1,362 research outputs found

    Real Time Control for Intelligent 6G Networks

    Get PDF
    The benefits of telemetry for optical networking have been shown in the literature, and several telemetry architectures have been defined. In general, telemetry data is collected from observation points in the devices and sent to a central system running besides the Software Defined Networking (SDN) controller. In this project, we try to develop a telemetry architecture that supports intelligent data aggregation and nearby data collection. Several frameworks and technologies have been explored to ensure that they fit well into the architecture's composition. A description of these different technologies is presented in this work, along with a comparison between their main features and downsides. Some intelligent techniques, aka. Algorithms have been stated and tested within architecture, showing their benefits by reducing the amount of data processed. In the design of this architecture, the main issues related to distributed systems have been faced, and some initial solutions have been proposed. In particular, several security solutions have been explored to deal with threats but also with scalability and performance issues, trying to find a balance between performance and security. Finally, two use cases are presented, showing a real implementation of the architecture that has been presented at conferences and validated within the project's development

    INTELLIGENT TELEMETRY DRIVEN NETWORK

    Get PDF
    By streaming real-time Optical Transport Network (OTN) and optical performance parameters from network devices using telemetry, the values of the next few intervals may be forecasted. Proactive alerts may be provided to the users and corrective action may be taken if the user chooses. Possible impact to millions of users riding the system may thereby be avoided. This provides a seamless experience to the users

    Distributed intelligence for pervasive optical network telemetry

    Get PDF
    Optical network automation and failure management require measuring the status and the performance of the different network devices to anticipate any degradation and ensure the quality of the provided services, i.e., optical connectivity. Such pervasive network telemetry entails collecting large amounts of measurements and events from different sources and with very fine granularity, which given the amount and variety of telemetry sources and the size of each measurement and event, imposes requirements that are hard to achieve without large investments. In this paper, we analyze the main limitations of telemetry architectures relying exclusively on centralized systems for data analysis and propose an architecture with distributed intelligence. Data aggregation techniques, especially conceived for optical network telemetry, are presented with the objective of reducing data dimensionality. Illustrative results from our experimental telemetry system reveal a reduction of 3 orders of magnitude in terms of total data volume without introducing significant error and processing delay and, more importantly, helping network automation algorithms to identify meaningful changes in the network status.HORIZON EUROPE Framework Programme [SEASON (101096120)]; Agencia Estatal de Investigación [IBON (PID2020-114135RB-I00)]; Institució Catalana de Recerca i Estudis Avançats.Peer ReviewedPostprint (author's final draft

    Network automation: challenges, enablers, and benefits

    Get PDF
    Communication infrastructures are evolving towards an ad-hoc service provisioning scenario where programmability and flexibility are fundamental concepts. Network automation is expected to play a vital role in streamlining all aspects of the service provisioning process (i.e., deployment, maintenance, and tear down). However, to fully realize this autonomous operation vision, closed-loop automation procedures need to be developed.This tutorial will present the main motivations and challenges behind designing and operating closed-loop autonomous decision-making processes, including a brief overview of current standardization initiatives. The tutorial will then address several use cases showcasing how network automation can alleviate the complexity of the service provisioning processes and the benefits brought in by the introduction of network automation

    Enabling data analytics and machine learning for 5G services within disaggregated multi-layer transport networks

    Get PDF
    Recent advances, related to the concepts of Artificial Intelligence (AI) and Machine Learning (ML) and with applications across multiple technology domains, have gathered significant attention due, in particular, to the overall performance improvement of such automated systems when compared to methods relying on human operation. Consequently, using AI/ML for managing, operating and optimizing transport networks is increasingly seen as a potential opportunity targeting, notably, large and complex environments.Such AI-assisted automated network operation is expected to facilitate innovation in multiple aspects related to the control and management of future optical networks and is a promising milestone in the evolution towards autonomous networks, where networks self-adjust parameters such as transceiver configuration.To accomplish this goal, current network control, management and orchestration systems need to enable the application of AI/ML techniques. It is arguable that Software-Defined Networking (SDN) principles, favouring centralized control deployments, featured application programming interfaces and the development of a related application ecosystem are well positioned to facilitate the progressive introduction of such techniques, starting, notably, in allowing efficient and massive monitoring and data collection.In this paper, we present the control, orchestration and management architecture designed to allow the automatic deployment of 5G services (such as ETSI NFV network services) across metropolitan networks, conceived to interface 5G access networks with elastic core optical networks at multi Tb/s. This network segment, referred to as Metro-haul, is composed of infrastructure nodes that encompass networking, storage and processing resources, which are in turn interconnected by open and disaggregated optical networks. In particular, we detail subsystems like the Monitoring and Data Analytics or the in-operation planning backend that extend current SDN based network control to account for new use cases.Peer ReviewedPostprint (author's final draft

    Monitoring and Data Analytics for Optical Networking:Benefits, Architectures, and Use Cases

    Get PDF
    Operators' network management continuously measures network health by collecting data from the deployed network devices; data is used mainly for performance reporting and diagnosing network problems after failures, as well as by human capacity planners to predict future traffic growth. Typically, these network management tools are generally reactive and require significant human effort and skills to operate effectively. As optical networks evolve to fulfil highly flexible connectivity and dynamicity requirements, and supporting ultra-low latency services, they must also provide reliable connectivity and increased network resource efficiency. Therefore, reactive human-based network measurement and management will be a limiting factor in the size and scale of these new networks. Future optical networks must support fully automated management, providing dynamic resource re-optimization to rapidly adapt network resources based on predicted conditions and events; identify service degradation conditions that will eventually impact connectivity and highlight critical devices and links for further inspection; and augment rapid protection schemes if a failure is predicted or detected, and facilitate resource optimization after restoration events. Applying automation techniques to network management requires both the collection of data from a variety of sources at various time frequencies, but it must also support the capability to extract knowledge and derive insight for performance monitoring, troubleshooting, and maintain network service continuity. Innovative analytics algorithms must be developed to derive meaningful input to the entities that orchestrate and control network resources; these control elements must also be capable of proactively programming the underlying optical infrastructure. In this article, we review the emerging requirements for optical network management automation, the capabilities of current optical systems, and the development and standardization status of data models and protocols to facilitate automated network monitoring. Finally, we propose an architecture to provide Monitoring and Data Analytics (MDA) capabilities, we present illustrative control loops for advanced network monitoring use cases, and the findings that validate the usefulness of MDA to provide automated optical network management

    T3P: Demystifying Low-Earth Orbit Satellite Broadband

    Full text link
    The Internet is going through a massive infrastructural revolution with the advent of low-flying satellite networks, 5/6G, WiFi7, and hollow-core fiber deployments. While these networks could unleash enhanced connectivity and new capabilities, it is critical to understand the performance characteristics to efficiently drive applications over them. Low-Earth orbit (LEO) satellite mega-constellations like SpaceX Starlink aim to offer broad coverage and low latencies at the expense of high orbital dynamics leading to continuous latency changes and frequent satellite hand-offs. This paper aims to quantify Starlink's latency and its variations and components using a real testbed spanning multiple latitudes from the North to the South of Europe. We identify tail latencies as a problem. We develop predictors for latency and throughput and show their utility in improving application performance by up to 25%. We also explore how transport protocols can be optimized for LEO networks and show that this can improve throughput by up to 115% (with only a 5% increase in latency). Also, our measurement testbed with a footprint across multiple locations offers unique trigger-based scheduling capabilities that are necessary to quantify the impact of LEO dynamics.Comment: 16 page

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    Results and achievements of the ALLIANCE Project: New network solutions for 5G and beyond

    Get PDF
    Leaving the current 4th generation of mobile communications behind, 5G will represent a disruptive paradigm shift integrating 5G Radio Access Networks (RANs), ultra-high-capacity access/metro/core optical networks, and intra-datacentre (DC) network and computational resources into a single converged 5G network infrastructure. The present paper overviews the main achievements obtained in the ALLIANCE project. This project ambitiously aims at architecting a converged 5G-enabled network infrastructure satisfying those needs to effectively realise the envisioned upcoming Digital Society. In particular, we present two networking solutions for 5G and beyond 5G (B5G), such as Software Defined Networking/Network Function Virtualisation (SDN/NFV) on top of an ultra-high-capacity spatially and spectrally flexible all-optical network infrastructure, and the clean-slate Recursive Inter-Network Architecture (RINA) over packet networks, including access, metro, core and DC segments. The common umbrella of all these solutions is the Knowledge-Defined Networking (KDN)-based orchestration layer which, by implementing Artificial Intelligence (AI) techniques, enables an optimal end-to-end service provisioning. Finally, the cross-layer manager of the ALLIANCE architecture includes two novel elements, namely the monitoring element providing network and user data in real time to the KDN, and the blockchain-based trust element in charge of exchanging reliable and confident information with external domains.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness under contract FEDER TEC2017-90034-C2 (ALLIANCE project) and by the Generalitat de Catalunya under contract 2017SGR-1037 and 2017SGR-605.Peer ReviewedPostprint (published version
    • …
    corecore