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 EMG signals have random, non-linear, and non-stationary characteristics that 

require the selection of the suitable feature extraction and classifier for 

application to prosthetic hands based on EMG pattern recognition. This 

research aims to implement EMG pattern recognition on an embedded 

Raspberry Pi system to recognize hand motion as a preliminary study for a 

smart prosthetic hand. The contribution of this research is that the time domain 

feature extraction model and classifier machine can be implemented into the 

Raspberry Pi embedded system. In addition, the machine learning training and 

evaluation process is carried out online on the Raspberry Pi system. The online 

training process is carried out by integrating EMG data acquisition hardware 

devices, time domain features, classifiers, and motor control on embedded 

machine learning using Python programming. This study involved ten 

respondents in good health. EMG signals are collected at two lead flexor carpi 

radialis and extensor digitorum muscles. EMG signals are extracted using time 

domain features (TDF) mean absolute value (MAV), root mean square (RMS), 

variance (VAR) using a window length of 100 ms. Supervised machine 

learning decision tree (DT), support vector machine (SVM), and k-nearest 

neighbor (KNN) are chosen because they have a simple algorithm structure 

and less computation. Finally, the TDF and classifier are embedded in the 

Raspberry Pi 3 Model B+ microcomputer. Experimental results show that the 

highest accuracy is obtained in the open class, 97.03%. Furthermore, the 

additional datasets show a significant difference in accuracy (p-value <0.05). 

Based on the evaluation results obtained, the embedded system can be 

implemented for prosthetic hands based on EMG pattern recognition. 
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1. INTRODUCTION  

Surface electromyography signal (EMG) is a bioelectric signal generated by muscles during 

contraction [1][2]. EMG signals are widely used to develop rehabilitation equipment, including prosthetic 

hands [3][4]. Recently, the development of prosthetic hand has progressed rapidly in terms of controller 

technology [5], sensor system [6], power management [7], and 3D printing design [8][9]. An EMG-based smart 

prosthetic hand is expected to recognize EMG signal patterns for different movements and adapt to new users. 

However, EMG signals have a random and stochastic nature [10] that tends to change every time, even with 

the same contraction. Furthermore, EMG signals are non-linear and non-stationary [11]–[14] with respect to 

the dynamics of hand movements, which requires in-depth investigation into feature extraction and machine 

learning. A computer machine capable of EMG signal data acquisition, time domain feature extraction, pattern 

recognition implementation, and real-time motor control is still a challenge for researchers to develop 

prosthetic hands based on EMG pattern recognition [15]–[18]. An embedded system based on a microcontroller 
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or microcomputer will be the answer to developing a portable smart prosthetic hand. However, prosthetic hands 

based on EMG pattern recognition mostly used another system to train and evaluate the model [19][20][7]. 

Therefore, this research focuses on implementing EMG data recording and EMG feature extraction, performing 

supervised machine learning, and controlling servo motors in real-time or online training on a Raspberry Pi 

microcomputer. 

A prosthetic hand is generally classified into prehension and anthropomorphic hand models [21]–[24]. 

The prehension hand prosthetic model can only perform simple hand close and open movements with two 

fingers. In comparison, the anthropomorphic hand prosthetic model has a movement function close to humans 

with five fingers. Prosthetic hand anthropomorphic design is more widely used because it is cosmetically close 

to the human hand [25]. Simple prosthetic hand movement control can be done using an open and close switch. 

However, in development, this will depend on the normal part of the hand to press the open and close buttons 

to hold or release the object. Another prosthetic hand development is to use shoulder control. However, this 

will interfere with real-time operation as it requires coordination between the shoulder muscles, biceps, flexor 

carpi radialis longus and extensor muscles. On the other hand, prosthetic hand development using EMG signal 

control is widely applied because EMG signals have a faster response than mechanical sensors [26]. However, 

a prosthetic hand with an EMG signal based on threshold control will result in a model that cannot adapt to the 

new user [27]. Therefore, this research develops a smart prosthetic hand based on EMG pattern recognition 

that can recognize new users. 

In the EMG pattern recognition process, the EMG signal is cut into several windows with a certain 

window length which is then carried out in the feature extraction process. Feature extraction of EMG signals 

can be done using time domain [28][29], frequency domain [30]–[32] and time-frequency (wavelet) 

[33]domain. However, feature extraction based on the time domain is more often used because it has a faster 

computation time than others [31]. Time domain features are generally grouped into those based on energy, 

wave complexity, and frequency change [34][35]. Furthermore, energy-based time domain features such as 

root mean square (RMS), mean absolute value (MAV), integrated EMG (iEMG), variance (VAR), average 

amplitude change (AAC), and Difference Absolute Standard Deviation Value (DASDV) are more widely used 

for feature extraction process. Therefore, this research will utilize energy-based feature extraction. 

The classifier machine is the main part of the smart prosthetic hand. The classifier will recognize hand 

movement patterns based on the EMG signal feature available at the previous stage. Several researchers have 

applied various supervised machine learning for EMG pattern recognition, including support vector machine 

(SVM) [36], decision tree (DT) [37][38], Bayesian (BY) [39], random forest (RF)[40], k-nearest neighbor (k-

NN) [41][42], and artificial neural network (ANN) [43]. Machine classifiers can solve the problem of non-

linearity and randomness of EMG signals.  Some modern machine learning is also applied to developing 

prosthetic hands based on EMG pattern recognition, including deep learning classifiers [44][24].  Gabriel et. 

al used a support vector machine to classify rest, flexion, extension, and grasp movements with an accuracy of 

84.93% for real-time mode [45].  In addition, EMG pattern recognition was performed using two lead 

electrodes, the flexor and extensor muscles. 

However, in that study, the classifier model was implemented on a computer system and not yet 

implemented on a prosthetic hand device. Other researchers explored machine learning to find out better 

accuracy, as done by Geethanjali et al. [37]. In the study, the author investigated seven types of classifiers 

including decision tree (DT), feature ensemble (FE), linear discriminant analysis (LDA), logistic model tree 

(LMT), neural network (NN), simple logistic regression (SLR), and support vector machine (SVM). The 

investigation results show that each classifier has different mean error values ranging from 8 to 30% where the 

lowest mean error is obtained in the linear discriminant analysis (LDA) classifier. In this study, the 

implementation of embedded machine learning is carried out on the TMS320F28335 microcontroller board but 

the training process is carried out outside the system using the MATLAB application. An embedded machine 

learning that can perform training and testing processes on microcontroller or minicomputers online will be an 

added value because all processes are carried out in one system. Fajardo developed a prosthetic hand with 

artificial neural network (ANN) implementation to ARM Cortex-M4 microcontroller to recognize five hand 

gestures [46]. The results of EMG signal pattern recognition based on five gestures obtained an accuracy value 

of 86%. However, in this study, the ANN training process is carried out using the MATLAB application. 

Furthermore, the machine learning model that has been trained and tested with MATLAB is then converted to 

C language format to be implemented into a microcontroller system. Triwiyanto et al. have developed a 

prosthetic hand to recognize four gesture patterns of open, close, wrist supination, and wrist pronation using 

embedded raspberry Pi [47]. However, the training process was performed in the computer system with the 

same environment programming language (Python).  Cabegin et al. successfully implemented machine 

learning to the Raspberry Pi microcomputer system. The research implemented principal component analysis 

(PCA) and support vector machine (SVM) to classify two hand close and hand open gestures with an accuracy 
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of 99.7%. However, in the implementation of prosthetic hands, some gestures that are common in everyday 

life are needed, such as curve and pinch gestures.  

To the best of our knowledge, researchers related to implementing machine learning in 

microcontroller or microcomputer systems are still rare. Prosthetic hand research based on EMG pattern 

recognition that applies EMG data acquisition, time domain feature extraction, classifier, and motor control 

embedded in an embedded system is still an interesting research topic. Furthermore, the training and testing 

process on the embedded system will be an added value to the developed system so that it does not require 

another system. Therefore, this research aims to implement EMG pattern recognition on an embedded 

Raspberry Pi system to recognize hand motion as a preliminary study for a smart prosthetic hand. The system 

we develop is expected to perform training and evaluation time domain feature extraction and machine learning 

processes directly on the Raspberry Pi system by implementing Python programming. This study will train the 

prosthetic hand to recognize four gestures: open, close, pinch, and curve. These four main gestures are often 

used in everyday life. 

 

2. MATERIALS AND METHOD  

2.1.  Subjects.  

This research is a preliminary study on the development of a smart prosthetic hand. Therefore, the 

subjects in this study are healthy humans with the characteristics of 20.3±2.6 years old and a body weight 

60.4±5.5 kg, totaling 20 people. The subjects involved had no recorded physical injuries to the hand or arm, 

and the subjects had no history of other serious illnesses. After reading the informed consent form provided, 

subjects agreed to be involved in the data collection process. This study has undergone an Ethical Clearance 

examination from Health Polytechnic Surabaya Ethics Committee. 

 

 
Figure 1. Block diagram of the machine learning embedded on Raspberry Pi to control the upper limb 

exoskeleton built using 3D printing technology. 

 

2.2.  System Operational.  

This research uses Raspberry Pi (3B+, Quad-core A53 (ARMV8), US) as the main part of the system. 

The software for the pre-evaluation process of the system is using Python programming version 3 using 

Anaconda Navigator and Spyder IDE (version 1.10.0, 2016, Anaconda, Inc) running on a computer machine 

(Windows, core I5, SDRAM 8 MB). Software for the implementation of machine learning, feature extraction 

and prosthetic hand control system using Python programming (Thony IDE, Python 3.7). EMG signals are 

tapped at the flexor carpi radialis (CH1), and extensor digitorum (CH2) points using a dry electrode 

[48][49][50] (Dfrobot, Oymotion, China) with sensor dimensions of 22mm x 35 mm and weight of 36 grams. 

The two muscles produce considerable contractions when respondents perform hand open, hand close, pinch 

and curve movements. The EMG signal is then converted to digital form using an A/D converter MCP3008 

(Microchips, USA).  MCP3008 is an A/D with high performance, low power consumption, 10 bit resolution 

with 200k samples/second, and 8 input channels. Two EMG channels are recorded by the Raspberry Pi device 

using a sampling frequency of 2000 Hz. The amount of sampling frequency has complied with the Nyquist 

rule [51]. Time domain feature extraction (TDFE) is applied to the EMG signal to obtain patterns of 

distinguishing features for the four movements to be trained (open, close, pinch, and curve). The TDFE used 
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in this implementation are mean absolute value (MAV), root mean square (RMS), and variance (VAR). These 

features have been widely applied in the development of exoskeleton and prosthetic hand devices that require 

the system to run in real-time. After going through the TDFE process, the EMG features will be used as input 

for supervised machine learning (DT, SVM, and KNN).  During the training process, machine learning will be 

introduced with four prosthetic hand movement patterns (open, close, pinch, and curve). In the implementation 

step, the machine learning will recognize the EMG movement patterns and give movement commands to the 

prosthetic hand. In more detail, the prosthetic hand is moved using a mini linear actuator (Actuonix, PQ12-R, 

63:1, Canada). 

  

2.3.  Data Collection.     

The EMG recording data collection process is carried out by installing a dry electrode (Dfrobot, 

Oymotoin, China) on the flexor carpi radialis (CH1) and extensor digitorum (CH2) muscles [1]. The skin 

surface at the two tapping points is cleaned first before the dry electrode is installed to remove oil and dust on 

the skin surface [52]. An elastic strap is attached to the electrode so that the electrode does not shift during the 

EMG signal recording process. In recording EMG signals, subjects are in a relaxed sitting position with their 

hands on their thighs. The researcher instructed the subject to perform four sequential movements: hand open, 

hand close, hand open, hand pinch, hand open, and hand curve. Each movement is performed within four 

seconds. Between the hand close, pinch, and open movements, the open hand movement is inserted for 5 

seconds to provide rest time to the subject while avoiding muscle fatigue. The position of the four movements 

(hand close, open, curve, and pinch) are shown in Figure 2.  

For the purpose of the machine learning training process, ten subjects are recorded in turn. One cycle 

of hand movements is open-close-open-curve-open-pinch-open. The process of the movement sequence is 

carried out for ten cycles. After ten cycles have been completed, the subject is instructed to rest for 5 minutes. 

After that, the process was repeated five times. To keep the rhythm of the four hand movements consistent and 

fixed, the subject must follow the guidance through a metronome application with a period setting of 5 seconds. 

The EMG recording data is grouped based on the subjects' names, with the fields being time, channel 1, and 

channel 2, which are saved to a file in CSV format. The continuous EMG recording data is labeled according 

to the movement performed (open, close, pinch, and curve). 

 

 
Figure 2. Hand motion (a) close, (b) open, (c) curve, and (d) pinch to train the prosthetic hand. 

. 

2.4.  Data Processing.  

The results of EMG signal recordings in CSV files from 10 subjects are processed using time domain 

feature extraction. In the time domain feature extraction (TDFE) evaluation stage, the calculation process is 

carried out offline using a computer device. The three EMG features evaluated at this stage are VAR, RMS, 

and MAV.  

 

2.4.1. Time Domain Features Extraction.  

Researchers still apply this feature widely, especially in developing real-time systems. Time domain 

features have advantages in terms of simple mathematical equations so that the computational time required to 

extract EMG signals is shorter. At this stage, the three EMG features evaluated are variance (VAR), root mean 



IJEEI  ISSN: 2089-3272  

 

Implementation of Supervised Machine Learning on Embedded Raspberry Pi System… (Triwiyanto et al) 

689 

square (RMS), and mean absolute value (MAV), as shown in equations (1), (2), and (3). The variance of EMG 

(VAR) is the average power value of the EMG signal. VAR is formulated as follows [53] 
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Mean Absolute Value (MAV) is an average of absolute EMG signal for N window length. The MAV 

is formulated as [53]: 
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Root Mean Square (RMS) represents the mean power of signal over a window length of EMG 

samples. The mathematical equation to describe this feature is written as follows [53]  
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where xi indicates the i-th EMG signal and N indicates the length of the EMG signal. 

 

2.5.  Machine Learning.  

Conventional machine learning is still widely used in some simple and real-time applications; this is 

due to the simplicity of the model used and ease of implementation on various platforms, including embedded 

microcontroller systems or Raspberry Pi mini computers. One of the advantages of using conventional machine 

learning is the fast processing and training time. There is several supervised machine learning which will be 

evaluated in this study, including decision tree (DT), K-nearest neighbor (KNN), and support vector machine 

(SVM). 

 

2.5.1. Decision Tree.   

A decision tree is the simplest machine learning for classification and regression purposes. The 

classification step is done by splitting the data according to the branches of the decision tree.  The classification 

process is carried out by calculating the Entropy(s) value of the probability of the results of the decision tree 

that has been carried out using equation (4) [54]. 

. 
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where S represents the data set that entropy is calculated, c represents the classes in set S, and p(c) 

represents the proportion of data points that belong to class c to the number of total data points in set S. Attribute 

selection is done by looking at the highest information gain value, the calculation of information gain (S,a) is 

done according to equation (5) [54] . 
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Where a represents a specific attribute or class label, Entropy(S) is the entropy of dataset, S; |Sv|/ |S| 

represents the proportion of the values in Sv to the number of values in dataset, S; Entropy(Sv) is the entropy of 

dataset, Sv. Furthermore, a Gini parameter is used to determine how well a decision tree classifier classifies the 

data. Gini is measured using equation (6) [54]. 
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Gini impurity is the likelihood that a random data point in the dataset would be classified wrongly if 

the dataset's class distribution determines its label. In this study, the max_depth was adjusted equal to ten in 

the decision tree algorithm design. 
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2.5.2. K-Nearest Neighbor.  

K-nearest neighbor (KNN) is a classifier that applies classification based on the closeness of data in 

a particular group. The similarity of data in a group is calculated using Euclidean (7), Manhattan (8), and 

Minkowski [55].    
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where, x and y are the data being measured while the d is the distance. After calculating the distance 

using one of the measurement methods according to equations (7), (8), and (9), then mark as a certain class 

based on the highest probability [55]. 

 

0

1
0P ( | ) ( )r ik

i N

Y j X x I y j



= = = =     (10) 

 

where, Pr indicates the probability of the distance, and I indicate the label. In this study, the neighbor 

(k) was selected as five in the k-NN algorithm design. 

 

2.5.3. Support Vector Machine.  

Support Vector Machine (SVM) is a classifier that applies a hyperplane in a high-dimensional space 

used to separate a group of data. Furthermore, SVM can be used for classification and regression purposes. In 

general, a hyperplane can be written as a mathematical equation (1) or (2). In general, the boundary of a 

hyperplane for classification purposes can be described through hyperplane equations (13), (14) and (15) [56]. 
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where w is hyperplane weight, and b is intercept of the hyperplane. The optimization function is used 

to determine local minima where the normalization function is shown in equation (16). The final optimization 

function is shown in equation (17) [56].  
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where, h(x)=0 then x lies on the hyperplane; when h(x) <0 or h(x)>0 then x fall to one side of the 

hyperplane. Furthermore, an illustration depicting the classification process of two groups using SVM classifier 

is shown in equation (3). 
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Figure 3. Support vector machine with hyperplane-based boundary method 

 

In this research, the training and testing process is carried out online and offline using either the system 

on Raspberry Pi or a microcomputer. The training process that we applied is 80% training and 20% testing. 

Furthermore, we selected a linear kernel function in the SVM algorithm. After the initialization process, the 

program will call several threads, including data acquisition, feature extraction, machine learning and driving 

linear actuator. In this research, the thread programming model is applied. It aims to run the program in parallel 

or concurrently. Therefore, all variables a thread uses must be declared globally so all threads can use them 

together. The thread programmed will run continuously as long as there is no reset on the Raspberry Pi system. 

Overall, the embodied machine learning and time domain feature extraction (TDFE) system is shown in Figure 

4. 

 

2.6.  Online Training.  

At the evaluation stage, the time domain feature and machine learning investigation were carried out 

on the computer system; this is to get the best type of features and classifier. Furthermore, after getting the 

right features and classifiers, then the feature and machine learning are implemented directly into the Raspberry 

Pi system using Python-based programming through the Thony application. Through the Raspberry Pi device, 

the system performs the process of data acquisition, feature extraction, classification and moving the prosthetic 

hand directly. The training and testing process is carried out online on a Raspberry Pi device.   

 

2.7.  Statistical Analysis.  

Several variables are statistically tested to see whether they had a significant effect on accuracy or 

not.  The T-test statistic is applied to see if there is a significant difference in accuracy when number of the 

dataset is different. In this statistical test, we used alpha=0.05.  

 

 

 
Figure 4. Flowchart controls the upper limb exoskeleton, divided into four parts: data acquisition, feature 

extraction, machine learning and driving the servo motor. 

 

Machine learning decision tree (DT), k-nearest neighbor (KNN), and random forest (RF), along with 

time domain feature extraction, are successfully embedded on a Raspberry Pi machine to classify movement 

patterns. The highest accuracy results are obtained in the KNN classifier, with an accuracy of 94.06%. Other 
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details related to the form of raw EMG signal, features and confusion matrices will be explained in more detail 

in the following sub-sections. 

 

3. RESULT 

3.1. Raw EMG Signal.  

EMG signals are tapped at the flexor carpi radialis (CH1) and extensor digitorum (CH2) points. These 

two muscles are responsible for performing flexion and extension movements. EMG signals have a random 

shape with different signal patterns for each different form of movement. Figure 3 shows the EMG signal 

pattern during close, open, pinch, open, curve, and open movements. EMG signals generated by CH1 and CH2 

have the same signal pattern when the hand performs close-open-pinch movements, but when the hand 

performs curve movements, the CH1 EMG signal produces a large enough amplitude (20 mV) compared to 

the CH2 EMG signal (1mV). 

 

3.2. Time Domain EMG Features.  

The output of EMG features produces amplitudes that vary depending on the type of time domain 

feature used. In this study, the VAR feature has the highest amplitude compared to the other two features (MAV 

and RMS). The VAR feature is shown with a red line plot color, while the MAV and RMS features are shown 

with blue and black line plot colors, respectively. Although each EMG feature shows different amplitudes for 

each movement pattern, the pattern of each feature shows similarities, as shown in Figure 6. Furthermore, 

Figure 7 shows the calculation results of time domain feature extraction for EMG signals tapped on CH2. The 

feature patterns show that there are similarities in hand close, open and pinch movements for both CH1 and 

CH2. However, when the hand performs curve movements, it appears that the EMG feature pattern shows 

different activity. 

 

 
Figure 5. Raw EMG signals from the flexor carpi radialis (CH1) and extensor digitorum (CH2) points when 

the respondent performed close-open-pinch-curve motion. 

 

 
Figure 6. EMG (var, mav, and rms) feature outputs from the flexor carpi radialis (CH1). 

 

 
Figure 7. EMG (var, mav, and rms) feature outputs from the flexor carpi radialis (CH2). 
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3.3.  Scatter Plot.  

Scatter plot is used to see if a feature is able to classify and group data according to its class or attribute 

(Figure 8). This study compares features between channels (CH1 and CH2) to see the separation between labels 

or classes (open, close, curve, and pinch). The Euclidean calculation results for class hand close, open, pinch 

and curve are 3.70±3.14, 4.26±0.18, 3.20±1.60, and 23.43±4.58, respectively. 

 

 
 

 

 
 

 

 
Figure 8. Scater plot between CH1 and CH2 for each feature, a) MAV, b) VAR, and c) RMS 

 

 

3.4.  Machine Learning Accuracy.  

Machine learning produces different accuracy for each tested motion model (open, close, pinch, and 

curve). Figure 9 shows the confusion matrices for the decision tree (DT), support vector machine (SVM), and 

k-nearest neighbor (KNN) machine learning using the RMS feature.  
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       ACC. 

T
R

U
E

 

Open 92.08 0.00 3.96 3.96  100 

Close 1.18 87.06 0.00 11.76    

Pinch 1.03 1.37 97.26 0.34    

Curve 0.89 5.36 3.57 90.18  0 

  Open Close Pinch Curve   

(a) DT PREDICTED   

     

       ACC. 

T
R

U
E

 

Open 86.14 0.00 11.88 1.98  100 

Close 1.18 89.41 0.00 9.41    

Pinch 0.68 1.03 97.26 1.03    

Curve 2.68 6.25 1.79 89.29  0 

  Open Close Pinch Curve   

(b) SVM PREDICTED   

       ACC. 

T
R

U
E

 

Open 97.03 0.00 1.98 0.99  100 

Close 1.18 94.12 0.00 4.71    

Pinch 1.71 1.71 96.58 0.00    

Curve 2.68 8.93 3.57 84.82  0 

  Open Close Pinch Curve   

(c) KNN PREDICTED   
 

Figure 9. Machine learning produces different accuracy for each tested motion model (open, close, pinch, and 

curve). 

 

In the DT machine learning, the pinch movement has the highest accuracy compared to the others 

(97.26%), while the movement with the lowest accuracy is the close movement (87.06%). Some confusion 

matrices columns show small accuracy values ranging from 0.00 to 11.76%. This indicates machine learning 

errors in classification. For example, in Figure 9(a), the machine learning has misclassified what should be 

detected as close but is identified as a curve (11.76%). Figure 9(b) shows the lower accuracy generated by 

SVM machine learning. Furthermore, the accuracy generated by each motion varies. The highest accuracy is 

generated by the pinch motion (97.26%). The highest misclassification is generated by the open gesture, where 

the open gesture is detected as a pinch (11.88%). On the other hand, KNN machine learning produces higher 

accuracy than the others (Figure 9(c)). Three out of four gestures produce accuracy >90%. The open movement 

produces the highest accuracy (97.03%) compared to the other movements. In this machine learning, the curve 

movement is misclassified as a close movement (8.93%). Figure 9 shows the confusion matrices for the 

decision tree (DT), support vector machine (SVM), and k-nearest neighbor (KNN) machine learning using the 

RMS feature. In the DT machine learning, the pinch movement has the highest accuracy compared to the others 

(97.26%) while the movement that has the lowest accuracy is the close movement (87.06%). Some confusion 

matrices columns show small accuracy values ranging from 0.00 to 11.76%. These accuracy values indicate 

the machine learning errors in classification. For example, in Figure 9(a), the machine learning has 

misclassified what should be detected as close, but is identified as a curve (11.76%). Figure 9(b) shows the 

lower accuracy generated by SVM machine learning. Furthermore, the accuracy generated by each motion 

varies. The highest accuracy is generated by the pinch motion (97.26%). The open gesture generates the highest 

misclassification, where the open gesture is detected as a pinch (11.88%). On the other hand, KNN machine 

learning produces higher accuracy than the others (Figure 9(c)). Three out of four gestures produce accuracy 

>90%. The open movement produces the highest accuracy (97.03%) compared to the other movements. In this 

machine learning, the curve movement is misclassified as a close movement (8.93%). Overall, k-NN machine 

learning produces higher accuracy (94.06%) compared to the others, as shown in Figure 10. Furthermore, 
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Figure 10 shows the difference in machine learning accuracy for datasets derived from ten respondents and 

one respondent. It can be seen that the machine learning training using ten respondents produces higher 

accuracy than the machine learning training using one respondent. When DT machine learning is applied, it 

can be seen that ML accuracy using ten respondents produces better accuracy (93.56%). Similarly, when ML 

using SVM is applied, the accuracy for the ten respondents and one respondent groups are 92.71% and 88.7%, 

respectively. 

 

 
Figure 10. Various accuracies result from machine learning and different numbers of respondents. 

 

Table 1. Statistical T test for accuracy with 10 respondents and 1 respondent 
T TEST: Equal Variances   Alpha=0.05 

  std err t-stat p-value t-crit sig 

One Tail 1.286 2.186 0.047 2.132 yes 

 

This study compares the three-machine learning with different datasets (ten respondents and one 

respondent), namely, whether there is a significant difference in accuracy. Statistical T-test one tail with 

alpha=0.05 is set in this study to see if there is a significant difference. The T-test results show that the resulting 

p-value is 0.047, (p-value <0.05; significant = yes) as shown in Table 1. 

 

4. DISCUSSION 

This research can implement machine learning and feature extraction to the embedded system with 

good accuracy of 94.06% (KNN). The EMG signal measurement appears that the open-close-pinch-curve 

movement can be distinguished well using the flexor carpi radialis (CH1) and extensor digitorum (CH2) 

muscles. EMG signals originating from the extensor digitorum muscle (CH2) can distinguish open-close-pinch 

movements but cannot distinguish curve movements.  On the other hand, EMG signals derived from the flexor 

carpi radialis muscle show significant signal activity when the hand performs curve gearing. So, a combination 

of the two muscles is needed to distinguish the four basic movements. EMG signals are very susceptible to 50 

Hz mains frequency noise; therefore, all equipment supplied using voltage from the mains connected to the 

system must be disconnected during the recording process. Dry electrodes must be properly installed at the 

tapped point because a less tight installation can cause noise artifacts that affect when the subject moves the 

hand. Muscle fatigue also influences EMG signals as revealed by previous researchers. When muscles 

experience fatigue, the amplitude of the EMG signal will increase, and there is a shift in the median value of 

the EMG signal spectrum. Therefore, it is very important that during the data collection process, the subject is 

given a certain amount of rest time (at least 5 minutes) to prevent muscle fatigue. Determining the combination 

of EMG features as machine learning input is very important because this will determine the success of machine 

learning in classification. One way is by visualizing the class data using a scatter plot. The scatter plot shown 

in Figure 6 has different clustering variations depending on the combination of features used. Figure 6(c) proves 

that the RMS feature has the smallest average Euclidean value (3.20±1.60) compared to other features, 

indicating that this feature has the potential to be a good feature compared to other features. The pinch and 

open classes have a close distance between clusters, leading to misclassification in machine learning. 

Furthermore, the scatter plot of Figure 8(c) shows that some close hand features are mixed with hand pinch 

features. This may lead to misclassification between hand close and pinch movements. On the other hand, the 

MAV and RMS features show the intersection between three classes, namely hand open, close, and pinch. 

These slices can cause misclassification and lower the overall accuracy.  

Confusion matrices are used to see each class's accuracy, as shown in Figure 9, where the vertical 

column shows TRUE, and the horizontal column shows PREDICTED. In Figure 9, the diagonal column shows 

the actual accuracy value which is marked with a darker color for accuracy close to 100%. Color degradation 

close to 0% is marked with a lighter color. For example, the open class can be classified with an accuracy of 
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97.03%, but the open class is misclassified as close, pinch, and curve with accuracies of 0.00, 1.98, and 0.99%, 

respectively.  Ideally, a classifier should produce an accuracy value of 0% when tested with other classes. In 

this study, a considerable incidence of misclassification occurred in the curve class, where the curve class is 

predicted as the cure class with an accuracy value of 84.82%. However, machine learning experienced 

prediction errors where the class curve is detected as open, close, and pinch class with the accuracy of 2.68%, 

8.93%, and 3.57%, respectively. 

Research on prosthetic hands using EMG pattern recognition based on embedded machine learning 

has been carried out by several previous researchers with some similarities and differences. Fajardo developed 

a prosthetic hand using EMG pattern recognition to classify 5 different movements implemented on the ARM 

cortex M4 microcontroller with 86% accuracy [46]. To increase accuracy, the researcher uses multi-modal 

sensors, namely touch screen display and voice control, to control prosthetic hands with accuracy approaching 

98%. On the other hand, Roy uses the Raspberry Pi with the Pi camera on the prosthetic hand to recognize five 

different grasp patterns using the Deep Neural Network (DNN) with an uncertainty of ±1cm [57]. However, 

this research requires a fairly heavy computation because image pattern recognition exists in the classifier. 

This research is a preliminary study for developing a smart prosthetic hand by implementing machine 

learning to Raspberry Pi embedded system. In this initial stage, researchers evaluated SVM, KNN, and DT 

classifiers, simple supervised classifiers, and fast computation time. Feature extraction MAV, VAR, and RMS 

are applied for the EMG feature extraction process as classifier input. In this research, the process of collecting 

datasets and training on machine learning is still carried out offline using a personal computer, and then the 

training results are applied to the Raspberry Pi embedded system. Making a prosthetic hand must be packaged 

so that the electronic hardware system can be stored in a compartment inside the prosthetic hand. Making 

compact hardware is still a challenge for researchers, so later, portable and small hardware can be realized. The 

prosthetic hand in this research uses five linear actuators, each of which requires 210 mA power per actuator. 

Therefore, the operation of this prosthetic hand requires a large enough current consumption for five actuators, 

which is 1500 mA. A battery with a large enough capacity and good power management is needed in this 

research to keep the prosthetic hand operational for a long time. 

The results of this research are expected to be used to help a trans-radial amputee who has a hand 

amputation caused by a certain disease, congenital birth, and work accident. The design of a prosthetic hand 

using 3D printing technology can produce a prosthetic hand that is cheap, lightweight and strong. Through the 

development of the smart prosthetic hand, it is expected to realize a prosthetic hand that is cheap, lightweight, 

and can function well as a replacement for the missing hand. 

 

5. CONCLUSION 

This research aims to implement supervised machine learning on the embedded raspberry pi system 

to recognize hand motion as a preliminary study for a smart prosthetic hand. The findings obtained in this 

research are that k-NN machine learning produces better accuracy (94.06%) compared to other classifiers (DT 

and SVM). Furthermore, based on the results of investigating the time domain features used, the RMS feature 

produces good accuracy compared to other features (MAV and VAR). Confusion matrices shows that when 

the classifier applies KNN and features RMS, the highest reading accuracy for the open class is 97.03%. 

Machine learning test results for different datasets show that there is a significant difference in accuracy (p-

value <0.05), where the larger number of datasets results in better accuracy. Furthermore, some developments 

that can be done for future work include using other types of Raspberry Pi that are more portable so that a 

compact prosthetic hand can be developed. Exploration and investigation of machine learning and other types 

of feature extraction need to be done to get the best accurate results. 
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