215 research outputs found

    The Right Direction Needed to Develop White-Box Deep Learning in Radiology, Pathology, and Ophthalmology: A Short Review

    Get PDF
    The popularity of deep learning (DL) in the machine learning community has been dramatically increasing since 2012. The theoretical foundations of DL are well-rooted in the classical neural network (NN). Rule extraction is not a new concept, but was originally devised for a shallow NN. For about the past 30 years, extensive efforts have been made by many researchers to resolve the “black box” problem of trained shallow NNs using rule extraction technology. A rule extraction technology that is well-balanced between accuracy and interpretability has recently been proposed for shallow NNs as a promising means to address this black box problem. Recently, we have been confronting a “new black box” problem caused by highly complex deep NNs (DNNs) generated by DL. In this paper, we first review four rule extraction approaches to resolve the black box problem of DNNs trained by DL in computer vision. Next, we discuss the fundamental limitations and criticisms of current DL approaches in radiology, pathology, and ophthalmology from the black box point of view. We also review the conversion methods from DNNs to decision trees and point out their limitations. Furthermore, we describe a transparent approach for resolving the black box problem of DNNs trained by a deep belief network. Finally, we provide a brief description to realize the transparency of DNNs generated by a convolutional NN and discuss a practical way to realize the transparency of DL in radiology, pathology, and ophthalmology

    A gépi tanulás módszereinek alkalmazása R-ben

    Get PDF
    A technológiai fejlődésnek köszönhetően napjainkra a személyi számítógépek lehetővé tették a jellemzően nagy számításigényű gépi tanulásra épülő módszerek alkalmazását. Ezzel párhuzamosan az utóbbi években jelentős előrelépés történt a szabad hozzáférésű statisztikai, illetve adatelemző szoftverek funkcionalitásában is. A kedvező folyamatok ellenére a gépi tanulásra építő tanulmányok aránya jelentősen elmarad a hazai szakirodalomban a nemzetközihez képest. Ennek egyik lehetséges oka az, hogy ezen eljáráson alapuló modellezés magasabb szintű programozási ismereteket igényel. A tanulmány e nehézség elhárítását tűzi ki célul az R programnyelv egyik azon csomagjának bemutatásával, amely lehetőséget nyújt a gépi tanulásra épül ő modellfejlesztésre, akár programozási ismeretek nélkül is

    A Transparency Index Framework for Machine Learning powered AI in Education

    Get PDF
    The increase in the use of AI systems in our daily lives, brings calls for more ethical AI development from different sectors including, finance, the judiciary and to an increasing extent education. A number of AI ethics checklists and frameworks have been proposed focusing on different dimensions of ethical AI, such as fairness, explainability and safety. However, the abstract nature of these existing ethical AI guidelines often makes them difficult to operationalise in real-world contexts. The inadequacy of the existing situation with respect to ethical guidance is further complicated by the paucity of work to develop transparent machine learning powered AI systems for real-world. This is particularly true for AI applied in education and training. In this thesis, a Transparency Index Framework is presented as a tool to forefront the importance of transparency and aid the contextualisation of ethical guidance for the education and training sector. The transparency index framework presented here has been developed in three iterative phases. In phase one, an extensive literature review of the real-world AI development pipelines was conducted. In phase two, an AI-powered tool for use in an educational and training setting was developed. The initial version of the Transparency Index Framework was prepared after phase two. And in phase three, a revised version of the Transparency Index Framework was co- designed that integrates learning from phases one and two. The co-design process engaged a range of different AI in education stakeholders, including educators, ed-tech experts and AI practitioners. The Transparency Index Framework presented in this thesis maps the requirements of transparency for different categories of AI in education stakeholders, and shows how transparency considerations can be ingrained throughout the AI development process, from initial data collection to deployment in the world, including continuing iterative improvements. Transparency is shown to enable the implementation of other ethical AI dimensions, such as interpretability, accountability and safety. The 3 optimisation of transparency from the perspective of end-users and ed-tech companies who are developing AI systems is discussed and the importance of conceptualising transparency in developing AI powered ed-tech products is highlighted. In particular, the potential for transparency to bridge the gap between the machine learning and learning science communities is noted. For example, through the use of datasheets, model cards and factsheets adapted and contextualised for education through a range of stakeholder perspectives, including educators, ed-tech experts and AI practitioners

    Forecasting: theory and practice

    Get PDF
    Forecasting has always been in the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The lack of a free-lunch theorem implies the need for a diverse set of forecasting methods to tackle an array of applications. This unique article provides a non-systematic review of the theory and the practice of forecasting. We offer a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts, including operations, economics, finance, energy, environment, and social good. We do not claim that this review is an exhaustive list of methods and applications. The list was compiled based on the expertise and interests of the authors. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of the forecasting theory and practice

    Democratizing machine learning

    Get PDF
    Modelle des maschinellen Lernens sind zunehmend in der Gesellschaft verankert, oft in Form von automatisierten Entscheidungsprozessen. Ein wesentlicher Grund dafür ist die verbesserte Zugänglichkeit von Daten, aber auch von Toolkits für maschinelles Lernen, die den Zugang zu Methoden des maschinellen Lernens für Nicht-Experten ermöglichen. Diese Arbeit umfasst mehrere Beiträge zur Demokratisierung des Zugangs zum maschinellem Lernen, mit dem Ziel, einem breiterem Publikum Zugang zu diesen Technologien zu er- möglichen. Die Beiträge in diesem Manuskript stammen aus mehreren Bereichen innerhalb dieses weiten Gebiets. Ein großer Teil ist dem Bereich des automatisierten maschinellen Lernens (AutoML) und der Hyperparameter-Optimierung gewidmet, mit dem Ziel, die oft mühsame Aufgabe, ein optimales Vorhersagemodell für einen gegebenen Datensatz zu finden, zu vereinfachen. Dieser Prozess besteht meist darin ein für vom Benutzer vorgegebene Leistungsmetrik(en) optimales Modell zu finden. Oft kann dieser Prozess durch Lernen aus vorhergehenden Experimenten verbessert oder beschleunigt werden. In dieser Arbeit werden drei solcher Methoden vorgestellt, die entweder darauf abzielen, eine feste Menge möglicher Hyperparameterkonfigurationen zu erhalten, die wahrscheinlich gute Lösungen für jeden neuen Datensatz enthalten, oder Eigenschaften der Datensätze zu nutzen, um neue Konfigurationen vorzuschlagen. Darüber hinaus wird eine Sammlung solcher erforderlichen Metadaten zu den Experimenten vorgestellt, und es wird gezeigt, wie solche Metadaten für die Entwicklung und als Testumgebung für neue Hyperparameter- Optimierungsmethoden verwendet werden können. Die weite Verbreitung von ML-Modellen in vielen Bereichen der Gesellschaft erfordert gleichzeitig eine genauere Untersuchung der Art und Weise, wie aus Modellen abgeleitete automatisierte Entscheidungen die Gesellschaft formen, und ob sie möglicherweise Individuen oder einzelne Bevölkerungsgruppen benachteiligen. In dieser Arbeit wird daher ein AutoML-Tool vorgestellt, das es ermöglicht, solche Überlegungen in die Suche nach einem optimalen Modell miteinzubeziehen. Diese Forderung nach Fairness wirft gleichzeitig die Frage auf, ob die Fairness eines Modells zuverlässig geschätzt werden kann, was in einem weiteren Beitrag in dieser Arbeit untersucht wird. Da der Zugang zu Methoden des maschinellen Lernens auch stark vom Zugang zu Software und Toolboxen abhängt, sind mehrere Beiträge in Form von Software Teil dieser Arbeit. Das R-Paket mlr3pipelines ermöglicht die Einbettung von Modellen in sogenan- nte Machine Learning Pipelines, die Vor- und Nachverarbeitungsschritte enthalten, die im maschinellen Lernen und AutoML häufig benötigt werden. Das mlr3fairness R-Paket hingegen ermöglicht es dem Benutzer, Modelle auf potentielle Benachteiligung hin zu über- prüfen und diese durch verschiedene Techniken zu reduzieren. Eine dieser Techniken, multi-calibration wurde darüberhinaus als seperate Software veröffentlicht.Machine learning artifacts are increasingly embedded in society, often in the form of automated decision-making processes. One major reason for this, along with methodological improvements, is the increasing accessibility of data but also machine learning toolkits that enable access to machine learning methodology for non-experts. The core focus of this thesis is exactly this – democratizing access to machine learning in order to enable a wider audience to benefit from its potential. Contributions in this manuscript stem from several different areas within this broader area. A major section is dedicated to the field of automated machine learning (AutoML) with the goal to abstract away the tedious task of obtaining an optimal predictive model for a given dataset. This process mostly consists of finding said optimal model, often through hyperparameter optimization, while the user in turn only selects the appropriate performance metric(s) and validates the resulting models. This process can be improved or sped up by learning from previous experiments. Three such methods one with the goal to obtain a fixed set of possible hyperparameter configurations that likely contain good solutions for any new dataset and two using dataset characteristics to propose new configurations are presented in this thesis. It furthermore presents a collection of required experiment metadata and how such meta-data can be used for the development and as a test bed for new hyperparameter optimization methods. The pervasion of models derived from ML in many aspects of society simultaneously calls for increased scrutiny with respect to how such models shape society and the eventual biases they exhibit. Therefore, this thesis presents an AutoML tool that allows incorporating fairness considerations into the search for an optimal model. This requirement for fairness simultaneously poses the question of whether we can reliably estimate a model’s fairness, which is studied in a further contribution in this thesis. Since access to machine learning methods also heavily depends on access to software and toolboxes, several contributions in the form of software are part of this thesis. The mlr3pipelines R package allows for embedding models in so-called machine learning pipelines that include pre- and postprocessing steps often required in machine learning and AutoML. The mlr3fairness R package on the other hand enables users to audit models for potential biases as well as reduce those biases through different debiasing techniques. One such technique, multi-calibration is published as a separate software package, mcboost

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option
    • …
    corecore