𝑛𝑢],… , 𝑠[𝑛 − 𝑛𝑙], 𝑠[𝑛 − 𝑛𝑙 + 1],
⋮ ⋮

𝑠[𝑛 + 𝑙 − 𝑛𝑙 − 𝑛𝑢],… , 𝑠[𝑛 + 𝑙 − 𝑛𝑙 − 1], 𝑠[𝑛 + 𝑙 − 𝑛𝑙],
⋮ ⋮

𝑠[𝑛 − 𝑛𝑢],… , 𝑠[𝑛 − 1], 𝑠[𝑛] }
 
 

 
 

=

{
 
 

 
 
𝑠[𝑛 + 1 − 𝑛𝑙 − 𝑛𝑢],… , 𝑠[𝑛 − 𝑛𝑙 + 1],

⋮
𝑠[𝑛 + 𝑙 − 𝑛𝑙 − 𝑛𝑢],… , 𝑠[𝑛 + 𝑙 − 𝑛𝑙],

⋮
𝑠[𝑛 − 𝑛𝑢],… , 𝑠[𝑛] }

 
 

 
 

, (3) 

The output from the hidden layer can be expressed as,  

𝐡 = 𝑓ℎ(𝐯
T𝐮+𝐰T𝐲 + 𝐛), (4) 

where 𝐯 is the (𝑛𝑙𝑛𝑢) × 𝑛𝑚 weighing matrix associated with the 𝐮 input, 𝐰 is the 𝑛𝑙 × 𝑛𝑚 weighting 

matrix associated with the 𝐲 input, 𝐛 are biases, 𝑛𝑚 is the number of nodes in the hidden layer, 𝑓ℎ is the 

activation function used in the hidden layer nodes, and superscript T denotes transpose. The elements 

in 𝐮, 𝐯, and 𝐰 are learned when the network is trained. In the output layer, the output is given by 

�̂�[𝑛 + 1] =  𝑓𝑜(𝐰𝑜
T𝐡 + 𝑏𝑜), (5) 

where 𝐰𝑜 is the 𝑛𝑚 × 1 weighting matrix, 𝑏𝑜 is the bias, and 𝑓𝑜 is the activation function in the output 

layer. The total number of parameters that must be determined in training is [𝑛𝑙(𝑛𝑢 + 1) + 2]𝑛𝑚 + 1. 

The activation functions are tangent sigmoid functions for the hidden layer nodes and linear for the 

output layer. 



The NARX network is trained to minimise the residual mean squared error (MSE) between the input 

training signals 𝐬(𝑡𝑟𝑎𝑖𝑛)  and the predicted output, �̂�(𝑡𝑟𝑎𝑖𝑛) , by optimized parameters, 𝛉 =

[𝐯,𝐰,𝐰𝑜, 𝐛, 𝑏𝑜]: 

�̂� =  argmin
𝛉

∑ |𝑠𝑘𝑡𝑟𝑎𝑖𝑛[𝑛] − �̂�𝑘𝑡𝑟𝑎𝑖𝑛[𝑛]|
2

𝑘𝑡𝑟𝑎𝑖𝑛,𝑛 . (6) 

 After obtaining 𝛉, the detection performance of the NARX has to be tested using,  

𝐞(𝑡𝑒𝑠𝑡) = |𝐬(𝑡𝑒𝑠𝑡) − �̂�(𝑡𝑒𝑠𝑡)|, (7) 

where  |. | denotes an envelope function that returns all the absolute values of the vector elements. Note 

that, 𝐬(𝑡𝑒𝑠𝑡) could be any signal from the structure at any conditions (with or without a defect). 

2.4 Determination of NARX structure 

In common with the primary challenge for all neural network techniques, the selection of the 

hyperparameters of the NARX structure is crucial and requires investigation. As described, the length 

of considered previous values in NARX, 𝑛ℎ = 𝑛𝑙 + 𝑛𝑢, is invariant and it is thus crucial to choose an 

appropriate length. Here two critical parameters are involved, the time delay 𝑛𝑙  and embedding 

dimension 𝑛𝑢. Intuitively, the relative sizes of 𝑛𝑙 and 𝑛𝑢 determines whether the short-term or long-

term information has more contribution to recreating the dynamic behaviour of the signal. With an 

appropriate selection of these two parameters, the dynamic characteristics of the time series should be 

captured in the embedding space. In order to optimise this parameter selection, Gao et al. used a least 

squares support vector machine (LSSVM) for parameter fine-tuning and optimized their fault detection 

model using an adaptive genetic algorithm [26]. Perez-Ramirez proposed a mutual information index 

to ascertain the optimum number of neurons in the layers of the NARX [27]. In both cases their 

selections were specific to their applications and are not generally applicable. Instead of tackling the 

problem as an optimisation process, this paper determines the parameters using the delay embedding 

theorem and ascertains the optima based on the physical characteristics of the original signals. In the 

literature, the estimation of 𝑛𝑙 based on mutual information analysis has proven to be most accurate for 

Takens’ theorem and is the method employed here.  



The optimum time delay, 𝑛𝑙, is calculated by the first minimum value of average mutual information 

𝐼(𝑛𝑙
′) between amplitude distributions of the signal 𝑠[𝑛]  and its lagged signal 𝑠[𝑛 + 𝑛𝑙

′ ]. 𝐼(𝑛𝑙
′) is 

defined as:  

𝐼(𝑛𝑙
′) =  ∑ 𝑃𝑝𝑞{𝑠[𝑛], 𝑠[𝑛 + 𝑛𝑙

′]}𝑝,𝑞 ∙ log {
𝑃𝑝𝑞{𝑠[𝑛],𝑠[𝑛+𝑛𝑙

′]}

𝑃𝑝{𝑠[𝑛]}𝑃𝑞{𝑠[𝑛+𝑛𝑙
′]}
}, (8) 

where 𝑃𝑝{𝑠[𝑛]}, 𝑃𝑞{𝑠[𝑛 + 𝑛𝑙
′]} are the probabilities of finding a time series value in the 𝑝th interval of 

the 𝑠[𝑛] amplitude distribution and the 𝑞th interval of the 𝑠[𝑛 + 𝑛𝑙
′] amplitude distribution respectively. 

𝑃𝑝𝑞{𝑠[𝑛], 𝑠[𝑛 + 𝑛𝑙
′]} is the joint probability that an observation falls in both the corresponding intervals. 

In such a way, an appropriate time delay, 𝑛𝑙, is obtained, which guarantees a low correlation between 

the original signal and the signal lagged by 𝑛𝑙. 

The embedding dimension, 𝑛𝑢, is estimated based on the optimal time delay using Cao’s method [21]. 

This approach has been proposed to determine the minimum embedding dimension from a scalar time 

series. Consider a set of time delayed vectors,  

𝜸(𝑛, 𝑛𝑙 , 𝑛𝑢
′ ) = {𝑠[𝑛], 𝑠[𝑛 + 𝑛𝑙],⋯ , 𝑠[𝑛 + (𝑛𝑢

′ − 1)𝑛𝑙]}, (9) 

where 𝑛 = 1…𝑛𝑠 − (𝑛𝑢
′ − 1)  and 𝑛𝑠  is the number of points in 𝑠 . Then the optimal embedding 

dimension, 𝑛𝑢, is determined by the evolution of the following objective, 

𝐸(𝑛𝑢
′ ) =

1

𝑛𝑠−𝑛𝑙𝑛𝑢
′ ∑

‖𝜸(𝑛,𝑛𝑙,𝑛𝑢
′ +1)−𝜸(𝑛1,𝑛𝑙,𝑛𝑢

′ +1)‖

‖𝜸(𝑛,𝑛𝑙,𝑛𝑢
′ )−𝜸(𝑛1,𝑛𝑙,𝑛𝑢

′ )‖

𝑛𝑠−𝑛𝑙𝑛𝑢
′

𝑛0=1
 , (10) 

where ‖∙‖ returns the Euclidean norm of a vector, 𝑛1 is an integer such that 𝜸(𝑛1, 𝑛𝑙 , 𝑛𝑢
′ ) is the nearest 

neighbour of 𝜸(𝑛0, 𝑛𝑙 , 𝑛𝑢
′ ) [22]. A nearest neighbour is a lagged vector close to the original vector, 

which presents similar topological (dynamic) properties in the delay embedding space. The embedding 

dimension is determined when 𝐸(𝑛𝑢
′ ) stops changing for any 𝑛𝑢

′ . In practice 𝐸(𝑛𝑢
′ ) is considered to 

have converged when the change is less than 1×10-3 [28]. This indicates the minimum length to 

preserve the sequence information and recreate the nonlinear dynamics of the original signal. 

 



3 EXPERIMENTAL MEASUREMENT SYSTEM AND DATA 

3.1 Experimental measurement system  

Fig. 2(a) shows a photo of a water tank with a sparse array of 8 permanently attached guided wave 

sensors. The tank is around 2 m diameter and fabricated from 5 mm thick, semi-cylindrical steel panels 

that are bolted together along flanges. An unknown sealant is used between the flanges. Each sensor 

comprises a piezoelectric disk (NCE51, 20 mm × 1 mm thick, wraparound electrodes, Noliac A/S, 

Denmark) that is bonded to the outer surface of the tank using cyanoacrylate adhesive. The conductors 

from a coaxial cable are soldered to the electrodes on the piezoelectric disk and the disk is encapsulated 

in a silicone sealant to provide environmental protection. The disks are designed to operate 

predominantly in a radial mode and have high sensitivity to the S0 guided wave mode at around 250 kHz 

in a 5 mm thick steel plate. At this frequency-thickness product, the S0 mode has a relatively small out-

of-plane displacement component and the dispersion is minimal [29]. In addition, it is the fastest 

fundamental mode; this makes the identification of the directly-transmitted signal between a pair of 

sensors and estimation of group velocity straightforward. 

The wires from each sensor are connected in parallel to a pair of single-pole, 10-way RF relays which 

act as multiplexors. The pole of one multiplexor is connected to an input channel of an integrated digital 

oscilloscope and signal-generator device (Handyscope HS3, TiePie Engineering, Netherlands); the pole 

of the other multiplexor is connected to its signal-generator output. The multiplexors and oscilloscope 

/ signal-generator device are all controlled by a PC. Periodically, the PC activates a new measurement 

cycle, denoted by index 𝑘. The multiplexors connect the 𝑖th sensor to the signal-generator to act as 

transmitter and the 𝑗th sensor to the oscilloscope to act as receiver. Because the output of the signal-

generator is limited to 12 volts a chirp excitation function is used (1000 cycles with frequency content 

equivalent to a 5-cycle Hanning-windowed toneburst with centre frequency of 250 kHz) to increase the 

energy transmitted in the excitation signal [30]. The signal detected on the receiver is de-chirped and a 

single dataset is recorded into the complete set of time domain responses, 𝑠𝑖𝑗,𝑘(𝑡), recorded from each 

pair of sensors in the array during the 𝑘th measurement cycle. The multiplexors then switch to the next 

sensor pair and the process is repeated. In one complete measurement cycle the responses from all 



possible transmit-receiver pairs are acquired and stored. In the current paper to minimise the data to be 

displayed, only data from 4 of the 8 sensors is used, hence 𝑖, 𝑗 = 1…4  and 12 responses per 

measurement cycle are captured. 

The tank is in a sheltered exterior location but has been subject to natural environmental conditions over 

many years. Since its installation in 2012 the GWSHM system has performed over 75000 measurements 

and a subset of 2400 measurements distributed through the entire acquisition period is selected in this 

research. When operating correctly, measurements are performed every day, but for various reasons 

(e.g. building work, PC failure) there are many gaps in the recorded data. Initially the experiment was 

stopped in July 2016 but was restarted for the purposes of acquiring new data for this paper in July 

2020. Where it is necessary to refer to collections of datasets, these are indicated by superscripts 𝐬(𝑋) =

{𝑠𝑖𝑗,𝑘𝑋} where 𝑋 is the name of the collection, 𝑘𝑋 = 1… .𝑁𝑋, and 𝑁𝑋 is the number of datasets in 𝑋. 

The following collections are defined according to the calendar year in which they were acquired: 

𝐬(2012) 𝐬(2013), 𝐬(2014), 𝐬(2015), 𝐬(2016), 𝐬(2020𝑎) and 𝐬(2020𝑏). The two collections for 2020, 𝐬(2020𝑎) 

and 𝐬(2020𝑏), relate to measurements performed before and after the addition of a localised physical 

anomaly on the tank structure. Note that the tank remained empty throughout the GWSHM monitoring 

period. 

The locations of the 4 sensors used in the current paper and the simulated defects are depicted in Fig. 

2(b). The length of the recorded time traces is equivalent to a propagation path of 3.5 m, hence the 

region traversed by the guided waves recorded by each sensor pair covers the entire panel.  
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Figure. 2 (a) A photograph of the tank showing attached sensors and (b) schematic diagram 

illustrating the geometry of simulated defects and the sensors used in the current paper. 

3.2 Data used for training GWSHM system  

The water tank has been monitored by GWSHM since 2012. In order to demonstrate a long-time 

surveillance scenario, the data obtained in 2012 is used for training the GWSHM (both using 

conventional OBS and with NARX) system and the data from 2013 to 2020 is used for testing its defect 

detection performance. 

Fig. 3 (a) shows the root mean square (RMS) amplitude of the acquired signals transmitted from Sensor 

1 and received on Sensor 4 in chronological order and Fig. 3 (b) shows the measured group velocity for 

each signal. The group velocity curve is estimated based on the fixed sensor distances and time of first 

arrival in the baseline signals’ envelope. The velocity distribution is concentrated in a relatively narrow 

range of 4943±6.7 m/s (about ±0.14% fluctuation). To a first approximation, the sensitivity of the S0 

group velocity to temperature will be the same as that of a bulk longitudinal wave. Based on textbook 

values for the sensitivity of the Young’s Modulus of steel to temperature [31], this can be estimated to 

be ~1.3 ms-1/°C. This is consistent with the measured variation in S0 group velocity and the average 



annual variation of temperature in Bristol, which is around 14°C. In 2012, 456 measured datasets are 

used over the entire year. From these, a number of datasets, 𝑁𝑡𝑟𝑎𝑖𝑛, evenly-distributed through the year 

were chosen as training signals (whose optimum is investigated later), 𝐬(𝑡𝑟𝑎𝑖𝑛) = {𝑠𝑖𝑗,𝑘𝑡𝑟𝑎𝑖𝑛} where 

𝑖, 𝑗 = 1…4 and 𝑘𝑡𝑟𝑎𝑖𝑛 = 1…𝑁𝑡𝑟𝑎𝑖𝑛 . For the case of (𝑖, 𝑗) = (1,4), and 𝑁𝑡𝑟𝑎𝑖𝑛  = 20, the signals in 

𝐬(𝑡𝑟𝑎𝑖𝑛) are marked by circles in Fig. 3. In this data, seasonal trends in temperature can be observed as 

well as a general long-term reduction in amplitude, which due to deterioration of the tank and/or the 

sensors. It is thus not clear that a GWSHM scheme trained on data from 2012 would be sufficient to 

analyse later data. 

For the purposes of GWSHM, these training sets are assumed to come from the tank in pristine condition 

under varying EOCs. For OBS, 𝐬(𝑡𝑟𝑎𝑖𝑛) forms the baseline dataset. For NARX, 𝒔(𝑡𝑟𝑎𝑖𝑛) is first used to 

investigate the basic dynamic properties of the guided wave time-traces in order to obtain the adjustable 

parameters for the NARX network. The same data is then used to train separate NARX networks for 

each of the 12 sensor pairs. 
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Figure. 3 (a) The root mean square (RMS) amplitude of the signals transmitted from Sensor 1 

and received on Sensor 4 and (b) the estimate group velocity. Signals from the datasets 

used for training the GWSHM system are indicated by black circles and test sets used 

for the synthetic test is also illustrated.  

 

3.3 Data used for testing GWSHM system  

After the acquisition of training data, the detection performance of the NARX and OBS methods is 

assessed. The experimentally measured data acquired between 2012 and 2020 (indicated in Fig. 3) was 

subject to naturally varying EOCs and is used for this analysis. The data is split into the following three 

classes: 

1. 𝐬(2013) = {𝑠𝑘𝑡𝑒𝑠𝑡} where 𝑘𝑡𝑒𝑠𝑡 = 1…376: datasets measured experimentally in 2013. These 

datasets are assumed to still come from a near-pristine structure and provide the basis of the 

synthetic defect signals used to assess detection performance. 

2. 𝐬(2014) (427 datasets), 𝐬(2015)  (204 datasets), 𝐬(2016)  (350 datasets), 𝐬(2020𝑎) (343 datasets 

prior to addition of localised anomaly) are used to assess the network’s performance when 

subject to long-term environmental degradation. 

3. 𝐬(2020𝑏) (241 datasets) after a localised physical anomaly (a 16 × 20 mm cylindrical steel 

mass bonded on the tank surface) was introduced at (1.1 m, 0.3 m), which is the same location 

as the modelled defect C shown in Fig. 2(b). These datasets are used for verifying the ability of 

NARX to detect and localise a real anomaly in the structure. 



 

3.3.1 Synthetic defect data 

To carry out a systematic quantification of the performance, data with known defects is required. To do 

this synthetic defect data, 𝐬(𝑠𝑦𝑛,𝛼) (where 𝛼 = 1 or 2 depending on the method of defect amplitude 

scaling), is created by combining experimentally-measured signals in 𝐬(2013) with simulated responses 

from defects, 𝐬(𝑑𝑒𝑓,𝛼). In addition, the baselines in the synthetic test are randomly chosen from the 

experimentally-measured signals. To ensure uniform test set sizes for each year, the size of the synthetic 

test set is selected as 204, as this is the minimum size of dataset in any year (this was the size of the 

dataset acquired in 2015 which was small due to a significant outage due to a lab refurbishment). The 

simulated defect response is assumed to be a delayed and scaled copy of the transmitted signal used in 

the experimental measurements after de-chirping, i.e. a 5-cycle Hanning windowed toneburst with a 

center frequency of 250 kHz. The defect response is introduced only at the point in a signal when a 

direct reflection from the defect occurs, hence secondary effects, such as shadowing of reflections from 

structural features by a defect, are ignored. Thus, if 𝑠(𝑟𝑒𝑓)(𝑡) represents the shape of the effective 

transmitted signal with unit amplitude and zero delay, the defect signal that is combined with an 

experimental signal is: 

𝑠(𝑑𝑒𝑓,𝛼)(𝑡) = 𝐴𝑖𝑗√𝑑𝑖𝑗𝑎𝛼𝑠
(𝑟𝑒𝑓)(𝑡 − 𝑡𝑑) , (11) 

where 𝐴𝑖𝑗 = 𝑠
(2013)(𝑡𝑖𝑗) is the amplitude of the directly transmitted signal that arrives at time 𝑡𝑖𝑗 =

𝑑𝑖𝑗/𝑐, 𝑑𝑖𝑗 is the separation between sensors, 𝑡𝑑 is the arrival time of the defect response, and 𝑎𝛼 is a 

scale factor controlling defect amplitude that depends on the nature of the defect and its physical 

location relative to the sensors. The defect is assumed to behave as an omni-directional scatterer with 

scattering amplitude controlled by a single coefficient 10𝛽/20  where the parameter 𝛽  has units of 

decibels (dB), which describes the ratio of the amplitude of the scattered wave at unit distance from the 

defect to that of an incident plane wave. The position of the defect relative to the sensors determines 

the effect of beam spread (the reduction in amplitude of the defect response due to divergence of the 



transmitted waves and divergence of the waves scattered from the defect). The beam spread function 

for guided waves transmitted by the ith sensor to a defect and received by the jth sensor:  

𝐵𝑖𝑗 =
1

√𝑑𝑖
𝑑𝑑𝑗

𝑑
=

1

𝑑𝑑√
𝑑𝑖
𝑑

𝑑𝑑
(1−

𝑑𝑖
𝑑

𝑑𝑑
)

 , (12) 

where 𝑑𝑖
𝑑 and 𝑑𝑗

𝑑 are the distances between the defect and the ith and jth sensors respectively, and 𝑑𝑑 =

𝑑𝑖
𝑑 + 𝑑𝑗

𝑑, as shown in Figure 2(b). The value of 𝛼 indicates how the beam spread is accounted for. 

In the first case (𝛼 = 1), an individual time-trace is considered and it is specified that a simulated defect 

signal arrives at time 𝑡𝑑 = 𝑑𝑑/𝑐. The total propagation distance, 𝑑𝑑, is therefore known, but 𝑑𝑖
𝑑 and 

𝑑𝑗
𝑑 are not. The only known information about defect position is that the defect must lie on an ellipse 

with the transmitter and receiver elements at the foci. It is conservatively assumed that the defect 

position on the ellipse is that associated with the minimum defect response amplitude due to beam 

spread. This occurs when  𝑑𝑖
𝑑  =  𝑑𝑗

𝑑  = 𝑑𝑑/2, and leads to the minimum 𝐵𝑖𝑗 = 2/𝑑
𝑑 = 2 (𝑐𝑡𝑑)⁄ . In 

this case 

𝑎1 =
2

𝑐𝑡𝑑
10𝛽/20. (13) 

In the second case (𝛼 = 2), the location of a defect in the structure is specified so 𝑑𝑖
𝑑 and 𝑑𝑗

𝑑 are known, 

hence:   

𝑎2 = √
1

𝑑𝑖
𝑑𝑑𝑗

𝑑 10
𝛽/20. (14) 

3.4 NARX training  

Based on the theories described in section 2.4, the optimal embedding dimension and time delay for the 

NARX networks are determined to be 𝑛𝑢 = 20 and 𝑛𝑙 = 4. The number of neurons, 𝑛𝑚, in the hidden 

layer should be sufficiently large to enable a function of the required complexity to be described. The 

empirical estimation for the number of neurons in a hidden layer used here is 𝑛𝑚 ≥

√(𝑛𝑢 + 𝑛𝑦)𝑛𝑙 + 𝑛𝑜𝑙 + 10 [32, 33], where (𝑛𝑢 + 𝑛𝑦)𝑛𝑙 = 84 is the number of neurons in the input 

layer and 𝑛𝑜𝑙 is the number of neurons in the output layer and in this case is 1. Thus 𝑛𝑚 = 20 neurons 



are used in the hidden layer. This leads to 1721 network parameters that must be optimized in the NARX 

training process.  

In addition to the hyper-parameters, there are two modes used for the training of NARX: parallel mode 

and series-parallel mode. In series-parallel (SP) mode, the target output is available and used as the 

regressive vector y. It is more stable than using the predicted output as a y vector. This mode is adopted 

here and trained as a one-step ahead predictor to alleviate error accumulation in time [24]. The 

Levenberg-Marquardt backpropagation algorithm is employed to train the NARX network as it is 

computationally efficient when the network is relatively small. Based on a previous study [34], a 

sufficiently small learning rate is beneficial for avoiding oscillation and ensuring a convergent training 

process. Accordingly, the learning rate in all trials is selected as 1 × 10−3. An early-stopping strategy 

is employed in the training process of NARX to avoid overtraining due to local optima in the network 

parameters. In the early-stopping strategy, the training performance is monitored with the validation 

loss, which provides an estimate of the generalization capacity for the network. The training process is 

stopped when the validation performance grows continuously worse in 10 epochs. In this case, 

overtraining is assumed to have happened and the network parameters with the lowest validation loss 

before overtraining are used for tests. The overall dataset available for training is partitioned with 10% 

randomly selected and reserved for validation while the remaining 90% is used for the training process 

itself. The validation data is kept completely separate from the training process and not used in the 

weights updating process in NARX training. 

In order to decide how many training samples should be used, a NARX network for the sensor pair 

(𝑖, 𝑗) = (1,4) is first tested using varying numbers of training datasets drawn from 𝐬(2012). The test 

performance, expressed as mean square error between the NARX input size and output, as a function 

of number of training sets is shown in Fig. 4. Here the training is carried out with the same network 

structure while increasing the number of randomly selected samples. Error bars at each point are 

calculated from 10 realisations of the same training set size and the one with lowest MSE is selected in 

the following tests. It can be seen that the test performance plateaus when the number of training 

datasets is greater than 20 and hence 𝑁𝑡𝑟𝑎𝑖𝑛=20 is used to train the NARX networks for all sensor pairs. 



It should be noted that although the optimal training set encompasses only 20 signals, these signals are 

re-grouped into local regions for input into the NARX network, as shown in Fig. 1 (c). Therefore, one 

time-trace with 4000 points will be partitioned into 3976 samples with one-step ahead targets. Thus the 

20-signal training set represents over 79500 samples for training the NARX network. 
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Figure. 4 Test performance of the NARX models based on different training set sizes for the 

signals from the sensor pair (𝑖, 𝑗) = (1,4).   

3.5 Results using synthetic defect data 

3.5.1 Example of NARX and OBS methods for a single sensor pair 

As an example, the detection performance of both NARX and OBS is first demonstrated on synthetic 

signals generated using equation 13, i.e. 𝛼 = 1, for sensor pair (𝑖, 𝑗) = (1,4).  

A typical test signal, 𝑠(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒)(𝑡) from 𝐬(2013), and a simulated defect signal, 𝑠(𝑑𝑒𝑓,1)(𝑡), for a defect 

with an amplitude of 𝛽 = -20 dB arriving at 𝑡𝑑 = 0.506 ms are shown in Fig. 5(a). A closeup of the 

region around 𝑡𝑑 is shown in Fig. 5(b), which also shows the synthetic signal, 𝑠(𝑠𝑦𝑛,1) = 𝑠(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) +

𝑠(𝑑𝑒𝑓,1). Figs. 5 (c)-(d) show the residual signals from the NARX method for 𝑠(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) and 𝑠(𝑠𝑦𝑛,1) 

respectively, while Figs. 5 (e)-(f) show the residual signals from the OBS method. In this case OBS is 

initially applied then a baseline signal stretch to improve performance as described in Croxford et al 

[9]. Note that the signals in Figs. 5(c)-(f) are each normalized to the RMS amplitude of the residual 

signal from the defect-free case, 𝑒(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒). Comparing Figs. 5(d) and 5(f), it can be seen that the NARX 

method shows a clear indication at the expected arrival time of the defect with a peak amplitude that is 

almost four times greater than the RMS level. In the OBS result, the defect response cannot be resolved 



above the RMS level. While this is an encouraging result, the performance must be systematically 

compared. 
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Figure. 5 Example signals: (a) an original defect-free test signal, 𝑠(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) , and a simulated 

defect signal, 𝑠(𝑑𝑒𝑓,1) , (b) a closeup of (a) in the vicinity of the defect signal also 

showing the synthesized signal, 𝑠(𝑠𝑦𝑛,1) = 𝑠(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) + 𝑠(𝑑𝑒𝑓,1), (c) a residual signal 

from a defect-free signal processed using NARX method, 𝑒(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒), (d) a residual 

signal from a synthesized signal processed using NARX method, 𝑒(𝑠𝑦𝑛,1), (e) a residual 

signal from a defect-free signal processed using OBS method and (f) a residual signal 

from a synthesized signal processed using OBS method.  

3.5.2 Assessment of NARX method performance for single sensor pair  

To systematically compare the detection performance of the OBS and NARX methods for a given 

sensor pair, receiver operating characteristics (ROC) curves are generated and analysed using the 

population of 204 test signals, 𝐬(2013). In addition, a simple regressive architecture composed of a plain 

neural network without the NARX structure, is also investigated here as a second comparison. This 

models the response of 𝑠[𝑛 + 1]  = 𝑓(𝑠[𝑛 − 𝑛ℎ],… , 𝑠[𝑛])  without exogenous input and all that 



implies in Section 2. The comparative network is fed with same input length of 𝑛ℎ, setting is identical 

with NARX and it is structurally referred as a Nonlinear Auto-Regressor (NAR). This is done to 

determine where any benefits in performance come from, the use of machine learning techniques or the 

specific NARX structure.  

The ROC curve provides a graphical tool for visualising the performance of a binary classifier or, in 

the case considered here, an anomaly detector as a function of the discrimination threshold. The 

probability of detection (POD) for a given synthesized defect (i.e. for a simulated defect signal with a 

given arrival time, 𝑡𝑑, and amplitude, 𝛽) and the probability of false-alarm (PFA) at each threshold are 

computed and plotted to form an ROC curve. First each of the 204 defect-free test signals in 𝐬(2013) is 

passed through the NARX and OBS models to obtain the corresponding defect-free residual signals, 

𝐞(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒). To compute the PFA, the detection threshold is increased from zero and the fraction of 

signals in 𝐞(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) that exceed each threshold level (i.e. the PFA for each threshold level) within a 

time window of 0.05 milliseconds is calculated until the threshold level is such that no residual signals 

exceed it. Then the same simulated defect signal, 𝑠(𝑑𝑒𝑓,1), is added to each of the 204 test signals to 

form the set 𝐬(𝑠𝑦𝑛,1) = {𝑠𝑘
(2013)

+ 𝑠(𝑑𝑒𝑓,1)}. These signals are again passed through the NARX and 

OBS models. The threshold is increased from zero and the fraction of residual signals in 𝐞(𝑠𝑦𝑛,1) that 

exceed each threshold level (i.e. the POD for each threshold level) within a time window of 0.05 

milliseconds calculated for all levels. 

In all cases, ROC curves follow a trajectory from the origin at (0, 0), where the threshold is larger than 

any defect or defect-free signals, to the top right corner of the graph at (1,1), where the threshold is 

lower than any defect or defect-free signal. The ROC curve for a perfect detector will also pass through 

the top left corner of the graph at (0,1), indicating that a threshold can be found that enables a POD of 

1 and a PFA of 0 to be achieved. However, when the amplitude of defect signals is reduced the 

amplitude distributions in the defect and defect-free cases overlap and one or both of the POD and PFA 

must be compromised. When comparing two different methods, the method that has a higher POD for 

a given PFA or a lower PFA for a given POD is the superior method. If the ROC curves of the methods 

cross each other, then the best method may depend on which criterion is prioritised. However, if the 



ROC curves do not cross, the best method against any criterion is that with the largest Area Under the 

Curve (AUC), which provides a single metric for comparing methods. A perfect detector has AUC of 

1 and a poor detector that fails to provide any discrimination (beyond a random guess) has an AUC 

close to 0.5.  

Fig. 6(a) shows examples of the Probability Density Functions (PDFs) of the peak amplitudes within a 

time window of 0.05 milliseconds of the defect position extracted from 𝐞(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) and 𝐞(𝑠𝑦𝑛,2) from 

sensor pair (𝑖, 𝑗) = (1,4). The time window used is indicated by the vertical dashed lines in Figs. 5(d-

f). The PDFs are shown for various defect amplitudes and the resulting ROC curves are shown in Fig. 

6(b). It can be seen that the NARX method allows almost perfect defection of defects in this instance 

when the defect amplitude is -25 dB or greater. For the -30 dB defect, the PDFs for the defect and 

defect-free cases overlap significantly and consequently the ROC curve does not pass close to (0,1) and 

represents a significantly worse detector. 
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Figure. 6 (a) The PDFs of the peak amplitudes extracted from NARX 𝐞(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) and 𝐞(𝑠𝑦𝑛,2) at 

𝑡𝑑 = 0.506 ms from a sensor pair of (𝑖, 𝑗)  = (1,4) and (b) the ROC curves generated 

from (a). Note that, the corresponding AUCs of -20dB, -25dB and -30dB curves in (b) 

are 0.9666, 0.9623 and 0.9373, respectively. 
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Figure. 7 The AUC as a function of detection range for 𝐬(𝑠𝑦𝑛,2) processed by; (a) the NARX, (b) 

the OBS and (c) the NAR. Note that 𝐬(𝑠𝑦𝑛,2) is the superposition of 𝐬(2013)and 𝐬(𝑑𝑒𝑓,2) 

with defect severities of 𝛽 = -5 dB, -10 dB, -20 dB and -30 dB. 

The detection performance of the OBS, the NAR and the NARX methods for the same sensor pair, 

(𝑖, 𝑗) = (1,4), is further assessed for defects at various arrival times, 𝑡𝑑, and amplitudes of 𝛽 = -5 dB, 

-10 dB, -20 dB and -30 dB. The results are shown in Figs. 7. Note that the lateral axes in Figs. 7 are 

plotted as detection range, defined as defect arrival time after the first arrival signal time equal to 𝑡𝑑 −

𝑑𝑖𝑗/𝑐. Comparing Figs. 7(a-b), it can be seen that:  



1) when 𝛽 ≥ -20dB, the OBS method performs well enough to extract the defects at various locations 

with an average AUC (for defects of 𝛽 = -5 dB, -10 dB and -20 dB) of 0.5679 and a standard deviation 

of 0.1269. The NARX method provides a near perfect detectability with an average AUC of 0.994 and 

a standard deviation of 0.0049. 

2) When the defect amplitude decreases to a certain low level (β = -30dB), the AUC values from the 

OBS and NAR method are distributed around 0.5, indicating minimal detection capability. In addition, 

at low defect amplitudes it can be observed that the detection performance of the NARX and OBS 

methods have approximately opposed tendencies as a function of detection range. A possible hypothesis 

is that NARX performs better when the baseline has high amplitude, while OBS performs better when 

the baseline has low amplitude. However, the NARX method shows significantly higher AUC values 

than both NAR and OBS in all levels. This suggests that the excellent performance is a function of the 

specific structural traits of NARX, not just machine learning techniques. A reasonable architecture can 

enhance the efficiency of network considerably. 

3.5.3 Assessment of NARX method performance for multiple sensor pairs 

Due to the reciprocity principle [35,36], the signals from sensor pair (𝑖, 𝑗) are the same as those from 

pair (𝑗, 𝑖).  Here the signals from 6 sensor pairs for the case of j > i were used to assess the detection 

performance of the NARX method when applied to a network of sensors. The signals used are 𝐬(2013)  

comprising 204 datasets measured in 2013 and 𝐬(𝑠𝑦𝑛,1) which combines 𝐬(2013) with the response from 

the modelled defects A-E in Fig. 2(b), with 𝛽 ranging from -5 dB to -50 dB. Fig. 8 shows the resultant 

AUC for 5 defects as a function of sensor pair and 𝛽.  
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Figure. 8 Detection performance (AUC) for (a) defect A, (b) defect B, (c) defect C, (d) defect D 

and (e) defect E as a function of sensor pair and defect response amplitude (corresponds 

to the severity range from -5 dB to -50 dB in 5dB increments). Horizontal axis indicates 

the corresponding indices of sensor pairs, (𝑖, 𝑗). The dashed line indicates a threshold 

where the detection performance for the majority of sensor pairs deteriorates rapidly. 

 

 

 



3.6 Results from NARX method using purely experimental data 

In order to further verify the practicability of the proposed method, the NARX method (using the 

networks trained on 2012 data) is demonstrated on experimentally measured datasets from subsequent 

years as the sensor array ages and the condition of the tank degrades naturally. In August 2020, a 

localised anomaly (a bonded mass) was added to the tank and the NARX method applied (without 

retraining) to the subsequent data, 𝐬 (2020𝑏).  

To give an intuitive illustration of detection results from the real defect, Figure 9(a,c) shows the residual 

signal after the NARX process is applied to signals from  𝐬(2013) and 𝐬(2020𝑎) respectively. Figure 9(b) 

shows the residual signal from a 𝐬(𝑠𝑦𝑛,1) composed from 𝐬(2013) and a synthetic signal from a defect at 

(1.1 m, 0.3 m) with 𝛽 = -30dB. Figure 9(d) shows the residual signal from a signal in 𝐬(2020𝑏) after the 

localised anomaly was added to the tank. Comparing Figures 9(b) and 9(d), it can be seen that, although 

visible, the response of the localised anomaly is very small. The magnitude of this response will be 

further explored later. 
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Figure. 9 The residual signal after the NARX process from: (a) a signal from 𝐬(2013), (b) a signal 

from 𝐬(𝑠𝑦𝑛,1) comprised of the signal in (a) and a synthetic defect at (1.1 mm, 0.3 mm) 

and with 𝛽 = -30dB, (c) a signal from 𝐬(2020𝑎) and (d) a signal from 𝐬(2020𝑏) after the 

localised anomaly was added to the tank. 

 



 

A common way to combine the residual signals, 𝑒𝑖𝑗,𝑘(𝑡), from different sensor pairs (𝑖, 𝑗) for defect 

detection is to form an image using the ellipse imaging algorithm [29]. To better observe long-term 

trends, the average image from residual signals over a defined period is used, hence the intensity of the 

average image at position (𝑥, 𝑦) is expressed as:  

𝐼(𝑥, 𝑦) =
1

𝑛𝑘
∑ |∑ 𝑎𝑖𝑗𝑒𝑖𝑗,𝑘

(𝑝𝑒𝑟𝑖𝑜𝑑)
(
√(𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2+√(𝑥−𝑥𝑗)

2
+(𝑦−𝑦𝑗)

2

𝑐𝑘
)𝑖,𝑗 |𝑘 , (15) 

where (𝑥𝑖,𝑗, 𝑦𝑖,𝑗) is the location of a sensor, 𝑎𝑖𝑗 is a weighting factor, 𝑛𝑘 is the number of datasets in the 

period considered, and 𝑐𝑘 is the mean estimated group velocity of the guided wave for that dataset based 

on measurements from each sensor pair (e.g. as shown in Fig. 3(b) for a single sensor pair). To balance 

the contributions from different sensor pairs, the value of 𝑎𝑖𝑗 is calculated from the maximum amplitude 

of the residual signals obtained in 2012 as 𝑎𝑖𝑗 = 1 max(𝐞𝑖𝑗
(2012)

)⁄ . Figs. 10(a-g) compare the resultant 

average image of residual signals in various years. From Figs. 10(a-g), it can be seen that a response at 

(0.73 m, 0.46 m) appears gradually increasing in amplitude from 2012 to 2020. Physical inspection of 

the tank shows localised corrosion around this region. When the localised anomaly is added in 2020 a 

new localised indication is visible with globally highest amplitude at its location (1.1m,0.3m) in Fig. 

10(g). This is most clearly seen when comparing the 2020 images in the immediate vicinity of the 

anomaly before and after its addition, as shown in Fig. 10(h). The RMS of the entire residual images in 

Figs. 10(f) and (g) are in a similar level (2.252 and 2.305), while the peak value within the 200 mm 

square region around the location of the anomaly shown in Fig. 10(h) increases abruptly from 3.477 to 

5.774 when the anomaly is added. 
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Figure. 10 Images formed using the residual signals after the NARX process from (a) 𝐞(2012), (b) 

𝐞(2013) , (c) 𝐞(2014) , (d) 𝐞(2015) , (e) 𝐞(2016) , (f) 𝐞(2020𝑎) , (g) 𝐞(2020𝑏) , and (h) 

subfigures of local region around the anomaly in (f-g). Empty purple circles and empty 

black squares correspond to locations of corrosion and anomaly, respectively. 

Figs. 11(a-c) shows images generated using synthetic defect signals, e (syn,2), (generated from 2020a data) 

with various 𝛽 for a defect located at the same location as the physical localised anomaly. The image 

response at the defect location for each value of 𝛽 is extracted and plotted in Fig. 11(d), which also 



shows the response from the physical anomaly. From this it can be deduced that the physical anomaly 

corresponds to a synthetic defect of around 𝛽 = -30 dB. As important as the peak amplitude is that the 

other image features close to the defect location (eg in Fig. 11(b)) agree well with the response seen in 

Fig. 10(g) and (h). Moreover, although piezoelectric sensors experience drift over years of operation as 

shown in Fig. 3, the proposed method is shown to be able to suppress the concept drift over time and 

detect the anomaly under this scenario. It is believed that the effects of network evolution are smaller 

than those caused by the environmental effects, and the training is to a certain extent accounting for 

both. 
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Figure. 11 An image formed using the residual signals after the NARX process on 𝐞
(𝑠𝑦𝑛,1)

 for the 

defect at the real defect location and with 𝛽 = (a) -25 dB, (b) -30 dB, and (c)-35 dB. 

(d) defect amplitudes in the residual images. 

4 CONCLUSION  

The feasibility of using NARX networks to train a guided wave structural health monitoring system has 

been investigated. The procedure to design the NARX network, choose key parameters and test the 

network have been illustrated in detail. On the basis of Takens’ theorem, the time delay and embedding 

dimension of the input layer are determined with mutual information and Cao’s method. The required 



size of training set is determined by increasing the number of training signals until no further significant 

improvement in performance is obtained. It is important to note that a larger than optimum training set 

be used in practice with no detriment to ultimate performance. The NARX method was applied to train 

networks using data obtained from different sensor pairs in a sparse array. These trained networks’ 

detection performance were tested with both synthetic defect data (simulated defect responses 

superposed onto experimentally-measured data) and experimentally-measured data from a localised 

anomaly (added mass) introduced to the test structure.  

The detection performance of the NARX was firstly compared using synthetic defect data with the 

standard Optimal Baseline Subtraction (OBS) technique, which uses the same set of training data as a 

baseline dataset. ROC curves are obtained that show that the NARX method has significantly better 

detection performance than OBS. A small set of 20 baselines was sufficient to account for the non-

uniform changes in the EOCs the test structure experienced in real use. In tests using experimentally 

measured datasets acquired over several years, images were formed using the residual signals output by 

the NARX method from a sparse array of sensors. Images showed no obvious degradation in their 

baseline EOC suppression and did show a previously unobserved gradually increasing localized 

response that is believed to be due to localized corrosion. When the mass was added to the structure a 

new indication is seen at the correct location.  

The use of the NARX method offers a powerful approach to the problem of GWSHM, sidestepping 

several of the key problems limiting machine learning applications to the field in general. For the 

purpose of modelling time series responses under specific known conditions, a small training set is 

sufficient to produce excellent EOC suppression and there is no need for very large quantities of labelled 

data to train models. Indeed, the use of the anomaly detector approach outlined here means that no 

specific knowledge of damage type is required to develop the network used. 

It should be stressed that the NARX networks were trained using datasets captured in 2012 and tested 

on datasets captured from 2013 to 2020 with no significant degradation in performance. When similar 

measurements were made using OBS processed data previously the performance had degraded to the 

point to be useless by this stage. This shows the remarkable robustness of the NARX method used here 

proving stable with varying environmental conditions and the aging of the installed sensor network.  



It should also be noted that the performance of the NARX method outside the range of EOCs 

experienced during trained has not been explicitly investigated. As the training samples were obtained 

over a complete annual cycle, it is to be expected that the EOCs seen in subsequent years would be 

within the same range. Whether or not the NARX method can deal with EOCs substantially outside the 

training range is an avenue for future investigation. 
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