75 research outputs found

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Networks, (K)nots, Nucleotides, and Nanostructures

    Get PDF
    Designing self-assembling DNA nanostructures often requires the identification of a route for a scaffolding strand of DNA through the target structure. When the target structure is modeled as a graph, these scaffolding routes correspond to Eulerian circuits subject to turning restrictions imposed by physical constraints on the strands of DNA. Existence of such Eulerian circuits is an NP-hard problem, which can be approached by adapting solutions to a version of the Traveling Salesperson Problem. However, the author and collaborators have demonstrated that even Eulerian circuits obeying these turning restrictions are not necessarily feasible as scaffolding routes by giving examples of nontrivially knotted circuits which cannot be traced by the unknotted scaffolding strand. Often, targets of DNA nanostructure self-assembly are modeled as graphs embedded on surfaces in space. In this case, Eulerian circuits obeying the turning restrictions correspond to A-trails, circuits which turn immediately left or right at each vertex. In any graph embedded on the sphere, all A-trails are unknotted regardless of the embedding of the sphere in space. We show that this does not hold in general for graphs on the torus. However, we show this property does hold for checkerboard-colorable graphs on the torus, that is, those graphs whose faces can be properly 2-colored, and provide a partial converse to this result. As a consequence, we characterize (with one exceptional family) regular triangulations of the torus containing unknotted A-trails. By developing a theory of sums of A-trails, we lift constructions from the torus to arbitrary n-tori, and by generalizing our work on A-trails to smooth circuit decompositions, we construct all torus links and certain sums of torus links from circuit decompositions of rectangular torus grids. Graphs embedded on surfaces are equivalent to ribbon graphs, which are particularly well-suited to modeling DNA nanostructures, as their boundary components correspond to strands of DNA and their twisted ribbons correspond to double-helices. Every ribbon graph has a corresponding delta-matroid, a combinatorial object encoding the structure of the ribbon-graph\u27s spanning quasi-trees (substructures having exactly one boundary component). We show that interlacement with respect to quasi-trees can be generalized to delta-matroids, and use the resulting structure on delta-matroids to provide feasible-set expansions for a family of delta-matroid polynomials, both recovering well-known expansions of this type (such as the spanning-tree expansion of the Tutte polynnomial) as well as providing several previously unknown expansions. Among these are expansions for the transition polynomial, a version of which has been used to study DNA nanostructure self-assembly, and the interlace polynomial, which solves a problem in DNA recombination

    Programming Quantum Computers Using Design Automation

    Full text link
    Recent developments in quantum hardware indicate that systems featuring more than 50 physical qubits are within reach. At this scale, classical simulation will no longer be feasible and there is a possibility that such quantum devices may outperform even classical supercomputers at certain tasks. With the rapid growth of qubit numbers and coherence times comes the increasingly difficult challenge of quantum program compilation. This entails the translation of a high-level description of a quantum algorithm to hardware-specific low-level operations which can be carried out by the quantum device. Some parts of the calculation may still be performed manually due to the lack of efficient methods. This, in turn, may lead to a design gap, which will prevent the programming of a quantum computer. In this paper, we discuss the challenges in fully-automatic quantum compilation. We motivate directions for future research to tackle these challenges. Yet, with the algorithms and approaches that exist today, we demonstrate how to automatically perform the quantum programming flow from algorithm to a physical quantum computer for a simple algorithmic benchmark, namely the hidden shift problem. We present and use two tool flows which invoke RevKit. One which is based on ProjectQ and which targets the IBM Quantum Experience or a local simulator, and one which is based on Microsoft's quantum programming language Q#\#.Comment: 10 pages, 10 figures. To appear in: Proceedings of Design, Automation and Test in Europe (DATE 2018

    Discrete Optimization Methods for Segmentation and Matching

    Get PDF
    This dissertation studies discrete optimization methods for several computer vision problems. In the first part, a new objective function for superpixel segmentation is proposed. This objective function consists of two components: entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of compact and homogeneous clusters, while the balancing function encourages clusters with similar sizes. I present a new graph construction for images and show that this construction induces a matroid. The segmentation is then given by the graph topology which maximizes the objective function under the matroid constraint. By exploiting submodular and monotonic properties of the objective function, I develop an efficient algorithm with a worst-case performance bound of 12\frac{1}{2} for the superpixel segmentation problem. Extensive experiments on the Berkeley segmentation benchmark show the proposed algorithm outperforms the state of the art in all the standard evaluation metrics. Next, I propose a video segmentation algorithm by maximizing a submodular objective function subject to a matroid constraint. This function is similar to the standard energy function in computer vision with unary terms, pairwise terms from the Potts model, and a novel higher-order term based on appearance histograms. I show that the standard Potts model prior, which becomes non-submodular for multi-label problems, still induces a submodular function in a maximization framework. A new higher-order prior further enforces consistency in the appearance histograms both spatially and temporally across the video. The matroid constraint leads to a simple algorithm with a performance bound of 12\frac{1}{2}. A branch and bound procedure is also presented to improve the solution computed by the algorithm. The last part of the dissertation studies the object localization problem in images given a single hand-drawn example or a gallery of shapes as the object model. Although many shape matching algorithms have been proposed for the problem, chamfer matching remains to be the preferred method when speed and robustness are considered. In this dissertation, I significantly improve the accuracy of chamfer matching while reducing the computational time from linear to sublinear (shown empirically). It is achieved by incorporating edge orientation information in the matching algorithm so the resulting cost function is piecewise smooth and the cost variation is tightly bounded. Moreover, I present a sublinear time algorithm for exact computation of the directional chamfer matching score using techniques from 3D distance transforms and directional integral images. In addition, the smooth cost function allows one to bound the cost distribution of large neighborhoods and skip the bad hypotheses. Experiments show that the proposed approach improves the speed of the original chamfer matching up to an order of 45 times, and it is much faster than many state of art techniques while the accuracy is comparable. I further demonstrate the application of the proposed algorithm in providing seamless operation for a robotic bin picking system

    Supersymmetric Field Theories, Scattering Amplitudes and the Grassmannian

    Get PDF
    In this thesis we carry out a detailed investigation of a class of four-dimensional N=1 gauge theories, known as Bipartite Field Theories (BFTs), and their utility in integrable systems and scattering amplitudes in 4-dimensional N=4 Super-Yang-Mills (SYM). We present powerful combinatorial tools for analyzing the moduli spaces of BFTs, and find an interesting connection with the matching and matroid polytopes, which play a central role in the understanding of the Grassmannian. We use the tools from BFTs to construct (0+1)-dimensional cluster integrable systems, and propose a way of obtaining (1+1)- and (2+1)-dimensional integrable field theories. Using the matching and matroid polytopes of BFTs, we analyze the singularity structure of planar and non-planar on-shell diagrams, which are central to modern developments of scattering amplitudes in N=4 SYM. In so doing, we uncover a new way of obtaining the positroid stratication of the Grassmannian. We use tools from BFTs to understand the boundary structure of the amplituhedron, a recently found geometric object whose volume calculates the integrand of scattering amplitudes in planar N=4 SYM theory. We provide the most comprehensive study of the geometry of the amplituhedron to date. We also present a detailed study of non-planar on-shell diagrams, constructing the on-shell form using two new, independent methods: a non-planar boundary measurement valid for arbitrary non-planar graphs, and a proposal for a combinatorial method to determine the on-shell form directly from the graph

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    • …
    corecore