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The popularity of deep learning (DL) in the machine learning community has been

dramatically increasing since 2012. The theoretical foundations of DL are well-rooted in

the classical neural network (NN). Rule extraction is not a new concept, but was originally

devised for a shallow NN. For about the past 30 years, extensive efforts have been made

by many researchers to resolve the “black box” problem of trained shallow NNs using

rule extraction technology. A rule extraction technology that is well-balanced between

accuracy and interpretability has recently been proposed for shallow NNs as a promising

means to address this black box problem. Recently, we have been confronting a “new

black box” problem caused by highly complex deep NNs (DNNs) generated by DL. In this

paper, we first review four rule extraction approaches to resolve the black box problem

of DNNs trained by DL in computer vision. Next, we discuss the fundamental limitations

and criticisms of current DL approaches in radiology, pathology, and ophthalmology from

the black box point of view. We also review the conversion methods from DNNs to

decision trees and point out their limitations. Furthermore, we describe a transparent

approach for resolving the black box problem of DNNs trained by a deep belief network.

Finally, we provide a brief description to realize the transparency of DNNs generated

by a convolutional NN and discuss a practical way to realize the transparency of DL in

radiology, pathology, and ophthalmology.

Keywords: deep learning, white box, interpretability, transparency, rule extraction, radiology, pathology, black box

INTRODUCTION

Recently, deep learning (DL) has become an increasingly popular trend in the machine learning
community. The theoretical foundations of DL are well-rooted in the classical neural network (NN)
literature. Among the DL architectures, convolutional NNs (CNNs) have made the greatest impact
in the field of computer vision (Ravì et al., 2017). CNNs, which are composed of convolutional,
pooling, and fully connected layers, are feedforward networks in which information flow occurs in
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one direction only, from input to output. Similar to artificial NNs
(ANNs), CNNs are biologically inspired. To attain the desired
network output, CNNs utilize learning algorithms to adjust
their free parameters (i.e., biases and weights). Backpropagation
(BP) is the most common algorithm used for this purpose
(Rumelhart et al., 1986).

A new multi-layered NN model proposed by Fukushima
(1979), the neocognitron, was found to be successful at
recognizing simple input patterns regardless of a shift in
position or distortions in the shape of the input pattern
(Fukushima, 1980). This model laid the foundation for the
development of CNNs (Rawat and Wang, 2017). As CNNs were
derived from the neocognitron, they have a similar architecture
(LeCun et al., 2015).

In 1989, LeCun et al. (1989a,b) proposed the first multi-
layered CNNs and successfully applied these large-scale networks
to real image classification problems. These initial CNNs were
reminiscent of the neocognitron (Fukushima, 1979). CNNs have
been applied to visual tasks since the late 1980s. In 1998,
CNNs (LeCun et al., 1989a,b) were improved upon and used
for individual character classification in a document recognition
application. LeCun et al. (1998) introduced the popular Modified
National Institute of Standards and Technology (MNIST) dataset
(LeCun et al., 1998), which has since been used extensively for a
number of computer vision tasks.

However, despite their use in several applications, they
remained largely underutilized until about a decade ago, when
developments in computing power, improved algorithms, and
the advent of large amounts of labeled data contributed to
their advancement and brought them to the forefront of a NN
renaissance (Rawat and Wang, 2017).

Other plausible architectures for DL include those grounded
in compositions of restricted Boltzmann machines (Freund and
Haussler, 1991) such as deep belief networks (DBNs; Hinton and
Salakhutdinov, 2006), which extend ANNs with many layers as
deep NNs (DNNs). Prior to this, it was assumed that DNNs were
too hard to train due to issues with gradient descent, and thus,
not very popular (Bengio et al., 2006).

In contrast to the NN renaissance, careful attention should
be paid to the hidden shadow side. Our motivation is to explore
the shadow side from the viewpoint of “white box” DL. That is,
we should clarify the reason why black-box machine learning,
such as CNNs, works well for classification tasks in radiology,
pathology, and ophthalmology. Therefore, the aim of the present
paper is to review the fundamental limitations and criticisms
of DL in radiology, pathology, and ophthalmology and in the
conversion from DNNs to decision trees (DTs). We demonstrate
transparent approaches for resolving the “black box” nature of
DBNs and describe future aspects to realize the transparency of
DL in radiology, pathology, and ophthalmology.

RULE EXTRACTION AND THE “BLACK
BOX” PROBLEM

Rule extraction is not a new concept, but was originally raised
for a shallow NN by Gallant (1988) and Saito and Nakano

(1988) for the medical domain. For about the past 30 years,
extensive efforts have been made by many researchers to
resolve the “black box” problem of trained NNs using rule
extraction technology (Hayashi, 1991, 2016, 2017; Andrews
et al., 1995; Craven and Shavlik, 1996; Tickle et al., 1998;
Mitra and Hayashi, 2000; Bologna, 2001; Setiono et al., 2008;
Tran and Garcez d’Avila, 2016).

Rule extraction (Andrews et al., 1995) is a powerful and
increasingly popular method of data mining that provides
explanations and interpretable capabilities for models generated
by shallow NNs. Extracted rules need to be simple and
interpretable by humans, and must be able to discover highly
accurate knowledge in the medical and financial domains.
Rule extraction technology has also been recognized as a
technique that attempts to find a compromise between the
two requirements (accuracy and interpretability) by building a
simple rule set that mimics how a well-performing complex
model (“black box”) makes decisions for users (Fortuny and
Martens, 2015). Therefore, high-performance classifier research
(Tsai, 2014) seems to maintain a sole focus on predictive
accuracy only.

Recently, as a promising means to address the “black
box” problem, a rule extraction technology that is well-
balanced between accuracy and interpretability was proposed
for shallow NNs (Hayashi, 2016). Especially, in rule extraction
for medical datasets, there is a trade-off between high
classification accuracy and interpretability, such as the number
of extracted rules (Hayashi and Yukita, 2016). Very recently,
(Hayashi and Oisi, 2018) proposed a high-accuracy priority
rule extraction algorithm to enhance both the accuracy and
interpretability of extracted rules that is realized by reconciling
both of these criterions. In addition, Uehara et al. (2018)
reported an actual medical application in hepatology using
rule extraction.

A RENEWED ATTACK OF THE “BLACK
BOX” PROBLEM FOR DEEP NEURAL
NETWORK ARCHITECTURES

Particularly in cases involving ethics, such as medicine and
finance, and in critical applications in which the correctness of a
model’s prediction must be manually verified, the interpretability
of predictive models is important. In fact, the “black box”
nature of DL in medicine, especially in radiology, pathology,
and ophthalmology, has been severely criticized. Therefore, a
“new black box” problem caused by highly complex DNNmodels
generated by DL must be confronted. To resolve this new
black box problem, transparency, and interpretability are needed
in DNNs.

By contrast, some researchers have investigated the possibility
of mapping DTs and random forests into NNs (Biau et al.,
2016). For example, Humbird et al. (2018) proposed a deep,
jointly-informed NN (DJINN) algorithm map ensemble of
DTs trained on the data into a collection of initialized NNs
that would then be trained by BP. The authors presented
compelling evidence suggesting that DJINNs represented a robust
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“black box” algorithm that could generate accurate NNs for a
variety of datasets.

However, at present, various “black box” problems
remain for DNNs. By contrast, as machine learning-based
predictions become increasingly ubiquitous and affect numerous
aspects of our daily lives, the focus of current research
has moved beyond model performance (e.g., accuracy)
to other factors, such as interpretability and transparency
(Yang et al., 2018).

APPROACHES TO THE TRANSPARENCY
OF DEEP LEARNING IN COMPUTER
VISION: THE MNIST CASE

The MNIST dataset (LeCun et al., 1998) is a difficult problem for
rule extraction because the inputs are very low-level abstraction
pixels in the images that have to be classified into 10-digit
classes. The rules must therefore capture the “hidden” low-level
abstraction learned by DL. Such image domains are notoriously
difficult for symbolic reasoning (Tran and Garcez d’Avila, 2016).

Zilke et al. (2016) first proposed a new decompositional
(Andrews et al., 1995) algorithm called DeepRed (DNN
rule extraction via tree induction), which extends the
continuous/discrete rule extractor via a DT induction algorithm
(Sato and Tsukimoto, 2001). Their approach used C4.5 (Quinlan,
1993) to generate rules using postprocessing that describes rules
to produce a rule set that mimics the overall behavior of a given
DNN. Although the algorithm was quite useful, it did not work
well for the MNIST dataset.

Symbolic rules were initially generated from DBNs by Tran
and Garcez d’Avila (2016), who trained a network using the
MNIST dataset, obtaining a predictive accuracy of 97.63%,
an unknown number of rules with a predictive accuracy of
93.97%, and 784 antecedents per rule, which was equal to the
input dimensionality.

As clearly demonstrated by Bologna andHayashi (2016, 2017),
when there are a high number of extracted rules in the practical
settings, the entire extracted rule set has no practical significant
differences from high-performance classifiers such as a DBN.
Bologna and Hayashi (2017) reported 65 extracted rules from
the MNIST dataset using discretized interpretable multi-layer
perceptron (DIMLP) ensembles (Bologna, 2001), resulting in a
predictive accuracy of 97.16% and an average number of 11.1
antecedents per rule.

By contrast, the average number of antecedents per rule
obtained by Tran and Garcez d’Avila (2016) was 784. Therefore,
from a practical trade-off perspective, there is plenty of room to
ensure both interpretability and conciseness, e.g., by decreasing
the number of rules extracted and the average number of
antecedents per rule.

This clearly demonstrates a paradigm shift regarding the
transparency of DL using rule extraction for the MNIST dataset,
as shown in Figure 1. As shown in the figure, starting with
the “black box” nature of DL, we first achieved a low level
of transparency (Bologna and Hayashi, 2016), followed by a
considerable level of transparency (Bologna and Hayashi, 2017).

FUNDAMENTAL LIMITATIONS AND
CRITICISMS OF DEEP LEARNING IN
RADIOLOGY, PATHOLOGY, AND
OPHTHALMOLOGY

The “Black Box” Nature of Deep Learning
in Radiology, Pathology,
and Ophthalmology
In contrast to computer vision tasks, DL in radiology, pathology,
and ophthalmology still has considerable limitations in terms
of its interpretability and transparency. To interpret and apply
DL to these medical images effectively, sufficient expertise in
computer science is required in the clinical setting. This is
because of the “black box” nature of DL, where results are
generated with high accuracy with no specific medical-based
reason. Hence, the results from DL can be difficult to interpret
clinically, which can limit their use in medical decision-making
(Vial et al., 2018).

Although some researchers have emphasized the importance
of improvements in model performance over interpretability,
we feel that improvements in the transparency of DL would
promote the widespread adoption of such methods for medical
imaging in clinical practice. In addition, context plays a role,
as life-and-death decisions made by systems with only marginal
improvements in accuracy compared with a human practitioner
might warrant greater transparency than those with near-perfect
accuracy or lower stakes (Shickel et al., 2018).

Especially in medicine, where accountability is of the utmost
importance and can have serious legal consequences, DL is often
not sufficient as a prediction system. In regard to outcome
prediction, the path toward predictive radiotherapy using DL
could still be long. Radiation oncologists should first be capable
of understanding predictions that are based on DL algorithms;
however, these are still considered “black boxes,” and therefore,
their interpretation often remains difficult (Shickel et al., 2018).

We describe four examples of “black box” problems
in the following sections. In this paper, the “black box”
problem (nature) itself is a major limitation; possible solutions
are described in Conversion From Deep Neural Networks
to Decision Trees, and Limitations and A Transparent
Approach for Resolving the “black box” Nature of Deep
Belief Networks.

Diagnosis of Diabetic Retinopathy
Gulshan et al. (2016) noted the limitations of their system for the
detection of diabetic retinopathy. One fundamental limitation
inherent to DNNs is that the NN is provided only with the
image and associated grade, not with any explicit definitions
of the features that would explain the medical diagnosis. The
severity of diabetic retinopathy (none, mild, moderate, severe, or
proliferative) was graded according to the International Clinical
Diabetic Retinopathy scale. Image quality was assessed by graders
using the rubric in the “Grading Instructions.” Thus, after the
grading, the prediction of a diagnosis of diabetic retinopathy can
be formulated as a classification problem; hence, the diagnostic
process is a “black box.”
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FIGURE 1 | Paradigm shift regarding the transparency of deep learning. TS-ACC, Test accuracy.

Histopathological Characterization of
Colorectal Polyps
Korbar et al. (2017) noted that the “black box” approach
to outcomes was a limitation of DL models in general,
and specifically of their system for the histopathological
characterization of colorectal polyps to determine the risk of
colorectal cancer. Image analysis methods mostly determine the
efficacy of the final results, only rarely giving sufficient evidence
and details of the factors that contribute to outcomes.

Breast Density Assessment Using
Digital Mammograms
Mohamed et al. (2017) reported that breast density needs to be
assessed in the large number of digital mammograms acquired
every year in breast cancer screening. However, radiologists
may be incapable of reproducing their own assessments, and
substantial discrepancies have been observed between different
radiologists in regard to assessing a breast as either “scattered
density” or “heterogeneously dense.” Although reducing this
variation in breast density readings is an urgent clinical need, a
better understanding of the aspects regarding how radiologists
read images, such as how different views of a mammogram are
used, is needed; this issue is closely associated with the “black
box” nature of DL.

Detection of Metastatic Breast Cancer in
Sentinel Lymph Node Biopsies
DL in the clinical setting (LYmph Node Assistant: LYNA) has
achieved an area under the receiver operating characteristic curve
of 99.6% for the detection of metastatic breast cancer in sentinel
lymph node biopsies (Golden, 2017), but not without limitations.
Although that study tried to unpack the “black box” mechanisms
underlying LYNA’s predictions by computing the degree to with
they were affected by each pixel, LYNA is still unable to compare
the current field of view with similar cells in less ambiguous

regions of the same slide or case, which can be done by a
pathologist (Liu Y. et al., 2018).

CONVERSION FROM DEEP NEURAL
NETWORKS TO DECISION TREES,
AND LIMITATIONS

One approach for understanding DNNs generated by DL is to
convert the weights of the fully connected network into a more
familiar form. The conversion of network weights of DNNs into
DTs, which is basically a series of if–then decisions based on
criteria used by the network, was proposed by Kontschieder et al.
(2015). Although a slight loss in overall accuracy was observed,
this approach provided a sense of the information necessary to
make decisions.

Subsequently, Zhou and Feng (2017) proposed a method—
the multi-Grained Cascade forest (gcForest) method—that can
construct a deep forest, which is a deep model based on DTs in
which the training process does not rely on BP. Compared with
DNNs, the gcForest method has far fewer hyper-parameters, and
in their experiments, they could obtain excellent performance
across various domains, even when using the same parameter
settings. In addition, Yang et al. (2018) proposed a new model at
the intersection of DNNs and DTs—a deep neural DT (DNDT),
which explores the connections between DNNs and DTs. DNDTs
are NNs with a special architecture in which any setting regarding
its weights corresponds to a specific DT, thereby making it
interpretable. However, because a DNDT is realized by an NN, it
inherits several properties that differ from those of conventional
DTs. All DNDT parameters are simultaneously optimized using
stochastic gradient descent as opposed to a more complex and
potentially sub-optimal greedy splitting procedure.

Roy et al. (2018) proposed a network of CNNs, Tree-CNN,
that grows hierarchically with the introduction of new classes
to the hierarchical structure to avoid catastrophic forgetting
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(Goodfellow et al., 2013) and leverage the features learned in
previous tasks. The branching is based on the similarity of
features between the old and new classes. The initial nodes
of Tree-CNN assign the input into broad super classes that
become more finely classified as they approach the leaves of
the network. This type of model allows the convolution layers
learned previously to be leveraged and used in the new bigger
network. The overall accuracies of Tree-CNN for CIFAR-10 and
100 (Krizhevsky and Hinton, 2009) were shown to be 86.24
and 60.46%, respectively. On the other hand, to the best of our
knowledge, these accuracies are considerably lower than state-
of-art accuracies, i.e., 95.7% (Li et al., 2018) and 70.8% (Hang
and Aono, 2017), respectively. Therefore, Tree-CNN appears to
be difficult to apply to the diagnosis of medical images with
high accuracy.

Moreover, as Tree-CNN continues to increase in size over
time, the implications of this growth on memory requirements,
as well as the necessity for storing old training examples, need
to be assessed. In this growth, images in Tree-CNN that share
common features are closer than those that differ.

Zhang et al. (2019) recently proposed a DT that could explain
CNN predictions at the semantic level through the introduction
of the following two concepts: bridging middle-layer features
with semantic concepts, and bridging middle-layer features with
final CNN predictions. They also developed a unique method for
revising CNNs and devised a tight coupling of a CNN and a DT.
The proposed DT encodes the decision modes of the CNN as
quantitative rationales for each prediction.

Generally, because fine-grained decision modes are close
to image-specific rationales, they typically yield lower error
prediction rates. However, fine-grained decision modes do not
achieve higher classification accuracy because they are designed
to mine common decision modes for objects in a certain category
while ignoring random/negative images; this process differs from
the discriminative learning of classifiers (Zhang et al., 2019).

Therefore, we believe that converting a DNN to DTs
cannot be performed in a straightforward manner to realize
interpretation of a DNN because large and complex DTs
are mathematically equivalent to interpretable DTs, which are
not always appropriate for the pre-processing of if–then rule
expression, and apparently, not interpretable among radiologists,
pathologists, and ophthalmologists.

A TRANSPARENT APPROACH FOR
RESOLVING THE “BLACK BOX” NATURE
OF DEEP BELIEF NETWORKS

As noted by Erhan et al. (2010), in terms of achieving a lower
minimum of the empirical cost function, unsupervised pre-
training initializes a model to a point in the parameter space
that renders the optimization process more effective. The same
difficulties are also confronted during the BP learning process.
Therefore, in the supervised learning phase, the learning of input
information from the feature space by the DBN could initialize
the BPNN to well converge an objective function into a near
good local optimum, called DBN-NN; this could be the rationale

behind the enhancement made possible by a simple idea (Abdel-
Zaher and Eldeib, 2016).

The largemargin principle (Erhan et al., 2010) can generally be
applied to rating category datasets with relatively high numbers
of features (attributes) such as biomarkers or radiologists’
readings. In fact, very recently, Hayashi (2018) proposed a new
method, called DBN Re-RX with J48graft, to extract accurate
and interpretable classification rules for DBNs. He applied this
method to three rating category datasets (Luo et al., 2017)—
the Wisconsin Breast Cancer Dataset1, the Mammographic Mass
dataset1, and the Dermatology dataset1—all three of which are
small, high-abstraction datasets with prior knowledge. After
training these three datasets, he proposed a rule extraction
method that could extract accurate and concise rules for DNNs
trained by a DBN. These results suggested that the Re-RX family
(Hayashi, 2016) could help fill the gap between the very high
learning capability of DBNs and the very high interpretability of
rule extraction algorithms such as Re-RX with J48graft (Hayashi,
2017). Therefore, a better trade-off between predictive accuracy
and interpretability can be achieved in not only rating category
datasets, but also image datasets consisting of relatively high-level
abstract features.

A comparison of classification using DBN-NN and rule
extraction using DBN Re-RX with J48graft for DBNs is shown
in Table 1.

FUTURE ASPECTS TO REALIZE THE
TRANSPARENCY OF DL IN RADIOLOGY,
PATHOLOGY, AND OPHTHALMOLOGY

We can extend DBN Re-RX with J48graft (Hayashi, 2018) to
“CNN Re-RX” for high-level abstraction datasets using fully
connected layer-first CNNs (FCLF-CNNs), in which the fully-
connected layers are embedded before the first convolution
layer (Liu K. et al., 2018), because the Re-RX family (Hayashi,
2016) uses DTs such as C4.5 (Quinlan, 1993) or J48graft
(Hayashi, 2017).

In general, we can extract rules using pedagogical (Andrews
et al., 1995) approaches such as C4.5, J48graft, the Re-RX family,
Trepan (Craven and Shavlik, 1996), and ALPA (Fortuny and
Martens, 2015), regardless of the input and output layers in
any type of DL for images with high-level abstraction attributes
with prior knowledge. For more details, we will present a
concrete method in another paper. However, medical images
in radiology, pathology, and ophthalmology are not always
provided in a sufficiently high degree of abstraction datasets with
prior knowledge. A practical way to avoid this difficulty is to
pay attention to the high-level abstraction of attributes associated
with medical images.

For example, the digital database for screeningmammography
(DDSM) (Michael et al., 1998, 2001) consists of mammographic
image assessment categories for the breast imaging reporting
and data system (BI-RADS) (Obenauer et al., 2005) and the

1Repository. (2015). University of California Irvine Learning Repository,

http://archive/ics.uci/edu/
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TABLE 1 | Comparison of classification using DBN-NN and rule extraction using DBN Re-RX with J48graft for DBNs.

Method to

achieve better

initialization

Rationale for

better

initialization

Transfer of

weights

Main

component

Advantages Limitations

DBN-NN DBN Large margin

principle

Full transfer BP High classification accuracy No transparency

DBN Re-RX with J48graft DBN Large margin

principle

One-to-one

mapping

Re-RX with

J48graft

Rule extraction (transparency)

and classification

Slightly lower classification

accuracy

DBN, Deep belief network; NN, Neural network; Re-RX, Recursive-Rule eXtraction.

nominal attributes of breast density and patient age. Current
approaches using DL are also reliable for various image pre-
processing techniques, such as a region of interest selection,
segmentation, and feature extraction.

Using data from regularly screened women based on results
from a single screening round using digital mammography,
Nelson et al. (2016) reported that the false-positive rate was
highest among those aged 40–49 years (12.1%), and that the false-
negative rates among all women ranged from 0.1 to 0.15%. In two
different studies (Moss et al., 1999; Moy et al., 2002), 0.4–3.7% of
breast cancers showed false-negative findings on mammography
and ultrasound (Chan et al., 2015).

Therefore, we feel that the very high classification accuracy
(97.35%) for the DDSM obtained by DL using above pre-
processing techniques (Ribli et al., 2018) is often overestimated
and somewhat optimistic. In this case, the pre-processing
techniques mentioned above make the transparency of DL
more difficult.

We can extract important rules from attributes associated
with medical images using the Re-RX family. However, the
classification accuracy using extracted rules is slightly lower
than that using whole images trained by a CNN, so we
should recognize that to establish accountability, one of the
most important issues in medical imaging is to explain the
classification results clearly.

CONCLUSION

We have provided a review regarding the right direction
needed to develop “white box” DL in radiology, pathology, and
ophthalmology. We believe that the most important point to
realize the transparency of DL in radiology, pathology, and
ophthalmology is not that driven features rely on filter responses
solicited from a large amount of training data, which suffer from
a lack of direct human interpretability; rather, we should utilize
the high-level abstraction of attributes associated with medical
images with prior knowledge graded and/or rated by radiologists,
pathologists, and ophthalmologists.

It should be noted that theoretically, the DT provides only
an approximate explanation of CNN predictions, as opposed to

an accurate reconstruction of CNN representation details. In

radiology, pathology, and ophthalmology, a conversion method
of CNN to DTs should be developed with greater preservation
of accuracy and interpretability (more concise and less complex).
The key points shared by DBN-NN, DBN Re-RX with J48graft,
and CNN-Re-RX involve capturing high-level abstraction of
unstructured data such as images.

Very recently, Hosaka (2019) attempted to apply a CNN to
the prediction of corporate bankruptcy, which in most cases, is
treated as a two-class classification problem. This idea may be
promising to rule extraction for time series datasets via CNN
representation. However, middle-level abstraction data generated
from images enables wider classes of transparency of CNNs, so
the question of how to generate middle-level abstraction data for
images remains open.

High-dimension fully connected layers can easily lead to slow
convergence and a risk of overfitting (Srivastava et al., 2014)
during the training stage. We hope that CNNs can maintain their
considerably high performance even if the feature dimension is
low; this would show that the small number of hidden units
are capable of training powerful discriminative representations
(Xu et al., 2019). In other words, classification accuracies will
be saturated with unexpectedly small dimensions of features in
image datasets. When these characteristics are utilized, much
smaller DTs with approximately the same level of accuracy as the
highest accuracy using the conversion of CNNs can be generated;
this compactness of DTs would be helpful for the transparency
of CNNs.
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