1,465 research outputs found

    Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation

    Full text link
    The control of nonlinear dynamical systems remains a major challenge for autonomous agents. Current trends in reinforcement learning (RL) focus on complex representations of dynamics and policies, which have yielded impressive results in solving a variety of hard control tasks. However, this new sophistication and extremely over-parameterized models have come with the cost of an overall reduction in our ability to interpret the resulting policies. In this paper, we take inspiration from the control community and apply the principles of hybrid switching systems in order to break down complex dynamics into simpler components. We exploit the rich representational power of probabilistic graphical models and derive an expectation-maximization (EM) algorithm for learning a sequence model to capture the temporal structure of the data and automatically decompose nonlinear dynamics into stochastic switching linear dynamical systems. Moreover, we show how this framework of switching models enables extracting hierarchies of Markovian and auto-regressive locally linear controllers from nonlinear experts in an imitation learning scenario.Comment: 2nd Annual Conference on Learning for Dynamics and Contro

    Integration of process design and control: A review

    Get PDF
    There is a large variety of methods in literature for process design and control, which can be classified into two main categories. The methods in the first category have a sequential approach in which, the control system is designed, only after the details of process design are decided. However, when process design is fixed, there is little room left for improving the control performance. Recognizing the interactions between process design and control, the methods in the second category integrate some control aspects into process design. With the aim of providing an exploration map and identifying the potential areas of further contributions, this paper presents a thematic review of the methods for integration of process design and control. The evolution paths of these methods are described and the advantages and disadvantages of each method are explained. The paper concludes with suggestions for future research activities

    Model-Based Reinforcement Learning for Stochastic Hybrid Systems

    Full text link
    Optimal control of general nonlinear systems is a central challenge in automation. Enabled by powerful function approximators, data-driven approaches to control have recently successfully tackled challenging robotic applications. However, such methods often obscure the structure of dynamics and control behind black-box over-parameterized representations, thus limiting our ability to understand closed-loop behavior. This paper adopts a hybrid-system view of nonlinear modeling and control that lends an explicit hierarchical structure to the problem and breaks down complex dynamics into simpler localized units. We consider a sequence modeling paradigm that captures the temporal structure of the data and derive an expectation-maximization (EM) algorithm that automatically decomposes nonlinear dynamics into stochastic piecewise affine dynamical systems with nonlinear boundaries. Furthermore, we show that these time-series models naturally admit a closed-loop extension that we use to extract local polynomial feedback controllers from nonlinear experts via behavioral cloning. Finally, we introduce a novel hybrid relative entropy policy search (Hb-REPS) technique that incorporates the hierarchical nature of hybrid systems and optimizes a set of time-invariant local feedback controllers derived from a local polynomial approximation of a global state-value function

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC

    Modelling, Design, Operability and Analysis of Reaction-Separation Systems

    Get PDF

    Plantwide Control and Simulation of Sulfur-Iodine Thermochemical Cycle Process for Hydrogen Production

    Get PDF
    A PWC structure has developed for an industrial scale SITC plant. Based on the performance evaluation, it has been shown that the SITC plant developed via the proposed modified SOC structure can produce satisfactory performance – smooth and reliable operation. The SITC plant is capable of achieving a thermal efficiency of 69%, which is the highest attainable value so far. It is worth noting that the proposed SITC design is viable on the grounds of economic and controllability

    Advanced and novel modeling techniques for simulation, optimization and monitoring chemical engineering tasks with refinery and petrochemical unit applications

    Get PDF
    Engineers predict, optimize, and monitor processes to improve safety and profitability. Models automate these tasks and determine precise solutions. This research studies and applies advanced and novel modeling techniques to automate and aid engineering decision-making. Advancements in computational ability have improved modeling software’s ability to mimic industrial problems. Simulations are increasingly used to explore new operating regimes and design new processes. In this work, we present a methodology for creating structured mathematical models, useful tips to simplify models, and a novel repair method to improve convergence by populating quality initial conditions for the simulation’s solver. A crude oil refinery application is presented including simulation, simplification tips, and the repair strategy implementation. A crude oil scheduling problem is also presented which can be integrated with production unit models. Recently, stochastic global optimization (SGO) has shown to have success of finding global optima to complex nonlinear processes. When performing SGO on simulations, model convergence can become an issue. The computational load can be decreased by 1) simplifying the model and 2) finding a synergy between the model solver repair strategy and optimization routine by using the initial conditions formulated as points to perturb the neighborhood being searched. Here, a simplifying technique to merging the crude oil scheduling problem and the vertically integrated online refinery production optimization is demonstrated. To optimize the refinery production a stochastic global optimization technique is employed. Process monitoring has been vastly enhanced through a data-driven modeling technique Principle Component Analysis. As opposed to first-principle models, which make assumptions about the structure of the model describing the process, data-driven techniques make no assumptions about the underlying relationships. Data-driven techniques search for a projection that displays data into a space easier to analyze. Feature extraction techniques, commonly dimensionality reduction techniques, have been explored fervidly to better capture nonlinear relationships. These techniques can extend data-driven modeling’s process-monitoring use to nonlinear processes. Here, we employ a novel nonlinear process-monitoring scheme, which utilizes Self-Organizing Maps. The novel techniques and implementation methodology are applied and implemented to a publically studied Tennessee Eastman Process and an industrial polymerization unit

    plant-wide control of industrial processes using rigorous simulation and heuristics

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Statistical Machine Learning for Modeling and Control of Stochastic Structured Systems

    Get PDF
    Machine learning and its various applications have driven innovation in robotics, synthetic perception, and data analytics. The last decade especially has experienced an explosion in interest in the research and development of artificial intelligence with successful adoption and deployment in some domains. A significant force behind these advances has been an abundance of data and the evolution of simple computational models and tools with a capacity to scale up to massive learning automata. Monolithic neural networks with billions of parameters that rely on automatic differentiation are a prime example of the significant role efficient computation has had on supercharging the ability of well-established representations to extract intelligent patterns from unstructured data. Nonetheless, despite the strides taken in the digital domains of vision and natural language processing, applications of optimal control and robotics significantly trail behind and have not been able to capitalize as much on the latest trends of machine learning. This discrepancy can be explained by the limited transferability of learning concepts that rely on full differentiability to the heavily structured physical and human interaction environments, not to mention the substantial cost of data generation on real physical systems. Therefore, these factors severely limit the application scope of loosely-structured over-parameterized data-crunching machines in the mechanical realm of robot learning and control. This thesis investigates modeling paradigms of hierarchical and switching systems to tackle some of the previously highlighted issues. This research direction is motivated by insights into universal function approximation via local cooperating units and the promise of inherently regularized representations through explicit structural design. Moreover, we explore ideas from robust optimization that address model mismatch issues in statistical models and outline how related methods may be used to improve the tractability of state filtering in stochastic hybrid systems. In Chapter 2, we consider hierarchical modeling for general regression problems. The presented approach is a generative probabilistic interpretation of local regression techniques that approximate nonlinear functions through a set of local linear or polynomial units. The number of available units is crucial in such models, as it directly balances representational power with the parametric complexity. This ambiguity is addressed by using principles from Bayesian nonparametrics to formulate flexible models that adapt their complexity to the data and can potentially encompass an infinite number of components. To learn these representations, we present two efficient variational inference techniques that scale well with data and highlight the advantages of hierarchical infinite local regression models, such as dealing with non-smooth functions, mitigating catastrophic forgetting, and enabling parameter sharing and fast predictions. Finally, we validate this approach on a set of large inverse dynamics datasets and test the learned models in real-world control scenarios. Chapter 3 addresses discrete-continuous hybrid modeling and control for stochastic dynamical systems, which implies dealing with time-series data. In this scenario, we develop an automatic system identification technique that decomposes nonlinear systems into hybrid automata and leverages the resulting structure to learn switching feedback control via hierarchical reinforcement learning. In the process, we rely on an augmented closed-loop hidden Markov model architecture that captures time correlations over long horizons and provides a principled Bayesian inference framework for learning hybrid representations and filtering the hidden discrete states to apply control accordingly. Finally, we embed this structure explicitly into a novel hybrid relative entropy policy search algorithm that optimizes a set of local polynomial feedback controllers and value functions. We validate the overall switching-system perspective by benchmarking the open-loop predictive performance against popular black-box representations. We also provide qualitative empirical results for hybrid reinforcement learning on common nonlinear control tasks. In Chapter 4, we attend to a general and fundamental problem in learning for control, namely robustness in data-driven stochastic optimization. The question of sensitivity has a strong priority, given the rising popularity of embedding statistical models into stochastic control frameworks. However, data from dynamical, especially mechanical, systems is often scarce due to a high extraction cost and limited coverage of the state-action space. The result is usually poor models with narrow validity and brittle control laws, particularly in an ill-posed over-parameterized learning example. We propose to robustify stochastic control by finding the worst-case distribution over the dynamics and optimizing a corresponding robust policy that minimizes the probability of catastrophic failures. We achieve this goal by formulating a two-stage iterative minimax optimization problem that finds the most pessimistic adversary in a trust region around a nominal model and uses it to optimize a robust optimal controller. We test this approach on a set of linear and nonlinear stochastic systems and supply empirical evidence of its practicality. Finally, we provide an outlook on how similar multi-stage distributional optimization techniques can be applied in approximate filtering of stochastic switching systems in order to tackle the issue of exponential explosion in state mixture components. In summation, the individual contributions of this thesis are a collection of interconnected principles for structured and robust learning for control. Although many challenges remain ahead, this research lays a foundation for reflecting on future structured learning questions that strive to combine optimal control and statistical machine learning perspectives for the automatic decomposition and optimization of hierarchical models
    corecore