1,646 research outputs found

    Video summarization by group scoring

    Get PDF
    In this paper a new model for user-centered video summarization is presented. Involvement of more than one expert in generating the final video summary should be regarded as the main use case for this algorithm. This approach consists of three major steps. First, the video frames are scored by a group of operators. Next, these assigned scores are averaged to produce a singular value for each frame and lastly, the highest scored video frames alongside the corresponding audio and textual contents are extracted to be inserted into the summary. The effectiveness of this approach has been evaluated by comparing the video summaries generated by this system against the results from a number of automatic summarization tools that use different modalities for abstraction

    Rushes video summarization using a collaborative approach

    Get PDF
    This paper describes the video summarization system developed by the partners of the K-Space European Network of Excellence for the TRECVID 2008 BBC rushes summarization evaluation. We propose an original method based on individual content segmentation and selection tools in a collaborative system. Our system is organized in several steps. First, we segment the video, secondly we identify relevant and redundant segments, and finally, we select a subset of segments to concatenate and build the final summary with video acceleration incorporated. We analyze the performance of our system through the TRECVID evaluation

    Hierarchical modelling and adaptive clustering for real-time summarization of rush videos

    Get PDF
    In this paper, we provide detailed descriptions of a proposed new algorithm for video summarization, which are also included in our submission to TRECVID'08 on BBC rush summarization. Firstly, rush videos are hierarchically modeled using the formal language technique. Secondly, shot detections are applied to introduce a new concept of V-unit for structuring videos in line with the hierarchical model, and thus junk frames within the model are effectively removed. Thirdly, adaptive clustering is employed to group shots into clusters to determine retakes for redundancy removal. Finally, each most representative shot selected from every cluster is ranked according to its length and sum of activity level for summarization. Competitive results have been achieved to prove the effectiveness and efficiency of our techniques, which are fully implemented in the compressed domain. Our work does not require high-level semantics such as object detection and speech/audio analysis which provides a more flexible and general solution for this topic

    Hierarchical Video Summaries by Dendrogram Cluster Analysis

    Get PDF
    In the current video analysis scenario, effective summarization of video sequences through shot clustering facilitates the access to the content and helps in understanding the associated semantics. This paper introduces a generic scheme to produce hierarchical summaries of the video document starting from a dendrogram representation of clusters of shots. The evaluation of the cluster distortions, and the exploitation of the dependency relationships between clusters on the dendrograms, allow to obtain only a few semantically significant summaries of the whole video. Finally the user can navigate through summaries and decide which one best suites his/her needs for eventual post-processing. The effectiveness of the proposed method is demonstrated by testing it on a collection of video-data from different kinds of programmes, using and comparing different visual features on color information. Results are evaluated in terms of metrics that measure the content representational value of the summarization technique

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided

    Deep attentive video summarization with distribution consistency learning

    Get PDF
    This article studies supervised video summarization by formulating it into a sequence-to-sequence learning framework, in which the input and output are sequences of original video frames and their predicted importance scores, respectively. Two critical issues are addressed in this article: short-term contextual attention insufficiency and distribution inconsistency. The former lies in the insufficiency of capturing the short-term contextual attention information within the video sequence itself since the existing approaches focus a lot on the long-term encoder-decoder attention. The latter refers to the distributions of predicted importance score sequence and the ground-truth sequence is inconsistent, which may lead to a suboptimal solution. To better mitigate the first issue, we incorporate a self-attention mechanism in the encoder to highlight the important keyframes in a short-term context. The proposed approach alongside the encoder-decoder attention constitutes our deep attentive models for video summarization. For the second one, we propose a distribution consistency learning method by employing a simple yet effective regularization loss term, which seeks a consistent distribution for the two sequences. Our final approach is dubbed as Attentive and Distribution consistent video Summarization (ADSum). Extensive experiments on benchmark data sets demonstrate the superiority of the proposed ADSum approach against state-of-the-art approaches
    corecore