4 research outputs found

    Full Metadata Object profiling for flexible geoprocessing workflows

    Get PDF
    The design and running of complex geoprocessing workflows is an increasingly common geospatial modelling and analysis task. The Business Process Model and Notation (BPMN) standard, which provides a graphical representation of a workflow, allows stakeholders to discuss the scientific conceptual approach behind this modelling while also defining a machine-readable encoding in XML. Previous research has enabled the orchestration of Open Geospatial Consortium (OGC) Web Processing Services (WPS) with a BPMN workflow engine. However, the need for direct access to pre-defined data inputs and outputs results in a lack of flexibility during composition of the workflow and of efficiency during execution. This article develops metadata profiling approaches, described as two possible configurations, which enable workflow management at the meta-level through a coupling with a metadata catalogue. Specifically, a WPS profile and a BPMN profile are developed and tested using open-source components to achieve this coupling. A case study in the context of an event mapping task applied within a big data framework and based on analysis of the Global Database of Event Language and Tone (GDELT) database illustrates the two different architectures

    Descriptions of Spatial Operations – Recent Approaches and Community Feedback

    Get PDF
    Progress in the technical provision of spatial operations as loosely-coupled interoperable web services requires a corresponding development of standardisation in their description. Operation discovery, usage and interpretation of results require more information on what a spatial operation does than just their input and output interface specifications. Geooperators and WPS profiles have been proposed for addressing operation descriptions for different operational perspectives. Geooperators have been developed mostly for supporting operation discovery through defining alternative perspectives such as a geodata, legacy GIS, formal or technical perspective. These act as filters in the discovery process. WPS profiles provide a hierarchical approach to define the concept underlying an operation and, in more specific profiles, the syntactic interface of the operation. Both approaches require community engagement for reaching an agreed set of documented operations. We report on a discussion of these approaches and the larger framework of a geoprocessing community platform from a workshop held at the AGILE International Conference on Geographic Information Science in Lisbon in 2015. At the workshop two presentations provided insights in different contexts of use of online geoprocessing. After detailed introductions to the two operation descriptions approaches, two breakout sessions were held. In the breakout sessions operation descriptions and technical developments in the field were discussed. This article summarizes the discussion that took place at the workshop with the intention to involve the extended community in the discourse on operation descriptions

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Synthesis of Scientific Workflows: Theory and Practice of an Instance-Aware Approach

    Get PDF
    The last two decades brought an explosion of computational tools and processes in many scientific domains (e.g., life-, social- and geo-science). Scientific workflows, i.e., computational pipelines, accompanied by workflow management systems, were soon adopted as a de-facto standard among non-computer scientists for orchestrating such computational processes. The goal of this dissertation is to provide a framework that would automate the orchestration of such computational pipelines in practice. We refer to such problems as scientific workflow synthesis problems. This dissertation introduces the temporal logic SLTLx, and presents a novel SLTLx-based synthesis approach that overcomes limitations in handling data object dependencies present in existing synthesis approaches. The new approach uses transducers and temporal goals, which keep track of the data objects in the synthesised workflow. The proposed SLTLx-based synthesis includes a bounded and a dynamic variant, which are shown in Chapter 3 to be NP-complete and PSPACE-complete, respectively. Chapter 4 introduces a transformation algorithm that translates the bounded SLTLx-based synthesis problem into propositional logic. The transformation is implemented as part of the APE (Automated Pipeline Explorer) framework, presented in Chapter 5. It relies on highly efficient SAT solving techniques, using an off-the-shelf SAT solver to synthesise a solution for the given propositional encoding. The framework provides an API (application programming interface), a CLI (command line interface), and a web-based GUI (graphical user interface). The development of APE was accompanied by four concrete application scenarios as case studies for automated workflow composition. The studies were conducted in collaboration with domain experts and presented in Chapter 6. Each of the case studies is used to assess and illustrate specific features of the SLTLx-based synthesis approach. (1) A case study on cartographic map generation demonstrates the ability to distinguish data objects as a key feature of the framework. It illustrates the process of annotating a new domain, and presents the iterative workflow synthesis approach, where the user tries to narrow down the desired specification of the problem in a few intuitive steps. (2) A case study on geo-analytical question answering as part of the QuAnGIS project shows the benefits of using data flow dependencies to describe a synthesis problem. (3) A proteomics case study demonstrates the usability of APE as an “off-the-shelf” synthesiser, providing direct integration with existing semantic domain annotations. In addition, a manual evaluation of the synthesised results shows promising results even on large real-life domains, such as the EDAM ontology and the complete bio.tools registry. (4) A geo-event question-answering study demonstrates the usability of APE within a larger question-answering system. This dissertation answers the goals it sets to solve. It provides a formal framework, accompanied by a lightweight library, which can solve real-life scientific workflow synthesis problems. Finally, the development of the library motivated an upcoming collaborative project in the life sciences domain. The aim of the project is to develop a platform which would automatically compose (using APE) and benchmark workflows in computational proteomics
    corecore