386 research outputs found

    Development of Sensory-Motor Fusion-Based Manipulation and Grasping Control for a Robotic Hand-Eye System

    Get PDF

    Myoelectric Control Systems for Hand Rehabilitation Device: A Review

    Get PDF
    One of the challenges of the hand rehabilitation device is to create a smooth interaction between the device and user. The smooth interaction can be achieved by considering myoelectric signal generated by human's muscle. Therefore, the so-called myoelectric control system (MCS) has been developed since the 1940s. Various MCS's has been proposed, developed, tested, and implemented in various hand rehabilitation devices for different purposes. This article presents a review of MCS in the existing hand rehabilitation devices. The MCS can be grouped into main groups, the non-pattern recognition and pattern recognition ones. In term of implementation, it can be classified as MCS for prosthetic and exoskeleton hand. Main challenges for MCS today is the robustness issue that hampers the implementation of MCS on the clinical application

    Processing of sEMG signals for online motion of a single robot joint through GMM modelization

    Get PDF
    This thesis aims to explore the possibility to use EMG to train a GMM in order to estimate in realtime the bending angle of a single human joint. Extraction of features was performed with use of time-domain or frequency-domain transforms and with use of wavelet transform (WT) of which best configuration was investigated. WT was applied to signals of muscles of lower limb. A ROS based software written in C++ capable of interfacing with a humanoid robot was develope

    Implementation of Supervised Machine Learning on Embedded Raspberry Pi System to Recognize Hand Motion as Preliminary Study for Smart Prosthetic Hand

    Get PDF
    EMG signals have random, non-linear, and non-stationary characteristics that require the selection of the suitable feature extraction and classifier for application to prosthetic hands based on EMG pattern recognition. This research aims to implement EMG pattern recognition on an embedded Raspberry Pi system to recognize hand motion as a preliminary study for a smart prosthetic hand. The contribution of this research is that the time domain feature extraction model and classifier machine can be implemented into the Raspberry Pi embedded system. In addition, the machine learning training and evaluation process is carried out online on the Raspberry Pi system. The online training process is carried out by integrating EMG data acquisition hardware devices, time domain features, classifiers, and motor control on embedded machine learning using Python programming. This study involved ten respondents in good health. EMG signals are collected at two lead flexor carpi radialis and extensor digitorum muscles. EMG signals are extracted using time domain features (TDF) mean absolute value (MAV), root mean square (RMS), variance (VAR) using a window length of 100 ms. Supervised machine learning decision tree (DT), support vector machine (SVM), and k-nearest neighbor (KNN) are chosen because they have a simple algorithm structure and less computation. Finally, the TDF and classifier are embedded in the Raspberry Pi 3 Model B+ microcomputer. Experimental results show that the highest accuracy is obtained in the open class, 97.03%. Furthermore, the additional datasets show a significant difference in accuracy (p-value <0.05). Based on the evaluation results obtained, the embedded system can be implemented for prosthetic hands based on EMG pattern recognition

    EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors

    Get PDF
    Among the potential biological signals for human-machine interactions (brain, nerve, and muscle signals), electromyography (EMG) widely used in clinical setting can be obtained non-invasively as motor commands to control movements. The aim of this study was to develop a model for continuous and simultaneous decoding of multi-joint dynamic arm movements based on multi-channel surface EMG signals crossing the joints, leading to application of myoelectrically controlled exoskeleton robots for upper-limb rehabilitation. Twenty subjects were recruited for this study including 10 stroke subjects and 10 able-bodied subjects. The subjects performed free arm reaching movements in the horizontal plane with an exoskeleton robot. The shoulder, elbow and wrist movements and surface EMG signals from six muscles crossing the three joints were recorded. A non-linear autoregressive exogenous (NARX) model was developed to continuously decode the shoulder, elbow and wrist movements based solely on the EMG signals. The shoulder, elbow and wrist movements were decoded accurately based only on the EMG inputs in all the subjects, with the variance accounted for (VAF) > 98% for all three joints. The proposed approach is capable of simultaneously and continuously decoding multi-joint movements of the human arm by taking into account the non-linear mappings between the muscle EMGs and joint movements, which may provide less effortful control of robotic exoskeletons for rehabilitation training of individuals with neurological disorders and arm impairment

    Simultaneous prediction of wrist/hand motion via wearable ultrasound sensing

    Get PDF

    Decoding motor neuron behavior for advanced control of upper limb prostheses

    Get PDF
    One of the main challenges in upper limb prosthesis control to date is to provide devices intuitive to use and capable to reproduce the natural movements of the arm and hand. One approach to solve this challenge is to use the same control signals for prosthesis control that our nervous system uses to control its muscles. This thesis aims to investigate the possibility of natural, intuitive prosthesis control using neural information obtained with available surface EMG decomposition methods. In order to explore all aspects of such a novel approach, a series of five studies were performed with the final goal of implementing a proof of concept and comparing its performance with state of the art myoelectric control. The performed investigations revealed important insights in motor unit physiology after targeted muscle reinnervation, EMG decomposition in dynamic voluntary contractions of the forearm, and the properties and challenges of neural information based prosthesis control. The main outcome of the thesis is that neural information based prosthesis control is capable to outperform myoelectric approaches in pattern recognition, linear regression and nonlinear regression, as determined by offline performance comparisons. The final proof of concept for this novel approach was a robust regression method based on neuromusculoskeletal modeling. The kinematics estimation of the proposed approach outperformed EMG-based nonlinear regression in both able-bodied subjects and patients with limb deficiency, indicating that using neural information is a promising avenue for advanced myoelectric control.2017-11-3

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Modelling and EMG based Control of Upper Limb Exoskeletons for Hand Impairments

    Get PDF
    Functional losses associated with hand impairments have led to the growing development of hand exoskeletons. The main challenges are to develop the exoskeletons that work according to the user’s motion intention, which can be done by utilizing the electromyogram signals generated by forearm muscles contributed from the movement and/or grasping abilities of the hand. In this research, modelling and EMG based control of hand exoskeletons with the aim to assist stroke survivors in regaining their hand strength and functionality, and improve their quality of life is presented
    corecore