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SUMMARY 

 

Due to the globalization of chemical process industry in the late 20th century, 

the need for efficient and effective processes is now more than ever. In order to 

stand out in the competitive marketplace, every industry is becoming increasingly 

aware of the fact that the processes have to be more economically attractive, 

environmentally benign and customer-centric.  Hence, one of the primary challenges 

of the process systems engineer in the modern world is to investigate and implement 

the methods to design sustainable processes and control systems to achieve the 

best possible returns. In order to improve the economic feasibility, processes need to 

be tightly integrated (with material and energy recycles) which would typically 

complicate the analysis and pose unforeseen safety and operational difficulties. In 

addition, constantly changing market demands, ever-tightening environmental 

policies and safety regulations make it even more difficult to control and operate the 

plant. Given this scenario, how does a present-day engineer address it? Do we have 

systematic and reliable methods and tools to make use of? The present work is 

aimed at providing effective solutions to these issues.  

 

First, a comprehensive review of various plant-wide control (PWC) 

methodologies in the literature is carried out, and a systematic classification of PWC 

methodology is presented. Then, a methodically-driven integrated framework, that 

capitalizes the strengths of both the heuristics and rigorous simulation tools, is 

proposed. The basic idea here is to decompose the complex task of PWC system 

design into a number of relatively simple steps, and to make use of both the 

simulation tools and heuristics at every stage to arrive at the final solution. The main 

function of the rigorous nonlinear simulation is to improve the accuracy of decision by 

reducing the over-reliance on heuristics and to improve the process insight through 
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virtual hands-on experience; while the main function of heuristics is to simplify the 

analysis of the seemingly complex task by quickly screening the alternatives. 

Secondly, a simple and effective procedure for control degrees of freedom is 

proposed and then successfully applied to highly integrated processes.  

 

Thirdly, a new metric called ‘Dynamic Disturbance Sensitivity (DDS)’ is 

proposed to gauge the dynamic performance of alternate control structures and 

process designs using rigorous nonlinear dynamic simulation. The idea is to use the 

inherent correlation between process dynamic performance and component 

accumulation as a measure. More specifically, DDS is defined as the sum of absolute 

accumulation of all the components and is successfully used to show the superiority 

of the proposed PWC method by comparing the dynamic performance of the 

resulting control systems with that of existing ones in the literature. 

 

Finally, the feasibility of a recent and improved process design procedure is 

critically analyzed. A modified sequential approach is then proposed by combining 

the proposed PWC methodology with the improved process design methodology to 

study the interaction between design and control from plant-wide perspective. It is 

successfully applied to generate and evaluate several process designs and their 

control systems for HDA process.  

 

The studies and findings outlined above should facilitate realistic PWC 

system design as well as increased use of rigorous dynamic simulations in both the 

academia and industry.  
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                                                                                                     Chapter 1 Introduction  

CHAPTER 1 

INTRODUCTION 

 

1.1 Plant-Wide Control (PWC) 

 

In order to keep pace with the growing global competition and customer 

demands, chemical processes need to deliver products with consistent quality but at 

lower cost. Besides, due to the stringent environmental regulations and safety 

measures, healthier processes that are more environmentally-benign and operator-

friendly are required. More often than not, all these aforementioned objectives call for 

effective and efficient control systems. On the other hand, cost-effective process 

design usually results in a complex and highly integrated process with 

material/energy recycles; safety issues then become more prevalent and maintaining 

consistent product quality also becomes more difficult. Likewise, inventory levels tend 

to be kept low, especially when expensive/dangerous chemicals are involved, to 

improve plant-economics and safety; but this introduces several adverse effects on 

plant operation (Luyben and Hendershot, 2004). From this discussion, it follows that 

one of the challenges of a process systems engineer is to design effective control 

systems for complex processes (Keller and Bryan, 2000), which necessitates the 

development of systematic procedures to synthesize more efficient control systems.  

 

Plant-wide control (PWC) in general refers to designing efficient control 

systems for highly integrated processes to satisfactorily achieve demands on 

production rate and product quality without violating environmental and safety 

regulations. Due to the presence of large number of unit operations and control 

loops, PWC is also referred to, though less common, as ‘large scale system control’ 

(e.g., Turkay et al. 1993; Doyle et al., 1997; Vadigepalli and Doyle, 2003) and 
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‘network control’ (e.g., Baldea et al., 2006) in the literature. Similar to process design, 

which can be done using several techniques such as evolutionary synthesis and 

superstructure optimization (Johns, 2001), PWC systems can also be designed by 

different methods. Chapter 2 discusses several of these methods. Whatsoever the 

PWC methodology, by and large, the basic control system design procedure remains 

the same and involves three main steps (Skogestad and Postlethwaite, 1996): 

1. Control Structure Design (Structural decisions)  

2. Controller Design (Parametric decisions)  

3. Implementation 

  

Control Structure Design can be subdivided into the following steps (Skogestad and 

Postlethwaite, 1996; Stephanopoulos and Ng, 2000). 

1. Identification of control objectives. 

2. Selection of controlled outputs with set points.  

3. Selection of manipulated inputs (which include not only control valves 

or flowrates to manipulate, but also flow ratios, sums or differences of 

flow rates, heat removal or addition rates etc.) 

4. Selection of measurements for control purposes.  

5. Selection of control configuration/controller structure (i.e., how to pair 

the controlled and manipulated variables in case of decentralized 

multi-loop single-input single-output, SISO control system)   

6. Selection of controller type (e.g., proportional-integral-derivative, PID 

controller) 

 

For a simple distillation column, there can theoretically be more than 120 

control configurations. When it comes to an entire plant, what makes PWC system 

design even more complex is the possibility of multitude of alternative control 

structures. For instance, for a medium-scale industrial process such as the 
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Tennessee Eastman (TE) process, 4×107
 alternative control structures are possible 

(Kookos and Perkins, 2001a). The problem is compounded by another challenging 

feature of industrial processes with recycles - the cyclical propagation of the effect of 

disturbances between upstream and downstream operations irrespective of where 

the disturbance(s) originated. To complicate the matter further, recycles often 

introduce other problems spanning from increased interactions among process 

variables to increased nonlinearity (Bildea and Dimian, 2000; Kumar and Daoutidis, 

2002). In addition, at times, recycles can even lead to process instability. In short, the 

problems due to recycles not only make the PWC system design complex but also 

demand good co-ordination of control actions among various sections of the plant. 

Hence, any PWC system should take these into account and be able to nullify the ill-

effects of recycles as much as possible to improve the overall performance.  

 

1.2 Motivation and Scope of the Work 

 

It is evident from the above discussion that the contemporary chemical 

processes are becoming increasingly complex mainly due to the presence of 

recycles. Thus, this research is primarily fuelled by the increasing process complexity 

and the need for practical PWC system design methods. The work on this front has 

been relatively sparse prior to 1990s mainly due to the unavailability of powerful 

tools/techniques. However, there has been growing attention from the researchers in 

this direction over the last 15 years. In this thesis, we try to shed more light on the 

issues which have either received less attention or solved partially. For example, 

rigorous process simulation models, despite their usefulness in PWC studies, have 

not been used extensively in the past. So, one of the objectives of the present thesis 

is to effectively use rigorous simulation models (steady-state and dynamic) in order to 

extract more accurate information which in turn leads to better decisions. Such 
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simulation tools are observed to be indispensable for plant-wide studies as it is 

extremely difficult, expensive and tedious to carry-out plant-wide experiments.  

 

Due to increasing process complexity, not only PWC system design but 

process design also becomes more difficult. Hence, we have also examined the 

applicability of the conventional design procedures to the modern chemical 

processes and studied the interaction between design and control from the plant-

wide perspective. In addition, the thesis encompasses other relevant issues such as 

performance assessment of PWC systems. All these aspects, along with brief 

motivation, are discussed below. 

 

Classification of PWC Methods: There have been several approaches to 

PWC system design but very limited attention is paid towards systematically 

classifying these PWC approaches; such a classification would indeed give a quick 

overview of these methods to researchers in the PWC community. Hence, these 

methods are systematically classified and the uses of such classification are 

discussed in the Chapter 2.  

 

Integrated Framework for PWC: Luyben et al. (1999) have proposed a 9-

step heuristic procedure to design PWC systems which is lately cited in textbooks 

(e.g., Dimian, 2003; Seider et al., 2004). One of the most appealing features of this 

heuristics-based approach is to decompose the seemingly complex task into a 

number of smaller tasks. Naturally, tackling several smaller problems is less 

formidable than taking on a large problem all at once. In contrast to the traditional 

horizontal decomposition (based on process units), this approach hierarchically 

decomposes the problem based on the control and operational objectives while 

ranking the most important one at the top and the least important one towards the 

end.  

 4
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On the flip-side, due to the ever increasing complexity of chemical processes, 

any heuristics-based method is not self-sufficient, and over-reliance on heuristics is 

not advisable as the PWC decisions can, at times, be counter-intuitive or 

unconventional. For example, even in the case of a simple distillation column, 

unconventional control strategies, such as the use of feed temperature to respond to 

variations in feed compositions (e.g., Henry and Mujtaba, 1999), are possible. In 

addition, the ineffective usage of any heuristics-based approach by novice 

engineer(s), whose know-how is usually not adequate, may consequently result in 

inefficient control systems. Furthermore, heuristics cannot always be generalized and 

thus there is some degree of dissonance among researchers over the heuristics. For 

example, one of the guidelines in this heuristic-based approach proposed by Luyben 

et al. (1999) advocates to fix a flow in the recycle loop to avoid snowball effect. 

However, Larsson et al. (2003) claimed that this rule has a limited theoretical basis 

and cannot be generalized. Similarly, Larsson (2000) showed that this rule has bad 

self-optimizing properties and should not be applied for some processes.   

 

Nonetheless, one of the captivating features of any heuristics-based method 

is that, they can strikingly simplify the complexity of the problem if used properly, 

which is the main reason for their wide-spread popularity. Hence, to round-out the 

only-heuristics-based methods, an integrated approach that pulls together the 

powers of rigorous simulation tools and heuristics is proposed in this study. The 

current simulation tools offer virtual hands-on experience and enhance process 

understanding. However, they cannot efficiently be used, especially for complex 

applications such as PWC, unless the user is conversant with them. So, one of the 

interesting advantages of this integrated approach is that the simulation tools can 

more effectively be used for plant-wide dynamic studies. Thus, both the heuristics 

and simulation tools get benefited by mutually sharing the strong traits of each 
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through the integrated framework. Because of the importance and need to integrate 

heuristics with simulation tools, some simulation packages, such as BATCHES, are 

now coming up with open architectures wherein the user can add specialized 

heuristics into the simulator database (Watson et al., 2000). Due to the difficulty in 

obtaining rigorous models based on first principles, they have not extensively been 

used for PWC studies in the past. However, commercial process simulators like 

HYSYS and Aspen are now available, which can quickly develop first principles 

models with reasonable accuracy thus making the present study feasible. The 

present study used them extensively while designing the control system, whereas 

these tools have previously been used only to validate the resulting control system 

(but not to design the control system itself). As will be discussed in the later chapters, 

by making use of these tools in the early stages, one can design superior control 

systems.  

 

In short, the scope here is to synthesize a generic procedure which can be 

used to develop an efficient plant-wide decentralized multi-loop control system, 

based on proportional-integral-derivative (PID) controllers, for a given process. 

Though advanced control technology has recently been witnessing rapid progress, 

decentralized control using PID controllers has been, and continues to be, the 

workhorse of the industrial control systems due to multiple reasons (Garelli et al., 

2006): 1) simplicity in design and tuning, 2) ease of implementation, 3) more fault-

tolerant, and 4) maintenance with less cost. Even for a model-based control system, 

PID control is often necessary at the base-level (Blevins et al., 2003) Thus, the 

success of model-based control depends on, up to certain extent, base-level PID 

control structure performance. Not getting the base-level control ‘right’ can cripple the 

overall control system. Furthermore, MPC is usually limited to one or a few units but 

not to the entire plant. This issue is discussed in detail in Chapter 7. In this regard, 
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the present study, i.e., designing efficient base-level PID-based control structure, is 

still important even in the wake of advanced control technology. 

 

Control Degrees of Freedom (CDOF) Procedure: CDOF is one of the 

foremost steps involved in any of the control system design as it tells the designer 

how many manipulated variables he/she has in order to control the process by 

regulating important process variables at their desired set-points. A new procedure to 

compute CDOF just based on basic qualitative knowledge of units in the process is 

proposed. The traditional, and also often tedious, analysis (i.e., to count all the 

equations and variables involved in the model) is not needed. Especially, when using 

process simulators for dynamic studies, it is a must to know the CDOF as it is not 

possible to control the process without placing the control valves. If the CDOF is not 

known, the designer might place less number of valves (which leads to an 

uncontrollable process) or more number of valves than required (e.g., one valve on 

each stream, which is not a good design practice as it leads to economically-less 

attractive process as additional valves incur more pressure drops). The feasibility of 

the proposed procedure is then demonstrated by successfully applying it to several 

processes whose complexity spans from low to very high.   

 

Performance Assessment of PWC Systems: Due to the complexity of non-

linear models and unavailability of non-linear model-based performance metrics, 

research in this field has largely been carried out using simplified/linear models and 

metrics based on them. However, the linear models are not always suitable and 

might introduce significant approximations in process dynamics, especially if the 

process is highly nonlinear. In addition, some of the earlier metrics are observed to 

be non-indicative of overall dynamic performance of the plant. Hence, a new metric is 

proposed which is applicable to both the linear and non-linear processes. This metric 

is named as ‘Dynamic Disturbance Sensitivity (DDS)’ as it characterizes the impact 
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of disturbance on the process, and is defined as the sum of the absolute 

accumulation of all the components in the process. Using DDS as the measure, it is 

shown that the proposed control system performs as well as or better than the 

existing control structures in the literature.  

 

Integrated Design and Control from Plant-Wide Perspective: Though 

integrated studies have received good attention in the recent past, these studies from 

plant-wide perspective are rather limited. The disadvantage of traditional sequential 

design and control approaches is that the design and control are carried out in two 

sequential steps, and the resulting design might be inoperable or unattractive from 

operations viewpoint. Whilst this problem can be resolved by optimization-based 

simultaneous approaches, they are often computationally intensive especially for 

large-scale problems (Zheng and Mahajanam, 1999). Hence, a modified sequential 

approach is presented by combining improved heuristics-based process design 

procedure and the proposed integrated framework for PWC.  

 

Examples, based on industrial processes, are furnished to illustrate the 

feasibility and efficacy of proposed methods/tools for PWC, CDOF, performance 

assessment, and integrated design and control. Most of these illustrations are based 

on the hydrodealkylation (HDA) of toluene to produce the important petrochemical 

intermediate - benzene, which has been a standard test-bed for process design 

studies. Incidentally, benzene is the second most important intermediate for 

producing organic-based materials, and is used in the manufacture of well over 250 

products such as ethyl benzene, cumene, cyclohexane and aniline. The HDA 

process is one of the processes to produce benzene from toluene, and also to 

produce quality naphthalene from suitable feed stocks (Liggin, 1997), thus signifying 

the industrial importance of the present study. Other ways to produce benzene from 

toluene include toluene-disproportionation (e.g., Nelson and Douglas, 1990) and 
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toluene-steam dealkylation (e.g., Umeda et al., 1980). Though the HDA process has 

been used for design (e.g., Douglas, 1988) and control studies (e.g., Luyben et al., 

1999; Qiu et al., 2003), in the present work, it has been more comprehensively 

studied. For example, several new process design alternatives using a membrane 

unit in the gas separation section are explored, and their economics and operation 

are assessed in this work. In addition, performance assessment of several PWC 

systems for the HDA process is carried out, besides developing a control system 

using the proposed framework.  

 

1.3 Organization of the Thesis 

 

 This thesis has seven chapters. All the chapters are logically collated and the 

chapters are written in such a way that each one can be read independently. 

Following this chapter, Chapter 2 presents review of recycle dynamics and control, 

PWC methods and their systematic classification followed by importance of rigorous 

dynamic simulation tools. The integrated framework of simulation and heuristics, and 

its application are discussed in Chapter 3. A new procedure for CDOF and several 

applications are given in Chapter 4. The proposed dynamic performance measure 

(i.e., DDS) is discussed and then successfully used to evaluate the performance of 

several PWC systems in Chapter 5. Modified sequential approach for integrated 

design and control is presented in Chapter 6. Finally, conclusions and 

recommendations for the future work are given in Chapter 7.    
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CHAPTER 2 

LITERATURE REVIEW AND SYSTEMATIC CLASSIFICATION 

OF PLANT-WIDE CONTROL METHODS*  

 

 Firstly, the importance of recycles in chemical processes is briefly discussed 

in this chapter. Review of recycle dynamics and control is then presented which 

eventually highlights the complexity involved in designing control systems for 

complex processes with multiple recycles. Following this, a review of several PWC 

methods proposed since early 1990s is presented. A more comprehensive collection 

of references on PWC methods is then systematically classified and tabulated, which 

would give a quick overview of existing methods and their important features. As 

discussed in the previous chapter, other relevant issues like CDOF, performance 

assessment, and integration of design and control are also studied in this thesis. 

Brief reviews on these topics are given in chapters 4, 5 and 6 respectively.  

 

2.1 Recycles in Chemical Processes  

 

Recycle streams are common in most of the chemical processes as it is not 

always possible to achieve complete (i.e., 100%) per-pass-conversion due to either 

thermodynamic limitations (e.g., in case of reversible reactions) or economic reasons 

(e.g., to improve the selectivity in case of complex reaction networks such as 

competing parallel reactions). With the increasing use of recycles, process 

complexity increases in terms of interaction among process variables, for example. 

Thus, though recycles are desirable from economics viewpoint, they are notorious for 

their ill-effects during control and operation of the plant. In the past, surge tanks were 

                                                 
* A preliminary version of this chapter was presented at the AIChE Annual Meeting, San 
Fransisco, USA, November 2003.  
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used to isolate the units and thereby reducing the interaction. However, surge 

tankage increases capital and operating costs due to additional inventory. Besides, at 

times, it is not advisable to keep the additional inventory for safety and environmental 

reasons, especially if hazardous chemicals are involved. Thus, there exists ample 

evidence to show that the increased interaction among various sections of the plant 

has become inevitable thereby entailing the need to study the dynamics and control 

of processes with recycles.  

  

2.1.1 Recycle Dynamics and Control  

 

 Gilliland et al. (1964) were among the first to study the impact of recycles on 

dynamics, and they observed that recycles increase time constants of the process. 

Subsequently, Denn and Lavie (1982) showed that recycles increase the steady-

state gain (i.e., increased sensitivity to disturbances) and the dominant plant time 

constant; another interesting observation is that the process exhibits increased 

sensitivity to low frequency disturbances. Kapoor et al. (1986) later observed that 

recycle severely affects the time constants of a high purity distillation column. In the 

following year, Papadourakis et al. (1987) demonstrated how recycle can affect 

Relative Gain Array (RGA), and showed that the RGA calculated for an individual unit 

can differ significantly from the actual RGA when the unit exists as a member of a 

complete plant.  

 

Later, Luyben (1994) observed the snowball effect (i.e., small change in feed 

stream results in large changes in recycle streams) which is a typical characteristic of 

most of the processes with recycles. Morud and Skogestad (1994) noted that 

recycles may also cause instability or nonlinear behavior such as oscillatory (i.e., limit 

cycles) or even chaotic behavior. Morud and Skogestad (1996) observed that 

recycles, due to their feedback effect, affect poles of the system and thus possibly 
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the stability; while parallel paths affect plant zeros and thus the achievable 

performance under feedback control. They also discussed less common, yet 

interesting, negative feedback effects of recycles. Mizsey and Kalmar (1996) showed 

that the recycle loop gain strongly influences the behavior and controllability of the 

process, while time constant influences somewhat less strongly. Jacobsen (1997) 

showed that recycles may introduce severe overshoots and inverse responses. 

Luyben (1998) introduced the term “external instability” to describe the phenomenon 

of destabilization due to recycles though the individual units are stable. Kumar and 

Daoutidis (2002) identified that recycle processes exhibit time-scale separation in 

their dynamics, i.e., the dynamics of individual units evolve in a fast time scale where 

the interactions are weak and the dynamics of the overall system evolve in a slow 

time scale where the interactions are significant.      

 

 Due to the aforementioned complex dynamic behavior of recycle systems, 

control system design for processes with recycles becomes relatively more 

challenging. Thus, several researchers addressed this issue. Taiwo (1986) proposed 

a recycle compensator to improve the control performance of single-input and single-

output (SISO) processes, and later Taiwo and Krebs (1996) successfully extended it 

to multi-input and multi-output (MIMO) processes. In a series of papers, Scali and co-

workers (Scali and Antonelli, 1995; Scali and Ferrari, 1997 and 1999) observed that 

the recycle compensator improves the control performance by counteracting the 

negative effects of recycle. Hugo et al. (1996) and Cuellar et al. (2005) presented 

techniques to develop approximate dynamic models of recycle systems for control 

purposes. Chodavarapu and Zheng (2001) provided a set of generic heuristics to 

design controllers for recycle systems, which require only a minimal amount of 

information on the recycle dynamics. Lakshminarayanan and Takada (2001) 

developed an empirical model of the recycle system and then designed a high 

performance recycle compensator. Later, Lakshminarayanan et al. (2004), using 
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control loop performance assessment concepts, presented an index that gauges the 

severity of recycles thereby examining the need to implement (or not to implement) 

recycle compensator. Very recently, Tremblay et al. (2006) summarized the effects of 

recycles and detailed the benefits of recycle compensator.  

 

2.2 PWC of Industrial Processes 

 

Most of the studies in the previous section discuss the recycle dynamics and 

control of simple SISO systems with a single recycle. However, in reality, the plants 

contain dozens of unit operations with multiple recycles. Thus PWC is even more 

challenging. Foss (1973) posed the basic questions associated with PWC design: 

“Which variables should be controlled, which variables should be measured, which 

inputs should be manipulated, and which links should be made between them? It is a 

formidable task to sift from among these process variables those that should be 

measured and manipulated and to determine the control connections among them.” 

After around a decade, PWC was acknowledged as a creative challenge 

(Stephanopoulos, 1983). Since then, though there has been many works published 

on PWC, it still remains a challenge. For example, Stephanopoulos and Ng (2000) 

have recently stated that the synthesis of a control system for a chemical plant is an 

art; they further noted that the problem of PWC is “multi-objective” and so it is hard or 

impossible to solve it in a concise and rigorous manner.  

 

Significant research has been initiated on PWC and, as a result, many PWC 

system design methodologies have been reported since 1964. The first PWC method 

is proposed by Buckley (1964) while the latest one is by Konda et al. (2005). Buckley 

(1964) proposed a PWC procedure that consists of two levels depending on 

frequency of disturbances. First, material balance control system is designed to 
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handle vessel inventories for low-frequency disturbances. Product quality control 

system is then designed to regulate high-frequency disturbances. Konda et al. (2005) 

proposed an integrated framework consisting of heuristics and simulation tools. 

Though, PWC was initiated in 1964, PWC has been perused most actively only since 

early 90’s and several PWC methods have been proposed during the last 15 years. 

In this section, some of these methods are briefly discussed chronologically while 

grouping similar methods (e.g., those proposed by same research group and any 

follow-ups or improvements). Comprehensive collection of various PWC studies is 

tabulated in the next section.  

 

Price and Georgakis (1993) proposed a tiered framework in which control 

decisions are ranked based on their decreasing importance in order to arrive at a 

control structure that minimizes the propagation of disturbances. Later, Price et al. 

(1994), through dynamic simulation, suggested several guidelines for the throughput 

manipulator (TPM) selection and inventory control. Subsequently, this framework is 

used by Lyman and Georgakis (1995) to design a control structure for the TE 

process.  

 

Narraway and Perkins (1993), based on linear dynamic models, presented a 

method to select the economically optimal control structure, and this method is 

further modified by Kookos and Perkins (2002). In their methodology, the objective is 

to maximize profit during transients resulting from upsets for a given plant design. 

Narraway and Perkins (1994) posed a mixed integer nonlinear optimal control 

problem (MINLP) to select an economically optimal multi-loop proportional-integral 

control structure. Lately, Kookos and Perkins (2001a) presented a heuristic-based 

mixed integer nonlinear programming (MINLP) in which the objective is to minimize 

the overall interaction and sensitivity of the closed-loop system to disturbances. 
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Turkay et al. (1993) presented a procedure using integer linear programming 

(ILP) and performance criteria such as internal model control interaction measure 

(IMCIM). IMCIM can be used to estimate the extent of influence of each manipulated 

variable (MV) on all control objectives. They have applied it to synthesize a 

regulatory control system for styrene plant using steady-state simulation package 

“PROCESS.” However, they developed a control system for each individual unit 

operation separately using steady-state information and the dynamic simulation of 

the entire plant is not carried out.  

 

McAvoy and Ye (1994) presented a PWC procedure by ranking the control 

loops based on time-scales to design a base-level regulatory control system for the 

TE process. This approach involves using a combination of steady-state screening 

tools, followed by dynamic simulation of the most promising candidates. Ye et al. 

(1995) suggested an optimal averaging level control and McAvoy et al. (1996) 

advocated a nonlinear inferential parallel cascade control to the control structure that 

was developed by McAvoy and Ye (1994) to improve its performance further. 

McAvoy (1999) presented a decentralized approach, based on steady-state (gain 

matrix) models and using optimization, to generate a base control system. His 

approach splits the synthesis into three stages: controlling safety variables in stage 1, 

production variables in stage 2 and the remaining process variables in stage 3. An 

optimization problem based on mixed integer linear programming (MILP), whose 

objective function is to minimize the absolute valve movement that is needed to 

mitigate the disturbance, is solved in each stage to select manipulated variables. 

Later, Wang and McAvoy (2001) extended this approach by including the dynamic 

models in the analysis; also, objective function is modified by including the sum of 

absolute values of the measured variable responses along with the sum of absolute 

valve movements, i.e., it involves the tradeoff between manipulated variable moves 

and area under the transient response curve of process variables. Lately, Chen and 
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McAvoy (2003) developed a new ‘optimal control’ based PWC method and applied it 

to vinyl acetate process. Chen et al. (2004) later extended this method to processes 

with multiple steady-states.  Robinson et al. (2001) presented an “Optimal Control” 

based approach to design a decentralized PWC system. This approach is based on 

splitting the optimal controller gain matrix that results from an output optimal control 

problem into diagonal feedback and off-diagonal feedforward components which are 

then used to design and evaluate decentralized control systems. Based on these 

results, they observed that the pairing resulting from steady state RGA is not always 

reliable. They got a significantly different pairing whose performance is comparable 

with that of MPC. 

 

Banerjee and Arkun (1995) presented a systematic mathematical approach 

called control configuration design (CCD), to design a decentralized PWC structure. 

It is a two-tiered procedure based on time-scales. In the first tier, control structure for 

pressure, level and temperature are considered while compositions are considered in 

the second tier. They have also discussed issues like insufficient modeling 

information, complexity and poor knowledge of effective bounds on model 

uncertainties and disturbances. Major steps involved in their procedure are: 

a. Selection: choosing a subset of controlled variables and manipulated 

variables based on the necessary condition for robust stability.  

b. Partitioning: considering all the possible pairings for the subset of controlled 

variables that made it past selection and testing them for 

i. Nominal stability – the candidate configuration must be nominally stable.  

ii. Small cross feed performance degradation – the candidate configuration 

should not suffer much performance degradation as a result of 

decentralization. 

Qiu et al. (2003) later successfully applied the CCD approach to the HDA process.   
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Ricker and Lee (1995) developed a plant-wide nonlinear model predictive 

controller (NMPC) for the TE process. Later, Ricker (1996) designed a decentralized 

control strategy for the TE process by employing heuristics and compared its 

performance with NMPC. He noted that the decentralized control outperforms NMPC 

for such a complex and nonlinear process.  

 

Ng and Stephanopoulos (1996) proposed a hierarchical framework, multi-

horizon control system, in which the plant is vertically decomposed into a set of 

representations of different degrees of abstraction. This methodology consists of two 

phases based on time horizon: 

a. Phase I :  Long-horizon Analysis. 

b. Phase II:  Short-horizon Analysis. 

In each of these phases, a control strategy has to be developed to satisfy the control 

objectives according to their prioritization. Starting from the simple input-output level 

(the longest time-horizon) of representation, this step has to be repeated until we 

reach the most detailed level of representation which models the shortest time-

horizon of operation in the plant. The control objectives and the control strategy have 

to be refined in each level. Stephanopoulos and Ng (2000) suggested guidelines for 

the prioritization of the control objectives, which is one of the important steps involved 

in PWC system design. 

 

Samyudia et al. (1996) have proposed a PWC method based on 

decomposition of the plant into smaller sections and then designing the control 

system for each section. The decomposition is based on “gap metric” concept with 

the aim to minimize the interaction among different sections. Decomposing the plant 

into several sections, each one with a single unit, is shown to be inferior to 

decomposing the plant into sections consisting of one or more units. Later, a more 

generalized version of this method is proposed by Lee et al. (2000).  
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Cao et al. (1996 and 1997) and Cao and Rossister (1997) presented several 

mathematical tools that aid in the initial screening and selection of PWC structure, 

some of which are similar to the other measures like Relative Disturbance Gain 

(Stanley et al., 1985).  

a. Cao et al. (1996) presented two open-loop analysis techniques, based on 

modified singular value analysis (SVA) and optimization based approach, for 

assessing input-output controllability in the presence of control constraints. 

Cao et al. (1997) later proposed two input screening techniques for effective 

disturbance rejection in the presence of manipulated variable constraints: (1) 

Worst Case Input-Disturbance Gain (WCIDG) and, (2) Input-Disturbance Gain 

Deviation (IDGD).   

b. Cao and Rossister (1997) proposed a pre-screening technique called Single-

Input Effectiveness (SIE) for selecting manipulated variables having the 

largest effect on controlled variables, from a range of possible control inputs 

by eliminating ineffective inputs. Cao and Rossister (1998) proposed a new 

measure, the input disturbance alignment (IDA), to identify the set of 

manipulated variables from a large number of candidate inputs which can 

effectively reject localized disturbances.  

 

Luyben and co-workers (Luyben et al., 1997; Luyben et al., 1999) proposed a 

more comprehensive 9-step heuristic procedure and applied it to several industrial 

case-studies. This is a hierarchical procedure which ranks the control and operational 

objectives based on their importance. 

 

Semino and Guiliani (1997) proposed a systematic steady-state analysis 

procedure, Snowball Effect Analysis (SEA), which is able to analyze all possible 

control configurations and order them according to their ability to reject 

disturbance(s) without saturation of the manipulated variables i.e., classify them into 
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two classes based on whether a particular structure is affected or not affected by 

snowballing.  

 

Zheng et al. (1999) proposed a hierarchical procedure for synthesizing 

optimal PWC system in which alternative configurations are compared based on 

(steady-state) economics. The controllability aspects are also taken into 

consideration by introducing a cost index associated with dynamic controllability. 

 

Jorgensen and Jorgensen (2000) presented a procedure in which the control 

structure selection problem is formulated as a MILP, employing cost coefficients 

which are computed using Parseval’s theorem (Riley et al., 2002).  

 

Skogestad (2000a and 2000b) presented a procedure to design a self-

optimizing PWC system. The main idea is to identify suitable controlled variables, 

which when kept at constant set-points, lead to near-optimal operation with 

acceptable loss in the presence of disturbances. His analysis is mainly based on 

steady-state models as the economic performance is primarily determined by steady-

state considerations. However, he partly included the dynamic performance by 

considering a control error term as an additional disturbance.  The main steps that 

are involved in his procedure are degrees of freedom (DOF) analysis, definition of 

optimal operation, and evaluation of loss when the controlled variables are kept 

constant rather than optimally adjusted. An expanded version of this procedure is 

later presented by Skogestad (2004) by including the issues such as inventory and 

production rate control.  

 

Zhu et al. (2000) proposed a hybrid PWC strategy based on integrating linear 

and nonlinear MPC. This hybrid method is applicable to plants that can be 

decomposed into approximately linear subsystems and highly nonlinear subsystems 
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that interact via mass and energy flows. They proposed a simple controller 

coordination strategy that counteracts interaction effects for the case of one linear 

and one nonlinear subsystem. Later, Zhu and Henson (2002) applied this strategy to 

styrene plant. 

 

Rodriguez and Marcos (2002) developed an expert system which can 

generate a PWC structure for the TE process. This expert system has been 

programmed using CLIPS, an expert system tool developed by the Software 

Technology Branch, NASA/Lyndon B. Johnson Space Center. They applied this 

approach to some other industrial processes and got valid control structures. This 

expert system is composed of three independent modules:  

a. Module I:  Topology of the plant and information about components and 

reactions.  

b. Module II: Control Objectives. 

c. Module III: Control Heuristics. 

 

Vasbinder and Hoo (2003) have proposed a decision-based approach. A 

modified analytical hierarchical process (mAHP) is used to decompose the entire 

plant into smaller modules and then the 9-step heuristic procedure of Luyben et al. 

(1999) is used for each module to develop PWC system. Later, Vasbinder et al. 

(2004) used this decision-based approach to design PWC system for the HDA 

process.  

 

In addition to the several research articles reviewed above, lately, PWC has 

even appeared as a new topic in the revised versions of standard design and control 

text books (Bequette, 2003; Seider et al., 2004; Seborg et al., 2004); and there is a 

more advanced textbook by Luyben et al. (1999) which is almost exclusively devoted 

to PWC.  
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2.3 Systematic Classification of PWC Methods 

 

From the above section, it is evident that many different PWC system design 

methodologies, which are capable of designing PWC systems of various types 

ranging from decentralized to centralized control strategies, are available. However, 

so far, very limited attention has been paid towards the systematic classification of 

these methodologies. Most of the times, the PWC system designer may not be aware 

of all the available methodologies and their features. A systematic classification is 

desirable in order to have an overall picture of various methodologies which would in 

turn lead to better understanding and improved methodologies. Thus, various PWC 

system design studies are classified here in two ways. The first classification is 

based on the main approach in the method (approach-based classification in Table 

2.1) and the second classification is based on the controller structure adopted 

(structure-based classification in Table 2.2). Approach and structure are attributes for 

all the methodologies and thus form a good basis for classification.  

 

One recent attempt towards the classification of PWC methodologies is by 

Larsson (2000). However, classifications in Tables 2.1 and 2.2 are more 

comprehensive and up-to-date. Larsson (2000) addressed only the decentralized 

control strategies but not the centralized control strategies. Structure-based 

classification in Table 2.2 includes the centralized control strategies as well. In 

addition, many recent methodologies, which were not in the Larsson’s classification, 

have been included in Tables 2.1 and 2.2. Usually, the mathematical and 

optimization approaches are considered alike. However, keeping in view the large 

number of such methodologies and the differences in techniques employed in them, 

they are classified separately as mathematical and optimization approaches in Table 
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2.1. The mathematical approaches use process models (steady-state and/or 

dynamic) along with controllability tools like relative gain array (RGA), Niederlinski 

index (NI), singular value decomposition (SVD), condition number (CN), disturbance 

condition number (DCN), closed loop disturbance gain (CLDG), relative disturbance 

gain (RDG), performance relative gain (PRG) etc. On the other hand, optimization 

approaches use numerical methods like MILP, MINLP etc. In this regard, these two 

approaches are classified into two different classes.  

 

Classification of PWC system design methodologies is challenging as some 

of them might fit into more than one category since they adopt a few approaches 

and/or structures. Thus, the subdivisions cannot be considered to be mutually 

exclusive. For example, multi-horizon control system of Ng and Stephanopoulos 

(1996) employs a hierarchical framework in which the plant is vertically decomposed 

into a set of representations of different degrees of abstraction. Starting from the 

longest time-horizon of operation (input-output structure), they try to identify and 

prioritize the significant control objectives in that representation of the plant, and then 

a control system is designed to satisfy these objectives according to their priority in 

that level. They then move down to one level of the hierarchy to refine the model and 

correspondingly the objectives and control system in order to meet the overall plant 

objectives in that shorter time-horizon of operation. This procedure is repeated till the 

shortest time-horizon of operation is reached. Therefore, the methodology of Ng and 

Stephanopoulos (1996) can be placed in the vertical decomposition based on 

process structure or in the vertical decomposition based on control objectives in 

Table 2.2. We opted to put this methodology in the former as it places greater 

emphasis on vertical decomposition based on process structure. Nevertheless, these 

subdivisions provide convenient means to classify various PWC methodologies. 

Through these classifications, researchers and engineers can immediately identify 

the two main features of any PWC methodology at a glance. It should be noted that, 
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in addition to the references that propose PWC methods, references that merely 

apply the proposed methods are also included in these classifications; these 

applications (e.g., Lyman and Georgakis (1995); Qiu et al. (2003); Vasbinder et al. 

(2004)) demonstrate the general validity of the respective methods and also offer 

greater insight.  
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Table 2.1: Approach-Based Classification of PWC System Design 
Methodologies 

 
Approach Methodology* 

Mathematical (model oriented) 
approaches 

Banerjee and Arkun (1995), Cao et al. (1997), Cao 

and Rossister (1997 & 1998), Groenendijk et al. 

(2000), Dimian et al. (2001), Herrmann et al. (2003), 

Qiu et al. (2003) 

Heuristics (process oriented) 
approaches 

Govind and Powers (1982), Newell and Lee (1989), 

Ponton and Laing (1993), Price and Georgakis 

(1993), Price et al. (1994), Lyman and Georgakis 

(1995), Ricker (1996), Luyben et al. (1997), Luyben 

et al. (1999), Riggs (2001), Konda et al. (2005) 

Optimization (algorithmic) 
approaches 

Morari et al. (1980), Narraway and Perkins (1993 & 

1994), Ricker and Lee (1995), Kanadibhotla and 

Riggs (1995), Semino and Giuliani (1997), Zhu et al. 

(2000), Zheng et al. (1999), Heath et al. (2000), 

Kookos and Perkins (2002), Zhu and Henson (2002), 

Meadowcroft et al. (1992) 

Artificial Intelligence (e.g., 
expert systems, neural network) 
based approaches 

Rodriguez and Marcos (2002), Conradie and Aldrich 

(2001) 

 
Mixed approaches 
 

Buckley (1964), Umeda et al. (1978), Douglas 

(1988), Turkay et al. (1993), Fonyo (1994), McAvoy 

and Ye (1994), Ng and Stephanopoulos (1996), 

Samyudia et al. (1996), Lausch et al. (1998), McAvoy 

(1999), Jorgensen and Jorgensen (2000), Larsson 

(2000), Lee et al. (2000), Skogestad (2000a, 2000b 

and 2004), Kookos and Perkins (2001a), Robinson et 

al. (2001), Wang and McAvoy (2001), Castro and 

Doyle (2002 and 2004), Chen and McAvoy (2003), 

Vasbinder and Hoo (2003), Chen et al. (2004), 

Seborg et al. (2004), Vasbinder et al. (2004)  

*Methodologies in each sub-group are arranged chronologically.   
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Table 2.2: Structure-Based Classification of PWC System Design Methodologies 
Structure Basis Methodology* 

Horizontal decomposition 

based on process units 
 Umeda et al. (1978), Turkay et al. (1993) 

Decomposition based 

on process structure 

Morari et al. (1980), Ponton and Laing (1993), Ng and Stephanopoulos (1996), 

Samyudia et al. (1996), Lee et al. (2000), Vasbinder and Hoo (2003), Vasbinder 

et al. (2004) 

Decomposition based 

on control objectives 

Newell and Lee (1989), Price and Georgakis (1993), Price et al. (1994), Lyman 

and Georgakis (1995), Ricker (1996), Luyben et al. (1997), Luyben et al. (1999), 

McAvoy (1999), Riggs (2001), Wang and McAvoy (2001), Rodriguez and 

Marcos (2002), Chen and McAvoy (2003), Chen et al. (2004), Konda et al. 

(2005) 

Vertical decomposition 

based on hierarchy 

Decomposition based 

on time scales 

Buckley (1964), Fonyo (1994), McAvoy and Ye (1994), Banerjee and Arkun 

(1995), Lausch et al. (1998), Qiu et al. (2003) 

Decentralized 
(Multi-loop SISO) 
strategies 

Miscellaneous  

Govind and Powers (1982), Douglas (1988), Narraway and Perkins (1993 & 1994), Semino and Giuliani 

(1997), Cao et al. (1997), Cao and Rossister (1997 & 1998), Zheng et al. (1999), Jorgensen and 

Jorgensen (2000), Larsson (2000), Heath et al. (2000), Groenendijk et al. (2000), Skogestad (2000a, 

2000b and 2004), Dimian et al. (2001), Kookos and Perkins (2001a & 2002), Seborg et al. (2004) 

Linear model  Meadowcroft et al. (1992) 

Nonlinear model Herrmann et al. (2003), Conradie and Aldrich (2001) Centralized 
(Multivariable 
MIMO) strategies  strategies based on both 

linear and nonlinear models
Zhu et al. (2000), Zhu and Henson (2002) 

Mixed strategies Ricker and Lee (1995), Kanadibhotla and Riggs (1995), Robinson et al. (2001), Castro and Doyle (2002 and 2004) 

* Methodologies in each sub-group are arranged chronologically.
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2.4 Dynamic Modeling and Process Simulators 

 

 Control engineers have been using dynamic simulation tools over decades to 

study process control concepts and to design control systems. Dynamic models for 

some standard unit operations are given in several text books (e.g., Luyben, 1990). Most 

of the control studies in the past, however, are based on linear models and/or individual 

units. Watson et al. (2000) nicely discussed the problems associated with decisions 

based on individual unit simulations, and subsequently highlighted the need to carry out 

plant-wide simulations based on a case-study that involves retrofitting a pharmaceutical 

plant. However, as stated by Mandler (2000), though SIMULINK can efficiently handle 

small scale problems, it is too cumbersome to use SIMULINK for plant-wide simulations; 

thus, process simulators, such as SPEEDUP, are more suitable for PWC studies.  

 

 Process simulators have a wide range of applications spanning from process 

control, operation, troubleshooting and training (Sowa, 1997). For example, Feliu et al. 

(2003) have recently demonstrated how such simulators can improve product quality, 

productivity and process safety. In addition, they can also be used in startup studies 

(e.g., Fabro et al., 2005) and in process optimization (e.g., Jang et al., 2005). However, 

despite the expected benefits of these simulators, as stated by Marquardt (1991), they 

have not widely been used in the process industry due to several reasons; one of the 

main reasons being the significant effort and time needed to setup and analyze rigorous 

dynamic models. The situation is slowly changing due to the advancements in 

computing technology, object-oriented programming and numerical methods; and these 

dynamic simulation tools are evolving into a tool for everyday use by engineers. 

Consequently, several dynamic simulation tools, both in-house and commercial, are now 

available. For example, Cole and Yount (1994) demonstrated the use of in-house 
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simulation tools to develop and analyze control and safety systems for industrial 

processes. Longwell (1994) presented three projects that have resulted in millions of 

dollars of economic benefit by improving the plant operability using DuPont’s in-house 

simulator, TMODS.  

 

 Since early 90’s, several commercial dynamic process simulators (e.g., Aspen 

Dynamics, HYSYS) are available with reasonably sophisticated features. Laganier 

(1996) presented some applications using commercially available simulation packages 

including SpeedUp, HYSYS, Winsim and gPROMS, and discussed their capabilities and 

shortcomings. Since then, these simulators have been gradually improved to become 

more accurate, robust and user-friendly, and these improvements are expected to 

continue due to the continuing research effort in this direction. For example, most of the 

existing process simulators are based on differential algebraic equations (DAE). Over 

the last decade, there has been increasing attention towards integrating partial 

differential algebraic equations (PDAE) in such simulators to further the modeling 

accuracy (e.g., Oh and Pantelides, 1996; Martinson and Barton, 2000). Similarly, 

simulation tools that can support both the continuous and discrete systems are 

becoming available (e.g., Rodriguez, 2005).  

 

Several applications of HYSYS and Aspen Dynamics for control of industrial 

processes are discussed by Luyben (2002), while Seider et al. (2004) discussed how 

these simulators can be used in process design, control and optimization. Another 

notable and one of the most recent dynamic simulation packages is “ForeSee” (Tu and 

Rinard, 2006). ForeSee differs from most of the existing dynamic simulators in the way 

the equipment models are represented. Existing process simulators model the standard 

unit operations. On the other hand, ForeSee has four component models - 

 27



 
                                            Chapter 2 Literature Review and Classification of PWC Methods  

containments, core models, connectors, and coordinators – which can be combined to 

model/simulate standard unit operations. For example, instead of a distillation column 

model, ForeSee contains a model of a more fundamental component, i.e., tray, and such 

tray models can then be assembled to generate model for a distillation column. In 

addition to all the above-mentioned simulation packages, industry-specific process 

simulators are also available in order to address particular needs of different process 

industries; for example, Polymer Plus and RefSYS can be used to simulate polymer 

processes and refineries, respectively. Similarly, simulation packages, such as BATCH-

DIST (Diwekar and Madhavan, 1991), are available to simulate multi-component batch 

distillations. Lately, Barrero et al. (2003) discussed the development and testing of 

simulation models for power plants, and Chen and Adomaitis (2006) presented 

simulation models for semiconductor processes.  

 

 Despite the increasing availability of the dynamic process simulators, their usage 

in PWC research is rather limited. Out of the many PWC studies presented in the 

previous section, only a few are carried out using such rigorous simulators, and thus the 

PWC community has not fully explored the power of these simulators. Prompted by 

these observations, in this thesis, a commercial process simulator (i.e., HYSYS) is 

extensively used to model the HDA process in all the illustrations. HYSYS has many 

standard unit operations which are developed using first-principles based models. 

Though some standard units, such as rate-based distillation column, membrane and 

fluidized bed reactor, are not available in HYSYS, they can be easily modeled using 

Visual Basic. Besides, thermodynamic properties (such as vapor-liquid equilibrium) can 

be predicted using an extensive collection of traditional property packages, such as 

Peng-Robinson (PR) and Non-Random-Two-Liquid (NRTL) equations. If the database is 

not available to make use of these methods (e.g., if the binary interaction parameters are 
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not available), newer ones such as conductor-like screening models (COSMO) are now 

becoming available which can predict thermodynamic properties based on solvation 

thermodynamics and computational quantum mechanics (Mullins et al. 2006). However, 

the thermodynamic properties for the components in a conventional petrochemical 

process such as the HDA process can be predicted with reasonable accuracy using the 

PR model in HYSYS (e.g., Peng and Robinson, 1976); hence, PR model is used in the 

present study. 

 

2.5 Summary 

 

Considering the importance and complexity of recycle systems, significant 

research has been carried out on recycle dynamics since early 1980s. Following this, 

control of recycle systems has been given great deal of attention since late 1980s. 

Subsequently, the control of more complex systems (i.e., control of plants with several 

recycles - PWC) has been one of the active areas of research in the last 15 years. Due 

to the availability of a large number of PWC methods, comprehensive and systematic 

classifications are presented in this chapter from which researchers can easily identify 

the two important features (i.e., the approach used and the structure employed) of each 

method. From Table 2.2, it is evident that relatively more number of methods based on 

decentralized multi-loop SISO strategy are available when compared to the number of 

methods based on its counterpart, i.e., centralized control strategy; this is mainly due to 

the complexity involved in applying the latter to large scale processes. From Table 2.1, 

artificial intelligence (AI) based approaches for PWC are rather limited. However, such 

approaches can be expected to be available in future due to increasing applicability of AI 

techniques.  
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Despite the availability of powerful process simulators, these have not 

extensively been used by PWC community. Thus, in this thesis, a commercial process 

simulator (i.e., HYSYS) is used to explore and evaluate its potential for PWC studies. In 

addition to PWC, other relevant issues like performance assessment of PWC systems 

and interaction between design and control from plant-wide perspective are also studied 

in Chapters 5 and 6 respectively. Brief review of the literature pertaining to these topics 

is given in the respective chapters.  
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CHAPTER 3 

INTEGRATED FRAMEWORK OF SIMULATION AND 

HEURISTICS*

 

More effective and efficient PWC methodologies are becoming increasingly 

important as chemical processes are becoming more and more integrated with 

recycles for reasons of safety, environmental considerations and economics. Hence, 

in this chapter, an integrated framework of simulation and heuristics is proposed. The 

main emphasis here is on vertical integration of simulation and heuristics which 

exploits the inherent interlink between them. By adopting this framework, simulators 

can be more efficiently utilized and they also offer invaluable support to the decisions 

taken by heuristics. The proposed framework is then successfully applied to the HDA 

process. An analysis of results shows that the proposed framework builds synergies 

between the powers of both the simulation and the heuristics thereby resulting in a 

practical PWC methodology that leads to a viable control system.  

 

3.1 Introduction 

  

Plant-Wide Control: In the past, unit-based control system design 

methodology (Umeda et al., 1978) has been widely used to design control systems 

for complete plants. However, the recent stringent environmental regulations, safety 

concerns and economic considerations, demand the design engineers to make the 

chemical processes highly integrated with material and energy recycles. As 

discussed in Chapter 2, several researchers studied the effect of these recycles on 

the overall dynamics and concluded that recycles need special attention while 

                                                 
* This chapter is based on the paper - Konda, N. V. S. N. M.; Rangaiah, G. P.; Krishnaswamy, 
P. R. Plant-Wide Control of Industrial Processes: An Integrated Framework of Simulation and 
Heuristics. Ind. Eng. Chem. Res. 2005, 44, 8300-8313. 
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designing PWC systems as they change the dynamics of the plant in a way which 

may not always be apparent from the dynamics of the individual unit-operations. 

Hence, the unit-based methodology seems to be scarcely equipped to design the 

control system for such complex plants. For example, Downs (1992) reported a 

control strategy for a scrubber-distillation column with a liquid recycle which did not 

work from an overall point of view, though the control of individual unit operations 

was satisfactory. Luyben (2000a) also demonstrated how control decisions vary 

based on perception i.e., whether the unit is considered as a single unit-operation or 

an integral part of the plant. Thus, there is a need for better methodologies which can 

deal with the highly integrated processes in a more efficient way. This leads to the 

concept of PWC which demands plant-wide perspective while designing PWC 

systems.  

 

Designing control systems for highly integrated processes is challenging 

because of the large combinatorial search space. For example, Price and Georgakis 

(1993) observed 70 alternative control strategies for a simple hypothetical reactor-

separator process with a single recycle. Keeping in view of this large combinatorial 

search space, the ultimate solution may not be so intuitively obvious. So, many 

researchers have addressed PWC problem over the last two decades and came up 

with various methodologies. After a critical review of various methodologies, the 

heuristic-based methodologies are found to be easier not only to understand but also 

to implement. However, novices often face difficulties while adopting some of these 

heuristics which need experience and basic process understanding for their effective 

usage. This problem can be best addressed by using simulation tools such as 

HYSYS, which are becoming increasingly popular and can give “virtual hands-on 

experience” to novices. Moreover, heuristics cannot always be totally relied upon as 

the solution can sometimes be unconventional. In addition, heuristics can sometimes 

be contradictory and leave the designer in a dilemma (Douglas, 1985). Motivated by 
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these, we integrated simulation tools and heuristics to develop a simulation-based 

heuristic methodology which can handle the PWC problem effectively and 

realistically.  

 

Chemical Process Simulators: Although simulation tools have seen 

widespread usage in process control related applications in the past, most of these 

studies are based on steady state simulation and a few of them are based on 

dynamic simulation of individual unit operations with little emphasis on PWC (Tyreus, 

1992). It is only around early 1990s that the advent of computer technology permitted 

the development of commercial plant-wide dynamic simulators. Since then, the field 

of dynamic simulation is rapidly growing and, today, several commercial dynamic 

simulators, such as HYSYS Dynamics, which can effectively model large-scale 

processes, are available. However, even with the present day advances, using 

dynamic simulators, especially for complex applications such as PWC system 

design, is not easy. It is just not enough to know the simulators per se. It demands 

more than that along with the application of solid engineering principles and 

significant amount of time. These issues are much more pronounced especially in the 

context of PWC. So, integrating the PWC heuristics with the dynamic simulation 

capabilities, as discussed in this chapter, greatly facilitates the PWC system design 

and increases use of dynamic simulation.  

 

Some design heuristics and simulation techniques have already evolved as 

integrated tools and some of the process design studies are being carried out using 

simulators along with the aid of heuristics which proved to be very beneficial. For 

example, a designer can save time if the design heuristic: keep the operating reflux 

ratio at 1.2 times the minimum reflux ratio is known. Else, the designer would have to 

explore a larger search space to find the optimal solution. Applying this heuristic 
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certainly makes the designer’s task easier while simulating and optimizing distillation 

columns.  

 

Most of the single unit operation control studies can be done fairly easily by 

using dynamic simulation tools. But, the complexities associated with dynamic 

simulation tools precluded the application of these tools especially to PWC problems. 

Thus, rigorous nonlinear simulation was used in a few studies only to 

evaluate/validate the control systems once they are developed. However, the recent 

technological advances made the simulation technology mature enough to handle 

even the complex problems within a reasonable amount of time (Sowa, 1997). 

Moreover, Moore’s law states that the computing speed doubles every 18 months 

which in turn nurtures progress in the simulation technology. Hence, simulators are 

likely to gain widespread use throughout the process industries and in academia. 

With the promise of these improvements in the simulation technology, the PWC 

community can benefit by addressing PWC problems with the aid of the simulation 

tools.  

 

The remaining chapter is organized as follows: the next section presents an 

integrated framework of simulation and heuristics for PWC of industrial processes. 

Section 3.3 includes the details of the HDA process and its steady-state modeling 

using HYSYS. Application of the proposed methodology to the HDA process and the 

resulting control systems’ performance evaluation are presented in section 3.4. 

Finally, chapter summary is given in section 3.5.  
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3.2 Proposed Integrated Framework of Simulation and Heuristics 

 

 The objective of this section is to develop a unified PWC methodology which 

is amenable to study practical concerns in a flexible way which in turn would lead to 

the best-practical solution (control system). After a careful review of PWC 

methodologies, heuristic-based methodologies are found to be intuitively attractive 

because they are easier to understand and implement. Heuristic-based 

methodologies just need the basic understanding of the process along with some 

experience. So, we have chosen to develop a heuristic-based methodology. 

Mathematical tools such as RGA are also used, wherever necessary, to reap more 

benefits. Pioneering work in this direction is by Luyben et al. (1999) who proposed a 

9-step heuristic procedure. This procedure will be referred as Luyben’s methodology 

hereafter. While this methodology does not have any serious limitations, it does have 

some shortcomings. For example, Luyben et al. (1999) sub-divided the big task of 

designing the overall PWC system into smaller tasks. However, in each step 

(especially set production rate and material inventory steps) the decision is ad hoc, 

which would impede the usage of this methodology. As the TPM dictates the overall 

control system structure and thereby performance, the production rate must be set 

carefully. To make the situation worse, production rate is a typical kind of variable for 

which one can find many alternatives. Moreover, overall material inventory control is 

obviously a plant-wide concern as it must be a self-consistent structure (Price and 

Georgakis, 1993). Though a general discussion is given in Luyben et al. (1999) 

specific guidelines are not apparent from this discussion. Systematic guidelines at 

this stage are essential. So, we adopted the guidelines from Price and Georgakis 

(1993) to facilitate the selection of manipulators for the throughput and inventory 

regulation.  
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One of the heuristics in Luyben’s methodology is to fix a flow in the recycle 

loop to avoid snowball effect, which is popularly known as Luyben’s rule. It gives an 

impression that the flow in the recycle loop has to be controlled whenever there is a 

recycle. But this need not always necessarily be true. For example, the proposed 

integrated framework develops a viable control system (discussed in section 3.4) 

which does not require any flow control in the recycle loop. Similar observation was 

made by Bildea et al. (2000) and Dimian (2003). The former formulated a 

mathematical criterion based on which one can judge when the conventional control 

structure can perform better than the control structure developed by applying 

Luyben’s rule. Dimian (2003) presented some cases wherein the conventional control 

structure can perform better than the control structure developed by applying 

Luyben’s rule. Balasubramanian et al. (2003) showed that fixing a flow in the recycle 

loop can result in instabilities especially when there are delays which are often the 

case in reality. Moreover, snowball effect cannot really be eliminated from the 

process by fixing a flow in the recycle loop but it is only transferred from one location 

to another (Yu, 1999). So, better alternatives to avoid snowball effect rather than 

fixing flow in the recycle loop are needed.  

 

Though Luyben’s methodology (1999) yields viable control structures, some 

of them are ‘unbalanced’† control structures which are not desirable. In addition to 

this, Luyben’s methodology may yield “self-inconsistent” structures (self-consistency 

is discussed in Appendix A). Though these structures may be workable control 

strategies, extensive simulation studies by Price and Georgakis (1993) have shown 

that they are inferior to self-consistent structures in terms of performance. There are 

other issues (especially in complex integrated processes) that are not intuitive.  As 

                                                 
† If there is any disturbance affecting the process, flow rates of all streams in the process will have to vary 
according to material balances. But, fixing a flow in the recycle loop forces the control system to act on the system 
to reach a forced steady state in which one or more units need to take more rigorous action than others.  This kind 
of control structures is called unbalanced control structure (Yu, 1999).  
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these issues can be best addressed by dynamic simulation, dynamic simulation and 

heuristics are integrated to find a practical solution. In every level/stage, nonlinear 

steady-state and dynamic models of the plant are used to take the decision or to 

support the decision suggested by heuristics. A few reported studies on PWC are 

based on steady-state models. One of the major downsides of these methodologies 

is that the steady-state feasibility of the process does not guarantee the plant-wide 

controllability. In addition, steady-state analysis might not be adequate for control 

studies all the time (Skogestad and Jacobsen, 1990). So, dynamic simulation should 

be more emphasized especially in the context of PWC. 

 

The improved heuristic methodology consists of eight levels (Table 3.1). 

Various steps involved along with the role of simulation models in each step of the 

methodology are discussed below.  

 

Level 1:  

Define PWC Objectives: PWC objectives should be formulated from the operational 

requirements of the plant. These control objectives typically include product quality, 

production rate, stable operation of the plant, process and equipment constraints, 

safety concerns and environmental regulations. Many a times, there can be 

disagreement between the plant-wide objectives and unit operations objectives. For 

example, the best local control decisions (in the context of single units), may have 

long-range effects throughout the plant (Stephanopoulos and Ng, 2000). In this case, 

the plant-wide objectives should be given priority as ultimately the plant as a whole 

should operate properly. Considerable attention need to be paid while defining the 

PWC objectives as the control system decisions are dictated more by the underlying 

operating objectives than the control performance (Downs, 1992). 
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Role of Simulation Models: All the objectives can be set by process requirements. 

Coming to the objectives related to the process stability, the question at this stage is 

whether the process is operating at stable steady-state or not. This can be answered 

by the steady-state and dynamic simulation models. For example, in the case of feed 

effluent heat exchanger with a plug flow reactor, the steady-state simulation model 

with and without energy recycle can be perturbed to see whether it is converging to 

the same values in both the cases. If so, one can conclude that the process is 

operating at stable operating conditions; otherwise, the process is operating at 

unstable steady-state. Dynamic simulation models can also be used to check 

whether the process is stable or not (i.e., by checking the process variables’ 

responses are bounded or not). The dynamic stability is guaranteed later in Level 4.  

  

Determine CDOF: Luyben et al. (1999) proposed to count the number of control 

valves to find the CDOF of the process. This is true but not a practical solution at this 

stage because, many a times, it is the job of the control engineer to place the control 

valves in the process flow diagram which needs the knowledge of CDOF of the 

process. That means the CDOF is a priori information that needs to be known before 

the placement of control valves. Accordingly, control valves can be placed in 

strategic locations in the plant. Else, it may so happen that more or less control 

valves may be placed if the engineer is not familiar with the plumbing rules.  These 

kinds of problems occur more frequently if the process is highly integrated. If more 

valves are placed, the process would be less economical due to the increased power 

requirements for compressors and pumps. On the other hand, if fewer valves are 

placed, all the control objectives cannot be achieved or, at times, the process can 

even become uncontrollable.  

 

Traditionally, CDOF is obtained by subtracting the sum of number of 

equations and externally defined variables from the number of variables (Seborg et 
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al., 2004; Seider et al., 2004). This procedure is impractical for highly integrated 

plants and prone to error (Seborg et al., 2004, p. 238). Ponton (1994) proposed a 

method for CDOF by counting the number of streams and subtracting the number of 

extra phases (i.e., if there are more than one phase present in that unit). However, 

simple examples can easily be constructed where this method fails. For example, 

CDOF for a heater/cooler remains the same irrespective of the number of phases 

involved in the unit. Larrson (2000) also observed some cases wherein Ponton’s 

(1994) method fails. So, a simpler and accurate procedure to calculate the CDOF will 

be more useful; such a procedure is proposed and discussed in detail in Chapter 4. 

For the time being, it is assumed that the information about CDOF is available (e.g., 

by counting the number of valves in the process).  

 

Level 2: Unlike many works, full PWC system design problem including the 

parametric decisions (tuning parameters) is addressed here. Hence, the following 

issues are mandatory.  

 

Identify and Analyze Plant-Wide Disturbances: It is important to have a notion 

about the nature of disturbances expected along with their sources, magnitude and 

also how they propagate through the plant as they have considerable impact on the 

selection of control structure (Moore, 1992; Price and Georgakis, 1993; Marlin, 1995) 

and controller tuning. For example, Price and Georgakis (1993) observed different 

control structures performing differently for different disturbances.  

 

Role of Simulation Models: Expected disturbances can be tried out on the steady-

state simulation model to observe how the effect of the disturbances is propagating 

throughout the plant; While trying out various disturbances on the steady-state 

simulation model, one must make sure that the specifications given are appropriate. 

This analysis would be useful later while tuning the controllers. For example, 
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anticipated disturbances can have more severe effects at some sections of the plant 

and hence the controllers in these sections should be tuned more conservatively to 

make all the sections of the plant equally robust. This is one of the important 

requirements that arises from plant-wide perspective, and is confirmed from our 

extensive simulations - the most sensitive sections in the plant required relatively 

more conservative tuning for good rejection of the disturbances studied.   

 

Set Performance and Tuning Criteria: This step should be considered before any 

structural/parametric decisions as performance criteria have considerable impact on 

structural/parametric decisions. For example, Price et al. (1994) showed that control 

structure may differ with the performance criteria chosen. Setting an unanimous 

performance criterion for the overall plant control system is a challenging task as 

there can be many loops of different dynamics. For example, one would prefer quick 

settling for fast-responding loops like levels and will go for P-only controllers where 

off-set is not very important. On the other hand, one would prefer zero offset for slow-

responding loops like composition. To make the situation worse, it is not only the kind 

of loop but also the location of the loop also dictates the performance criteria. For 

example, in the case of level control, one cannot always go for averaging control; one 

will have to go for less conservative tuning if the level is in a distillation column and 

the performance criteria would also depend on the control structure selected. Control 

structure for distillation bottoms composition and reboiler level is a good example 

wherein the performance criteria change with the control structure considered; if the 

column base level is controlled by reboiler heat input and bottoms composition is 

controlled by bottoms flow, then the level control should be tightly tuned since it is 

nested inside the composition loop which otherwise would have been tuned 

conservatively (Luyben, 2002).  
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Performance criteria such as integral error can be considered but analysis 

would be much more difficult. Hence, in the preliminary stages, settling time (not the 

normalized settling time is used in the initial screening stage; more rigorous analysis 

is carried out during the final selection of control system, as will be discussed in 

chapters 5 and 6) is considered as the performance criterion (while making sure that 

all the process objectives and constraints are satisfied) for highly complicated 

processes with dozens of control loops involved. Integral error can be chosen as the 

performance criterion for more rigorous studies in later stages. Performance 

assessment of PWC systems is the subject of Chapter 5; and a measure to gauge 

the plant-wide dynamic performance based on rigorous and nonlinear simulation is 

proposed in Chapter 5. As the improved heuristic methodology is integrated with 

dynamic simulation, the controller needs to be tuned once the structural decision 

regarding that particular loop is taken.  

 

Role of Simulation Models: Simulation tools are very useful for tuning. Often, 

preliminary tuning of flow, level and pressure loops is a trivial task and can be done 

fairly easily based on standard guidelines (Luyben, 2002). But composition and 

temperature loops need careful tuning. Making use of built-in tools in dynamic 

simulators is effective; for example, auto-tuning (closed loop relay-feedback 

technique) can be used to estimate good initial controller settings. One of the 

advantages of auto-tuning is that it can also be used for open-loop unstable systems 

if there exists a stable limit cycle (Yu, 1999). 

 

Level 3: Structural decisions regarding product specifications should be taken even 

before considering the process stability which is the basic criterion of any control 

system.  

Production Rate Manipulator Selection: This involves identifying the primary 

process path (from main raw material to main product). Many primary process paths 
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may exist when there are several raw materials and products. Each primary process 

path may be considered to develop alternatives if the best one cannot be found at 

this stage. After identification of the primary process path, internal/implicit variables 

on this path are preferred as the throughput manipulators (TPMs) over 

external/explicit variables (fixed-feed or on-demand) as the former are found to be 

dynamically more effective (Price and Georgakis, 1993). The former are usually 

associated with the reactor operating conditions. Between fixed-feed or on-demand 

options, the former is preferred over the latter as it is shown to be superior in terms of 

performance (Price and Georgakis, 1993; Luyben, 1999).  

 

Role of Simulation Models: The dynamic simulation model cannot be made use of 

to take the decision about the TPM at this stage as the overall control strategy is not 

yet in place. But, as a good starting point, one can make use of steady-state 

simulation model to choose the primary process path. Some processes may have 

multiple inputs and outputs with several reactions taking place in the reactor, in which 

case this procedure will be of great use. For example, for processes involving 

dominant side reactions the most intuitive TPM (e.g., limiting reactant flow rate) may 

not be the best. After selecting the primary process path, the TPM can be selected 

along this line by using a steady-state simulation model. Obviously the one with 

maximum steady state gain will be the preliminary choice as the TPM.  

 

Product Quality Manipulator Selection: In this step, one selects the manipulated 

variable (MV) for product quality. Other composition loops, if any, will be dealt with 

after the material inventory loops (levels) are taken care of as the latter respond 

faster and so better handles need to be reserved for levels. In addition, as most of 

the levels are integrating (non-self-regulating), level loops need to be given priority 

over composition loops as stability concerns are associated with levels. Hence, other 

composition loops will be dealt in level 5 (control of unit operations). 
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Role of Simulation Models: This stage deals with product purity, which is often a 

local decision; i.e., manipulator for product quality can be found in/around the unit 

with which the product stream is associated (Luyben, 1993). Though the product 

quality is a local decision, it has to be considered before other plant-wide decisions 

(such as material inventory and component balances) because of its ultimate 

importance. The unit producing the product stream can be separately simulated for 

selecting the best manipulator for product quality. Other structural decisions that are 

taken for simulating the unit need not be the best from the overall plant point of view 

and so these decisions need not be carried forward to the next levels except the 

product quality manipulator.  

  

Level 4: 

Selection of Manipulators for More Severe Controlled Variables: Process 

constraints such as equipment and operating constraints, safety concerns and 

process stability issues will be dealt with in this stage as they have severe operability 

implications. 

 

Role of Simulation Models: Dynamic simulation model can be made use of to 

choose the best manipulators for meeting severe process constraints. Good initial 

estimates for the tuning parameters can also be obtained using in-built tools of the 

simulator such as auto tuning.  

 

Selection of Manipulators for Less Severe Controlled Variables: Levels need to 

be taken care of while ensuring that the levels in the primary process path are self-

consistent (Appendix A). Other levels that are not in the primary process path should 

be controlled in such a way that the control will direct the disturbances away from the 
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primary process path. Last, pressures (often self-regulating in nature) need to be 

controlled.  

 

Role of Simulation Models: Level loops are placed so that they will form a self-

consistent structure. Process knowledge from simulation must also be used while 

taking the decisions based on heuristics. Decision supported by simulation must be 

chosen in the case of any conflict because heuristics need not always be true. 

Finally, pressure loops can be placed with the aid of dynamic simulation models. In 

highly integrated processes, with long gas-processing lines, it is often difficult to 

decide whether to control the pressure at a particular location or not. For example, in 

the TE process, it is often adequate to control the pressure of the vapor in an entire 

section of the process by using a manipulator at a single location and allowing the 

remaining vapor inventories to float, if the pressure drops in the gas loop are small. 

Dynamic simulation model would be of great use while taking this decision.  

 

Level 5:  

Control of Unit Operations: Control of individual unit operations is considered prior 

to checking component material balances. By doing so, some of the component 

inventory loops will be implicitly taken care of in this stage thereby making the 

analysis in the next stage (checking component inventory) easier.  

 

Role of Simulation Models: At this level, all the individual unit operations can be 

simulated. This step mainly deals with the composition loops (or temperature loops) 

as all other loops (levels and pressures) have already been taken care of in the 

earlier stages. While placing the control loops on individual unit operations one must 

ensure that the plant-wide objectives are not violated (for example, one can simulate 

different disturbance scenarios with the primary units in the process to see if any of 
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the aforementioned plant-wide objectives are violated). Finally, these can be tuned 

using the built-in tools of simulators.  

 

Level 6: 

Check Component Material Balances: Component inventory control can be 

assured in the case of single-unit operations, but from plant-wide perspective, 

component inventory may not always be self-regulating as it usually involves reaction 

and separation sections with recycles. This characteristic feature urges coordination 

of various control strategies over different sections in the plant to ensure that the rate 

of accumulation of each component in the overall process is zero. In addition, 

designing the control systems for highly integrated processes is really challenging 

because of recycles. To develop efficient control systems, the designer needs to 

understand the severity of the recycles. To do so, it is proposed to compare the plant 

behavior with and without recycle loop (as illustrated in Figure 3.1) in Level 7. Hence, 

in the present step, analysis is carried out without recycle loop and effect of recycles 

is considered in the next level. This approach is essential for isolating the problems 

that may arise due to component inventory regulation and recycles, thereby making 

the overall problem more easily tractable.  

Process

Recycle

Feed Product

R1R2

Process
Feed Product

R1R2

Process

Recycle

Feed Product

R1R2

Process

Recycle
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R1R2
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R1R2

(a)      (b) 

Figure 3.1: Schematic showing (a) Process with Recycle and (b) Process 
without Recycle (obtained by removing recycle block, i.e., tearing the recycle 

loop). Streams R1 and R2 will still have base case steady-state values. 
Removal of the recycle stream (R2) is not desirable as the process will then 

have entirely different behavior‡. 
                                                 
‡ At times, the process without recycle stream (i.e., R2) may be more economical. In that case, process 
design can be modified (by removing the recycle stream) and control system can be designed. 
However, the focus in this chapter is to design the control system for a given process and process 
design modifications are not considered. Such design modifications are considered in the ‘integrated 
design and control’ study that is carried out in Chapter 6.  
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Role of Simulation Models: In simulation, flow rates of all components at various 

locations can be accessed. Using these along with reaction stoichiometry to account 

for generation and consumption of components via reactions, accumulation tables 

can be prepared to check whether the rate of accumulation is zero while the plant 

without recycle loops is in operation (i.e., while the simulation is running). If there is 

any accumulation, process topology must be analyzed carefully to ensure that some 

component inventory loops are not forgotten. In some complex processes, it is 

difficult to ensure that all the inventory loops are in place. So, one can make use of 

simulation to ensure that all the inventory loops are placed according to the process 

requirements.   

 

Level 7:  

Effects due to Integration: This step needs to be analyzed only after all the above 

issues (in the previous steps) have been taken care of. Luyben et al. (1999) 

considered this step in the earlier stages. Their reasoning is that the plant-wide 

decisions need to be given higher priority and therefore need to be satisfied in the 

earlier stages. But the hierarchy should ideally be based on how severe the 

integration effects are from a plant-wide perspective. One can argue that, if found to 

be very severe based on the steady-state analysis, this step can be done earlier and 

Luyben’s rule can be applied. However, in this case, the probability of arriving at 

unbalanced structures and self-inconsistent structures would be higher, which is not 

desirable. Besides, from our tests with simulators, it is observed that there is an 

inherent interlink between component inventory regulation and introduction of 

recycles. It would thus be easier and more appropriate to analyze them in 

consecutive steps. Hence, it is better to analyze the integration effects at the end and 

take appropriate action. There are no solid guidelines at this stage except making 

use of rigorous simulation models to design a workable control strategy. It would give 
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the control engineer flexibility to choose the better one which otherwise would have 

been eliminated by applying some heuristics. Note that Luyben’s rule is not rejected 

here but considered as one of the potential alternatives based on necessity, rather 

than as a rule.  

 

Role of Simulation Models: To understand the severity of the recycle dynamics, the 

process with and without the recycles should be simulated for anticipated 

disturbances § . Typically, the process with the recycles exhibits slower (or even 

unstable) dynamics. If not, the recycle dynamics can be concluded as not severe. In 

the case of slower or unstable dynamics, the control structure has to be altered either 

by including additional control loops or by revising the control decisions that have 

been taken in the earlier stages. Decision making at this stage is going to be 

process-specific and hence cannot be generalized. One can try out the two 

suggestions in the improved heuristic methodology (Table 3.1).  These guidelines 

need not necessarily result in a control system with satisfactory performance and 

stability requirements. In such a case, rigorous simulation can be used to 

troubleshoot the process. Needless to say, the decisions in the earlier stages need to 

be revised, if a workable control strategy cannot be generated at this stage. Finally, 

one can simulate and evaluate the performance of alternative control structures, if 

any, to find the best.  

 

Level 8:  

Enhance Control System Performance, if possible: The designer can look into 

possible modifications to further enhance the performance of the control system. For 

example, one can look into re-configuring the loops or re-structuring the control 

                                                 
§ Since there can be several recycles, this analysis can be carried out sequentially (i.e., one disturbance 
at a time) to gauge the impact of respective recycle on the overall process dynamics. Throughput 
changes (with different magnitudes) should be considered in this analysis since they are not only the 
most common type of disturbances but they also severaly affect the overall process dynamics. 
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system. One can even analyze the necessity and feasibility of implementing 

advanced control strategies.  

 

Table 3.1: Improved Heuristic Methodology 

 
Level Things that need to be dealt with 

1.1. Define PWC Objectives 1 
1.2. Determine CDOF 
2.1. Identify and Analyze Plant-Wide Disturbances  2 
2.2. Set Performance and Tuning Criteria 
Product Specifications 

3.1. Production Rate Manipulator Selection 
 Identify Primary Process Path 

 Implicit/Internal Manipulators  
 Explicit/External Manipulators  

• Fixed Feed Flow Control 
• On-Demand Control 

3 

3.2. Product Quality Manipulator Selection 

“Must-Controlled” Variables  
4.1. Selection of Manipulators for More Severe Controlled Variables 

 Process constraints (equipment and operating constraints, safety 
concerns, environmental regulations) especially those  associated 
with reactor  

4 

4.2. Selection of Manipulators for Less Severe Controlled Variables  
 Material Inventory – Levels for Liquid & Pressures for Gases 

 Levels in Primary Process Path – Make sure the control will 
be self-consistent 

 Levels in Side Chains – Make sure that the control structure 
will direct the disturbances away from the primary process 
path 

 Pressures in the process 
5 Control of Unit Operations  
6 Check Component Material Balances 

Effects Due to Integration (i.e., Due to Recycles) 7 
Identify Presence of  Snow Ball Effect and Analyze it’s Severity  

 Analyze the need to fix composition in the recycle loop to arrive at a 
balanced control structure 

 Or, is it necessary to fix a flow at a strategic position in the recycle 
loop?  

8 Enhance Control System Performance, if possible. 
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The proposed integrated framework is clearly more detailed on how to go 

about the PWC problem and can be applied to any industrial process. The framework 

is logically developed and has several new features as indicated below: 

• Heuristics-based methodology is improved with more specific and useful 

guidelines wherever necessary.  

• The sequence in Luyben’s heuristics-based methodology is altered to facilitate 

the use of rigorous nonlinear simulation models and also to make the PWC 

problem more tractable. For example, severity of the recycle dynamics is 

systematically analyzed, to take necessary corrective action, towards the end 

(i.e., in the 7th stage). 

• Several studies in the past used dynamic simulation to validate and evaluate 

alternative control system designs after they are developed. On the other hand, 

the proposed framework integrates heuristics and simulation models at each 

stage of the procedure (and not simply at the end) to achieve greater insight. This 

has several benefits.  

• The rigorous simulation models are very useful in gauging and screening 

any of the heuristics thereby resulting in more efficient control system(s).  

• The proposed framework is likely to reduce the number of alternative 

control systems (by screening un-attractive alternatives at each stage) 

that need to be evaluated at the end thereby making the overall task 

easier.  

• The integrated framework will be very useful to novices as simulation 

models offer virtual hands-on experience, while the heuristics serve as 

guidelines to design effective control systems. 

• The framework will increase applications of dynamic simulation of process 

plants, which is often not possible without a basic regulatory control 

system.  
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3.3 Overview and Simulation of the HDA Process 

 

The most widely utilized test-beds for the PWC studies are the TE plant 

(Downs, 1993) and the classical reactor-separator-recycle section. These have been 

proved to be beneficial for the PWC community to better understand the PWC 

problems. However, there is a need to study additional processes which are of 

practical importance (i.e., typical industrial processes with real components and 

many standard unit operations) and complex enough (with material and energy 

recycles) to be representative in its essential features as PWC applications. So, we 

have chosen the HDA process which is a highly integrated and nonlinear 

petrochemical process. The presence of heat integrated adiabatic plug flow reactor 

(PFR) with exothermic reactions and three multi-component, high purity distillation 

columns and high level of interaction (because of the presence of material and 

energy recycles) makes it really a challenging process for control system design. 

Some reported studies on the HDA process are by Luyben et al. (1999) and Qiu et al. 

(2003). 

 

3.3.1 HDA Process Description 

 

 In the HDA process, fresh toluene (pure) and hydrogen (H2) – i.e., 95% H2 

and 5% methane, (CH4) - are mixed with recycled toluene and H2 (Figure 3.2). This 

reactant mixture is preheated in a feed-effluent heat exchanger (FEHE) using the 

reactor effluent stream and then heated to the reaction temperature in a furnace 

before being fed to the adiabatic PFR. Two main reactions taking place inside this 

reactor are: 
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Toluene + H2 → Benzene + CH4      

 2 Benzene      ↔ Diphenyl + H2      

The reactor effluent is quenched with a portion of the recycle separator liquid to 

prevent coking, and further cooled in the FEHE and cooler before being fed to the 

flash separator. A portion of unconverted H2 and CH4 overhead vapor from the 

separator is purged (to avoid accumulation of CH4 within the process) while the 

remainder is compressed and recycled to the reactor. The liquid from the separator is 

processed in the separation section consisting of three distillation columns. The 

stabilizer column removes H2 and CH4 as the overhead product, and benzene is the 

desired product from the product column top. Finally, in the recycle column, toluene 

is separated from diphenyl, as the distillate and recycled back.  

 

3.3.2 Steady-State Simulation 

 

The success of any steady-state simulation model largely depends on the 

selection of a suitable thermodynamic package (Carlson, 1996; Horwitz and Nocera, 

1996; Benyahia, 2000). In this study, the improved Peng-Robinson (PR) equation of 

state is selected for property estimation as it is very reliable for predicting the 

properties of hydrocarbon-based components over a wide range of conditions and is 

generally recommended for oil, gas and petrochemical applications. With the use of 

default templates in HYSYS, the steady-state simulation model of the HDA process 

has been developed according to the flow-sheet topology (Figure 3.2) and the 

process information from Douglas (1988). Though Douglas (1988) considered 75% 

as the optimal conversion, recent studies by Phimister et al. (1999) showed that the 

optimal conversion is 70% and hence the base case HDA process flowsheet is 

developed based on 70% conversion. This variation is not unexpected and can be 

qualitatively explained based on the variation in the feedstock and utility prices since 

1988.  
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Figure 3.2: HDA Process Flow-Sheet to Produce Benzene from Toluene 
 

Distillation columns are modeled by rigorous tray-by-tray calculations. 

Preliminary estimates of the number of trays and feed tray location have been 

calculated using the shortcut methods. Rigorous modeling is extremely important 

especially while designing the equipment such as distillation columns which has a 

great impact on control studies. For example, Douglas (1988) assumed constant 

vapor flow rate in the stabilizer for sizing, which is satisfactory for preliminary design. 

The steady-state simulation of the stabilizer shows that there is significant variation in 

vapor flow rate from top to bottom. Hence, the assumption of constant vapor flow rate 

in the stabilizer is not valid and inappropriate for control studies.  

 

A point worth noting while building steady-state simulation models for 

complex industrial processes (with many recycles), such as the HDA process, is the 

inadequacy of the default tolerance limits of recycle blocks. It is observed that these 
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default tolerance limits fail to give reasonably accurate results. This causes 

accumulation in the process which in turn makes the initial transients longer in 

dynamic simulation as we can use the same steady-state model in dynamic mode 

also with some modifications. So, we need to pay considerable attention to the 

recycle tolerances to get reasonably accurate results. Not only the recycle tolerance 

limits, but the number of recycles and the location of recycle blocks also affect the 

computational efficiency. Thus, in general, recycles pose convergence difficulties 

while developing steady-state simulation models (e.g., Schad, 1994 and 1998). 

However, such problems can be resolved by making use of “recycle assistant”, which 

is an added feature in the newer versions of HYSYS (i.e., Aspen HYSYS 2004 or 

later versions). Recycle assistant aids the user to place the recycles in strategic 

locations in such a way that the number of recycles can be minimized, and thus the 

convergence can be achieved in less number of iterations.  

 

3.3.3 Moving from Steady-State to Dynamic Simulation 

 

HYSYS provides an integrated steady-state and dynamic simulation 

capability. In this integrated simulation environment, the dynamic model shares the 

same physical property packages and flow-sheet topology as the steady-state model. 

Thus, it is easy to switch from steady-state to dynamic mode. However, there are 

several differences in both these environments in terms of specifications and solution 

methodology. One major difference is the pressure drop in distillation columns; a 

constant value has to be specified for this in steady-state mode whereas it will be 

calculated in dynamic mode based on the given tray data. So, while moving to the 

dynamic mode, a systematic procedure of many steps, namely, plumbing, Pressure-

Flow (P-F) specifications and equipment sizing, needs to be followed, which are 

briefly discussed below (Luyben, 2002).   
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Plumbing: To take care of some of the dynamic effects introduced in the dynamic 

mode, the flow-sheet topology may have to be modified by placing the additional 

units such as pumps wherever necessary and this is called plumbing. One of the 

important steps in plumbing is placement and sizing of the control valves in the 

process. For realistic dynamic simulations, the “plumbing” in the flow-sheet should be 

appropriately done to ensure the flow of material from one unit to another.    

 

P-F specifications: In dynamic mode, we need to give additional specifications 

besides the usual steady-state specifications (for material and energy balance 

calculations). These additional specifications are known as P-F specifications. The 

numerical integration technique that is used to solve the resulting equations in 

dynamic mode is implicit Euler method with fixed step-size. Usually pressure 

specifications are preferred over flow specifications as the “pressure-driven” mode of 

simulation is more realistic, especially for the processes in which the hydraulics and 

fluid mechanics are of vital importance. However, in some cases flow specifications 

need to be given.  

 

Equipment Sizing: As the dynamics of any unit is dependent on size of the 

equipment, various units (e.g., distillation columns) need to be sized before moving to 

dynamic mode which can be done using in-built tools such as tray sizing utility.  

 

In principle, we can then switch over to dynamic mode at this stage. However, 

considering the complex nature of the highly integrated processes with several 

recycles, open-loop dynamic simulation of the entire process may not be possible 

and/or useful for analysis due to the overlapping effects of many phenomena. Thus, it 

is advisable to place at least some key loops before running any plant-wide dynamic 

simulations. For example, if there is any problem while simulating, it is difficult to 

identify whether the problem is due to improper specification(s) or inefficiency of the 

 54



                                                                                    Chapter 3 Integrated Framework  

control system. So, proper guidelines are necessary at this stage to resolve this 

problem. This is where heuristics can aid us to proceed further via a step by step 

systematic procedure. Both the steady-state and dynamic simulation models are 

made use of to integrate simulation with the proposed improved heuristic 

methodology to design the PWC system for the HDA process in the following section. 

It should be noted that all the dynamic simulations in this and also in the subsequent 

chapters are carried out without any noise.   

 

3.4 Application of Proposed Methodology to the HDA Process  

 

The dynamic simulation model of the HDA process consists of 959 nonlinear, 

highly coupled algebraic and differential equations. This part of the study would also 

reveal the capability of dynamic simulation in the context of PWC. 

 

Step 1.1: Define PWC Objectives  

1. Production Rate - 280 lb mol of benzene/hour (9.92 tonnes/hour) 

2. Product Quality - Benzene purity ≥ 99.97% 

3. Process Stability - The feed effluent heat exchanger with plug flow reactor has 

been simulated and perturbed with and without heat integration, and the results 

reveal that the process with heat integration is operating at unstable steady-

state. It has also been observed that maintaining the reactor inlet temperature 

at a constant value stabilizes the process.  

4. Process Constraints (Douglas, 1988): 

• The temperature at the reactor inlet should be around 1150 oF. This is an 

optimization decision to have better reaction rates.  

• The ratio of H2 to aromatics (i.e., benzene, toluene, and biphenyl) has to be 

at least 5 at the inlet. This is basically to provide a thermal sink to avoid 
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coking that takes place at higher temperatures. Also, excess H2 encourages 

the primary reaction and discourages the secondary reaction (Smith, 1995).  

• The temperature at the reactor outlet should not exceed 1300 oF to avoid 

coking.  

• The outlet stream from the reactor must be quenched to 1150 oF to prevent 

thermal decomposition of products and to avoid fouling in FEHE. 

 

Step 1.2: Determine CDOF   

 Available CDOF is found to be 23 (Luyben, 1999).  

 

Step 2.1: Identify and Analyze the Plant-Wide Disturbances 

The important plant-wide disturbances in the HDA process are ± 25% 

variation in toluene feed rate, - 2.5% variation in H2 feed purity and ± 5% variation in 

the set-point of flash drum level. From the steady-state simulation model, it is 

observed that 5% variation in the toluene feed flow rate produced a large variation, 

up to 20% in the flows of separation section; and, 85% variation is observed in the 

separation section flows for 25% variation in the toluene feed flow rate. This 

information will be useful while taking tuning decisions in the next step.  

 

Step 2.2: Set Performance and Tuning Criteria 

 Settling time is chosen as the performance criterion for the preliminary 

studies. The analysis in the previous step showed that small variations in the toluene 

feed flow rate produced larger variations in the flows of separation section. So, 

separation section controllers must be more conservatively tuned compared to those 

in other parts of the plant.   
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Step 3.1: Production Rate Manipulator Selection  

 From steady-state simulation, the steady-state gain of toluene to benzene is 

found to be much larger than that of H2 to benzene. So, the primary process path can 

be selected as toluene to benzene (Figure 3.2). As reactor conversion is an 

optimization decision, reactor conditions (internal TPMs) like temperature etc., cannot 

be used as the TPMs. So, the next best alternative i.e., fixed-feed flow of toluene, is 

considered as the TPM. Jorgensen and Jorgensen (2000) reported that the H2 feed 

stream is the better TPM than the toluene feed stream. Their contention is that the 

toluene as the TPM fails to account for the side reaction and increasing the H2 

concentration limits the extent of side reaction leading to better selectivity and higher 

production rate. At first sight, Jorgensen and Jorgensen’s (2000) argument seems to 

be alright. However, it fails to take into consideration the extent of reactions. From 

the steady-state simulation, it can be seen that the extent of side reaction is 

negligible when compared to that of the main reaction. In this regard, toluene would 

still be a better TPM because of its larger gain.  

 

Step 3.2: Product Quality Manipulator Selection 

 Based on RGA analysis (Svrcek et al., 2000) of the benzene column, it is 

found that both the reflux flow and the distillate flow are equally good for controlling 

the composition of benzene in the product stream. Hence, the conventional structure 

with reflux as the manipulator for product quality is selected.  

 

Step 4.1: Selection of Manipulators for More Severe Controlled Variables 

The reactor inlet temperature is controlled by furnace duty and the PFR with 

FEHE is observed to be stable in the dynamic mode. Here the decision is quite 

straightforward. But in certain cases (e.g., if we consider bypass to FEHE) dynamic 

simulation can be used to make the decision. The initial estimates for the tuning 

parameters are calculated using the auto-tuning tool in HYSYS Dynamics. The 
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second process constraint is on the H2-to-aromatics ratio at the reactor inlet. So, H2 

feed is selected to maintain the ratio of H2 to aromatics into the rector. In this case, it 

turns out to be a quite straightforward decision. It is implemented as a ratio control 

using spreadsheet available in HYSYS Dynamics. In the control strategy of Luyben et 

al. (1999), there is no explicit control of H2 to aromatics ratio. However, it is advisable 

to handle the process constraints explicitly as in our case. The H2-to-toluene ratio has 

been considered in the previous studies whereas the actual process constraint is on 

the ratio of H2 to aromatics (McKetta, 1977). This constraint is very important as there 

can be coking if the H2 to aromatics ratio is less than five and the process will not be 

economically attractive if the ratio is more than five. So, it is most advisable to have 

an explicit control over this process constraint.  

 

The third process constraint is to maintain the outlet temperature of the 

reactor within 1300 0F. From the steady-state simulation model, it can be seen that 

the reactor outlet temperature (1220.1 0F) is well below 1300 0F. So, this is an 

inactive process constraint (even in the presence of worst-case disturbance) and an 

explicit control action is not needed. The last process constraint is to quench the 

reactor effluent stream to 1150 0F. From the process knowledge, the most intuitive 

manipulator is the quench stream from the flash drum.  

 

Step 4.2: Selection of Manipulators for Less Severe Controlled Variables 

Levels in the primary process path are controlled in the direction of flow (as 

fixed feed flow is the TPM) to have self-consistent structure (Appendix A and Figure 

A.1). But there is one unavoidable exception to this; the toluene column condenser 

level should not be controlled by distillate stream as it back-propagates the 

disturbances to primary process path. But the other immediate alternative, reflux flow 

as the manipulator, is very inadequate as the reflux ratio is very small (L/D = 0.05). 

This compelled us to violate the heuristic. Levels that are in side paths are controlled 
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in such a way that the disturbances are directed away from the primary process path. 

Again, there is an exception here; according to this guideline, the toluene column 

reboiler level must be controlled by bottoms flow. Fonyo (1994) also considered 

bottoms flow as the manipulator for toluene column reboiler level which appears to 

be quite obvious. But dynamic simulations showed that the reboiler duty affects the 

reboiler level more than the bottoms flows and hence is a better MV for reboiler level 

control in the toluene column. This can be intuitively explained based on the fact that 

the reboil (boil-up) ratio is very high (~ 24) and bottoms flow rate (i.e., biphenyl) is 

very small (as the selectivity losses towards biphenyl for the base case HDA process 

are considerably low). These two examples show that the heuristics cannot always 

be relied upon. The heuristics simplify the overall task but they need to be applied 

with a good dose of engineering judgment and process-specific knowledge.  

 

Finally, operating pressures of three distillation columns, and flash drum 

pressure are controlled appropriately. One interesting issue is the decision regarding 

pressure control in the gas line. When the process, such as the HDA process, has a 

very long gas line with many unit operations, it is difficult to decide the number of 

points at which the pressure needs to be controlled and their strategic locations. In 

this case, dynamic simulation can be used. For the HDA process, dynamic simulation 

showed that controlling the pressure in the flash drum would ensure the pressure 

control in the total gas line. Reactor pressure does not require any explicit control 

action.  

 

Step 5: Control of Individual Unit Operations  

 In this step, all unit operations are analyzed and control loops are placed 

wherever necessary. Dual composition control for all the three distillation columns is 

considered as it is relatively more optimal than the single end composition control 

and also offers better control from the plant-wide perspective. For example, for the 
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recycle column as an individual unit-operation, single end composition control should 

be sufficient as the main objective is not to lose toluene from the bottom stream. 

However, from a plant-wide perspective minimizing the disturbance propagation 

through the recycle stream is also as important as minimizing the toluene loss which 

results in dual-composition control. Hence, plant-wide perception is given due 

importance and dual-composition control is chosen for the recycle column.  

 

Flash drum inlet temperature has to be controlled which can be achieved by 

the duty of the cooler before the flash. In some cases, there exists a strong 

correlation between temperature and pressure of an adiabatic flash. In these cases, 

either the temperature or the pressure can only be controlled. In the HDA case, the 

correlation is not strong and it is preferable to control both for better performance. So, 

flash temperature is also controlled.  

 

Step 6: Check Component Balances  

 All the individual unit operations in the process are simulated separately and, 

from the component inventory tables, it is observed that the inventory of all 

components in all the units is regulated. However, there is no guarantee that the 

component inventory will be regulated when all the units are put together as there 

can be incompatibility among the control actions of different controllers. Hence, all 

the units are put together according to process topology (without gas and liquid 

recycles) and component inventory is observed to be regulated.  

 

Step 7: Effects due to Integration 

So far, the analysis is carried out without gas and liquid recycles (i.e., by 

tearing both the gas and liquid recycle streams as in Figure 3.1). All the control 

decisions that have been taken so far lead to a control system which is stable even 

with both the recycles. This control system is same as the one developed by Ponton 
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and Laing (1993). Though they have qualitatively discussed the superiority of their 

control system over the control system designed by Stephanopoulos (1984), they did 

not report any simulation results to show the performance of their control system. 

Moreover, there is no additional consideration for recycles in the analysis of Ponton 

and Laing (1993). As shown in the following analysis, a better control system is 

generated by systematically analyzing the effect of recycles on overall plant 

dynamics.  

 

Effect of Gas Recycle on Overall Plant Dynamics: The closed-loop dynamic 

simulation is run with each of the expected disturbances for the HDA process with 

and without gas recycle, and the effect of gas recycle on the overall plant dynamics is 

observed to be negligible when compared to that of liquid recycle (discussed in the 

following section). Possible reasons for this are as follows: (1) gas recycle dynamics 

are usually faster than liquid recycle dynamics; (2) any variation in the gas recycle 

can easily be attenuated by the H2/aromatics ratio controller; (3) the liquid recycle 

dynamics in the HDA process (Figure 3.2), are more complex compared to the gas 

recycle dynamics because of the presence of three distillation columns with nonlinear 

dynamics. Hence, further analysis is carried out based solely on the impact of liquid 

recycle dynamics on the overall dynamics. This can further be justified based on an 

analogy from reaction engineering: the slowest of all (parallel) reactions is the rate 

limiting step and the analysis can be carried out by ignoring faster reactions. 

  

The gas recycle also contains a purge stream to avoid accumulation of CH4 in 

the process and, hence, a composition controller (CC) is needed to make the CH4 

inventory in the process self-regulating. The composition of the purge stream is 

controlled by manipulating recycle gas flow as it is the larger of the two potential 

manipulators available - gas recycle and purge flows. So, composition loop is placed 

by making use of the compressor duty as the manipulator, which in turn manipulates 
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the gas recycle flow rate. This strategy is equivalent to manipulating steam flow rate 

to control gas flow rate in the case of a steam turbine driven centrifugal compressor. 

This strategy is the most energy-efficient (Luyben, 2002) and hence implemented in 

our study. Alternatively, gas recycle stream can be manipulated by compressor 

suction throttling (or bypassing) or purge flow rate manipulation which in turn affects 

the gas recycle flow rate to control purge composition.  
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Figure 3.3: Dynamic Simulation Model of the HDA Process showing the Controllers Designed by the Proposed 
Methodology 
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Effect of Liquid Recycle on Overall Plant Dynamics:  

Problem Identification: Both the gas and liquid recycles are closed and the closed-

loop dynamic simulation is run for 5% and 25% variation in the toluene feed flow rate. 

Though the closed-loop system is stable, three main inefficient features of the control 

system in handling the disturbances are observed.   

 

1. The control system is able to settle the process at some steady-state but, as can 

be seen from Figure 3.4a, the conversion at the new steady-state (~ 80%) is 

different from the optimal conversion (~ 70%).  
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   (a)      (b) 
Figure 3.4: (a) Conversion and (b) Production Rate Transients for the Process 
(with Recycles and before Installing Conversion Controller) for 5% Variation in 

Toluene Feed Flow Rate 
 

2. Although the control system is able to attenuate the 5% load disturbance, it is 

taking too long (around 1000 minutes) to reach the new steady-state (Figure 3.4). 

Qualitative analysis to this poor performance can be given - conversion is a 

typical kind of process variable, particularly for the HDA process, which affects 

almost all other process variables because of the highly integrated nature of the 

process. So, unless the conversion settles, it is not possible for any other 

controller in the process to settle down. Hence, it is advisable to keep the 

conversion constant for better performance of the control system.  

3. For the worst-case disturbance of 25% variation in toluene feed flow rate, some 

liquid level control loops, especially those in the recycle loop, are hitting the 

equipment/valve constraints; Figure 3.5 shows actuator saturation in the control 
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loop for level in the recycle column condenser, which is not desirable. It is 

advisable to operate a valve between 10 and 80% of the valve stroke across the 

expected range of operation (Bishop et al., 2002). 

0

20

40

60

0 100 200 300 400 500
Time (Minutes)

C
on

tro
lle

d 
an

d 
M

an
ip

ul
at

ed
 V

ar
ia

bl
e

CV
MV

 

Figure 3.5: Recycle Column Condenser Level Response to 25% Increase in 
Toluene Feed Flow Rate in the Process with Recycles and before Installing 

Conversion Controller  
 

Root Cause Analysis: It is suspected that the liquid recycle is the root cause 

because everything else has been taken care of systematically in the earlier stages. 

To confirm this, the process without liquid recycle is simulated for the same 

disturbance (5% variation in the toluene feed flow rate). Now the process is able to 

handle the disturbance and quickly reaches new steady-state which is not far away 

from the optimal steady-state (unlike the process with liquid recycle). Hence, it can 

be concluded that the liquid recycle is creating additional problems which need to be 

taken care of.  

 

Identifying the Solution: Based on the analysis given in the Problem Identification 

section above, controlling the conversion (or reactor outlet toluene concentration) is 

one of the promising alternatives.  

 

Choice of manipulator for conversion controller: There can be basically three 

potential manipulators: 1) reactor inlet composition, 2) pressure and 3) temperature. 

However, there are additional constraints (both economical and operational) on inlet 

composition (i.e., ratio of H2 and aromatics) and cannot be considered as a 
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manipulator for conversion. Of the remaining two alternatives, temperature is found 

to be more dominating. Hence, reactor inlet temperature is selected as the 

manipulator (which in turn was manipulated by furnace duty).  

 

The closed loop simulation, carried out (for expected disturbances) with 

conversion controller, is found to overcome all the above-mentioned problems: (1) 

Figure 3.6a shows that the conversion has been controlled at the optimal value (~ 

70%) despite the presence of the disturbance. (2) As the conversion settles very fast 

(Figure 3.6a), other process variables also settle down quickly; Figure 3.6b shows 

that production rate just took around 200 min to reach steady-state. (3) The control 

system is able to handle the worst-case disturbance without hitting the equipment 

constraints; Figure 3.7 shows the response of the toluene column condenser level 

controller (LC). Thus, the conversion controller provides a balanced control structure 

by distributing the effect of load disturbance to different points in the plant, say, 

reaction and separation sections. Hence, it is essential to have the conversion 

controller. Except Ng and Stephanopoulos (1996) and Douglas (1981) nobody else 

has made use of conversion controller for the HDA process. However, they did not 

give any simulation results for the use of conversion controller. 
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   (a)      (b) 
Figure 3.6: (a) Conversion (b) Production Rate Transients for the Process with 

Liquid Recycle after Installing Conversion Controller for 5% Variation in the 
Toluene Feed Flow Rate  
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Figure 3.7: Recycle Column Condenser Level Response to 25% Variation in 

Toluene Feed Flow Rate for the Process with Liquid Recycle and Conversion 
Controller  

 

Justification for the introduction of conversion controller: It is observed (from 

Table 3.2) that introduction of the conversion controller does not make much 

difference when there is no liquid recycle. So, there is no need for conversion 

controller for the process without liquid recycle. However, for the process with 

recycle, the conversion controller gives superior performance (Figure 3.8). Hence, 

the conversion controller is required as introduction of liquid recycle is causing the 

control system to take longer time to regulate the component inventories because of 

the recycle dynamics. From Figure 3.8, it can be observed that the conversion 

controller suppressed the recycle effects and consequently, the control system 

performance is closer to what could have been achieved if there were no recycles. 

Thus, the conversion controller here conceptually resembles the “recycle 

compensator” used by Scali and Ferrari (1999). Further justification for the 

conversion controller can be given based on the steady-state implications. From the 

steady-state simulation model, the snowball effect is found to be more severe (85% 

variation in the recycle flow rate for 25% variation in the feed flow rate) in the case of 

constant temperature controller (TC) than that (25% variation in the recycle flow rate 

for 25% variation in the feed flow rate) in the case of constant conversion controller. 

Dynamic simulations also confirmed this observation.  
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Figure 3.8: Toluene Inventory Transient for 5% Variation in Toluene Feed Flow 
Rate.  

Series 1 - Without recycle and before installing conversion controller;  
Series 2 - With recycle and before installing conversion controller;  
and Series 3 - With recycle after installing conversion controller. 

 

Control system performance under different situations – with and without 

recycle, and with and without conversion controller, is summarized in Table 3.2, 

which indicates an interrelationship among the recycle component (toluene) 

inventory, introduction of the recycle and performance of the control system. Hence, 

it is appropriate and easier to study the ‘check component balances’ and ‘effects due 

to integration’ in consecutive steps. Also, the summary in Table 3.2 emphasizes the 

importance and usefulness of dynamic simulation in order to design efficient control 

systems.  

 
Table 3.2: Effect of Recycle on Component Inventory Regulation and Control 

System Performance 
 

Without Liquid Recycle With Liquid Recycle  

Without 

Conversion 

Controller 

With 

Conversion 

Controller 

Without 

Conversion 

Controller 

With 

Conversion 

Controller 

Conversion (Measure of 

Economic Performance) 
72% (√ ) 70% (√ ) 80% (×) 70% (√ ) 

Settling Time (Measure of 

Dynamic Performance) 
200 (√ ) 100 (√ ) 1000 (×) 200 (√ ) 

Equipment Constraints 

(Measure of Safe Operation) 
√ √ × √ 

Note: × - not desirable and √ - good/acceptable 
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3.5 Evaluation of the Control System 

 

The control system designed for the HDA process has 23 control loops 

(Figure 3.3). The complete plant with this control system but without any disturbance 

is simulated for 100 mins. The set point, process variable and controller output of all 

the control loops are reported in Table 3.3, which shows that all the process variables 

are maintained close to their set-points. In the absence of the disturbances, we 

usually expect the controller output near 50% valve opening as they are designed for 

50% opening at steady-state base case conditions. However, this is not so for some 

loops in Table 3.3 because pressures at different nodes in the dynamic mode are 

calculated by pressure-flow solver whereas they are specified in steady-state mode. 

This leads to some pressure variations within the process in the dynamic mode when 

compared to the steady-state mode. So, there is small offset from 50% in some of 

the valve openings as they depend on the neighboring pressures also. The LC in the 

flash drum (No. 1, FlashLC controller in Table 3.3) has settled at 68.71% opening 

because of liquid choking (flashing) inside the valve. 

 

Various disturbances (load and set-point variations) are now introduced, and 

the transient responses of some important process variables are given in Figures 3.9 

to 3.13 to show the effectiveness of the control system. It can be seen that the 

control system is able to attenuate the disturbances in reasonable settling time, 

which varies depending on the nature of the loop (Figures. 3.9 to 3.13).  
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Table 3.3: Values of Set Point (SP), Process Variable (PV) and Controller Output 
(OP) of all Controllers after 100 min of Simulation Time 

 
No. Controller SP Process 

Variable 

Controller 

Output 

1 Flash LC 50.00 51.87 68.71 

2 StabRebLC 50.00 50.09 50.18 

3 StabCondLC 50.00 50.81 45.96 

4 StabCondPC 9.826 9.824 51.26 

5 BenzCondLC 50.00 49.82 49.63 

6 BenzRebLC 50.00 49.88 49.76 

7 BenzCondPC 2.246 2.247 50.10 

8 TolCondLC 50.00 49.02 48.04 

9 TolRebLC 50.00 50.17 50.87 

10 TolCondPC 2.177 2.169 49.41 

11 FlashPC 31.98 31.98 49.35 

12 TolFC 290.0 290.0 51.55 

13 H2CC 5.000 5.000 51.08 

14 PurgeCC 0.6013 0.6013 52.15 

15 BiPhenylCC 0.9999 1.0000 52.89 

16 StabCC 112.2 112.2 49.75 

17 BenzCC 130.5 130.5 50.33 

18 Conversion 70.12 70.12 50.54 

19 MCC (MethaneCC) 0.9129 0.9129 49.24 

20 BCC (BenzeneCC) 0.9999 0.9999 50.39 

21 TCC (TolueneCC) 0.9999 0.9999 53.73 

22 ReacEffTC 621.1 621.1 50.70 

23 SepTC 37.78 37.78 50.00 

 

Feed Flow Rate Disturbance: At 100 min, -25% variation in the feed toluene supply 

rate is introduced as the disturbance and later removed at 500 min. In both the 

cases, the control system is able to attenuate the disturbances (Figures. 3.9 to 3.11). 

The transient in the first 100 minutes is due to switching from steady state to dynamic 

mode. 

 

 70



                                                                                    Chapter 3 Integrated Framework  

200

220

240

260

280

300

0 200 400 600 800 1000
Time (Minutes)

Be
nz

en
eP

ro
du

ct
-

M
ol

ar
Fl

ow
 (l

bm
ol

e/
hr

)

0.9996

0.9997

0.9998

0.9999

1

0 200 400 600 800 1000
Time (Minutes)

Be
nz

en
eP

ro
du

ct
Pu

rit
y 

(M
ol

eF
ra

ct
io

n)

 

(a) (b) 
Figure 3.9: (a) Production Rate (b) Product Quality Transients due to Load 

Disturbances in Toluene Feed Flow Rate 
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Figure 3.10: (a) Hydrogen to Aromatics Ratio (b) Reactor Effluent Temperature 

(after Quenching) Transients due to the Load Disturbances in Toluene Feed 
Flow Rate 
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Figure 3.11: Rate of Accumulation of Toluene (thick line) and Benzene (thin 
line) During Load Disturbances in Toluene Feed Flow Rate 

 

Feed Composition as Disturbance: Transient responses for production rate and 

product quality due to H2 feed composition change from 0.95 to 0.925 at 100 min are 

given in Figure 3.12. Other process variables also settled within reasonable times. 

The variation in production rate and quality (Figure 3.12) is not significant because 
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the ratio between H2 and aromatics is controlled at the reactor inlet. So, though the 

feed quality changes, there is not much change in the production rate and quality.  
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Figure 3.12: (a) Production Rate (b) Product Quality Variation due to Feed 

Composition Disturbance 
 

Servo Tracking: The set-point of flash level control (FlashLC controller) is changed 

from 50% to 55% at 100 min, from 55% to 45% at 150 min and from 45% to 50% at 

200 minutes. In all these cases, the controller is able to track the set-point quickly 

(Figure 3.13). The set-point change in the flash level control is an important plant-

wide disturbance as it affects all the process variables in the separation section 

which in turn affect the process variables in the reaction section. In addition to the 

good servo tracking response all other process variables are also observed to be 

maintained at the desired set-points.  
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Figure 3.13: Set-Point Tracking Performance of Flash Level Controller:  
thick line - process variable and thin line - set-point 

 

 72



                                                                                    Chapter 3 Integrated Framework  

The use of rigorous nonlinear simulation is inevitable, whatever may be the 

methodology. Some previous studies employed it for validation purposes at the end 

and some other studies have not validated the resulting control system design via 

rigorous nonlinear simulation. This may lead to unworkable control systems. For 

example, Vasbinder et al. (2004) observed that the PWC systems developed by 

Stephanopoulos (1984) and Fisher et al. (1988) are infeasible. The proposed 

framework has the unique advantage of making the simulation an integral part of the 

control system design. This takes care of validation along with the development of a 

control system, which were done sequentially in all the previous methodologies. 

 

3.6 Summary  

 

An improved heuristic methodology is proposed by addressing the limitations 

associated with the 9-step heuristic procedure of Luyben et al. (1999). For example, 

more specific and yet generic guidelines are included which will facilitate the decision 

making for the throughput and inventory control. They will also aid the novices to 

understand the potential alternatives at each stage and choose the better one based 

on the process knowledge and requirements. The improved heuristic procedure is 

integrated with simulation as the heuristics cannot always be relied for PWC 

decisions. The proposed integrated framework is successfully applied to the HDA 

process. Results show that a viable control system can be generated by the 

proposed framework which synergizes the powers of both heuristics and simulation. 

The gist of the present work is that the control system design (especially for complex 

processes) cannot be accomplished just by heuristics without the aid of rigorous 

nonlinear simulation tools. It seems like common sense but it is worth repeating, 

especially in the context of PWC as researchers have so far not given enough 

attention to process simulators.  
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As a result of the application of the proposed integrated framework to the 

HDA process, it is seen that the conversion controller improves the overall 

performance. Though conversion controller appears to be somewhat less common, it 

is not uncommon in petrochemical processes. For instance, Turkay et al. (1993) 

proposed to use conversion controllers for all the three reactors in styrene 

manufacturing process to improve the PWC system performance.  
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CHAPTER 4 

A SIMPLE AND EFFECTIVE PROCEDURE FOR CONTROL 

DEGREES OF FREEDOM*

 

The focus of this chapter is on one of the important steps in designing PWC 

systems, namely, CDOF. There appears to be no simple procedure to compute 

CDOF, the maximum number of flows that can be manipulated simultaneously, 

especially in the context of PWC of industrial processes. Hence, a simple and yet 

effective procedure to find CDOF is proposed and illustrated in this work. The key 

idea is to define 'restraining number' (i.e., the minimum number of flows that can’t be 

manipulated along with others in an unit, which is also an inherent characteristic of 

that unit) of an unit. We show that the restraining number is equal to the number of 

independent and overall material balances with no associated inventory† in that 

particular unit. The concept of restraining number is then used to find CDOF of not 

only simple units but also highly integrated processes. One of the advantages is its 

generic nature, which facilitates its automation. Moreover, the proposed procedure 

implicitly takes care of number of phases and components involved in the unit. In 

addition, the proposed procedure needs just the basic understanding of simple units 

and one does not require all the mathematical equations involved. 

 

 

 

                                                 
* This chapter is based on the paper - Konda, N. V. S. N. M.; Rangaiah, G. P.; Krishnaswamy, 
P. R. A Simple and Effective Procedure for Control Degrees of Freedom. Chem. Eng. Sci. 
2006, 61 (4), 1184-1194. 
† Inventory is used here to refer to ‘variable hold-up’ but not ‘fixed hold-up’. For example, gas 
phase (or gas-liquid phase) PFR is considered as the ‘unit with inventory’ as it contains 
‘variable hold-up’ and liquid phase PFR is considered as the ‘unit without inventory’ as it 
contains ‘fixed hold-up’.  
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4.1 Introduction  

 

CDOF is the maximum number of streams that can be manipulated 

simultaneously, and is the first and foremost thing that needs to be computed during 

control system design as it determines the feasibility of the control system. 

Traditionally, control DOF is obtained by subtracting the sum of number of equations 

and externally defined variables from the number of variables (Seborg et al., 2004; 

Seider et al., 2004). This procedure is impractical especially for highly integrated 

plants and is prone to errors considering the large number of equations and variables 

present in the industrial processes. Luyben et al. (1999) proposed to count the 

number of control valves to find CDOF of the process. This is true but not a practical 

solution at the design stage because many a times the control engineer is required to 

place the control valves in the process flow diagram which, in turn, needs a priori 

knowledge of CDOF of the process. That means the CDOF needs to be known 

before placing the control valves. Then, the control valves can be placed in strategic 

locations in the plant. Else, it may so happen that more or less number of control 

valves may be placed if the engineer is not familiar with the plumbing rules. These 

kinds of problems occur more frequently if the process is highly integrated. Ponton 

(1994) proposed a method for CDOF by counting the number of streams and 

subtracting the number of extra phases (i.e., if there are more than one phase 

present in that unit). However, simple examples can easily be constructed where this 

method fails. For example, CDOF for a heater/cooler remains the same irrespective 

of the number of phases involved in that unit. Larrson (2000) also observed some 

cases wherein Ponton’s (1994) method fails. In order to circumvent all of the 

aforementioned problems, an elegant way of computing the CDOF based on process 

flowsheet is developed and presented in this chapter.  
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The remaining chapter is organized as follows. Next section gives the 

theoretical background along with the application of the proposed procedure for 

many standard/simple units. Section 4.3 presents successful application of the 

proposed method to relatively complex units such as distillation columns. The 

proposed method is also successfully applied to several highly integrated processes 

of varying complexity in section 4.4. Finally, chapter summary is given in section 4.5. 

Application of the proposed method to additional industrial processes is given in the 

Appendix B.  

 

4.2 Proposed Procedure 

 

Design DOF has been extensively studied by several researchers in which 

the fundamental principle is the Gibb’s phase rule (Gilliland and Reed, 1942; Kwauk, 

1956; Smith, 1963). In contrast to the Gibb’s phase rule which exclusively deals with 

the intensive properties, CDOF deals with extensive variables (i.e., flows). Hence, a 

procedure for CDOF just based on the extensive variables (i.e., based on the flows 

only without needing to write all the mathematical equations involved), as presented 

in this chapter, would be useful.  

 

Whatever may be the nature of the control loop (flow, level, pressure, 

temperature or composition), ultimately the manipulated variable is going to be the 

flow rate of a process stream (including utility/energy streams as well). The question 

here is then can we manipulate all the process streams? If not, what is restricting us 

from manipulating some process streams? It is the nature of the equipment and/or 

process structure that restrains/limits the use of a particular flow as the manipulated 

variable. Mathematically,  

 

Control DOF of an unit ≤ Total number of streams associated with that unit          (4.1) 
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or 

Control DOF of an unit + X = Total number of streams associated with that unit   (4.2) 

 

where ‘X’ is the number of flows that cannot manipulated once the rest of the flows 

are selected as manipulators. We call ‘X’ the restraining number as it restrains the 

designer from using ‘X’ number of flows as manipulators. This is similar to Restricting 

Relationships introduced by Smith (1963) in the context of Design DOF. Now, 

equation 4.2 can be rewritten as follows.  

 

Control DOF of an unit + Restraining number = Total number of streams associated 

with that unit                      (4.3)                         

 

Restraining Number: It is observed that CDOF may be different for any unit based 

on the flowsheet structure, but restraining number (the number of streams that can’t 

be manipulated) for any unit remains the same irrespective of the environment it is in. 

For example, for the simple mixer with ‘n-1’ input streams (Figure 4.1), CDOF varies 

with ‘n’ whereas the restraining number remains the same irrespective of the value of 

‘n’. Hence, it can be concluded that the restraining number is the characteristic of the 

particular unit. We can find restraining number of each and every unit from the basic 

understanding of these units which is the objective of this section. This can then be 

used to calculate CDOF using equation 4.3.  

Mixer

1

2 n
n-2

n-1

Mixer

1

2 n
n-2

n-1
Figure 4.1: Mixer with (n-1) Inlet Streams and One Output Stream 
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Restraining Number of Standard Unit Operations without Inventory: The overall 

material balances restrict the total number of flows that can be manipulated 

simultaneously (i.e., once we manipulate certain number of flows, rest of the flows 

will be dictated by these balances). Component material balances can be ignored 

while computing CDOF of any unit, which simplifies the analysis to a great extent. 

This can be further justified by Pham’s (1994) observation that the number of 

components has no role to play while computing CDOF once the inlet streams are 

fully specified. For example, consider an unit with no inventory (Figure 4.2). Units like 

mixer, splitter, valve, pump and compressor fall under this category. Overall material 

balance for such an unit can be written as  

  

 F1 + F2 + ….. + Fm-1 + Fm = Fm+1 + Fm+2 + ….. + Fn-1 + Fn               (4.4)  

 

It can be seen that only ‘n-1’ flows can be fixed by the designer and the 

remaining flow will be given by equation 4.4. In terms of control, the minimum 

number of flows that the control engineer can’t manipulate (restraining number) is 1 

which is equal to the number of independent and overall material balances. In other 

words, the maximum number of flows that can be manipulated by the control 

engineer (CDOF) is ‘n-1’ which is equal to the difference between total number of 

streams and number of independent and overall material balances.  

 
 

Process with  
no Inventory 

1 
2 

m-1 
m 

m+1 

n-1 

n 

m+2 

 

Figure 4.2: Generic Input/Output Structural Representation of Units without 
Inventory 
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More generally, it is possible to have more than one independent and overall 

material balance in an unit such as heat exchangers (generic representation shown 

in Figure 4.3).  

 

)5.4(.......... 121121 ininimimimim FFFFFFFF ++++=++++ −++−  

 

where i = 1, 2, .., N, and N is the total number of overall and independent material 

balances. In this case, there exists N constraints (one for each overall material 

balance) and N flows can’t be manipulated by control engineer. Therefore, only 

 flows can be manipulated and so CDOF is , which is equal to 

the difference between total number of streams and total number of independent and 

overall material balances.  

(∑ −
=

N

i
in

1
1 ) Nn

N

i
i −∑
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From the above analysis, restraining number for units with no inventory can 

be defined as:  

 

Restraining number = Total number of Independent & Overall Material Balances (4.6) 
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Figure 4.3: Generic Input/Output Structural Representation of Units with no 

Inventory but with Multiple ‘Independent and Overall’ Material Balances 
 

Restraining Number of Standard Unit Uperations with Inventory: The presence 

of inventory offers flexibility from control point of view. For example, in the case of 

mixer with no inventory (Figure 4.1), at least one flow can’t be manipulated as it is 

dictated by overall material balance. However, in the case of a mixer with inventory 

(Figure 4.4), stream 3 can also be manipulated, say, to control level (inventory) in the 

mixer. So, in the case of units with inventory, restraining number is not only a 

function of total number of independent and overall material balances but also a 

function of number of inventories. The function depends on how the inventories are 

distributed among all the independent and overall material balances. However, 

specific relationship can be found based on the engineering judgment as discussed 

below.  

 

 

 

     

1 

3 

2 

 

  Figure 4.4: Mixer with inventory 
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In the case of units without inventory, it has been observed in the above 

analysis that the overall material balance does not allow control engineer to 

manipulate all the available process streams. However, in the case of units with 

inventory, process variables associated with inventories (for example pressure for 

vapor and level for liquid) offer additional flexibility from control point of view. If there 

exists an inventory associated with an overall material balance, in principle, it is 

possible to manipulate all the streams associated with that material balance either to 

control the extensive or intensive variables as long as we don’t try to regulate all the 

extensive variables or all the intensive variables simultaneously. Controlling all the 

extensive variables violates overall mass balance (and leads to continuous 

accumulation which is not desirable) if there is any disturbance or error in 

measurements. Similarly, for any non-reactive system with fixed inlet composition, 

according to Duhem’s theorem, specifying any two intensive variables completely 

specifies the system and so it is not possible to control all the intensive variables 

independently as they are dependant on one another.  

 

For example, it can be seen from Figure 4.4 that the presence of inventory 

allows us to manipulate all the streams associated with it to control 2 extensive 

variables (say, flow rate of streams 1 and 2) and to control level (say, using stream 3 

flow rate). Based on this, restraining number for units with inventories is given by 

 

Restraining number = Total number of independent & overall material balances with 

no associated inventory                    (4.7) 

 

Equation 4.7 reduces to equation 4.6 in case of no inventory, and is generic 

taking care of number of phases implicitly. Qualitative justification for this can be 

given: any additional phase, which in turn creates additional inventory, in the unit will 
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automatically be associated with an outlet stream. Based on the discussion given 

above, this outlet stream can also be manipulated as it is associated with an 

inventory. As an example, consider a flash separator whose restraining number is 

zero as there are zero material balances with no inventory, irrespective of whether it 

is two- or three-phase separator (i.e., all the flows can be manipulated, which is true).  

All the standard units fall under two categories: units with overall material balances 

with associated inventory or without associated inventory. Then, CDOF of an unit can 

be calculated from equation 3 which is rewritten as: 

 

Control DOF of an unit = Total number of streams associated with that unit – 

Restraining number of that unit                                                                      (4.8) 

 

Table 4.1 gives the restraining number (from equation 4.7) and CDOF (from 

equation 4.8) for several standard units. For other operations and/or situations, which 

are not covered in Table 4.1, equation 4.8 can be used to obtain the corresponding 

CDOF. In this table and subsequent figures, thick and thin lines represent energy and 

material streams respectively.  

 

The power of the proposed method can be seen when it is applied to 

relatively complex and highly integrated processes. For such a process, CDOF is 

given by 

 

Control DOF for a process = Total number of streams in that process – Sum of the 

restraining numbers for all the units in that process               (4.9) 

 

This is proved by considering a few simple and yet typical processes. 
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Table 4.1: Restraining Number and CDOF for Several Standard Units 
 

Stream/Unit 
Schematic  

Representation 

Overall Material  
Balances with 
No Associated 

Inventory 

Restraining 
Number 
(Eq. 7) 

Total 
Number 

of 
Streams 

CDOF 
(Eq. 8) 

Material/Energy 

Stream  
- 0 1 1 

Mixer 

 

F1+F2=F3 1 3 2 

Splitter 

 

F1=F2+F3 1 3 2 

1 

1 

2 

3 

2
1 

3

Valve 
 

F1=F2 1 2 1 

Pump 

 

F1=F2 1 2 1 

Compressor 

 

F1=F2 1 2 1 

Heater/Cooler, 

Furnace 

 

F1=F2 1 3 2 

Heat Exchanger, 

(  

2 4 2 Condenser 

Total/Partial)

F1=F2

F3=F4

Flooded  

C
F1=F2 1 4 3 

ondenser 
2

3 

4 

1 

1 2

2 
1 

1 2 

1 2 
3 

 

2

3 

4 

1 
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Kettle Reboiler 

 

F4=F5 1 5 4 

Vertical 

Thermosyphon 

Reboiler with 

steam on shell-

side  

0 0 4 4 

Gas Phase PFR 

(Non-adiabatic)* 
0 0 3 3 

Liquid Phase 

PFR 

(Non-adiabatic)* 

F1=F2 1 3 2 

CSTR 

(Non-adiabatic)* 
0 0 3 3 

Flash 

(Non-adiabatic)* 

 

0 0 4 4 

Tray/Packed 

Column 

cluding 

iler and 

condenser) 

4 
2 

1 5 

 2 

1 

3 

4 

 3 

A B 1 2

3 

A B 1 2

3 

 
A B

1 

3

2 

1 

3 

2 

4 

(ex

rebo

0 0 5 5 
1 

3

2

5

4

* For adiabatic units, energy stream will be absent and correspondingly both the total 
number of streams and CDOF will less by one. 
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According to equation 4.9, CDOF for the process in Figure 4.5(a) is calculated 

as 4, which is true because it can be easily seen from this figure that all the 4 flows 

can be manipulated simultaneously either to manipulate extensive or intensive 

process variables. For the process in Figure 4.5(b), CDOF using equation 4.9 is 4, 

which is true as can be seen from that figure. So, it can be concluded that the 

restraining number concept to compute CDOF is equally valid even for complex 

processes. It can be further justified based on the generic nature of the restraining 

number as it remains the same irrespective of the environment the unit is in, say, as 

a simple unit or as an integral part of a highly integrated process. Moreover, the 

proposed procedure for CDOF involves the total number of streams in the process 

which automatically accounts for the change in the number of streams with process 

structure. For example, consider direct feeding of streams 1 and 4 to the reactor 

without the mixer in Figure 4.5(b); it is obvious that CDOF is still 4 as all streams (1, 

3, 4 and 6) can be manipulated. The change in process structure is automatically 

taken care by equation 4.9. As the total number of streams is less by one (due to the 

absence of stream 2) and the total restraining number is also less by one (as the 

restraining number associated with mixer will not be there anymore), CDOF remains 

the same. 

A B F lash32

4

1

5

0

1 0

A B Flash21

4

3
0

0

A B F lash32

4

1

5

0

1 0

A B Flash21

4

3
0

0

    (a)     (b) 
Figure 4.5: Gas-Phase Reactor and Flash (both Adiabatic): (a) without Recycle 
and (b) with Recycle. Restraining Number of the Unit as per Table 4.1 is shown 

in the rectangular box near it. 
  

Procedure: To find CDOF of complex processes, number each and every stream 

(including energy and utility streams) in the process flow diagram. Place the 

restraining number of each unit (based on Table 4.1) inside/near that unit as shown 
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in Figure 4.5. CDOF of the process can now be calculated by subtracting the sum of 

the restraining numbers of all the units from the total number of streams (including 

energy and utility streams) in the entire process (equation 4.9). This procedure can 

appropriately be called as Flowsheet Representation of CDOF as it uses just the 

flowsheet information. As noted before, restraining number concept to calculate 

CDOF is applicable to any process irrespective of the number of phases and 

components in the process as long as the process is feasible. It is equally valid even 

for solids handling systems (such as cyclones, grinders, filters).  

 

The CDOF can be obtained by adapting the concept similar to the one 

proposed by Rudd and Watson (1968) in the context of Design DOF, which can be 

written as:  

 units.twobetweenctedinterconnearewhichstreamsofnumber

unitan
over handles

t independen
 ofnumber

  CDOF

units  the
 allOver  

−∑

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=           (4.10) 

The proposed procedure for CDOF has an unique advantage over this procedure. 

The number of independent handles over an unit may change with the process 

structure in the above formula. But the restraining number for an unit remains the 

same irrespective of the number of phases, inputs and outputs involved. For 

example, the number of independent handles for a mixer (splitter) may change with 

the number of inlet (outlet) streams. However, the restraining number for a mixer 

(splitter) remains the same irrespective of the number of inlet (outlet) streams. So, 

the proposed procedure is more generic and can be automated easily.  

 

The above analysis on CDOF did not include any mechanical means of 

manipulation such as the mechanical agitator in reactors which is usually driven by a 

variable speed motor to vary the reaction rate to control the required process 

variable. For example, the TE process (Downs and Vogel, 1993) has one mechanical 
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CDOF. So, CDOF should be increased by the corresponding number of mechanical 

manipulators whenever available. In addition, it should be noted that the proposed 

analysis for CDOF deals only with the process flows which can be manipulated 

(using a control valve) simultaneously. The analysis has not considered any pressure 

reduction valves which are used to set the pressure at a down-stream location. 

However, pressure reduction valves can be placed on any pipeline as per process 

requirements, even if the flow is being manipulated (because of the inherent 

relationship between valve opening and pressure drop). Hence, the CDOF obtained 

by the proposed procedure will increase by one for each pressure reduction valve 

present in the process. Based on this, equation 4.9 can be updated as follows: 

 

Control DOF for a process = Total number of streams in that process – Sum of the 

restraining numbers for all the units in that process + The number of mechanical or 

any other manipulators other than the process flows (such as agitators) and the 

number of pressure reduction valves (i.e., the valves used exclusively for pressure 

reduction)                                          4.11 

 

It is important to note that CDOF gives the maximum number of flows that can 

be manipulated simultaneously whereas the minimum number is dictated by stability 

considerations. Actual number of manipulated variables (i.e., control valves) is 

between the minimum number and CDOF. For example, minimum number of 

manipulated variables for a distillation column (with condenser and reboiler) is 3 in 

order to maintain its stable operation i.e., to control pressure, accumulator level and 

level in the sump (in case of thermosyphon reboiler) or in kettle reboiler. On the other 

hand, as discussed in the following section, CDOF for this column is 6. The additional 

3 manipulated variables can be used for feed flow (which can be considered either as 

a disturbance or as a manipulator), top and bottoms compositions. Based on the 

process requirements, control engineer would go for single or double end 
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composition control. The CDOF of distillation column is further discussed in the 

following section.  

 

4.3 Application to Distillation Columns  

 

Application of the proposed procedure to distillation columns needs special 

care because of close and complex interconnection of several units in a column, 

which is typically a combination of tray/packed section, condenser (total condenser in 

Figure 4.6(a); partial condenser in Figure 4.6(b)), reflux drum and a reboiler. As 

stated above, the proposed procedure holds good even for a combination of several 

units. Hence, it is applied to this distillation column. Restraining numbers of 

tray/packed section, condenser, reflux drum and reboiler are shown in Figure 4.6. 

Since there are a total of 12 streams, CDOF according to equation 4.9 is 12 – 

(2+1+0+0) = 9. However, CDOF is usually said to be 6 for a standard distillation 

column shown in Figure 4.6. Does this mean the proposed procedure fails in case of 

distillation columns? No. As mentioned earlier, the complex behavior of distillation 

column along with its requirements puts additional restrictions. This can be explained 

based on redundancy in process variables that need to be controlled. 
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(a) (b) 
Figure 4.6: Distillation Column with (a) Total Condenser and (b) Partial 

Condenser 
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Redundancy in pressure-related process variables in the distillation column 

overhead section: In the case of total condenser (Figure 4.6(a)), it is possible to 

manipulate streams 2 and 3 simultaneously when tray/packed section and condenser 

are considered as separate units. When these units are put together, they can still be 

manipulated simultaneously to control pressure at the top of the column and in the 

condenser. However, pressure drop between column top and condenser is usually 

negligible and so the pressure in the top of the column and in the condenser can be 

considered as a single process variable. This means, manipulating either stream 2 or 

3 should be sufficient to maintain the pressure at the desired value. On the other 

hand, manipulating both streams 2 and 3 to control pressure in the column top and 

condenser is going to be very difficult, if not impossible, as these controlled variables 

are very close and interact with each other. Moreover, the additional pressure drop 

that would be introduced by placing the valve on stream 2 makes it economically less 

attractive. So, it is not a good idea to use two manipulators while one manipulator 

can serve the purpose. The choice between stream 2 and 3 here depends on the 

nature of the dynamics. If the pressure dynamics is fast or the column is fairly small, 

stream 2 is usually considered as the manipulator else stream 3 will be the 

manipulator.  

  

In case of a partial condenser (Figure 4.6(b)), in addition to streams 2 and 3, 

there is one more alternative to control pressure by using stream 7. As mentioned 

earlier, one amongst these three streams (2, 3 and 7) should be sufficient to maintain 

the pressure in the column; and the choice depends on the nature of the pressure 

dynamics. In case of horizontal flooded condenser, with process fluid on the shell 

side, stream 5 is another potential manipulator to control the operating pressure in 

the distillation column (by maintaining the level in the condenser which in turn varies 

the surface area available for heat transfer). Thus, number of alternatives to control 

the operating pressure has increased but not the process variables as such. In the 
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case of vertical flooded condenser where the process fluid is usually inside the tubes, 

we can’t manipulate stream 5, but coolant flow (stream 3) can be manipulated to 

maintain the coolant level on shell side to vary the heat transfer area which in turn 

maintains the pressure.  

 

Redundancy in level-related process variables in the distillation column with 

kettle reboiler: The sump level and the reboiler level can be controlled if they are 

considered as independent units. They can in principle be controlled simultaneously 

even when they are put together. However, when they are considered together, the 

sump level is redundant and need not be controlled explicitly because the 

mechanical design ensures that the sump level is maintained all the time by virtue of 

constant level (because of the baffle) in the reboiler. There are two fundamental 

reasons which make the sump level self-regulating. If there is any disturbance and 

the sump level is increasing, then (1) because of the increased static pressure the 

flow will be more at the bottom of the column to the reboiler as it is based on natural 

circulation where the flow is a function of static head and (2) because of the 

increased static pressure the bubble point of the bottoms stream will rise and 

vaporization will be less thus reducing the reboiler pressure which creates 

hydrostatically unbalanced system momentarily. The cumulative effect of these two 

factors forces the flow over the baffle more (in to surge) and boil-up rate less. Owing 

to the latter, density of fluid on trays in the column will rise and overflow over the 

weirs will be less which in turn decreases the sump level till it reaches the original 

value, to return to the hydrostatic balance between the sump level and static head 

held by baffle. There is a possibility of inverse response in the bottom sump level. 

However, for the sake of simplicity in the analysis, this is not mentioned in the above 

reasoning. The principle here is similar to the hydrostatic balance in an U tube except 

that the analysis is more complex because of the interaction between material and 
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energy. Similar reasoning can be given even if there is a disturbance which reduces 

the sump level.  

 

Based on the above discussion, the sump level is a redundant process 

variable from control point of view as it is hydrostatically balanced because of the 

static head held by baffle in the reboiler. Of course, the distillation bottom section and 

reboiler should be properly designed else flooding can easily take place. For 

example, mechanical design decisions such as the spacing between the sump level 

and vapor entrance nozzle at the bottom of the column and the space above the 

baffle in the kettle reboiler for liquid disengagement should be properly chosen to 

easily resume hydrostatic balance in the system and to avoid flooding.  

 

Redundancy in pressure-related process variables in the distillation column 

with kettle reboiler: Pressure in a kettle reboiler can be a process variable when it is 

alone (though it is not usual practice to control the pressure in the reboiler, it is 

theoretically possible). Once it is part of a distillation column, pressure control at the 

top of the column would ensure the pressure in the other parts and there is no need 

to control the pressure in the reboiler. Hence, this is also a redundant pressure-

related process variable.  

 

In view of above 3 redundant process variables, the effective CDOF is only 6 

(= 9 - 3) which is usually the case. So, in the following cases, the restraining number 

for a distillation column (with total/partial condenser and with kettle reboiler) is 

increased by 3 to account for the 3 redundant process variables. In the case of 

distillation columns with internal reboilers/open steam, the redundancy is only one 

which is associated with the pressure-related process variables in the overhead as 

there are no redundant process variables at the bottom of the column. Distillation 

columns with thermosyphon reboiler of any configuration (vertical or horizontal; with 
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or without baffle in the sump; Sloley, 1997) can be analyzed similar to that of the 

distillation column with kettle reboiler to find the redundancy before applying the 

concept of restraining number to compute the effective CDOF. For example, in the 

most commonly used thermosyphon reboiler (i.e., vertical with steam on shell side), 

the process stream that comes out of reboiler can, in principle, be manipulated to 

control the pressure. However, as discussed in the case of kettle reboiler, it is not 

required to control the pressure in the reboiler and hence this manipulated variable is 

redundant. For complex distillation columns with additional side draws, which are 

very common in petroleum refineries, each side draw increases the CDOF (by using 

equation 4.9 and redundancy) by one and the proposed procedure will automatically 

manifest this without any additional considerations.  

 

4.4 Application to Complex Integrated Processes  

 

In this section, the restraining number concept is applied to several highly 

integrated processes of varying complexity to prove its applicability. The resulting 

CDOFs are validated by comparing them with those available in the literature. For the 

process in Figure 4.7, CDOF (from equation 9 and the concept of redundancy) is 6 [= 

Total number of streams – (Sum of restraining numbers of all units + Number of 

redundant process variables associated with stripper) = 9 – (1+2)]. According to 

Luyben (1996), CDOF is 4. However, he presumes constant temperature in the 

reactor and constant pressure in the stripper which contribute two more variables to 

CDOF. So, total CDOF is 6 which is the same as that obtained by the proposed 

procedure. In subsequent applications (including those in the Appendix B) total 

CDOF from Luyben (1996) is considered for comparison. From Table 4.2, it can be 

seen that the proposed procedure is successful in predicting the CDOF of highly 

integrated processes in Figures 4.8 and 4.9 correctly. All the reactors in Figure 4.8 
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are assumed to be of CSTR type whereas Westerberg process (Figure 4.9) contains 

a gas-phase PFR. 
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Figure 4.7: Reactor (CSTR)/Stripper Binary Process with One Recycle 
 

Table 4.2: CDOF for Processes shown in Figures 4.8 and 4.9 
 

Figure Number 
CDOF from Equation 9 and 

the Concept of Redundancy 

Total CDOF  

from Luyben (1996) 

4.8 24 [ = 42 - (2+1+2+1+2+1+3×3) ] 24 

4.9 6 [ = 9 – (1+1+1) ] 6 
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Figure 4.8: Luyben Challenge Process (Luyben, 1996)  
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Figure 4.9: Westerberg Process (Luyben, 1996)  

 

Flowsheet Representation of CDOF, as developed above, has several other 

advantages: 

1. Many times, control engineers prefer working with subsystems of the plant 

(especially in the initial stages of developing control system for new and/or 

complex processes). Then it is necessary to re-compute the CDOF for that 

particular section. By making use of the proposed ‘Flowsheet Representation of 
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CDOF’, re-computation of the CDOF for that section can be avoided. It can 

directly be accessed from the flowsheet once it is done.  

2. The only information that is needed to build this Flowsheet Representation of 

CDOF is some basic knowledge of CDOF of simple units. The only prerequisite is 

that the process design must be feasible.  

3. The flowsheet representation implicitly takes care of the number of components 

and phases involved in the process thereby reducing the complexity involved in 

the computation of CDOF.  

4. Overall CDOF gives the maximum number of control valves that can be placed in 

the entire plant. But it does not tell anything about the maximum number of control 

valves that can be placed around an unit. It may then be possible that, though the 

overall CDOF is satisfied, the CDOF of an individual unit is not met. By adapting 

the proposed procedure, both the overall CDOF and the CDOF of individual unit 

can be fulfilled.  

 

4.5 Summary 

 

Restraining number, a characteristic feature of an unit, is proposed; it is equal 

to the total number of independent and overall material balance equations with no 

associated inventory. Restraining number for several simple units is computed from 

the basic understanding of their functioning. In case of complex units like distillation 

columns, the concept of redundancy is demonstrated. These are then used to 

compute CDOF of highly integrated processes. The proposed procedure for CDOF 

gives the maximum number of flows that can be manipulated simultaneously in a 

process, and the control engineer can avail some (or all) of them based on process 

characteristics and requirements. It can be automated and implemented in process 

simulators very easily because of the generic nature of the restraining number. The 

proposed procedure is clearly simpler than the conventional “variables minus 
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equations” approach as it just needs fundamental understanding of simple units even 

for highly integrated processes.  
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CHAPTER 5 

PERFORMANCE ASSESSMENT OF PLANT-WIDE CONTROL 

SYSTEMS*

 

 Performance assessment of control systems has been receiving growing 

attention in the recent past to improve operability and profit margins of the process. 

However, such studies, and also the tools available to carry out such studies, from 

plant-wide perspective are rather limited. In this regard, a new dynamic performance 

index called DDS is proposed in this chapter. It is then used to assess the 

performance of three PWC structures (CS1, CS2 and CS3) for the HDA process. The 

three control structures are distinctly different from the TPM standpoint: CS1 uses 

internal manipulator (e.g., reactor temperature), CS2 uses fixed-feed control strategy 

with balanced nature, and CS3 uses on-demand control strategy to control the 

throughput; consequently, rest of the control structure decisions are significantly 

different. By critically analyzing the results from rigorous nonlinear dynamic 

simulations, CS3 is observed to be exhibiting poorest overall dynamic performance. 

The plant-wide dynamic performance of CS2 is found to be superior or comparable to 

that of CS1 for all the anticipated disturbances. The analysis of the results reveals 

the effectiveness of DDS and rigorous simulation tools for PWC studies.  

 

5.1 Introduction 

 

Performance assessment of control systems has been an active research 

area for the last 15 – 20 years. Such studies from plant-wide perspective, however, 

are relatively limited mainly due to the complexity involved in PWC due to the 

                                                 
* This chapter is based on the paper - Konda, N. V. S. N. M.; Rangaiah, G. P. Performance 
Assessment of Plant-Wide Control Systems of Industrial Processes. Ind. Eng. Chem. Res., 
46, pp. 1220-1231. 2007. 
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presence of dozens of process variables; to complicate the matter further, recycles, 

that are becoming common in chemical processes, are notorious for furthering 

process complexity by increasing not only the interactions among process variables 

but also process nonlinearity. Besides, the use of rigorous process simulators for 

PWC studies is even more limited as it is more tedious and computationally intensive 

to carry out such rigorous studies. In addition, performance assessment metrics 

which can easily and effectively be used in PWC studies based on rigorous process 

simulators are not available. Thus, in the present study, we propose a performance 

metric and then use it to evaluate three PWC systems for the HDA process.   

 

Due to the large number of process variables in any PWC problem, there 

exists numerous alternative control structures. Controllability measures such as 

RGA, NI, CN, DCN, RDG, PRG, and CLDG have been very useful to screen off 

some control structures especially during the initial stages of control system design. 

However, after the initial screening, a handful of alternatives will be left which needs 

more rigorous analysis for the final selection. This can be done by simplified/linear 

dynamic simulation as commonly done by most of the researchers in the past; 

though, some researchers (e.g., Luyben, 2002) have been using rigorous nonlinear 

dynamic simulators for some years.. However, due to the increasing use of recycles 

in the chemical process industry, the processes are becoming more complex and 

their dynamics can be highly nonlinear (Kumar and Daoutidis, 2002). Consequently, 

there is a need to use rigorous nonlinear dynamic simulation, especially in the final 

stages of control system design, to make the analysis more realistic (Kim et al., 

2000). In addition, some of the aforementioned metrics may not always yield reliable 

results; He and Cai (2004) presented several case studies in which control 

configuration design based on RGA and NI has failed. Similarly, Georgakis et al. 

(2003) presented an operability measure which is more consistent than the metrics 

such as RGA and CN.  
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At times, some of the above mentioned controllability measures cannot be 

used due to the complexity of the process at hand. Noting this, Yi and Luyben (1995) 

proposed a metric called steady-state disturbance sensitivity (SDS) based on steady-

state to screen the control structures; the basic idea here is to compute the changes 

in the MV in the presence of disturbance(s) for different control structures. The 

control structure that requires larger changes in MVs is not recommended as it is 

more prone to hit constraints and valve-saturation limits. However, this measure 

cannot be always used: consider two control structures, C1 and C2. If the required 

changes in all the MVs in C1 are larger than that of C2, by making use of this 

measure, the decision is obvious, i.e., C2 is better. However, if some MV changes in 

C1 are less than that of C2 and the rest of the MV changes in C1 are more than that 

of C2, the decision is less obvious. Besides, SDS does not consider the performance 

during transient state and does not guarantee stability.  

 

The use of any of the above tools is necessary but not sufficient, and should 

subsequently be complemented with rigorous dynamic simulation. But, as mentioned 

previously, in case of complex processes, such an analysis using nonlinear dynamic 

simulations can be very difficult and computationally intensive due to the presence of 

hundreds of control loops in a typical PWC system. Though, in principle, it is possible 

to compare the performance of each individual loop, it is very tedious. At times, there 

may not be any meaningful loop-to-loop comparison as a controlled variable in one 

control structure need not necessarily be controlled in another control structure. 

Alternatively, one might want to assign weights to each control loop to quantify the 

overall performance into a single index. But, the weights are often subjective.  

 

The rest of the chapter is organized as follows. The next section discusses 

some of the common measures (in addition to the ones discussed above) and the 
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associated problems, and then presents the proposed metric to assess the 

performance of PWC systems using rigorous simulation tools. Section 5.3 gives brief 

overview of the HDA process and its steady-state simulation. Implementation of three 

control structures for the HDA process in HYSYS is described in section 5.4. Their 

performance is then critically analyzed (using rigorous nonlinear dynamic simulation) 

in the presence of several anticipated disturbances in section 5.5. Finally, chapter 

summary is given in section 5.6. 

 

5.2 Plant-Wide Performance Assessment Measures  

 

Elliott and Luyben (1995, 1996 & 1997) proposed capacity-based approach to 

measure the dynamic performance of alternative control structures by computing the 

loss in capacity due to off-spec production; the measure is thus related to product 

quality regulation. Though capacity-based approach is a useful and practical 

measure, it cannot be applied in all situations. For example, in this approach, the off-

spec product is assumed to be disposed. However, it may be economical to recycle it 

as the raw materials are usually expensive. Otherwise, yield-losses and additional 

costs due to disposal of the off-spec product may render the process uneconomical. 

Though it is possible to implement this feature in the capacity-based approach, it 

cannot be generalized. For example, it may not be desirable to recycle the over-

purified off-spec product (although the under-purified off-spec product needs to be 

recycled) as it unnecessarily incurs additional costs. Even if the off-spec product has 

to be recycled, the recycling location and reprocessing costs will be process-specific. 

If the off-spec product is due to light impurities, it has to be recycled back to the light-

component (impurity) purification section else it has to be processed through the 

heavy-component (impurity) purification section. At times, the off-spec product 

cannot be recycled due to capacity limitations (Zheng and Mahajanam, 1999; 
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Mahajanam and Zheng, 2002) but has to be stored (for future processing) which 

incurs additional inventory costs. Thus, reprocessing cost of the off-spec product will 

be different in each of these cases, and no generally accepted procedures are 

available to estimate it. One can assume some cost, but the results will be dependent 

on this assumed value.  

 

Product quality is important, but it cannot be the sole measure. For example, 

using capacity-based approach and product quality as the measure, two alternative 

designs will be dynamically equally good if both are capable of producing on-spec 

product. However, this need not necessarily be true always. Consider product quality 

regulation in case of alternatives CS2 and CS3 (yet to be discussed in sections 5.4 

and 5.5); there is essentially no difference in this regulation of product quality in the 

presence of uncertainty in the reaction kinetics (Figure 5.1, left). However, the same 

disturbance has significantly different impact on dynamics of the two alternatives 

(Figure 5.1, right). Hence, product quality regulation is only a necessary condition but 

not sufficient to be considered as an overall process performance measure. Similar 

example is presented in Chapter 6 (Section 6.3.1) to show the inadequacy of product 

quality as the overall performance measure. In addition, the ultimate decision on 

relative performance is likely to be biased on the performance of the product quality 

loop (i.e., its manipulator and tuning) if one uses capacity-based approach as the 

overall performance measure. In a similar way, the production rate also cannot be an 

appropriate measure for the overall performance. For example, on-demand control 

has better product-regulation capability, but its dynamics in the other parts of the 

plant are much slower and thus dynamic performance is not as good as a fixed-feed 

control strategy (Luyben, 1999). 
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Figure 5.1: Product Quality (left) and Accumulation (right) Profiles for the HDA 
Process with CS2 and CS3 in the presence of Uncertainty in Reaction Kinetics  

 

Sometimes, process settling time (i.e., time to reach steady-state after the 

process is affected by a disturbance) is used as a dynamic performance measure, 

especially in the presence of deterministic disturbances; the lower the settling the 

better is the control system. However, this measure ignores what is happening during 

the transient state (e.g., how far the process variable is from the steady-state value) 

and hence cannot be a good measure for dynamic performance. Figure 5.2 shows 

the accumulation profiles for -5% change in the throughput for the process with CS1 

but with different TPMs – reactor temperature (TR-in) and total toluene flow in the 

liquid recycle loop (FR); based on the settling time, both the TPMs are equally good 

as their settling times are comparable (~ 200 min). However, during the transient, the 

impact on the process is much larger if TR-in is used as the TPM and thus the process 

becomes more sensitive, which makes TR-in a less attractive TPM; detailed 

discussion on the TPMs for CS1 is given in section 5.5. Thus, a good and 

comprehensive measure should include the information on process variables during 

transient along with settling time and also be able to capture this information over the 

entire process (i.e., from all the sections in the plant); this is precisely the subject of 

this chapter.  
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Figure 5.2: Accumulation Profiles for -5% Change in Throughput 
 

5.2.1 Dynamic Disturbance Sensitivity (DDS)  

 

In order to circumvent the difficulties discussed above, a new performance index 

is proposed in the present study. Through extensive simulations, we have identified 

that the overall control system performance and component accumulation (or 

depletion; i.e., rate of change) are strongly correlated. In the presence of 

disturbances, accumulation is not equal to zero for a certain period of time until the 

effect of disturbance is attenuated by the control system. Obviously, the process 

does not reach steady-state until and unless the accumulation is zero. Indeed, all 

controlled variables (and thus the associated manipulated variables) in the process 

are observed to reach steady-state if and only if the rate of accumulation of all 

components reaches zero. In addition, from Figures 5.1 and 5.2, it is evident that the 

effect of the disturbance on the process can be captured by accumulation profiles 

whereas product quality and settling time failed to serve as overall performance 

metrics. Thus, the integral of absolute accumulation can serve as a better measure to 

gauge the impact of disturbance on the process. Absolute accumulation is 

considered since neither a positive nor negative (i.e., depletion) value is desirable. 

Consequently, sum of absolute accumulation for all components is plotted and the 

 104



                                                           Chapter 5 Performance Assessment of PWC Systems 

area under the curve is used as a measure of PWC performance. Naturally, the 

lesser the area, the better is the control and the corresponding alternative. As this 

measure essentially quantifies the effect of disturbance on the process dynamics, it 

will be referred as “Dynamic Disturbance Sensitivity (DDS)” and is defined as  

( ) dticomponentofonaccumulatiabsoluteDDS
st

t ntoi
∫ ∑
= = ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

0 1    (5.1) 

where ts represents time taken to reach steady-state and n represents total number 

of components involved in the process. Accumulation is computed using the standard 

definition:   

accumulation = input – output + generation – consumption                       (5.2) 

where all the terms are based on ‘rate of change’.  From the definition of DDS (i.e., 

sum of absolute errors in component material balances), it is similar to the other 

metrics (such as Integral Absolute Error, i.e., IAE). 

 

The proposed DDS has several advantages as discussed below:  

1. It is easier to compute DDS for a process with relatively less number of 

components than the number of loops, which often occurs; and data 

management and storage will also be less demanding for calculating DDS for 

such a process.  

2. Procedure to compute DDS remains the same for a given process flow sheet 

even if the control structure changes. This feature can be very handy for 

analyzing performance of a large number of control structures and facilitates 

easy automation of the procedure. The procedure can be further simplified by 

ignoring some components present in insignificant quantities, as will be 

shown in the Section 5.  
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3. Unlike any of the steady-state based counterparts, there exists strong 

correlation between the value of DDS and process stability, as DDS is 

computed based on dynamics; for an unstable system, DDS will be very 

large. 

4. DDS is more realistic as it considers level and pressure effects on dynamics 

which have not been considered in the other measures based on steady-state 

information.  

5. In addition to screening alternative control structures, DDS can be used to 

compare alternative process designs; this aspect is discussed in Chapter 6. 

Furthermore, the relative impact of a disturbance on different sections of the 

plant can be quantified using DDS.  

6. It can be easily combined with rigorous nonlinear simulation models. This not 

only improves the accuracy but also saves time as one does not have to 

linearize the process models in order to make use of linear model-based 

controllability indexes to analyze the performance.  

7. DDS is equally applicable to performance analysis for set-point changes.  

8. DDS is very useful to assess the dynamics of the process (such as overall 

time constant) without having to examine all the process variables to identify 

the slowest-responding one, which is dependent on several other factors 

(e.g., type of disturbance).  

9. Due to the fundamental nature of the DDS, it can be used even as an open-

loop controllability metric.  

 

5.3 Process Description and Simulation of the HDA Process 

 

For detailed information on the HDA process, refer to section 3.3.1 in Chapter 

3. For a quicker and easier reference, process flow-sheet is given here (Figure 5.3) 
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along with the reactions involved and fluid package used. Two main reactions taking 

place inside this reactor are: 

 

 Toluene + H2 → Benzene + Methane      

 2 Benzene      ↔ Diphenyl + H2 

      

 The Peng-Robinson (PR) equation of state is selected for property estimation 

as it is very reliable for predicting the properties of hydrocarbons over a wide range of 

conditions and is generally recommended for oil, gas and petrochemical applications.  
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Figure 5.3: Flow-Sheet of the HDA Process to Produce Benzene from Toluene 
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5.4 Dynamic Simulation of PWC Systems for the HDA Process 

 

There has been increasing number of studies on PWC and several 

methodologies have been proposed. However, there has not been any comparison of 

these methods so-far. Thus, instead of randomly choosing the control structures, we 

have chosen the candidate control structures resulting from different PWC methods. 

Hence, the present study brings out the relative merits of different PWC 

methodologies also. Several researchers have proposed different control structures 

for the HDA process using their own methodologies. One of the popular PWC 

methodologies is the heuristic procedure by Luyben and co-workers, and this method 

was applied to the HDA process to develop PWC structure (Luyben et al., 1999). The 

resulting control structure is considered in this study as one of the potential candidate 

control structures and is referred to as CS1, hereafter.  Two of the most recent 

control structures for the HDA process, one by Konda et al. (2005) and the other by 

Vasbinder et al. (2004), are also considered in this study for performance 

assessment. Konda et al. (2005) proposed a PWC structure for the HDA process 

based on an integrated framework consisting of improved heuristic method and 

rigorous simulation tools. Vasbinder et al. (2004) proposed a PWC structure for the 

HDA process using decision-based approach. The former is referred to as CS2 and 

the latter as CS3 hereafter. Incidentally, these are the only three control structures 

which have made use of rigorous dynamic simulation either in the control system 

design stage (e.g., CS2) or in the validation stage of the resulting control system 

(CS1 & CS3) for the detailed HDA process.  

 

Other notable control structures for the HDA process are by Ponton and Laing 

(1993) and Fonyo (1994). Konda et al. (2005) discussed the limitations of these 

control structures; hence, these are not considered in the present study. Other 
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researchers have considered a simplified HDA process for control structure design 

(e.g., Qiu et al., 2003) while others assumed some of the control decisions are 

already in place (e.g., Jorgensen and Jorgensen, 2000; Herrmann et al., 2003); thus 

the complete PWC structure for the entire HDA process cannot directly be extracted 

from these works unless these methods are re-applied to develop complete PWC 

system. Hence, these control structures could not be considered in this study.  

 

5.4.1 Three Selected Control Structures (CS1, CS2, CS3) 

 

CS1 is solely based on the heuristic procedure (Luyben et al., 1999). One of 

the characteristic features of this heuristic procedure is to fix a flow in the recycle 

loop to avoid the notorious effect of recycles - snowball effect. However, as observed 

by other researchers, it is not always recommendable to fix the flow. For example, 

Zheng et al. (1999) have studied several control structures (for a hypothetical 

process) including the one with fixed-recycle-flow and observed that this control 

structure is inferior to some other structures in which the recycle flow is not fixed. 

CS2 is based on the integrated framework of heuristics and rigorous simulation 

(Konda et al., 2005); in this framework, systematic analysis is carried out on recycles 

while designing the control systems to minimize their impact on overall control 

performance. CS3 is based on decision-based methodology (Vasbinder et al. 2004) 

in which the modified analytical hierarchical process (mAHP) method is used to 

decompose the HDA process into several modules and then Luyben’s heuristic 

procedure is applied to each module to develop PWC system.  

 

 Interestingly, though each of these methods made use of Luyben’s heuristic 

procedure in some form or other, the resulting control systems are significantly 

different. Equally interesting is that these control structures can be classified into 

three distinctly different categories based on the TPM: CS1 uses internal variable, 
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either reactor temperature, TR-in or total toluene flow, FR (i.e., sum of fresh toluene 

and recycled toluene) - the present study considered both the alternatives; CS2 uses 

process feed (i.e., fixed-feed control strategy); and CS3 uses production rate (i.e., 

on-demand control strategy) as the TPM. Consequently, rest of the control structure 

of CS1, CS2 and CS3 are also very different, as shown in Table 5.1. CS1 and CS3 

are shown in Table 5.1 after the implementation of the modifications discussed 

below.   

 

The only modification that is required for CS1 is replacing the cascade 

controller for product purity (which manipulates the set point of temperature 

controller) by a controller which directly manipulates reflux to regulate product purity. 

This modification is observed to be necessary as the impact of the disturbance on the 

process and settling time is found to be less after implementing this modification. 

While this minor modification for CS1 is just to improve the dynamic performance, 

CS3 required several changes mainly to stabilize the process and also to make it 

more realistic. For example, Vasbinder et al. (2004) controlled H2 to toluene ratio 

whereas the actual constraint for the HDA process is on the ratio between H2 and 

aromatics (McKetta, 1977; Douglas, 1988). So, in the present study, H2 to aromatics 

ratio controller is implemented.  

 

With this H2 to aromatics ratio controller, we tried to implement CS3 as was 

proposed by Vasbinder et al. (2004). However, the process was not stable and we 

have identified that there was no controller which propagates the production rate 

changes back to the upstream of stabilizer. Since there should be consistent back-

propagation of changes in any on-demand control strategy, we have considered the 

stabilizer feed flow (instead of reboiler duty) as the manipulator to control stabilizer 

reboiler level; note that the stabilizer feed flow was used to control flash level by 

Vasbinder et al. (2004). The flash level is then controlled by toluene feed flow. With 
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these changes, there is back propagation of changes and the system is stable in the 

presence of any common disturbance (e.g., -5% change in the throughput), however, 

the system becomes unstable and not able to reach steady-state for bigger 

disturbances (e.g., -25% change in the throughput).  

 

After careful investigation, it was identified that the main problem is 

associated with the stabilizer with its over-head section getting accumulated with 

benzene. This can be qualitatively explained: when there is any decrease in the 

production rate, there will be corresponding decrease in the product column feed 

(i.e., stabilizer bottoms). Ideally, this change should then be reflected back; i.e., the 

stabilizer reboiler level increases and thus the stabilizer feed should be reduced 

which in turn increases the flash level, and eventually the fresh toluene feed will have 

to be reduced to maintain the flash level. However, due to the slow dynamics 

observed with on-demand control strategy, before the stabilizer feed gets reduced, 

the effect on the stabilizer bottoms (due to the reduction in the production rate) is felt 

on the stabilizer over-head section; i.e., the additional benzene and toluene, that 

were pushed back to the stabilizer bottoms, are observed to be entering into the 

stabilizer over-head section. This could be due to two reasons: (1) stabilizer has 

fewer trays (i.e., 10 trays) and the changes in the bottom section can easily effect the 

over-head section; and (2) neither the stabilizer over-head section is strong enough 

to counteract this (e.g., reflux flow is as low as 0.24 kg-mol/hr and thus not able to 

handle big changes) nor there is a bottoms composition controller to holdback any 

changes in the bottom section of the stabilizer. This reasoning can be substantiated 

based on the fact that the system reaches stable steady-state after installing a 

bottoms composition (i.e., inferential) controller even in the presence of production 

rate disturbances. In order to cross-validate the implementation, we have contacted 

the proponents of CS3 for their HYSYS models, but, unfortunately, the models are 

not available. Thus, we implemented the on-demand control strategy with the 
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minimal modifications as discussed above. These changes are required in order to 

establish a stable system which can handle some common disturbances. As will be 

discussed in the later sections, CS3 failed to stabilize the process for six out of fifteen 

disturbances studied; though the process can be stabilized for the rest of the 

disturbances, the performance of CS3 is observed to be inferior to that of other 

control structures.  

 

5.4.2 Plant-Wide Controller Tuning  

 

Controller tuning from plant-wide perspective is tedious due to the large of 

number of controllers which are interacting with one another. In addition, one 

particular set of tuning parameters for a control system does not necessarily work for 

all disturbances as the impact of different disturbances on various sections of the 

plant can be very different. For example, by using auto-tuning technique, a controller 

gain of 2.3 is obtained for reactor outlet temperature controller (i.e., second controller 

in Table 5.2) for CS2. Though this is acceptable for most of the disturbances, the 

process becomes unstable for disturbances associated with uncertainty in kinetics. 

The tuning parameters are observed to be more aggressive for this disturbance; ten-

folded reduction in the gain (i.e., a controller gain of 0.25) makes it stable for all types 

of disturbances. This example shows how critical the tuning parameters of each 

controller in the plant since inappropriate tuning parameters of single controller can 

make the entire process unstable. So, extensive simulations are carried out in the 

present study to make sure that the tuning parameters of all the controllers are robust 

(to give stable response for most of the disturbances) as well as aggressive enough 

(to give reasonably good performance). On the other hand, the same controller 

(which required a gain of 0.25 in CS2, i.e., second controller in Table 5.2) can be 

very aggressive with a gain of 1.32 in CS1 (i.e., five-times that of what is used in 

CS2). This explains how dependent the tuning of each controller on the overall 
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control structure. Thus, it is important to consider the plant-wide perspective, not only 

during structural decisions stage but also while tuning the controllers.   

 
In general, all the controllers (except level controllers) are designed as PI-

controllers and P-only controllers are used for level control. Generic tuning 

parameters are given for flow, level and pressure controllers in Luyben (2002), and 

are used as initial estimates for these three types of controllers in all the control 

structures. Wherever possible, for level and pressure controllers, aggressive tuning is 

used (e.g., a gain of 10 for fifth controller in Table 5.2) and, if required, conservative 

tuning is used (e.g., a gain of 2 for several level controllers in the separation section). 

For temperature and composition controllers, initial estimates for tuning parameters 

are obtained using auto-tuning technique. Understandably, auto-tuner gives 

comparable tuning parameters with slight differences, if the control structure of any 

controller remains the same in CS1, CS2 and CS3 (e.g., 1st, 3rd, 23rd, 24th, 28th and 

30th controllers in Table 5.2). The slight differences are due to the different 

interactions that these controllers encounter from other controllers in CS1, CS2 and 

CS3. Understandably, auto-tuner gave entirely different tuning parameters if the 

control structure of any controller is different in CS1, CS2 and CS3 (e.g., 8th controller 

in Table 5.2). All these controllers are then fine tuned to give stable and reasonably 

good performance in the presence of most of the anticipated disturbances.  Final 

tuning parameters for the controllers in the three control structures are given in Table 

5.2.  
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Table 5.1: Details of Controlled and Manipulated Variables of CS1, CS2 and 
CS3 

 
Manipulated Variable (MV) Controlled Variable (CV) CS1# CS2 CS3#

1. Cooler Tout Cooling Water Flow Cooling Water Flow Cooling Water Flow 
2. Reactor Tout Quench Flow Rate Quench Flow Rate Quench Flow Rate 
3. Reactor Tin Furnace Fuel  - Furnace Fuel 
4. Conversion - Furnace Fuel - 
5. Flash Level Stabilizer Feed Stabilizer Feed  Toluene Feed Flow 

(Stabilizer Feed Flow)
6. Flash Pressure - Flash Vapor Flow Flash Vapor Flow 
7. Recycle Gas Pressure H2 Feed Flow - - 
8. Purge Composition Purge Flow Compressor Duty  - 
9. Purge Flow - - Purge Flow 
10. H2 to Aromatics Ratio - H2 Feed Flow H2 Feed Flow 
11. Total Toluene Flow Total Toluene Flow - - 
12. Toluene Feed - Toluene Feed Flow - 

Stabilizer  
13. Condenser Pressure Distillate Flow Distillate Flow Distillate Flow 
14. Condenser Level Condenser Duty Condenser Duty Condenser Duty 
15. Reboiler Level Bottoms Flow Bottoms Flow Stabilizer Feed Flow 

(Reboiler Duty) 
16. Distillate Composition - Reflux Flow Reflux Flow 
17. Reflux Flow Reflux Flow - - 
18. 7th Tray Temperature*  Reboiler Duty Reboiler Duty Reboiler Duty 

(no manipulator) 
Product (Benzene) Column 

19. Condenser Pressure Condenser Duty Condenser Duty Condenser Duty 
20. Condenser Level Distillate Flow Distillate Flow  Product Column Feed 
21. Reboiler Level Bottoms Flow Bottoms Flow Bottoms Flow 
22. Product (Benzene) 
Flow  

- - Distillate Flow 

23. Distillate Composition Reflux Flow 
(set point of  bottoms 
temperature 
controller) 

Reflux Flow Reflux Flow 

24. 40th Tray 
Temperature* 

Reboiler Duty Reboiler Duty Reboiler Duty 

Recycle (Toluene) Column 
25. Condenser Pressure Condenser Duty Condenser Duty Condenser Duty 
26. Condenser Level Toluene Feed Flow Distillate Flow Distillate Flow 
27. Reboiler Level Reboiler Duty Reboiler Duty Bottoms Flow 
28. Distillate Composition - Reflux Flow Reflux Flow 
29. Reflux Flow Reflux Flow - - 
30. Bottoms Composition - Bottoms Flow  Reboiler Duty 
31. 18th Tray 
Temperature* 

Bottoms Flow - - 

*Trays are counted from the top, with condenser as 0th tray.  
#CS1 and CS3 are shown in this table after the implementation of the modifications, as per 
the discussion in Section 5.4. Modified MVs are italicized and the original MVs are bracketed.  
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5.4.3 Disturbances Studied 

 

It is very common to consider two or three types of disturbances while 

assessing the performance of control systems. However, as will be discussed in 

section 5.5, the control structure that works for a disturbance does not necessarily 

work for other types of disturbances as the nature of each disturbance is unique. 

Thus, there is a need to study several anticipated disturbances. Hence, in the 

present study, 15 important and most common disturbances are studied (Table 5.3). 

As there is a possibility of encountering more than one disturbance at a time, we 

have considered dual disturbances as well. For example, the disturbances d8 to d11 

are essentially the combinations of other disturbances (i.e., d1 and d2 with d4 and d5; 

any other combination can also be considered). Similarly, uncertainties in reaction 

kinetics are also simulated as disturbances. For convenience, a tag is assigned to 

each disturbance; i.e., first disturbance will be referred to as d1, second one as d2 and 

so on (see Table 5.3).  
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Table 5.2: Tuning Parameters for the Controllers in CS1, CS2 and CS3 
 

Tuning Parameters  
Kc (%/%), Ti (Min) Controller Name 

CS1 CS2 CS3 

1. Cooler Tout Controller 0.13, 0.14 0.15, 0.29 0.15, 0.29 

2. Reactor Tout Controller 1.32, 0.24 0.25, 0.25 2.3, 0.27 

3. Reactor Tin Controller 0.14, 0.22 - 0.14, 0.22 

4. Conversion Controller - 1, 2 - 

5. Flash Level Controller 10 10 10 

6. Flash Pressure Controller - 2, 5 2, 2 

7. Recycle Gas Pressure Controller 1.73, 2.17 - - 

8. Purge Composition Controller 1.19, 23.2 4.94, 4.02 - 

9. Purge Flow Controller - - 0.5, 0.25 

10. H2 to Aromatics Ratio Controller - 0.5, 0.25 0.5, 0.25 

11. Total Toluene Flow Controller 0.5, 0.25 - - 

12. Toluene Feed Controller  0.5, 0.25  

Stabilizer  

13. Condenser Pressure Controller 2, 10 2, 10 2, 25 

14. Condenser Level Controller 2 5 2 

15. Reboiler Level Controller 5 2 2 

16. Distillate Composition Controller - 0.1, 10 0.12, 10 

17. Reflux Flow Controller Flow specified - - 

18. 7th Tray Temperature Controller 10, 7.02 10, 5.54 10, 5.62 

Product (Benzene) Column 

19. Condenser Pressure Controller 2, 10 2, 10 2, 25 

20. Condenser Level Controller 5 2 2 

21. Reboiler Level Controller 5 2 2 

22. Product (Benzene) Flow Controller - - 0.5, 0.25 

23. Distillate Composition Controller 0.84, 13.3 0.65, 13 1.34, 8.61 

24. 40th Tray Temperature Controller 8.5, 1.07 7.44, 0.85 6.48, 1.04 

Recycle (Toluene) Column 

25. Condenser Pressure Controller 2, 25 2, 20 2, 25 

26. Condenser Level Controller 5 5 2 

27. Reboiler Level Controller 2 5 5 

28. Distillate Composition Controller - 0.14, 49.8 0.14, 39.5 

29. Reflux Flow Controller Flow specified - - 

30. Bottoms Composition Controller - 0.15, 38 0.11, 35.9 

31. 18th Tray Temperature Controller 0.2, 50 - - 
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5.5 Results and Discussion 

 

The three control structures, CS1, CS2 and CS3, are evaluated for 15 

disturbances, and their performance in terms of DDS is given for all the disturbances 

(Table 5.3). As discussed above, the lesser the DDS, the better is the control system. 

In general, different disturbances have different impact on the process; for example, 

the effect of d14 and d15 on the process is very much less when compared to the 

impact of other disturbances. Also, the performance of control systems differs 

significantly, as discussed below in detail. The only control structure that can stabilize 

the process in the presence any of the disturbances studied is CS2 with performance 

that is either superior or comparable to that of CS1 and CS3 (Table 5.3). In the 

following sections, the performance of all the three control structures is evaluated 

with regard to DDS, and is observed that CS2 is superior. The analysis based on 

process and equipment constraints, robustness and stability concerns also leads to 

the same conclusion that CS2 does a better job and, thus, further justifying the use of 

DDS as PWC performance metric.  

 

In general, rigorous nonlinear dynamic simulation is observed to be very 

challenging due to the varying valve pressure-drop requirements of each control 

structure; for example, valve on purge stream in CS3 reached saturation limits for d1 

when it is sized for a reasonable pressure drop of 50 psi and required larger pressure 

drop of 200 psi. On the other hand, in CS1 and CS2, purge valve, with a pressure 

drop of 50 psi, was not saturated for the same disturbance. To make the situation 

worse, the pressure-drop requirements for any control structure are even dependent 

on the type of disturbance; for example, the purge valve, with a pressure drop of 50 

psi, was not saturated for any change in toluene feed temperature (i.e., d14 and d15) 

whereas, as mentioned above, it is saturated for the throughput changes. In addition, 
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all these issues are very much dependent on pump characteristics. These are some 

of the important aspects during any PWC structure analysis as the selection of 

control structure has large impact on pressure-drop requirements which in turn 

affects plant economics. Despite their importance, these issues have not been given 

enough importance in the earlier PWC studies as most of them are based on 

simplified models (e.g., ignoring the pump characteristics and valve dynamics) which 

simplifies the analysis but at the cost of realistic behavior of the process. This issue is 

discussed in detail in the later part of this section.  

 

Table 5.3: Disturbances Studied and Corresponding DDS for Control 
Structures: CS1, CS2 and CS3 

 
DDS (kg-mol) 

 Type and magnitude  
of disturbance CS1 CS2 CS3 

10.41 (FR) 
d1 -5% 20.05 (TR-in) 

8.70 78.75 

9.68 (FR) 
d2 +5% 19.67 (TR-in) 

8.68 Unstable 

41.45 (FR) 
d3

Production rate 

-25% Unstable (TR-

in) 
47.93 Valve 

Saturation 

d4 -2.5% 5.34 1.92 Unstable 

d5
Feed Composition +2.5

% 4.92 1.78 68.14 

d6 +5% 13.59 13.62 31.73 

d7

Uncertainty in 
Kinetics 

(Pre-Exponential 
factor of first 

reaction) 
-5% 15.14 17.29 Unstable 

12.71 (FR) 
d8

d1 & 
d5 20.84 (TR-in) 

9.26 144.38 

9.61 (FR) 
d9

d1 & 
d4 19.61 (TR-in) 

9.14 41.29 

8.47 (FR) 
d10

d2 & 
d5 20.62 (TR-in) 

9.07 Unstable 

12.45 (FR) 
d11

Dual Disturbances 
 

d2 & 
d4 19.09 (TR-in) 

9.08 Unstable 

d12 +5% 6.54 2.58 2.60 
d13

H2 Header 
Pressure -5% 10.37 5.83 5.82 

d14
+100

C 
0.74 0.63 0.72 

d15

Toluene Feed 
Temperature 

-100C 0.67 0.58 0.69 
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5.5.1 Evaluation of CS1 and CS2  

 

CS1 has two potential TPMs: 1) FR, and 2) TR-in. Thus, both the TPMs are 

considered in this study, and represented as FR and TR-in in Tables 5.3 to 5.7 based 

on what manipulator is used to achieve the throughput changes. It is of interest to 

see which one is the better manipulator for CS1. In general, the dynamic behavior of 

the process, especially, separation section (i.e., three distillation columns), is very 

different for both these TPMs. The changes in vapor flow rate within the three 

distillation columns for ±5% change in the throughput (using both the manipulators) 

are given in Table 5.4. It can be seen that, with TR-in as the TPM, recycle column is 

much more sensitive than the other two columns; change in internal-vapor flow rate 

of recycle column is +12.77% compared to -2.85% and +0.58% changes in product 

and stabilizer columns respectively. Thus, the robustness of CS1 with TR-in as the 

manipulator largely depends on recycle column. On the other hand, with FR as the 

TPM, recycle column becomes relatively less sensitive compared to other columns (-

1% change in internal vapor flows of recycle column vs -4.67% and -3.72% changes 

in product column and stabilizer respectively for -5% change in the throughput). In 

this case, though the impact of the disturbances is transferred to the other columns 

(which eventually made product and stabilizer columns relatively more sensitive to 

disturbances), none of the columns is as severely affected as the recycle column in 

the process with CS1 and TR-in as the TPM. Thus, with FR as the TPM, CS1 is more 

robust and handles bigger disturbances.  

 

It can now be concluded that fixing a flow in order to avoid snowball effect, 

though a feasible alternative, does not serve the purpose if the TPM is not chosen 

appropriately; else, it will only transfer the snowball effect from one part of the 

process to another (i.e., from total toluene flow to recycle column in this case). 

Similar observation is made by Yu (1999) in case of a simple reactor-separation-
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recycle network. On the other hand, with CS2, the effect of disturbances on all three 

distillation columns is almost comparable thus making CS2 a balanced control 

structure (Table 5.4). The presence of conversion controller is the main reason for 

this balanced nature of CS2 (Konda et al., 2005). 

 

With TR-in as the TPM, in the presence of -5% change in the production rate, 

as shown in Table 5.4, variation in the vapor loads of the recycle column is much 

higher than that of the product and the stabilizer columns (i.e., +12.77% versus -

2.85% and +0.58%). Moreover, the vapor loads in the product column decreased 

whereas the vapor loads in the recycle column and the stabilizer increased (Table 

5.4). Consequently, there is a significant increase in the steam requirement for the 

recycle column’s reboiler (Table 5.5). On the other hand, CS2 and CS1 with FR as 

the TPM exhibited relatively more uniform dynamics by almost equally distributing the 

impact of the disturbance amongst all the columns (Tables 5.4 and 5.5). Further, 

variation in the steam requirement for the recycle column’s reboiler is much less 

(Table 5.5). Similarly, changes in the internal liquid flows in the columns are highly 

non-uniform if the TR-in is the TPM for CS1; for example, for ±5% changes in the 

throughput, the changes in internal liquid flows of different trays of toluene column 

are very much different, with a minimum and maximum change of -6% and +12% 

respectively. On the other hand, for CS1 with FR as the TPM, the changes are quite 

uniform with a minimum and maximum change of 10% and 13% respectively, thereby 

exhibiting more linear (internal) column dynamics, and thus a linear controller (such 

as a PID type controller) performs better.    
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Table 5.4: Percentage Change* in the Net Vapor Flow of Three Columns in the 
Presence of Disturbances for CS1 and CS2 

 
-5% change in throughput +5% change in throughput 

CS1 with TPM as CS1 with TPM as  

TR-in FR

CS2 
TR-in FR

CS2 

Recycle Column +12.77 -1.0 -5.17 -12.94 +0.62 +5.17 

Product Column -2.85 -4.67 -5.17 +2.65 +4.58 +5.18 

Stabilizer +0.58 -3.72 -5.08 -0.58 +3.67 +5.09 

*Values given are the average over all trays; as the variation in the % deviation of 

vapor flows is very less, average value is a good indication of the change on every 

tray 

 

Table 5.5: Percentage Change in Reboiler Duties of Three Distillation Columns 
in the Presence of -5% Throughput Change for CS1 and CS2 

 
-5% change in throughput 

CS1 with TPM as  

TR-in FR

CS2 

Recycle Column +11.0 -3.7 -5.2 

Product Column -2.96 -4.7 -5.2 

Stabilizer +1.6 -1.4 -5.2 

 

 

Furthermore, with TR-in as the TPM the process exhibits inverse response for 

the throughput changes; but this is not the case when FR is used as the TPM 

although the response is more complex (Figure 5.4). Figure 5.4 shows the production 

rate transients with both the manipulators to achieve -5% change in the throughput 

(Figure 5.4, left); the impact of inverse response is more for bigger changes in the 

throughput (Figure 5.4, right).  

  
 

 121



                                                           Chapter 5 Performance Assessment of PWC Systems 

90

100

110

120

130

0 100 200 300 400 500

Time (Min)

Pr
od

uc
tin

 R
at

e 
(k

gm
ol

/h
r)

90

100

110

120

130

0 100 200 300 400 500

Time (Min)

Pr
od

uc
tio

n 
R

at
e 

(k
gm

ol
/h

r)CS1 with TR-in as TPM
CS1 with TR-in as TPM

CS1 with FR as TPM CS1 with FR as TPM

90

100

110

120

130

0 100 200 300 400 500

Time (Min)

Pr
od

uc
tin

 R
at

e 
(k

gm
ol

/h
r)

90

100

110

120

130

0 100 200 300 400 500

Time (Min)

Pr
od

uc
tio

n 
R

at
e 

(k
gm

ol
/h

r)CS1 with TR-in as TPM
CS1 with TR-in as TPM

CS1 with FR as TPM CS1 with FR as TPM

Figure 5.4: Production Rate Variation for CS1 to Achieve -5% (left) and -25% 
(right) Changes in the Throughput 

 

Equipment Constraints: Based on the above discussion, it now logically 

follows that the probability of hitting constraints in the presence of disturbances is 

high if TR-in is the TPM. For example, operational constraints related to ‘dry-hole 

pressure drop (ΔPdry)’ of recycle column are found to be violated in the presence of 

several disturbances, i.e., ΔPdry exceeds maximum allowable ΔPdry (Table 5.6). Note 

that, for any change in the throughput (i.e., d2, d10 and d11), the ΔPdry constraints are 

violated even for CS2; however, the violation in this case is less severe (Table 5.6).  

 

Table 5.6: Dry Hole Pressure Drop for the Recycle Column in CS1 and CS2 
 

Maximum allowable ΔPdry for CS1 and CS2 for the base-

case HDA process (i.e., without any disturbance) 

2.57 psi 

Calculated ΔPdry for CS1 in the presence of  

d1, d2, d3, d8 and d9 with TR-in as the TPM* 

3.04 psi 

Calculated ΔPdry for CS2 in the presence of  

d2, d10 and d11 with FR as the TPM* 

2.60 psi 

*Calculated ΔPdry is within the maximum allowable value for other disturbances 

 

Also, in the presence of disturbances, proper functioning of CS1 needed flat 

head characteristics (i.e., head as the pump dynamic specification) for the recycle 

toluene and fresh toluene feed pumps. Else, with rising head characteristics (i.e., 
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duty as the specification – with this specification, head developed by the pump 

decreases as the flow increases), very large pressure drops are required for the 

valves in recycle section to handle disturbances. For example, with flat head 

characteristics for these pumps, CS1 is able to achieve -5% change in the 

throughput, using either FR or TR-in as the TPM, with a reasonable pressure drop of 

20-50 psi across all the valves in the process. However, with rising head 

characteristic, some valves in recycle section needed larger pressure drops (e.g., 

valve on total toluene flow needed as large pressure drop as 200 psi) to achieve -5% 

change in the throughput using TR-in as the TPM, though it could be achieved with a 

reasonably smaller pressure drop if FR is used as the TPM. In general, it is observed 

that, for rising head characteristics for the pumps in recycle section, valve pressure 

drops required to achieve any amount of throughput change are larger if TR-in is used 

as the TPM than those required if FR is the TPM. On the contrary, in case of CS2, the 

process is able to achieve the throughput changes with reasonable pressure drops 

(i.e., 20–50 psi) irrespective of characteristics of pumps in the recycle section.  

 

In general, single-stage high-speed centrifugal pumps are recommended for 

the pumps in recycle- and toluene-feed sections, based on operating conditions, i.e., 

low-flow, high head requirements and low-viscosity fluids (Woods, 1995). Such 

pumps can exhibit either flat or rising head characteristics (McGuire, 1990). However, 

CS1 requires flat head characteristics for these pumps; On the other hand, CS2 

exhibited comparable performances for both types of pump characteristics, which 

means that CS1 puts more restrictions on design considerations. For a fairer 

comparison with reasonable pressure drops across valves, flat head characteristic is 

chosen (i.e., head is specified in the dynamic simulation) for the pumps in the recycle 

section. This discussion demonstrates that, also as pointed by Davidson and Bertele 

(2000), at times, the control structure has an effect on the choice of pump, thereby 

highlighting the dynamic implications of steady-state design aspects.  

 123



                                                           Chapter 5 Performance Assessment of PWC Systems 

Operational Constraints: There is no explicit control over H2 to aromatics 

ratio in CS1, and, the ratio is observed to be varying between 4.8 and 6 depending 

on the disturbance. In contrast, the regulation of this ratio in CS2 is better and 

controlled at 5 in the presence of all disturbances. This is an important constraint for 

the HDA process as it has both economical and operational implications. In order to 

avoid coking, it is recommended to keep the ratio more than 5. However, from 

economic perspective, it is good to keep it as low as possible. Hence, an intuitive 

compromise between economics and operations is to keep it as close as possible to 

5.  

 

Though there is no direct control over reactor pressure in CS2, variation in the 

reactor pressure in the presence of all the expected disturbances is observed to be 

not significant. For example, in the presence of the worst case disturbance (-25% 

variation in the throughput, i.e., d3 in Table 5.3), around 2% change in the reactor 

pressure is observed (i.e., a deviation of 11.3 psia from 500 psia). For the rest of the 

disturbances, the change in reactor pressure is much less (< 1%). Also, any negative 

effect due to the pressure change is somewhat compensated by the conversion 

controller which ultimately varies the reactor temperature to maintain the conversion 

and thereby regulating the throughput. Thus, an explicit control action over reactor 

pressure is not needed if CS2 is chosen as the control structure. 

 

Robustness and Stability: Though CS1 is able to stabilize the process for 

most of the disturbances, it is not able to handle large changes in the throughput 

using the reactor temperature (TR-in) as the TPM (Table 5.3). Even -15% change in 

the throughput could not be achieved using TR-in as the TPM as the process becomes 

unstable (Figure 5.5). Though the stability can be achieved for other disturbances, 

the performance is not as good as what can be achieved using FR as the TPM. For 

example, in the presence of disturbance d1, DDS for CS1 with FR as the TPM (10.41) 
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is nearly of that of CS1 with TR-in as the TPM (20.05).  Even -25% change in the 

throughput (d3 in Table 5.3) can be accomplished by making use of FR as the TPM 

(Figure 5.5). In general, CS1 with TR-in as the TPM is more sensitive in comparison to 

CS1 with FR as the TPM (this is also reflected from larger values of DDS for CS1 with 

TR-in as the TPM given in Table 5.3) and is less robust. This observation contradicts 

the conclusion made by Luyben et al. (1999) who observed that larger changes in the 

throughput can be accomplished using TR-in as the TPM. This could be due to several 

reasons: (1) Luyben et al. (1999) assumed ideal vapor-liquid equilibrium (VLE), 

whereas, the present study uses the Peng-Robinson (PR) equation of state to predict 

VLE behavior; we have observed that the choice of property package can 

significantly affect the column conditions. For example, with ideal VLE assumption, a 

maximum of 9%, 21% and 22% variation (compared to the values obtained using PR 

equation of state) is observed in tray temperature, net liquid and net vapor flows, 

respectively. (2) simplified models for some units are used in the study by Luyben et 

al. (1999), e.g., stabilizer is modeled as a splitter and tank compared to realistic 

simulation as a column in the present study, and (3) the differences in the simulation 

programs; Luyben et al. (1999) used TMODS dynamic simulator, while this study is 

based on HYSYS.  

 

Performance: Though CS1 with FR as the TPM is able to handle all the 

disturbances, the performance, especially with respect to the recycle column, is 

slightly inferior to that of CS2 (Figure 5.6). CS2 is able to regulate the temperature 

within the sensor range while the temperature in CS1 crosses the sensor limits; note 

that, though the biphenyl concentration, but not the tray temperature, is controlled in 

CS2, tray temperature profile of CS2 is shown in Figure 5.5 for the sake of 

comparison). For several other disturbances, CS1 with FR as the TPM exhibited 

comparable performance with CS2. Its performance in the presence of feed 

composition and H2 pressure disturbances (i.e., d4, d5, d12 and d13) is, however, 
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relatively poor. In addition, one of the merits of CS2 is that it gives stable 

performance for all the anticipated disturbances.  
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Figure 5.5: Accumulation Profile for the Process with CS1 for a Throughput 
Change 
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Figure 5.6: Recycle Column Tray Temperature Transient for -25% Throughput 
Change  

 

5.5.2 Evaluation of CS3 

 

CS3 failed to stabilize the process in the presence of nearly half of the 

disturbances (i.e., d2, d3, d4, d7, d10, d11); though, for some disturbances (i.e., d1, d5, 

d6, d8 and d9), CS3 is able to stabilize the process, performance is observed to be 

poor. For example, in the presence of d1, DDS for CS2 is only 11% of that of CS3 

(Table 5.3). In general, CS3 is observed to be relatively more sensitive to 

disturbances (as can be interpreted from the large values of DDS of CS3 in Table 

 126



                                                           Chapter 5 Performance Assessment of PWC Systems 

5.3) and thus, it is less robust (i.e., CS3 cannot handle large disturbances). For 

example, even for -10% change in the throughput, some control valves operate close 

to constraints, i.e., valve opening is less than 10% (Figure 5.7). So, valves reach 

saturation limits for bigger disturbances (e.g., d3 in Table 5.3, i.e., -25% change in the 

throughput). Similarly, even for a small increase (e.g., +1%) in the throughput, the 

process is significantly affected and hence, for +5% change in the throughput (i.e., d2 

in Table 5.3), the process becomes unstable (Figure 5.8). For the process with CS3, 

due to the instability in the presence of d2, the product quality became uncontrollable 

and reached lower sensor limit at about 900 min; and the corresponding manipulated 

variable saturated with 100% valve opening (Figure 5.8, top). The production rate 

also cannot be regulated at the desired set-point (Figure 5.8; bottom). Considering 

these results, it appears that plant-wide perspective is not preserved in CS3. 

However, it is interesting to note that the performance of CS3 is comparable to that of 

CS2 and CS1 for disturbances d14 and d15, and it is better than that of CS1 for 

disturbances d12 and d13 (Table 5.3).  
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Figure 5.7: Response of Some Variables for the Process with CS3 for a -
10% Change in the Throughput 

 

To conclude, for all the disturbance scenarios, no control structure can give 

better performance than any other control structure. Hence, it is more appropriate to 

choose the control structure that gives either reasonably comparable or better 

performance for most, if not all, of the disturbances. For the HDA process, the 
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performance of CS2 is either superior or comparable to that of CS1 and CS3, and 

thus, recommended as the final control structure. In general, recycle column, out of 

all the equipments, is observed to be the most sensitive with any of the control 

structures and is the root-cause of instability. For example, for large changes in the 

throughput, CS1 is observed to be unstable mainly due to the failure of recycle 

column. Thus, the modified HDA process without recycle column (i.e., the process in 

which biphenyl is being recycled) may be a better choice from control perspective. 

This alternative, in addition to several others, has recently been studied by Konda et 

al. (2006) and, is, indeed, observed to be superior from the standpoint of control. 

However, Konda et al. (2006) have considered only CS2 but not CS1 and CS3.  One 

can expect that CS1 and CS3 performs better for the modified HDA process (as 

there is no recycle column) than the conventional HDA process. In order to quantify 

this, rigorous dynamic simulations for the modified HDA process with all the control 

structures need to be carried out; this is beyond the scope of the present study. 
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Figure 5.8: Response of Some Variables for the Process with CS3 for a +5% 
Change in the Throughput 

 

5.5.3 DDS as a Troubleshooting Tool 

 

  DDS facilitates faster troubleshooting (e.g., detection of instability). For 

example, CS3 becomes unstable in the presence of disturbances related to 

uncertainty in the kinetics, which is mainly due to the inability of the recycle column’s 

control system to mitigate the impact of disturbances. However, many other process 

variables (e.g., levels in the product column) appear to be reaching steady-state 

(Figure 5.9, top) and thus did not capture the process instability. On the other hand, 

accumulation profiles have captured the instability as and when it took place (Figure 

5.9, bottom). What is more interesting is that, the accumulation profile for the product 

column (where all the process variables appear to be reaching steady-state) also 

captures the instability. Similarly, the accumulation profiles around other unit-
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operations (e.g., reactor, stabilizer and benzene column) also capture instability even 

though the associated process variables appear to be reaching steady-state (Figure 

5.10). This emphasizes the fact that accumulation profile preserves the plant-wide 

perspective and thus it can be a better measure for plant-wide performance 

assessment. At times, depending on the severity of the accumulation and process 

complexity, it might take hours or even days to recognize any instability through the 

process variables. On the other hand, accumulation profiles (either local or plant-

wide) signal instability quickly if there is instability anywhere in the plant. For 

example, from Figure 5.8, the process instability can be identified only after 900 min 

of operation. On the other hand, as shown in Figure 5.11, instability can be identified 

soon after 400 min of operation from accumulation profiles of the entire plant.    
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Figure 5.9: Product Column Level (above) and Accumulation (below) Profiles 

for the Process with CS3 in the presence of Uncertainty in the Reaction 
Kinetics (i.e., d7) 
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Figure 5.10: Accumulation Profiles for Different Units in the Process with CS3 
in the Presence of Uncertainty in the Reaction Kinetics (i.e., d7) 
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Figure 5.11: Accumulation Profile for the Process with CS3 for a Change of 
+5% Throughput (i.e., d2) 
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5.5.4 Simplified Computation Procedure for DDS 

 

In order to compute DDS, composition of all inlet and exit streams to the 

process is necessary. At times, concentration of some components may not be 

available. Thus, it will be useful to see how DDS will be affected if some components 

are ignored. Obviously, one cannot ignore the components present in large quantity, 

such as toluene and benzene in the HDA process. So, we ignored biphenyl, which is 

present in smaller quantity and recomputed DDS for the various disturbances for the 

process with CS1 and CS2. From Figure 5.12, it can be concluded that biphenyl can 

be ignored and, still, DDS can be computed with reasonable accuracy for the HDA 

process, thereby making it further easier to compute. DDS was also computed by 

ignoring methane and hydrogen along with biphenyl; and it was found that ignoring 

them in the HDA process is not desirable for accurate results as they are in 

significant quantity.     
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Figure 5.12: Parity Plots of Absolute Values of DDS (before and after ignoring 
biphenyl) for CS1 (left) and CS2 (right) 
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5.6 Summary  

 

 A performance metric, DDS, is proposed based on component accumulation 

profiles which is then successfully used to assess the performance of three PWC 

systems for the HDA process using rigorous nonlinear dynamic simulation. As 

discussed in Section 5.2, DDS has several advantages; some of them are: DDS is 

equally applicable to linear and nonlinear processes, computation procedure of DDS 

remains the same irrespective of the control structure, DDS can be computed easily 

using rigorous process simulators, and it facilitates early detection of instability.  

 

From the preliminary studies, it is noted that the DDS is proportionately 

related to control effort (i.e., control valve movement) but further study needs to be 

carried out to quantify this observation. In addition, it should be noted that DDS used 

in this study gives equal priority to all the components and also to the positive and 

negative deviations. Hence, if these assumptions are not true for any process (e.g., if 

some components are measured at ppm level while others are not), DDS should be 

appropriately modified, perhaps by considering functions of accumulation of 

components while computing DDS. However, such a procedure can be process-

specific (e.g., what should be the function?) and further investigation needs to be 

carried out before coming to a conclusion. Since DDS is more fundamentally defined 

based on the accumulation in the component material balances, it is more useful for 

plant-wide performance analysis. For example, the DDS values over the subsections 

of the plant, after normalization, are additive (in order to compute DDS over the entire 

process). On the other hand, IAE values are not additive as they can be defined for 

any process variable (e.g., temperature, pressure, composition or levels). Though, 

DDS do not directly capture the variation in all these process variables, it indirectly 

captures the impact through accumulation profiles as any change in these process 
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variables always effects component material balances. But the normalization of DDS 

values over different sections of the plant, on the basis of either section inventory or 

flows, needs further investigation so that it can be generalized. 

 

Dynamic performance of three PWC systems (CS1, CS2 and CS3) for the 

HDA process in the presence of several anticipated disturbances shows that they 

exhibit entirely different behavior. In general, CS2 (the balanced control structure with 

the fixed-feed TPM), is observed to be offering superior or comparable performance 

over CS1 (control structure with the internal TPM) and CS3 (on-demand control 

structure). In addition, satisfaction of operating constraints (such as H2 to aromatics 

ratio and dry-hole pressure drops in distillation columns) in CS2 is better, and CS2 is 

more flexible from steady-state design standpoint (e.g., choice of pump 

characteristics). The performance of CS1 is found to be largely dependent on the 

choice of TPM. With FR as the TPM, the performance of CS1 is comparable to that of 

CS2 for many disturbances; with TR-in as the TPM, however, the process is more 

sensitive to disturbances and thus less robust. CS3 exhibited very slow dynamics 

and is more sensitive to the disturbances; thus, it is not able to stabilize the process 

for most of the anticipated disturbances.  Despite these advantages, the use of CS2 

may be hindered as it requires more composition measurements. However, 

considering the advances in composition analyzer technology and its increasing 

industrial applications, one can foresee that it will be less of a concern 
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CHAPTER 6 

PLANT-WIDE INTERACTION OF DESIGN AND CONTROL*

 

Integration of process design and control has been receiving growing interest 

in recent years to reap both economic and operational benefits. Thus, in this chapter, 

a modified sequential approach consisting of two stages and combining rigorous 

nonlinear simulation with heuristics is proposed for integrated design and control of 

industrial processes. In the first (i.e., design) stage, several alternatives are 

systematically generated and ranked based on economics. A few top-ranked 

alternatives from the design stage are then forwarded to the second (i.e., control) 

stage for further analysis on their dynamics to arrive at the best process that is 

economical as well as easy to operate. Nonlinear simulation is combined with 

heuristics for realistic analysis in each stage. The control system performance 

measure, namely, dynamic disturbance sensitivity (DDS), which was proposed in 

Chapter 5, is used to assess the dynamic performance of process designs and 

control structures. Application of the proposed approach to the HDA process is 

described in detail. The dynamics of the most economical process alternative are 

found to be inferior to those of slightly less economical alternatives, which highlight 

the need for plant-wide studies on the interaction of design and control.  

 

6.1 Introduction 

 

Design engineers try to design the most economical processes while control 

engineers need processes that are the best operable. However, many a times, the 

objectives of these two groups, design and control, may contradict. For example, 

                                                 
* This chapter is based on the paper - Konda, N.V.S.N.M., Rangaiah, G.P. and Lim, D.K.H. 
Optimal Process Design and Effective Plant-Wide Control of Industrial Processes by 
Simulation-based Heuristic Approach, Ind. Eng. Chem. Res., 45, pp. 5955-5970. 2006.  
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economically optimal processes may be difficult to control and vice versa, in which 

case, a compromised solution has to be developed. Hence, it is important to 

understand the interaction effects between design and control in order to be able to 

strike the right balance for overall good results (Seferlis and Georgiadis, 2004; Seider 

et al., 2004). Interaction between design and control in the context of single units has 

been studied by researchers over the last couple of decades. However, relatively 

fewer attempts have been made on the interaction effects between process design 

and PWC system design. One obvious reason for this is the inherent complexity of 

large-scale industrial processes. In particular, processes with recycles introduce 

difficulties during process design as well as control system design (Kumar and 

Daoutidis, 2002). Analysis would be more complicated and rigorous treatment is 

needed before finalizing the design. Thus, integrated design and control from the 

plant-wide perspective is needed, which is precisely the subject of this chapter.  

 

Although, there have been several attempts on design and control in the 

recent past (Luyben, 2000b; Reyes and Luyben, 2000 & 2001; Chen and Yu, 2003; 

Chien et al., 2004), most of them presume that the design and/or control alternatives 

are somehow available. In contrast, the present work systematically generates 

several design alternatives and then designs effective control systems for the 

attractive alternatives. Several researchers studied the interaction of design and 

control for hypothetical processes with a given process design and control structure 

(Grassi, 1993; Lyman and Luyben, 1996; Wu and Yu, 1997; Luyben, 2000c & 2001; 

Cheng and Yu, 2003); however, their primary importance is on the effect of 

parametric decisions on control. Present work aims at generating several process 

alternatives and studying the impact of both structural and parametric decisions on 

control from the plant-wide perspective, using rigorous nonlinear models.   
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Integrated design and control approaches can be broadly classified into two 

categories: (1) simultaneous design and control, and (2) sequential design and 

control (Meeuse and Grievink, 2004). In the former approach, control aspects are 

considered during each stage of design. The simultaneous approaches can further 

be classified based on (i) controllability measures and (ii) optimization. In the former, 

controllability metrics are used to gauge the ease of control of a particular process 

design. However, most often, this analysis is performed using either steady-state or 

linear dynamic models, which usually introduces significant approximations and, 

hence might not be able to characterize dynamic behavior of plants with sufficient 

accuracy (Sakizlis et al., 2004). The optimization-based methods have been 

successfully applied to simple problems involving a small number of units (Luyben 

and Floudas, 1994; Perkins and Walsh, 1996; Kookos and Perkins, 2001b). 

However, their application to large-scale plants becomes cumbersome, because of 

the large combinatorial explosion of alternatives. Moreover, using simultaneous 

methods, it is not always possible to take the best possible control decision during 

the initial stages of design, because of the lack of sufficient information. Hence, these 

decisions, which were taken in the early stages, may have to be revised in the later 

stages. In addition, as the best alternative would not surface until the designer 

explores the entire search space, typically, every process alternative would have to 

be considered in both the design and control stages. This can be extremely time-

consuming, especially in the context of PWC, because economically unattractive 

alternatives would also be studied from control viewpoint.   

 

In the sequential approach, design and control are performed sequentially 

(e.g., Alhammadi and Romagnoli, 2004). This approach is relatively simple and 

equally applicable, even to complex processes; its primary limitation is that process 

design is finalized before the controllability analysis is carried out. So, there is a 

possibility that one might miss out the process design alternative that is better 

 137



                                                              Chapter 6 Plant-Wide Interaction of Design and Control 

controllable with little additional economic penalty. In addition, the process design, 

which is finalized based only on steady-state economic considerations, may have 

severe operational problems. Hence, in the proposed approach, we select a few 

potential design alternatives (instead of only one) that are worthy of consideration for 

further controllability analysis. By doing so, the primary limitation of the traditional 

sequential approach could be avoided. A similar approach has been used by 

Narraway et al. (1991) to understand the interaction between design and control of a 

simple process employing mathematical tools on linearized models. However, 

nonlinear dynamic models are not considered in their study.   

 

The proposed approach is based on heuristics and simulation to achieve 

synergistic benefits. As heuristics cannot always be relied upon, powerful process 

simulators are employed as an integral part of this approach, to ensure reliability. 

Process simulators for dynamic studies were not used extensively in the past. 

However, recent advancements in the computing technology boosted their 

capabilities, which, in turn furthered studies on plant-wide analysis (Luyben, 2002). 

Process simulators offer a good platform to study complex processes more 

effectively. Hence, the present study is based on a process simulator, namely, 

HYSYS, which has both the design and control capabilities. The designer can 

seamlessly move to dynamic mode from steady state, and make use of essentially 

the same model in both the modes. Such a feature can greatly facilitate studies on 

integrated design and control especially in the plant-wide context, and, hence, 

HYSYS is chosen for the present study. However, the analysis is generic and 

applicable to any other commercial process simulator that has got similar capabilities 

of design and control. The proposed sequential approach has two stages: (i) process 

design and (ii) control system design, which are discussed below.  
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Process Design: Douglas (1988) proposed a heuristic procedure for 

conceptual process design, which, hereafter, shall be referred to as conventional 

design procedure (Figure 6.1). This procedure has received widespread attention 

from academia and industry over the years. One of its key features is to consider 

recycles in the early stages. Keeping in mind the increasing complexity of chemical 

processes, Hoo and co-workers (Emets, 2003; Vasbinder et al., 2004; Emets et al. 

2006) proposed a modified design procedure, which is essentially a variant of 

conventional design procedure, by considering recycles towards the end of the 

hierarchical procedure (Figure 6.1). Their contention is that recycles should be 

considered in a later stage, based on their own economical merit. The modified 

design procedure seems to be more logical as it might be difficult to consider recycle 

decisions in an early stage, because of the lack of information and the uncertainties 

involved, for several reasons. First, although the recycling of unconverted raw 

materials is often mandatory as raw materials are usually expensive, it may be wiser 

not to have recycles in the case of cheaper raw materials (such as water). Second, 

when the reaction chemistry is complex with multiple reactions and reversible 

kinetics, it is not easy to decide, in such an early stage, whether it is economical to 

recycle certain components (especially intermediate products). Third, if the 

unconverted raw materials are in the gaseous phase and the conversions are 

relatively high, the recycling decision is largely dependent on the economic feasibility 

of a compressor. Fourth, recycle decisions also dependent on the optimal 

conversion, which is usually a plant-wide decision, and may not be known at such an 

early stage.  

 

Because of the aforementioned reasons, the process alternative without 

recycle may be more economical at times; this potential alternative and any other 

variants of it might be overlooked if the design engineer decides to recycle early in 

the design stage. On the other hand, using the modified design procedure (i.e., by 
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considering the recycles towards the end), one can systematically compare the 

economic potential of the process with and without the recycle before deciding on it. 

Hence, the modified design procedure, while retaining all the benefits of the 

conventional design procedure, allows the designer to explore more alternatives. In 

the present study, the feasibility of the modified design procedure is critically 

analyzed using the HDA process as a case-study, and several design alternatives 

are generated. Possible improvements to the modified design procedure are also 

suggested. Finally, a few economically attractive alternatives for design are 

forwarded to the second (i.e., control) stage.  

 

Plant-Wide Control: Luyben’s heuristic method has been widely used to 

design control systems for highly integrated processes (Luyben et al., 1999). In this 

method, he proposes to fix the liquid recycle flow in order to avoid snowball effect, 

which is popularly known as Luyben’s rule. However, there seems to be no 

agreement among researchers on this rule. For example, Skogestad and co-workers 

noted that Luyben’s rule seems to have a limited basis (Larsson et al., 2003). Yu 

(1999) observed that the Luyben’s rule can only transfer the snowball effect from one 

part of the plant to another part, but it cannot totally eliminate the snowball effect from 

the plant. He suggested using a balanced control system instead; however, no 

procedure to arrive at such a system is given. To circumvent these problems, Konda 

et al. (2005) proposed an integrated framework, based on improved heuristic 

methodology and rigorous nonlinear simulation tools. In this framework, similar to the 

analysis in the design stage, recycles are analyzed towards the end of the 

methodology and necessary action is taken (based on their severity), with the help of 

simulation tools. This gives flexibility to the designer to examine any possible 

improvements to compensate for the deterioration of control system performance due 

to recycles that otherwise would have been overlooked. In the proposed sequential 

approach, the integrated framework is utilized in the second stage to quickly design 
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efficient control systems for the attractive alternatives obtained in the first stage. A 

new metric is proposed and used in this study to analyze the dynamic performance of 

the alternatives. Finally, a suitable design is selected based on both steady-state and 

dynamic aspects. 

  

The remaining chapter is organized as follows. The next section critically 

evaluates two hierarchical process design procedures to generate an optimal 

process design and presents many process design alternatives. Section 6.3 develops 

control systems for the economically attractive alternatives obtained in the first stage. 

In section 6.4, critical evaluation and comparison of the performance of control 

systems of different process alternatives is carried out using the proposed measure, 

and the impact of process design on PWC decisions is demonstrated. Finally, 

chapter summary is given in the section 6.5.  

 

6.2 Optimal Process Design 

 

6.2.1. Hierarchical Procedures  

 

Douglas (1988) proposed a hierarchical procedure for conceptual design of 

chemical processes (Figure 6.1). He then applied this procedure to the HDA process 

and obtained a design which shall be referred to as conventional base-case design. 

According to the conventional design procedure, both the reaction system and the 

recycles are considered in the third stage of the five-stage hierarchical design 

procedure. As discussed previously, Hoo and co-workers (Emets, 2003; Vasbinder et 

al., 2004; Emets et al. 2006) proposed a modified design procedure to handle the 

increased complexity of the chemical processes efficiently (Figure 6.1). The modified 

design procedure involves two modifications of the conventional design procedure:  
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(1) The reaction section, being the heart of any chemical process, should be 

given special attention and included a separate stage for reactor design; and  

(2) Recycles should be considered towards the end, but not in early stages, of 

the design procedure, based on their own economic merit.  
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Figure 6.1: Conventional and Modified Design Procedures 
 

By applying the modified design procedure to the HDA process, Emets (2003) 

was able to obtain a modified process design with two main differences when 

compared to the conventional base-case design: (i) with a greater emphasis on 

reaction section, he obtained a reactor scheme that consisted of three reactors in 

series (Figure 6.2), in contrast to the single reactor obtained by the conventional 

design procedure, and (ii) with greater emphasis on recycles, he concluded that gas 

recycle is not needed, for economical reasons. Emets (2003) claimed that the 

modified design requires less hydrogen and, hence, the modified design procedure is 

capable of generating a more economical design. However, he considered the 

“hydrogen-to-toluene ratio in the reactor feed” as the process constraint, whereas the 
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actual process constraint is ‘hydrogen to aromatics (sum of toluene, benzene and 

diphenyl) ratio in the reactor feed’ (McKetta, 1977; Douglas, 1988). As can be seen 

from Figure 6.2, with the hydrogen-to-toluene ratio constraint, benzene and diphenyl 

in the feed to the second and third reactors would not have to be taken into account. 

Consequently, the hydrogen flow rate in his design is greatly reduced, which led 

Emets (2003) to conclude that the HDA process with three-reactor scheme is less 

expensive than the conventional base-case design. Hence, difference in the process 

constraint is the primary reason for the more economical nature of his modified 

design.  

Toluene 

Reactor 1 Reactor 2 Reactor 3 Hydrogen 

 

Figure 6.2: Emets’ Modified Reactor Scheme 
 

Based on the aforementioned analysis, one cannot conclude that the modified 

design procedure is inferior to the conventional design procedure. Had the real 

constraint been the same as the one assumed by Emets (2003), the conventional 

design procedure could not have generated the process alternative without gas 

recycle (which is indeed more economical, as discussed earlier). In other words, the 

most economical alternative would have been skipped out of designer’s 

consideration if conventional design procedure were used. Although Emets’ first 

suggestion, which can be easily incorporated into conventional design procedure 

(with slightly more emphasis on reaction section during the third stage), the second 

suggestion regarding recycle analysis deserves further examination before 

implementing/discarding it. Analyzing the recycle effects towards the end is logical as 

it would allow the designer to explore more potential alternatives that otherwise 

would have slipped out of designer’s consideration. For example, if there were no 
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gas recycle in the HDA process, one could think of replacing the stabilizer with a 

simple flash as methane accumulation within the process is much less now. 

However, this potential alternative would not have surfaced if one had fixed the 

recycles early in the design, which puts additional constraints on the possibilities for 

reactor and separation subsystems. Hence, one of the objectives of this section is to 

critically evaluate the feasibility and usefulness of the modified design procedure, in 

comparison to the conventional one.  

 

To apply either of the two procedures listed in Figure 6.1, it is necessary to 

evaluate the profitability of the different flowsheets generated at each stage of the 

procedure, so that the designer can select the most profitable alternative(s) and 

proceed to the next stage. A summary of the profitability analysis is shown in Figure 

6.3 and further details can be obtained from Seider et al. (2004) and Turton et al. 

(2003). Cost correlations are taken from the latter, and a return on investment of 20% 

is considered to be the profitability measure to calculate the selling price of benzene. 
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Figure 6.3: Profitability Analysis of a Flowsheet 
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To facilitate the plant-wide profitability analysis, a custom-made HYSYS-

Visual Basic-Excel interface (Figure 6.4) is developed to automate profitability 

evaluation of a particular flowsheet. It combines the process simulation power of 

HYSYS with the spreadsheet capabilities of Microsoft Excel program by linking the 

object libraries of these two applications through Visual Basic. The interface captures 

the key process simulation results from HYSYS and displays it in a user-friendly 

interface, allowing the user to see, at one glance, whether all the key process 

constraints are satisfied. This interface also allows the user to change the simulation 

parameters in HYSYS directly from Excel. For example, the user can change the 

desired reaction conversion in the Excel interface, which will automatically transmit 

the new input to HYSYS, which, in turn, runs the simulation, based on the new input 

and then send the new results back to the Excel interface. With this interface 

program, the time taken to evaluate a process flowsheet is greatly reduced, the 

application of the design procedures becomes simpler, and the results are more 

accurate.  

HYSYS
Object
Library EXCEL

Object
Library

VBAHYSYS
Object
Library EXCEL

Object
Library

VBA

Figure 6.4: Linking Object Libraries of HYSYS and Excel 

  

6.2.2 Application to the HDA Process 

 

Because of space limitations, only those steps that are different from the 

steps in conventional design procedure are discussed in this section. The main 

difference between the two procedures arises in stage 3. If one uses the 

conventional hierarchy, before designing the reactor subsystem in stage 3, decisions 

would be made on which output streams from the process “black box” in Figure 6.5a 
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are to be recycled. For the case of the HDA process, benzene is obviously removed 

as a product.  Toluene is a valuable reactant, and, hence, it should be recycled to the 

process. Diphenyl is a byproduct and a decision should also be made in regard to 

remove it from or to recycle it into the process. If diphenyl is removed from the 

process, there will be loss of some benzene to diphenyl, and, hence, the toluene 

consumption and cost would increase. Furthermore, there are the additional capital 

and operating costs that are associated with the extra separation step of removing 

the diphenyl. It is also necessary to consider the equilibrium constant of the side-

reaction. Finally, a decision is needed as to whether there should be recycle of the 

gas stream that is rich in hydrogen. Here, a tradeoff exists between the savings in 

fresh hydrogen and the additional costs associated with the recycle compressor as 

well as the methane buildup in the loop. It is possible to make rough calculations in 

order to estimate the economic potential of these alternatives and make decisions in 

regard to which streams to recycle. By doing so, Douglas (1988) developed the 

process structure shown in Figure 5a.  
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Figure 6.5: HDA Process after Stage 3 of (a) Conventional and (b) Modified 

Design Procedure  
 

Subsequently, Douglas (1988) continued with the subsequent stages in the 

conventional design procedure (Figure 6.1) and arrived at the flowsheet given in 

Figure 6.6. He observed the optimal conversion to be 75%. However, a recent study 
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by Phimister et al. (1999) observed the optimal conversion to be 70%. Hence, we 

performed plant-wide optimization, using the latest cost data, over a wide range of 

conversion to find the optimal conversion. The selling price of benzene is observed to 

be relatively constant ($64.49 - $64.53/kg-mol) in the conversion range of 70% – 

75%, whereas the price steeply increases if the conversion is <70% or >75%. This is 

because, beyond 75% conversion, yield losses are dominant and, recycling costs are 

observed to be dominant below 70% conversion. In the present study, 70% is used 

as the optimal conversion for conventional base-case design.  

 

The question with respect to the conventional procedure is how confident one 

can be about recycle decisions made in stage 3. At such an early stage of the 

hierarchy, it might not be easy to make decisions in regard to which streams to 

recycle, based on heuristics or rough calculations. It is more or less certain that 

toluene, being a valuable feedstock, should be recycled back to the process. 

However, the decision is not so clear for diphenyl, hydrogen, and methane, because 

such recycles might have a great impact on the design of the reactor and separation 

subsystems. For example, if one had decided on recycling the hydrogen/methane 

stream at stage 3 of the hierarchy, the possibility of replacing the stabilizer column 

with a simple flash unit due to the elimination of methane buildup in the system might 

not have surfaced. This shows that potentially more-efficient designs of the reactor 

and separation subsystems could have been missed if recycle streams were fixed a 

priori.   
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Figure 6.6: HDA Flowsheet from the Conventional Design Procedure 

 

The modified design procedure avoids this limitation of the conventional 

hierarchy by putting off the recycle decision to a later stage. In this manner, the 

reactor and separation subsystems can be designed without any limitations and the 

recycle decision on each output stream can be taken on its own merit, i.e., whether 

recycling a particular output stream will yield a less-expensive flowsheet than the 

base flowsheet without any recycle streams. However, we must not neglect the 

impact of a recycle stream on the reactor and separation subsystems. For example, 

the decision to recycle diphenyl would mean that the diphenyl concentration in the 

process would build up to an equilibrium level and, therefore, the concern of 

increased selectivity losses at high reactant conversions is eliminated. As such, the 

reactor system can be redesigned to operate at a higher optimal conversion. 

Therefore, it would be more appropriate to add an iterative loop to the modified 

 148



                                                              Chapter 6 Plant-Wide Interaction of Design and Control 

design procedure to reflect the re-consideration of the reactor and separation 

subsystems whenever a new recycle stream is considered (Figure 6.7). 

 

Through application of the modified design procedure (Figure 6.6) to the 

design of the HDA process, one would logically start by evaluating a flowsheet where 

diphenyl, excess toluene, hydrogen, and methane are all removed from the process, 

as shown in Figure 6.5b. However, as previously mentioned, recycle of a valuable 

feedstock of toluene is almost certainly economical and one might choose a 

flowsheet with only toluene recycle as the base case instead. This is done in this 

study and the required benzene price of this flowsheet is found to be $92.7/kg-mol 

benzene (at an optimum reactant conversion of 95%). This price was then used as 

the base price for analyzing the next recycle decision. 
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Figure 6.7: Modified Design Procedure with Additional Iterative Loop 
 

As the overall equilibrium constant for diphenyl formation is very low, it might 

be economical to recycle diphenyl and let it build up in the process to the equilibrium 
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level. In such a case, the capital and operating costs that are associated with the 

toluene column are removed. Most importantly, selectivity losses are eliminated. 

Though the fuel value of diphenyl is lost and all the equipment in the liquid-recycle 

loop has to be oversized to accommodate the increased flow rate, savings in the 

toluene feedstock are expected to be more significant. Moreover, the optimum 

reactant conversion is expected to be higher than that of the conventional base-case 

design, as there is no selectivity loss. Hence, as observed by Douglas (1988), the 

optimum reactant conversion for this alternative can even go as high as 98%. From 

the economic analysis of recycling diphenyl to extinction, the selling price of benzene 

is found to be $88.6/kg-mol (at an optimum reactant conversion of 98%). This price is 

lower than the base price, and, therefore, it is economical to recycle diphenyl.  

 

The option of recycling hydrogen is then examined. Two possible alternatives 

are:  

1. Recycle the gas stream directly without any gas separation unit but with a 

purge stream to avoid methane accumulation, and  

2. Recycle hydrogen-rich stream after a gas separation unit.  

For both these alternatives, conversion can be higher than that of the conventional 

base-case design, as there are no selectivity losses. From the cost split of various 

units in the process, two of the most expensive unit operations in the HDA process 

are the reactor and the compressor. Hence, the designer needs to strike the right 

balance between reactor and compressor costs. For the first alternative, plant-wide 

optimization is performed to minimize the selling price of benzene ($/kg-mol). 

Extensive simulations are carried out over a wide range of conversion (from 50% to 

98%, with an interval of 5% conversion), and the optimal conversion is found to be 

90% for the modified design. However, for this alternative, Douglas (1988) observed 

the optimal conversion to be 97.7%, which is different from our finding. This variation 

can be attributed to the changes in the cost of the reactor and the compressor, with 
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them being the two most expensive equipments in the HDA process. Douglas’ cost 

data were updated to the present-day values, for a fair comparison. About 27% hike 

in reactor cost and about 23% reduction in the compressor cost are observed, which 

obviously mean that a reactor with less volume and, hence, less conversion (and 

more recycle) will be more economical, which is consistent with our finding. The 

selling price of benzene for this alternative is observed to be $62.7/kg-mol at optimal 

conversion (90%). This alternative is less expensive than the conventional base case 

design ($64.5/kg-mol), despite the fact that it requires a larger reactor (in order to 

achieve high conversion as there are no selectivity losses). The larger reactor 

lessens the recycle flows and the controllability is expected to be better. However, 

the number of recycling components here is more and may result in operational 

problems. Hence, to gauge the operational benefits of this process design, rigorous 

nonlinear dynamic simulations should be performed.   

 

For the second alternative, membrane gas separation is considered, as it can 

be economically competitive with conventional gas separation methods (such as 

cryogenic distillation, absorption, and pressure-swing adsorption), especially when 

the product purity requirements are not very high (Kao, 1987; Meindersma, 1991; 

Scott, 1995). For processes, that require high-purity (> 99.9%) hydrogen, pressure 

swing absorption can be cost-effective (Meindersma, 1991). However, for the HDA 

process, the purity requirements on H2 are not very high, and, hence, membrane 

separation can be a cost-effective alternative. In addition, the gas flow rate from flash 

in the HDA process is low (<108 ft3/day), and, hence, membrane separation is the 

most favorable option (Prasad et al., 1994). Several design issues that arise at this 

stage are:  

(1) Which membrane configuration – a simple, recycle-permeator or two-

membrane-type permeators, should be considered?  
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(2) What should be the operating conditions of the membrane purification 

unit? do the feed conditions (temperature and pressure) require preprocessing?  

(3) What are the maximum attainable purity and recovery of hydrogen in the 

permeate stream?  

(4) Where should the membrane unit be placed - on the purge stream or the 

flash vapor stream?  

 

As the separation of hydrogen and methane is easy because of the higher 

selectivity (values as high as 200 are reported by Zolandz and Fleming, 1992), a 

simple membrane-permeator is considered in this study. As the gas feed to the 

membrane is already available at high pressure (~ 445 psia), no further compression 

is needed. As the gas feed to membrane is available at low temperature (100 oF), 

polymeric membranes can be used without any difficulty in the operation. 

Alternatively, one can consider inorganic membranes or mixed-matrix composite 

membranes (with enhanced desirable characteristics). More than 95% purity and 

recovery of H2 can be expected for H2/CH4 separation (Scott, 1995; Nakagawa, 

1994). 

 

The placement of the membrane unit introduces two more potential design 

alternatives: place the membrane unit on the entire flash vapor stream or place it on 

the purge stream. This placement has different economic and operational 

implications on different sections of the plant (especially the reactor and compression 

sections). The alternative with the membrane unit on the flash vapor stream has a 

distinct feature – the methane content in the reactor is reduced to the smallest 

possible value, which has both positive and negative effects. Owing to the relatively 

lesser methane content in the reactor section, the required reactor volume would be 

less and, hence, reactor is less expensive. On the other hand, there is a greater 

possibility that the reactor outlet temperature would exceed the maximum allowable 
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value due to the reduced methane content in the reactor coupled with the fact that 

the optimal conversion is relatively high. Recall that methane in the reactor serves as 

thermal sink to keep the outlet temperature well below the constrained value, as in 

other alternatives. Consequently, the reactor section has to be modified accordingly, 

which will be discussed later. Similarly there are differences in the compression 

section of both the alternatives. Compression costs in the first alternative, i.e., the 

process with the membrane unit on the flash vapor stream, would be higher as all the 

relatively high-purity hydrogen (i.e., membrane permeate) has to be compressed to 

the reactor conditions from very low pressures. Although the second alternative, i.e., 

the process with the membrane unit on the purge stream, requires two compressors 

– one to compress the membrane permeate and the other to compress the gas 

recycle stream (which is already at relatively high pressures), the overall 

compression cost is expected to be less, compared to the first alternative as the 

amount of membrane permeate is relatively less. However, the aforementioned 

merits of the second alternative are dependent on the purge ratio (i.e., what fraction 

of flash vapor stream is taken out as purge). Hence, both alternatives are analyzed 

further.  

 

The alternative with the membrane unit placed on the flash vapor is 

considered first, and brief description of the membrane unit† is given as follows. The 

feed to the membrane is at 445 psia and 100 oF. The CH4-rich retentate is assumed 

to be leaving at the same temperature and with a small pressure drop (5 psia), and, it 

can be used a fuel gas. H2-rich permeate is assumed to be leaving at a much lower 

pressure (i.e., 45 psia in order to provide a good driving force for separation) and a 

temperature (95 oF) slightly lower than the feed temperature (100 oF). Based on the 

Hydrogen Production Facilities Plant Performance and Cost Comparisons Final 

                                                 
† Due to the unavailability of the membrane unit in HYSYS, an extension from the Aspentech support 
website is used here to simulate the membrane unit.  
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Report published in March 2002 by Parsons Infrastructure and Technology Group 

Inc. (http://www.fischer-tropsch.org/DOE/DOE_reports/40465_fr/40465_fr_toc.htm, 

accessed in April, 2006), a value of 0.1 std cc/min/cm2/cm Hg was used as the 

hydrogen flux through the membrane. Zolandz and Fleming (1992) suggested an 

optimal selectivity of 110 for H2-CH4 separation, and, hence, it is used in this study. 

The required membrane area is estimated to be 186 m2 to achieve 98% pure 

hydrogen and 98% recovery of hydrogen in permeate. A spiral-wound module, which 

is relatively less expensive than a tubular module, is considered; alternatively, 

hollow-fiber modules can be considered, which are much cheaper but they suffer 

from fouling. The cost of spiral-wound modules can vary between US$10/m2 and 

US$100/m2 (Baker, 2002); therefore, an average value of US$55/m2 is assumed. 

With these specifications, the membrane cost is only 0.23% of the overall capital 

cost, and, hence, any uncertainty in the membrane information will not affect overall 

conclusions that will be deduced. Although the membrane operation is observed to 

be relatively inexpensive, one of the problems with membrane operation is that the 

permeate pressure (usually close to atmospheric pressure) will be well below the 

feed pressure. Hence, in the HDA process, the permeate compressor is observed to 

be expensive (almost one-third of the total capital cost), and the operating cost is 

also significant.  

 

In the conventional base-case design for the HDA process, the excessive 

methane content in the reactor serves as a heat-sink to maintain the reactor outlet 

temperature well below the upper limit (1300 0F) to avoid cracking, although the 

reactor is adiabatic. However, in the modified HDA process with the membrane unit 

on the flash vapor stream, the amount of methane within the reactor is significantly 

less as most of the methane is removed by the membrane unit. Also, as there are no 

selectivity losses, the optimal conversion for the process with the membrane unit is 

expected to be higher than that of the conventional HDA process (70-75%). Hence, 
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more energy will be released in the reactor and the outlet temperature of an adiabatic 

reactor is unlikely to be within the upper limit. Two possible alternatives are (i) a 

single nonadiabatic reactor, and (ii) two adiabatic reactors in series with toluene feed-

split and an inter-stage heater (Figure 6.8). As mentioned previously, the main 

problem with the alternatives having a membrane separator is that it requires an 

expensive compressor, which should be compensated by savings that are introduced 

by membrane separator (i.e., by reducing reactor cost and saving valuable 

feedstock). The selling price of benzene is found to be $60.9/kgmol and $63.2/kgmol 

(at an optimum reactant conversion of 98%) for the alternatives with a single 

nonadiabatic reactor and two adiabatic reactors respectively. For the latter 

alternative, toluene is equally split between the two reactors, which are designed to 

give equal conversion; this implies that the reactors are in parallel with respect to 

toluene flow and in series with respect to hydrogen flow (Figure 6.8).   

 

 Next, the alternative of the membrane unit on the purge stream is considered. 

As discussed previously, this alternative has significant methane in the reactor, which 

acts as a thermal sink, and, hence, a single adiabatic reactor is sufficient. As 

expected, the required membrane area is now less as the amount of membrane feed 

is relatively less. Of all the alternatives, this alternative has more number of recycles 

and poses more convergence difficulties in steady-state. Hence, recycle blocks are 

placed judiciously to improve the computational efficiency for optimization studies. In 

general, the higher the conversion, the more economical is the process, and, hence, 

the optimum conversion is found to be 98%. Unlike the two alternatives that have the 

membrane unit on the flash vapor stream, there is one more design variable, namely, 

purge ratio (i.e., the fraction of flash vapor flow that is purged out and sent to the 

membrane). Therefore, optimization is carried out with the purge ratio as the decision 

variable. Initially, profitability of the process increases as the purge ratio increases. 

However, beyond a purge ratio of 0.25, the loss of hydrogen in the purge becomes 
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significant, and the process becomes less attractive as the purge ratio increases 

further. At an optimal conversion of 98% and purge ratio of 0.25, the selling price of 

benzene is found to be $60.0/kg-mol. This alternative, although required relatively 

larger reactors than those used in other alternatives with a membrane unit, turned out 

to be cheaper due to the significant cost reduction in compression section.  

 

Table 6.1: Selling Price of Benzene for Several Alternative Process Structures 
Generated by the Modified Design Procedure (Figure 6.7) 

 

No Alternative HDA Process Flowsheet and the Optimal Conversion 

Selling 
Price 

of Benzene
($/kg-mol) 

1 
Without gas recycle and with liquid (only toluene) recycle at 95 % 

conversion 
92.7 

2 
Without gas recycle and with liquid (both toluene and diphenyl) 

recycle at 98% conversion 
88.6 

3 
Without gas recycle and with liquid (both toluene and diphenyl) 

recycle and with stabilizer replaced by a flash unit at 98% conversion 
91.4 

4 

With gas recycle (without membrane separation unit) and with liquid 

(only toluene) recycle (i.e., conventional base-case design of Douglas, 

1988) at 70% conversion 

64.5 

5 
With gas recycle (without membrane separation unit) and with liquid 

(both toluene and diphenyl) recycle at 90% conversion 
62.7 

6 

With gas recycle (with membrane separation unit on flash vapor 

stream and a single non-adiabatic reactor) and with liquid (both 

toluene and diphenyl) recycle at 98% conversion 

60.9 

7 

With gas recycle (with membrane separation unit on flash vapor 

stream and two adiabatic reactors in series) and with liquid (both 

toluene and diphenyl) recycle at 98% conversion (Figure 6.8) 

63.2 

8 

With gas recycle (with membrane separation unit on purge stream and 

a single non-adiabatic reactor) and with liquid (both toluene and 

diphenyl) recycle at 98% conversion 

60.0 
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Overall, the alternatives with membrane gas separation unit are more 

economical (Table 6.1); of them, alternative 8 is the most economical. This result is 

consistent with that of Kocis and Grossmann (Kocis and Grossmann, 1989) and Goel 

et al., (2002) who have optimized the HDA process flowsheet using MINLP. 

However, in their studies, process design selection was purely based on steady-state 

analysis; dynamic implications were not considered. Alternative 6 is the next-best 

alternative followed by alternatives 5, 7, and 4. Although Douglas (1988) studied 

several of these alternatives, alternatives involving membranes (especially 

alternatives 6 and 7) have not been studied, perhaps because of the unavailability of 

design and cost data for membranes at that time. Alternative 3, though not 

economical, was neither explored nor possible to be explored by the conventional 

design procedure. The alternatives without gas and/or liquid recycle are more 

expensive, because the feed stocks cost contribution towards overall cost is high 

(Figure 6.8). 

 

To conclude, the modified design procedure, while retaining all the benefits of 

the conventional design procedure, allows the designer to explore more alternatives 

in a systematic way. One major modification in the modified design procedure is to 

consider recycles towards the end of the design procedure, based on their own 

economical merit. This suggestion is not only beneficial from the point of steady-state 

design but it is also useful for efficient control system design, as discussed in the 

next section. As PWC analysis is computationally very intensive and requires careful 

scrutiny of many transients, only the most promising alternatives are considered in 

the subsequent section. This is justifiable as one would not want to consider very 

uneconomical processes, irrespective of how well they can be controlled. At this 

stage, the designer has to choose the alternatives that are worth considering for 

dynamic analysis. In case of HDA process, alternatives 4 to 8 are more economical, 

and, so they are forwarded to the next (i.e., control) stage.  
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Figure 6.8: Main Operating Costs ($/kg-mol of benzene produced) of Modified 

HDA Process Design with Membrane Gas Separator (Alternative 7)  
 

6.3 PWC System Design for Promising Process Alternatives 

 

Though recycles are favorable from economic viewpoint, they are notorious 

from the standpoint of PWC; they can complicate process dynamics, thereby 

affecting the performance of the overall control system (Kumar and Daoutidis, 2002). 

Hence, control engineers should explicitly consider the effect of recycles when 

designing control systems. Konda et al. (2005) proposed an integrated framework in 

which the severity of recycles is systematically analyzed towards the end of the 

control system design procedure, very similar to the analysis in the design stage 

previously presented. The basic idea is to carry out simulations for the process with 

recycle and without recycle (Figure 6.9) and compare their dynamics in order to 

understand and rectify the problems caused by each recycle. Because of space 

limitations, the integrated framework (Table 6.2) is not discussed here. In stage 1 of 

this framework, CDOF have to be identified. Traditionally, the number of equations 

and the number of variables are counted to compute CDOF. However, such a 

procedure is tedious for complex processes with hundreds to thousands of equations 
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and variables. Hence, the method reported by Konda et al. (2006) is used here to 

determine the CDOF of the alternatives for which the control system has to be 

developed.  

 

Analysis pertaining to recycles (stage 7 of integrated framework) is briefly 

described. For this analysis, one should first develop the control system for the 

process without recycles (Figure 6.9b), which is relatively easier. Its performance 

should then be analyzed for anticipated disturbances. Similar analysis should then be 

performed for the process with recycles (i.e., by closing one recycle loop at a time) as 

in Figure 6.9a. The control system designed thus far may not be satisfactory after 

closing the recycle loop. Two possible cases are as follows.   

CASE 1. Unstable closed-recycle-loop system: The closed-recycle-loop system 

(i.e., after closing the recycle loop) can be unstable, which is possible as recycles are 

notorious due to their positive feedback effect. In this case, recycle dynamics are 

severe enough to make the closed-loop system unstable.  

CASE 2. Deterioration in the performance of the closed-recycle-loop system: 

The closed–recycle-loop system might be stable but there can be loss of 

performance. By comparing the performances of the systems with and without 

recycle loop(s), two possible scenarios can be identified: (a) recycle dynamics are 

severe enough if the performance of the closed-loop system is observed to be much 

lower, and (b) recycle dynamics are not severe if the closed-recycle-loop 

performance is comparable to that of the open-recycle-loop.  

 

In Case 1 and Case 2(a), the control system needs to be troubleshot. One 

should re-configure the control structure. For example, one can make use of the 

process variables that are largely affected by recycles in the control structure. By 

doing so, one will have better control over recycle dynamics, thereby improving the 

overall control system performance. 
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  (a)      (b) 

Figure 6.9: Schematic showing (a) Process with Recycle (closed-recycle-loop 
process) and (b) Process without Recycle (obtained by removing the recycle 
block). In case (b), streams R1 and R2 will still have base case steady-state 
values. Removal of stream R2 is not desirable as the process will then have 

entirely different behavior. 
 

The integrated framework (Table 6.2) is used here to develop PWC systems 

for the chosen alternatives after the process design stage. Though several 

researchers used HDA process as the case study to design PWC system, their 

studies are mainly on the conventional base-case (alternative 4). However, it is 

evident from the analysis in the previous section and Table 6.1 that process 

alternatives that are more economical than alternative 4 do exist. However, steady-

state optimality does not necessarily guarantee dynamic operability (Chodavarapu 

and Zheng, 2002). In other words, steady-state feasibility is only a necessary 

condition, but not sufficient condition, for dynamic controllability. Hence, in this 

section, PWC systems are designed for alternatives 4 to 8, to investigate their 

operability and the effect of process design on PWC decisions. One main operational 

objective in HDA process is to maintain product purity at 99.99 ± 0.01 mol% of 

benzene. Additional objectives are discussed in the work of Konda et al. (2005).    
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Table 6.2: Improved Heuristic Methodology (Konda et al., 2005) 
Level Things that need to be dealt with 

1.1. Define Plant-Wide Control Objectives 1 

1.2. Determine Control Degrees of Freedom 

2.1. Identify and Analyze Plant-Wide Disturbances  2 

2.2. Set Performance and Tuning Criteria 

Product Specifications 

3.1. Production Rate Manipulator Selection 

 Identify Primary Process Path 

 Implicit/Internal Manipulators  

 Explicit/External Manipulators  

• Fixed Feed Flow Control 

• On-Demand Control 

3 

3.2. Product Quality Manipulator Selection 

“Must-be controlled” Variables  

4.1. Selection of Manipulators for More Severe Controlled Variables 

 Process constraints (equipment and operating constraints, safety 

concerns, environmental regulations) especially those  associated 

with reactor  

4 

4.2. Selection of Manipulators for Less Severe Controlled Variables  

 Material Inventory – Levels for Liquid & Pressures for Gases 

 Levels in Primary Process Path – Make sure the control will 

be self-consistent 

 Levels in Side Chains – Make sure that the control structure 

will direct the disturbances away from the primary process 

path 

 Pressures in the process 

5 Control of Unit Operations  

6 Check Component Material Balances 

Effects Due to Integration (i.e., Due to Recycles) 7 

Identify Presence of  Snow Ball Effect and Analyze it’s Severity  

 Analyze the need to fix composition in the recycle loop to arrive at a 

balanced control structure 

 Or, is it necessary to fix a flow at a strategic position in the recycle 

loop?  

8 Enhance Control System Performance, if possible. 
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6.3.1 Dynamic Performance Analysis 

 

Before describing control system design for alternatives 4 to 8, measures of 

its performance analysis are first discussed as these are needed for choosing control 

design options. Luyben and co-workers (Elliott and Luyben, 1995, 1996 & 1997) 

proposed capacity-based approach to measure the dynamic performance of 

alternative designs by computing the loss in capacity due to off-spec production; the 

measure is thus related to product quality regulation. Though capacity-based 

approach is a useful and practical measure, it cannot be applied in all situations. For 

example, according to this approach, the off-spec product is assumed to be 

disposed. However, it may be economical to recycle it as the raw materials are 

usually expensive. Otherwise, yield-losses will be there and additional costs due to 

disposal of the off-spec product may render the process economically unattractive. 

Though it is possible to implement this feature in the capacity-based approach, it 

cannot be generalized. It may not be desirable to recycle the overpurified off-spec 

product (although the underpurified off-spec product need to be recycled) as it 

unnecessarily incurs additional costs. Even if the off-spec product has to be recycled, 

the recycling location and reprocessing cost will be process-specific. If the off-spec 

product is due to light impurities, it has to be recycled back to the light-component 

(impurity) purification section; otherwise, it has to be processed through the heavy-

component (impurity) purification section. At times, the off-spec product can not be 

recycled due to capacity limitations (Zheng and Mahajanam, 1999; Mahajanam and 

Zheng, 2002), but it has to be stored (for future processing), which incurs additional 

inventory costs. Thus, the reprocessing cost of the off-spec product will be different in 

each of these cases, and no generally accepted procedures are available to estimate 

it. One can assume some cost, but the results will be dependent on this assumed 

value.  
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Product quality is important but it can not be the only measure. For example, 

using capacity-based approach and product quality as the measure, two alternative 

designs will be dynamically equally good if both are capable of producing on-spec 

product. However, this need not necessarily always be true. Consider product quality 

regulation in the case of alternatives 5 and 7 to be discussed in the next section; 

there is essentially no difference in the product quality regulation in the presence of 

feed quality disturbance (Figure 6.10). However, the same disturbance has a 

significantly different impact on the dynamics of other process variables in the two 

alternatives (Figure 6.11) that are not captured in the product quality profile (Figure 

6.10). Hence, product quality regulation is only necessary but not sufficient to be 

considered as an overall performance measure. In addition, the ultimate decision on 

relative performance is likely to be biased on the performance of the product quality 

loop (i.e., its manipulator and tuning) if one uses capacity-based approach as the 

overall performance measure. On the similar front, production rate also cannot be an 

appropriate measure for the overall performance. For example, on-demand control 

has better product-regulation capability, but its dynamic performance is not as good 

as a fixed-feed control strategy (Luyben, 1999). On the other hand, if all control loops 

are included to measure the plant-wide performance, the analysis can be tedious. 

Though it is possible to introduce weighting factors for the performance of each loop 

to compute an overall performance metric, the weighting factors are subjective.  
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Figure 6.10: Transient Responses of Benzene Product Purity in Alternatives 5 
and 7, for -2.5% Variation in Hydrogen Feed Concentration 
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Figure 6.11: Transient Responses of Some Process Variables and the 
Corresponding Manipulated Variables of Alternatives 5 and 7 

 

To circumvent the aforementioned difficulties, a new performance index is 

proposed in the present study. Through extensive simulations, we have identified that 

the overall control system performance and component accumulation (or depletion; 

i.e., rate of change) are strongly correlated. In the presence of disturbances, 

accumulation is not equal to zero for a certain period of time until the effect of 

disturbance is attenuated by the control system. Obviously, the process does not 

reach steady-state until and unless the accumulation is zero. Indeed, all controlled 

variables (and, thus, the manipulated variables) in the process are found to reach 

steady-state if and only if the accumulation of all components reaches zero. Thus, 

the integral of absolute accumulation can serve as the impact of disturbance on the 

process. Absolute accumulation is considered since neither positive nor negative 

(i.e., depletion) value is desirable. Consequently, accumulation profiles of all 

components are plotted and the absolute area under the curve is used as a measure 
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of PWC performance. Naturally, the lesser the area, the better is the control and the 

corresponding alternative. As this measure essentially quantifies the effect of 

disturbance on the process dynamics, integral of absolute accumulation of all 

components will be referred as the “Dynamic Disturbance Sensitivity (DDS)”. For 

example, for a -2.5% variation in the hydrogen feed concentration, the impact of the 

disturbance on all the process variables (some of which are shown in Figure 6.11), 

which was not captured by the product quality profile (Figure 6.10), is captured by the 

DDS profile (Figure 6.12). Hence, the DDS, based on accumulation, is a better 

measure of plant-wide dynamic performance. 
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Figure 6.12: Sum of Accumulation of All Components for Alternatives 5 and 7, 
for -2.5% Change in Hydrogen Feed Concentration  

 

In addition to process design screening, DDS can be used to compare the 

alternative control structures and tuning decisions. Furthermore, the relative impact 

of the disturbance on different sections of the plant can be quantified using this 

measure. In contrast to the steady-state disturbance sensitivity analysis, DDS can be 

useful to measure the stability of the system as well; for an unstable system, DDS will 

be very large. It can be combined with rigorous nonlinear simulation models. This not 

only improves the accuracy but also saves time as the designer does not have to 
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linearize the nonlinear models for linear model-based controllability indexes to 

analyze the performance. DDS is equally applicable to performance analysis for set-

point changes. Furthermore, DDS is very useful to assess the dynamics of the 

process (such as overall time constant) without having to examine all the process 

variables to identify the slowest-responding one, which, in turn, is dependent on 

several other factors (e.g., the type of disturbance). In the case of complex processes 

where large number of alternatives is possible, DDS can quickly screen the 

alternative control structures and process designs, based on their dynamic 

performance. In the following sections, it is used to assess the dynamic performance 

of process design and control alternatives in the presence of several anticipated 

disturbances. Controller design and tuning is done in the same way as was done in 

Chapter 5. See section 5.4.2 and Appendix C for more details on controller design 

and tuning.  

 

6.3.2 PWC System Design for Alternative 4 

 

The PWC system for the conventional HDA process has recently been 

designed by Konda et al. (2005) and is presented in Chapter 3; therefore, it is not 

discussed here extensively. They carried out the analysis without the recycles until 

step 6 and control decisions are taken accordingly. The resulting control structure 

after step 6 is summarized in Table C.1 (Appendix C).  Thus far, the analysis is 

performed without gas and liquid recycles (i.e., by tearing both the gas and liquid 

recycle streams). All the control decisions taken so far lead to a control system that is 

stable even with both of the recycles. However, as shown in the following analysis, a 

better control system is generated by systematically analyzing the effect of recycles 

on the overall plant dynamics. 
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Effect of Gas Recycle on Overall Plant Dynamics: The closed-loop dynamic 

simulation is run with each of the expected disturbances for the HDA process with and 

without gas recycle, and the effect of gas recycle on the overall plant dynamics is 

observed to be negligible when compared to that of liquid recycle. Hence, further 

analysis is carried out based solely on the impact of liquid recycle on the overall 

dynamics. The gas recycle contains a purge stream to avoid accumulation of methane 

in the process; hence, a composition controller is needed to make the methane 

inventory in the process self-regulating. The composition of the purge stream is 

controlled by manipulating recycle gas flow. Simulations showed that this composition 

does not vary much, even in the presence of disturbances. Therefore, one can replace 

the purge composition controller with a ratio controller (i.e., to maintain the purge flow 

as a fraction of gas flow) to avoid the use of expensive composition analyzer. In the 

present study, a composition controller is assumed in the subsequent analysis for 

alternative 4. 

 

Effect of Liquid Recycle on Overall Plant Dynamics: The two processes, 

one with liquid recycle and the other without liquid recycle (Figure 6.9), are initially 

perturbed with two of the most significant and commonly encountered disturbances 

(i.e., -5% and -25% variation in the toluene feed flow rate). The responses of process 

variables such as conversion are rated as acceptable or not acceptable, based on 

how close/far they are to the optimal steady-state values in the presence of 

disturbances (Table 6.3). In Tables 6.3 and 6.4, variation in conversion and the 

overall process settling time (taking into account all process variables) are given for a 

-5% variation in toluene feed flow rate where as the equipment constraints are given 

for the worst-case disturbance of -25% variation in the toluene feed flow rate. As can 

be seen from the summary in Table 6.3, the liquid recycle dynamics are severe 

enough to deteriorate the control system performance significantly, indicating the 

need for a better control structure. The responses of process variables are then 
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scrutinized, and the conversion is found to be greatly affected by liquid recycle 

dynamics. Hence, a conversion controller (using the furnace duty as the manipulated 

variable) is included in the control structure, and the process with recycle and 

conversion controller is found to be performing much better without hitting any 

constraints, even in the presence of the worst-case disturbance (last column in Table 

6.3). In addition, for a -5% variation in the toluene feed flow rate, DDS for the 

alternative 4 without and with a conversion controller are 44.92 and 8.17 respectively; 

thus, conversion controller lessens the impact of disturbances on the process 

significantly. Hence, the conversion controller is needed for this alternative not only 

due to economic reasons but also to improve dynamic performance.  

 

Table 6.3: Severity of Liquid Recycle Dynamics of Alternative 4 and  
Their Effect on PWC System Performance 

 
 Without  

liquid 
recycle 

With liquid recycle 
and without 

conversion controller 

With liquid recycle 
and conversion 

controller 

Conversion  

(Measure of Economic 

Performance) 

72%  

(acceptable ) 

80%  

(not acceptable) 

70% 

(acceptable ) 

Settling Time  

(Measure of Dynamic 

Performance) 

200  

(acceptable ) 
1000  

(not acceptable) 

200  

(acceptable ) 

Equipment Constraints  

(Measure of Safe 

Operation) 

satisfactory unsatisfactory satisfactory 

 

 

6.3.3 PWC System Design for Alternative 5 

 

Without liquid recycle, the process structure for alternative 5 is similar to that 

for alternative 4. Hence, all of the control decisions that were taken before 
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introducing the recycles (Table C.1 in Appendix C) are still valid, except the control 

decisions that are related to the toluene column as there is no toluene column in 

alternative 5. As the alternative 5 has one column less and is operating at relatively 

higher conversions, the liquid recycle dynamics of alternative 5 are expected to be 

less severe than that of alternative 4, and the use of conversion controller is 

questionable in the former. Hence, analysis similar to that in section 6.3.2 is carried 

out here for alternative 5, to assess the severity of the liquid recycle dynamics.  

 

Alternative 5 with and without liquid recycle is perturbed with -5% variation in 

the toluene feed flow rate (see the second and third columns of Table 6.4). 

Alternative 5 without liquid recycle exhibited a slight variation in conversion (2%) and 

took 400 min to settle at a new steady state. On the other hand, alternative 5 with 

liquid recycle exhibited slightly more variation in conversion (4%) and took ~700 min 

to settle. As the variation in the conversion is small, it is difficult to decide whether a 

conversion controller is needed or not. However, for the worst-case disturbance (-

25% variation in the toluene feed flow rate), one of the level control valves in liquid 

recycle (the benzene reboiler level control valve) approaches the saturation limits 

(last row in Table 6.4). For practical reasons, it is recommended to operate control 

valves with at least 10% opening.  

 

In addition, for -5% variation in the toluene feed flow rate, DDS for alternative 

5 with and without conversion controller are 6.45 and 10.10, respectively. Similarly, 

for -25% variation in the toluene feed flow rate, DDS for alternative 5 with and without 

conversion controller are 30.13 and 40.13, respectively. Thus, the conversion 

controller lessens the impact of disturbances on the process and offers the balanced 

nature to the control system, which, in turn, effectively controls the process, even 

during the worst case scenarios. In this alternative, it is needed mainly to improve 

dynamic performance. With the conversion controller, alternative 5 is observed to 
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give satisfactory performance (see the fourth column of Table 6.4) for feed flow rate 

variations. In addition, several other disturbances are tried and the results are 

analyzed in section 6.4.   

 

Table 6.4: Severity of Liquid Recycle Dynamics of Alternative 5 and  
Their Effect on PWC System Performance 

 
 Without liquid 

recycle 
With liquid recycle 

and without 
conversion controller 

With liquid recycle 
and conversion 

controller 

Conversion  

(Measure of Economic 

Performance) 

92%  

(acceptable ) 
94%  

(acceptable) 

90%  

(acceptable) 

Settling Time  

(Measure of Dynamic 

Performance) 

400  

(acceptable) 
700  

(not acceptable) 

150  

(acceptable) 

Equipment Constraints  

(Measure of  

Safe Operation) 

satisfactory  unsatisfactory satisfactory 

 

  

6.3.4 PWC System Design for Alternative 6 

 

As discussed in the previous section, for the process without gas and liquid 

recycles, the control decisions taken up to stage 6 of the integrated framework (Table 

C.1 in Appendix C) remain the same. Step 7 involves the introduction of gas and 

liquid recycles, one by one, to examine their effects on the overall plant dynamics, 

which are discussed in this section. Introducing gas recycle involves implementation 

of the membrane control system, which is discussed below.  
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6.3.4.1 Membrane Dynamics for H2-CH4 Separation 

 

Though the dynamics of membrane units (such as reverse osmosis) have 

been well-studied, membrane dynamics and control studies for gas separation are 

very much limited. Moreover, the reported studies are on a simple membrane 

permeator (e.g., Kao and Yan, 1987). Membrane dynamics and control in the context 

of PWC have not been studied so far. To design a PWC system for HDA process 

with a gas membrane separator (alternative 6), dynamics (such as the order, gain, 

time constant(s) and delay) of a H2-CH4 membrane separator are needed. These are 

not available in the literature; it has been stated that gas permeator membranes are 

relatively insensitive to changes in feed flow rate, feed composition and membrane 

surface area (Seader and Henley, 1998). Thus, in this study, first-order dynamics 

with delay is assumed for the membrane unit as it can adequately represent the 

behavior of a wide range of processes. Perturbation analysis, using the steady-state 

membrane model, is performed to obtain gains of hydrogen recovery and permeate 

purity, with respect to changes in feed flow rate and concentration.  

 

Table 6.5: Results of Perturbation Analysis for Membrane Separation System  
 

Membrane Feed Flow Rate 
changed by 

H2 Concentration in 
Membrane Feed changed 

by  
 

Base 
case 

-10%  +10% -5%  +5% 

H2 Purity 

in Permeate 
97.92 97.69 98.10 97.62 98.82 

H2 Recovery 

in Permeate 
97.35 98.13 96.45 97.02 97.72 
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The recovery and purity of H2 in permeate are relatively insensitive to the expected 

disturbances in the membrane feed flow rate and concentration (Table 6.5). Hence, 

the dynamics of concentration can be ignored and, therefore, H2 concentration in 

permeate is assumed to be constant at 98%. However, though the H2 recovery in 

permeate is practically constant, the permeate flow rate changes with the membrane 

feed flow rate and, therefore, its dynamics have to be considered. Because the 

dynamic membrane unit operation is not available in HYSYS, a transfer function is 

introduced to simulate the dynamics due to changes in membrane feed flow rate. The 

transfer function is built between the component molar flow rate of hydrogen in flash 

vapor to the molar flow rate of permeate, and the gain is specified as 1, since any 

change in input causes an equal change in the output. This specification, together 

with the permeate purity specification (98% H2), provides 98% recovery of H2, which 

is close enough to the desired steady-state value (Table 6.5). Time constant and 

delay are not yet known; in reality, they depend on several issues: the type of 

membrane module (spiral-wound or hollow fiber membrane), the type of membrane 

(dense or porous, glassy or rubbery), the type of membrane material (polymer, 

inorganic or composite), the membrane configuration (simple or recycle), and the 

permeabilities of the components involved. Because of the lack of this information in 

the literature, a conservative estimate of 10 min for time constant is assumed, and 

delay is taken as 10% of the time constant. To account for any uncertainty in these 

values, several simulations are run with time constants of 1, 5 and 20 min to see its 

effect on decisions being taken; however, these differences in the overall process 

dynamics are observed to be insignificant. As the flash temperature is controlled, the 

temperature of the feed (and that of permeate) are expected to be relatively constant. 

Hence, the temperature dynamics are ignored. The membrane downstream pressure 

varies with the permeate flow; a valve is used to simulate the downstream pressure 

dynamics with flow variations.  
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6.3.4.2 Control System Design for Gas Membrane  

 

Usually, the membrane feed temperature and pressure are maintained at 

constant values. However, as the flash temperature is already controlled, there is no 

need for any additional control over the membrane feed temperature. Though the 

flash pressure is also controlled using the valve on the flash vapor stream, there can 

be some fluctuations in the membrane feed pressure in the range of 20-30 psia. 

However, within this range of fluctuations, the membrane performance is not affected 

much and, hence, no control loop is needed for membrane feed pressure regulation.  

 

After introducing membrane dynamics and control system, analysis similar to 

that carried out in sections 6.3.2 and 6.3.3, is done to characterize the severity of the 

gas and liquid recycle dynamics. It is found that recycle dynamics are not severe as 

the process is operating at very high conversion (~98%). Therefore, conversion 

controller is not required for alternative 6.  

 

6.3.5 PWC System Design for Alternative 7  

 

 Process structures of alternatives 6 and 7 are very similar; the only difference 

is that alternative 6 has one nonadiabatic reactor and alternative 7 has two adiabatic 

reactors in series (Figure 6.13; detailed separation section of alternative 7 is shown 

in Figure 6.14). Hence, the reaction section control decisions differ, whereas the rest 

of the control decisions remain the same. The first reactor, which is adiabatic in 

nature, requires a controller on the reactor outlet temperature as it is an active 

constraint. Hence, from the control viewpoint, the first reactor should be modified as 

there is no manipulator to regulate the outlet temperature. For example, the designer 

can consider a nonadiabatic reactor that was used for HDA process by some 
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researchers in the past (e.g., Kocis and Grossmann, 1989; Goel et al., 2002); this is 

a feasible alternative because of the availability of high-temperature heat-transfer 

agents based on molten fluorides (Williams, 2005) and alloys 

(http://www.ippe.obninsk.ru/podr/tph/eng/labs/lab54.htm#activity; accessed in May 

2006). In case any operational problems associated with high-temperature 

nonadiabatic reactor are anticipated or a high-temperature coolant is not available, 

the designer may consider operating the first reactor at slightly lower conversions, 

which may result in some economic penalty, to keep its outlet temperature well below 

1300 0F. This particular example demonstrates the dynamic implications on process 

design. On the other hand, the second reactor does not require any outlet 

temperature controller as the significant amount of methane that is produced in the 

first reactor acts as a thermal sink to keep the outlet temperature well below 1300 0F. 

In addition, alternative 7 requires one feed-split controller and one temperature 

controller at the inlet of the second reactor (Figure 6.13). As the process is operating 

at high conversion (98%), recycle dynamics are observed to be not very severe, and 

hence conversion controller is not required for this alternative too.  

 

6.3.6 PWC System Design for Alternative 8 

 

Alternative 8 differs from alternatives 6 and 7 mainly in two dynamic aspects: 

(i) alternative 8 has one more gas recycle stream, and, hence, dynamics are 

expected to be slightly more severe; and (ii) at the designed conversion and purge 

ratio, the reactor outlet temperature for this alternative is much less than 1300 0F 

(even for the worst-case disturbance scenario), and, hence, this alternative does not 

require any control of the reactor outlet temperature. Hence, unlike alternatives 6 and 

7, a single adiabatic reactor is sufficient. Recycle dynamics for this alternative are 

observed to be not severe as the operating conversion is high and hence conversion 

controller is not needed.     

http://www.ippe.obninsk.ru/podr/tph/eng/labs/lab54.htm#activity
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Figure 6.13: Process Flowsheet of Alternative 7 with Control Structure. See Figure 6.14 for detailed control structure for separation 
section, and Table C.2 (Appendix C) for controllers and their tuning parameters 
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Figure 6.14: Detailed Control Structure of Separation Section of Alternative 7 
 

 

6.4 Performance Evaluation of PWC Systems of Alternatives 4 to 8 

 

Control systems designed for all five chosen alternatives are evaluated for 

expected disturbances in feed conditions (i.e., feed flow rate, quality, temperature 

and pressure) and uncertainty in reaction kinetics. Depending on the type of 

disturbance, each alternative exhibited significantly different dynamics (Table 6.7). 

DDS is then used to assess the dynamic performance of these alternatives.  

 

6.4.1 Comparison of Dynamic Performance of Alternatives 4 and 5  

 

Conversion controller for alternative 4 brings significant benefits to the overall 

control performance (Tables 6.3, 6.4 and 6.6). In general, alternative 5 exhibits faster 

dynamics than alternative 4. This is mainly due to two reasons: firstly, alternative 5 

has one column less in the liquid recycle and hence liquid hold up is less, and, 

secondly, alternative 5 is operating at higher conversion (90%). In addition, 

alternative 5 is relatively more robust than alternative 4. For example, in the case of 

worst-case disturbances, the control valve of a level controller in the liquid recycle 
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loop reaches 5% opening for alternative 5 versus 0% opening for alternative 4. Since 

it is advisable to operate valves above 10% opening to avoid operational difficulties, 

conversion controller is still required for alternative 5, which makes the control 

system even more responsive and robust. However, the benefits of conversion 

controller for alternative 5 are not as significant as those for alternative 4 (Table 6.6). 

This is due to the less recycle effects as the process is operating at relatively high 

conversion. Overall, conversion controller is needed for both the alternatives 4 and 5; 

alternative 5 is superior to the alternative 4 and observed to be operating closer to 

the optimal steady-state. As alternative 4 is less economical and has relatively poorer 

control performance than alternative 5 (see Tables 6.1, 6.3, 6.4 and 6.6), for 

conciseness, it is excluded from further analysis. 

 

Table 6.6: Comparison of Dynamic Performance of Alternatives 4 and 5 
 

Alternative 4 Alternative 5 

 
With 

Conversion 
Controller 

Without 
Conversion 
Controller 

With 
Conversion 
Controller 

Without 
Conversion 
Controller 

DDS for -5% variation 

in the Toluene Feed 

Flow Rate 

8.17 44.92 6.45 10.10 

 

 

6.4.2 Comparison of Dynamic Performances of Alternatives 5 to 8  

 

Alternatives 5 to 8 are subjected to various anticipated disturbances and the 

control performance results are summarized in Table 6.7. In general, the dynamic 

performance of each alternative varies with the disturbance. For toluene feed flow 

rate variation, the performance of all four alternatives is comparable and alternative 7 

exhibits slightly superior performance. A similar conclusion can be made for toluene 
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feed temperature variation; in this case, however, the performance of alternative 7 is 

close to that of the best alternative (alternative 6). In the presence of feed quality 

variation, alternatives 7 and 5 are observed to be the best and worst performers 

respectively (Figure 6.15). For hydrogen feed pressure variation, alternative 7 is as 

good as alternative 6, whereas the poorest performer is alternative 5. In addition, 

alternative 7 is the only stable process for the disturbances that are related to 

uncertainty in kinetics. Hence, alternative 7 should be chosen from standpoint of 

control as it is either superior or competitive with other alternatives for all the 

anticipated disturbances. Contrary to the general expectation, alternative 7, which is 

slightly more complex due to the presence of two reactors, is found to be dynamically 

superior. This may not be recognized without rigorous dynamic simulations. One 

reason for the superiority of alternative 7 could be the balanced handling of 

disturbances by the two reactors and, hence, the overall impact of disturbance is less 

severe. 

 

To conclude, though alternative 8 is found to be the most economical (Table 

6.1), dynamic analysis reveals that the alternative 7 exhibits either better or 

comparable dynamic performance for all of the anticipated disturbances (Table 6.7). 

In addition, alternative 7 is the only alternative that is stable with regard to 

uncertainties in the reaction kinetics. As these uncertainties are prevalent, alternative 

7 should be the final choice, though it is slightly uneconomical.  
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  Figure 6.15: Sum of Accumulation of All Components for Different Alternatives
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Table 6.7: Performance Assessment of Control Systems for Alternatives 4 to 8  
 

Disturbance 
DDS (Integral of Absolute Accumulation of All 

Components) for 

Type Magnitude
Alternative 

5 
Alternative 6 Alternative 7 Alternative 8

Suggested 
Alternative(s) 

-5% 6.45 6.90 5.88 6.11 Toluene 

Feed Flow -25% 30.10 26.23 23.90 24.8 

Alternative 7 is 

superior 

-2.5% 4.46 1.88 0.90 3.85 Hydrogen 

Feed Quality +2.5% 4.28 1.71 1.07 3.07 

Alternative 7 is 

superior 

-5% Unstable 
Valve 

Saturation 
1.87 

Valve 

Saturation 

Uncertainty in 

Reaction 

Kinetics +5% Unstable 5.47 1.77 3.64 

Only alternative 

7 should be 

chosen 

-100C 0.42 0.32 0.39 0.42 Toluene 

Feed 

Temperature 
+100C 0.46 0.31 0.38 0.41 

Any alternative 

-5% 3.17 0.75 0.81 1.15 
Hydrogen 

Feed Pressure +5% 1.33 0.51 0.58 0.88 

Alternatives 6 

and 7 are 

superior 
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6.5 Summary 

 

A simulation-based heuristic approach for optimal process design and 

effective plant-wide control system design is presented and successfully applied to 

an industrial case study. The modified design procedure, while retaining all the 

benefits of conventional design procedure, is observed to be effective to surface 

more design alternatives. For HDA process, the alternatives with the membrane gas 

separation unit are found to be economically more attractive. However, the dynamic 

performance of some of them is not as good. In general, dynamic/control 

performance improves with increasing conversion due to reduced recycle severity. 

For the process alternatives with relatively lower optimal conversions (alternatives 4 

and 5), conversion controller is desirable to improve the dynamic performance. The 

successful application of the integrated framework of Konda et al. (2005) to several 

process alternatives demonstrates its capability and generic nature. This study, in 

general, demonstrates the practicability of the simulation-based heuristic approach 

for the rigorous treatment of integrated design and control studies for industrial 

processes. It also emphasizes the conflicts between steady-state economics and 

dynamic operability, and highlights the importance of integration of design and 

control from plant-wide perspective. The proposed DDS is observed to be a good 

measure to quantify the dynamic performance of different process alternatives and 

control structures. Use of DDS for quantifying the severity of recycle dynamics is 

under investigation. As discussed in section 6.3.4, due to the unavailability of 

information on membrane dynamics for gas separations, simplified and yet 

appropriate dynamics are assumed for the dynamic simulation of process 

alternatives with membrane units. More accurate simulations require further research 

on the dynamics of gas membrane units.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS  

 

7.1 Conclusions  

 

PWC system design and several related aspects (such as CDOF, 

performance assessment of PWC systems, and interaction between design and 

control) are studied in this thesis. The major contributions and conclusions are as 

follows.   

 

1. Various PWC methods have been systematically classified based on the 

‘approach’ used and the ‘control structure’ considered in each method. This, 

in turn, would be useful for researchers to quickly understand the two basic 

features of existing methods and develop newer methods (or tailor the 

existing methods) to better suit today’s more demanding requirements.  

2. A multi-stage integrated framework to design viable PWC systems for 

industrial processes has been proposed. One of the important features of this 

framework is to systematically analyze and minimize the impact of recycle, 

the foe (from control perspective) of many industrial processes, on the overall 

process dynamics to improve PWC system performance. This framework is 

then successfully applied to one of the industrially-important petrochemical 

processes, namely the HDA process. This study demonstrates that the 

capabilities of process simulators, paired with heuristics can prove to be a 

boon to PWC of industrial processes.  

3. A simple and yet effective procedure for CDOF is proposed and applied to 

several industrially important processes.  
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4. A dynamic performance measure, namely DDS, which can be used to assess 

the performance of alternative control structures and process designs, is 

proposed. It is then used to show the superiority of the proposed PWC 

method by comparing the performance of the resulting control system with 

that of existing control systems in the literature.  

5. A modified sequential approach is proposed to study the impact of process 

design on PWC system by integrating the proposed PWC method and 

heuristics-based process design procedure. It is shown that the conventional 

hierarchical process design procedure needs to be modified to better handle 

the increasing complexity of chemical processes and the corresponding 

modifications are suggested. The main conclusion here is, though 

retrospectively obvious but worth repeating as the plant-wide studies in this 

direction are limited, that the most economically attractive process need not 

necessarily be the best from operation viewpoint.    

 

7.2 Recommendations for Future Work 

 

PWC is an open-ended problem and there exists scope for many studies. 

These are outlined below along with some pointers to pursue them.  

 

Application of Proposed Methodology to Other Industrial Processes and 

Further Enhancements: The proposed methodology has been successfully applied 

to the HDA process. However, there is a need to apply the proposed method to other 

processes to enhance it further. Preliminary studies have been carried on styrene 

and vinyl chloride monomer (VCM) processes, which have shown satisfactory 

applicability of the proposed integrated framework. Further investigation needs to be 

carried out to concretize these observations.  The most common test-beds for PWC 
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are reactor-separator-recycle (RSR) network and the TE process. For example, more 

than 60 studies have used the TE process for several applications including PWC, 

monitoring, fault detection and online optimization (e.g., Ricker, 1995; Duvall and 

Riggs, 2000; Larsson et al., 2001; Jockenhovel et al., 2003; Tian and Hoo, 2003). On 

the other hand, till date, there are only a few studies on styrene (e.g., Turkay et al., 

1993) and VCM processes (e.g., Seider et al., 2004). It is therefore worth applying 

the proposed integrated framework to these processes.   

 

In the present study, the main emphasis is given to synthesizing plant-wide 

decentralized control system with little attention to optimization. So, it is 

recommended to study the integration of PWC and optimization to further improve 

profitability by optimally operating the process in the presence of disturbances. This 

is closely related to plant-wide dynamic optimization or optimal control. A three-tier 

integration method is proposed by Lu (2003) recently, which can be a good starting 

point in this direction. Alternatively, it is also possible to integrate self-optimizing 

control concepts (e.g., Kassidas et al., 2000; Skogestad, 2004) with the proposed 

framework.  

 

Study of Reactor-Separator-Recycle (RSR) Network: RSR is one of the 

widely used test-beds to carry out PWC studies as it is simple and yet preserves the 

general plant-wide nature due to the presence of reactor and separator (either a flash 

or distillation column) which are interconnected with a recycle. Despite its simplicity, 

there has not been consensus among researchers on its control strategy - for 

example, Wu and Yu (1996) suggested a balanced control structure for RSR process 

by varying reactor holdup (to keep the reactor composition constant) to avoid 

snowball effect. Loperena et al. (2004), however, identified that the balanced control 

structure proposed by Wu and Yu (1996) does not eliminate the snowball effect, but 

transfers it to other process variables. They have then proposed another balanced 
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control structure using the reactor temperature as the manipulator to distribute the 

impact of disturbance between reactor and separator thereby reducing the snowball 

effect. Besides, several control structures have been proposed for RSR network. 

Though all these control structures are valid, one may perform better than the other 

depending on circumstances. However, clear-cut guidelines are not available on 

what strategy to be chosen under what conditions. Besides, most of the work on RSR 

in the past has been based on hypothetical processes with simplified kinetics. In a 

series of papers, Ward et al. (2004; 2005 & 2006) have recently addressed the 

impact of kinetics on control policy, which can be a good basis for the work in this 

direction. In addition, other structural decisions, such as the presence of purge 

stream, can affect the overall process dynamics (Baldea et al., 2006); the type of 

reactor holdup (liquid- or gas-phase) also affects the control decisions (e.g., Larsson, 

2000). Thus, a more comprehensive study, considering several issues (e.g., 

presence/absence of purge, type of recycle [gas or liquid], type of reactor holdup 

[gas, liquid or both], type of reactions [reversible/irreversible/auto-catalytic]), and their 

effects on overall process dynamics and control decisions, needs to be carried out, 

using nonlinear dynamic simulations. Steady-state and dynamic models for ethylene- 

and propylene-glycol processes have already been developed as part of this work 

(Appendix D), and can be used to carry out further study. 

 

Plant-Wide application of advanced control techniques like MPC: The 

main emphasis in this thesis is to synthesize a basic regulatory control system based 

on PID controllers but advanced control techniques (such as MPC or its variants like 

DMC) are not considered. This is justifiable as the regulatory control system is the 

basic criterion even for the advanced control techniques. Having successfully 

developed the basic regulatory control system for the HDA process, the next step 

would be developing advanced control strategies for the entire plant. In general, 

plant-wide application of advanced control techniques are relatively limited (Doyle et 
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al., 1997). An attempt in this direction is by Ricker and Lee (1995) who applied 

nonlinear model predictive control to the TE process. Later, Ricker (1996) observed 

that the NMPC has only a marginal improvement over the decentralized control 

system. He has also observed that the decentralized control system does a better job 

of handling constraints – an area in which NMPC is reputed to excel. So, it is of 

interest to see whether the advanced control techniques can improve the 

performance over the regulatory control system in the case of the highly integrated 

HDA process. Lately, Gonzalez et al. (2006) applied MPC to heat-exchanger 

networks. One main commonality between any PWC problem and heat-exchanger 

network control problem is that both of them are highly integrated with the presence 

of recycles. Thus, the work by Gonzalez et al. (2006) can be a good starting point in 

this direction.  

 

In general, plant-wide implementation of a single MPC may not always be 

feasible due to computational limitations, implementation and other practical 

difficulties (Vadigepalli and Doyle, 2003; Baldea et al., 2006). These difficulties 

include, but not limited to, insufficient information and difficulty in obtaining the 

models of certain process phenomena. So, it is often recommended to implement 

multiple MPCs instead, which is known as decentralized or cooperative plant-wide 

MPC. In this approach, co-ordination among different MPCs is important to achieve 

satisfactory overall performance. Recently, Cheng et al. (2005) have proposed a 

price-driven approach to efficiently co-ordinate decentralized MPCs, and Motee and 

Rodsari (2003) presented an algorithm for optimal partitioning; these can form a 

basis for further work in this direction. Another challenging aspect of this study is the 

identification of plant-wide models to implement MPC.  

 

Economic Quantification of Dynamic Performance: Though interaction 

between design and control is studied in this work (Chapter 6), economic 
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quantification of the dynamic performance is not explicitly used as there is only one 

process design alternative which is dynamically stable (for all the anticipated 

disturbances) for this case study (i.e., the HDA process). However, there may be 

more than one process alternative which are dynamically stable for other case 

studies. Hence, to make this study more comprehensive and generic, it is very much 

needed to economically quantify dynamic performance, which eventually helps to 

better understand the interaction between design and control. Zheng and Mahajanam 

(1999) proposed a method to quantify the cost associated with dynamic controllability 

based on minimum additional surge capacity that is required to meet all of the control 

objectives and constraints dynamically for all of the expected disturbances, which is a 

good starting point to work in this direction. The basic idea is to economically quantify 

the dynamic performance using DDS so that it can appropriately be integrated with 

the proposed approach to study interaction between design and control.  
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APPENDIX A 

Self-Consistency for Inventory Control 

 

Price and Georgakis (1993) defined three self-consistent inventory control structures 

based on throughput manipulator (TPM) decision. If the flow control on the feed is 

selected as the TPM (alternative 1), the inventory should be controlled in the 

direction of flow. On the other hand, if TPM is the flow control over the product 

stream (alternative 2), the inventory should be controlled in the direction opposite to 

flow. If the TPM is other than these two choices, the inventory should be controlled 

as shown in alternative 3 where the TPM is an internal/implicit variable such as 

reactor temperature. The inventory in the side chains should be controlled in such a 

way that the disturbance propagation is away from the primary process path (Figure 

A.1). Price and Georgakis (1993) proved that these self-consistent structures are 

superior to self-inconsistent structures in terms of performance as they have better 

disturbance attenuation capability. Hence, the concept of self-consistency is very 

useful in the design and analysis of PWC systems.  
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Alternative 1. Fixed Feed Flow Control

Alternative 2. On-Demand Product Control

Alternative 3. Internal/Implicit Manipulator for Throughput

1 2 3 4

TPM

1 2 3 4

TPM

5 6
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Alternative 1. Fixed Feed Flow Control

Alternative 2. On-Demand Product Control

Alternative 3. Internal/Implicit Manipulator for Throughput

1 2 3 4
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TPM
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1 2 3 41 2 3 4

TPM
55 66

55 66

Figure A.1: Alternative Configurations for Throughput Manipulator. 
Blocks 1 to 6 represent units with inventory  
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APPENDIX B 

Application of CDOF Procedure to Integrated Processes 

 

The proposed procedure is applied to several other flowsheets (Figures B.1 to B.3) to 

further validate its applicability. The reactor in these figures is assumed to be CSTR. 

The CDOFs are compared with those in the literature (Table B.1). It is observed that 

the proposed procedure is capable of computing the CDOF correctly even for highly 

integrated processes.  
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Figure B.1: Reactor/Column Ternary Process with One Recycle (Luyben, 1996) 
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Figure B.2: Reactor/Side Stream Column Process (Luyben, 1996) 
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Figure B.3: Reactor/Two-Column Ternary Process with Two Recycles (Luyben, 
1996) 
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Table B.1: CDOF for Processes shown in Figures B.1 to B.3 
 

Figure Number 
CDOF from equation 9 and 

the concept of redundancy 

Total CDOF  

from Luyben (1996) 

B.1 9 [ = 15 - (2+1+1×3) ] 9 

B.2 9 [ = 15 - (2+1+1×3) ] 9 

B.3 14 [ = 26 - (2+1+2+1+2×3) ] 14 
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APPENDIX C 

Resulting Control Structure for Alternative 4 after Step 6 of  

Proposed PWC Methodology and Controller Parameters for Alternative 7 

 

Proposed integrated framework is applied to alternative 4 and the resulting 

control structure (after step 6 of the procedure) is given in Table C.1. Tuning 

parameters for Alternative 7 are given in Table C.2. Flow, pressure and level 

controllers are tuned according to Luyben’s (2002) guidelines. Flow controllers are PI 

type with a gain of 0.5 and reset time of 0.25 min. Pressure controllers are of the PI 

type, with a gain of 2 and reset time 10 min. In general, all level controllers are P-only 

type with a proportional gain of either 5 or 10. PI controllers are used for temperature 

control, and are tuned using the auto-tuning method with a sensor span of 200 0F. 

Composition controllers are also of the PI type and auto-tuning is used to generate 

initial values for the controller parameters. If necessary, these controllers are then 

fine-tuned to give reasonably good and robust performance, even for the worst-case 

disturbance.  
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Table C.1: Resulting Control Structure for Alternative 4 after step 6 of the 
Proposed PWC Methodology (Konda et al. 2005) 

 
No Process Variable Controller Output 

1 Flash level Stabilizer feed flow rate 

2 Stabilizer reboiler level Stabilizer bottoms flow rate 

3 Stabilizer condenser level Stabilizer condenser duty 

4 Stabilizer condenser pressure Stabilizer overhead flow 

5 Product column condenser level Product column reflux flow 

6 Product column reboiler level Product column bottoms flow 

7 Product column condenser pressure Product column condenser duty 

8 Flash pressure Flash vapor flow 

9 Toluene feed flow Toluene feed valve 

10 
Hydrogen to aromatics ratio at the 

reactor inlet 
Hydrogen feed flow rate 

11 Stabilizer bottoms purity Stabilizer reboiler duty 

12 Product column bottoms purity Product column reboiler duty 

13 Stabilizer overhead purity Stabilizer reflux flow 

14 Product column overhead purity Product column overhead flow  

15 
Reactor effluent temperature after 

quench 

A part of the flash drum liquid flow 

rate 

16 Flash temperature Cooler duty 

17 Recycle column condenser level Toluene recycle flow rate 

18 Recycle column reboiler level Recycle reboiler vapor flow rate 

19 Recycle column condenser pressure Recycle column condenser duty 

20 Recycle column ovhd purity Recycle column reflux flow rate 

21 Recycle column bottoms purity Recycle column bottoms flow 

22 Reactor inlet temperature Furnace duty 
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  Table C.2: Controller Parameters for Alternative 7  

Tuning 

Parameters 
No Controller 

Kc 

(%/%) 
iτ  (Min) 

1 Flash level controller 10 - 

2 Stabilizer reboiler level controller 5 - 

3 Stabilizer condenser level controller 5 - 

4 Product column reboiler level controller 5 - 

5 Product column condenser level controller 5 - 

6 Flash pressure controller 2 2 

7 Stabilizer condenser pressure controller 2 10 

8 
Product column condenser pressure 

controller 
2 10 

9 Toluene feed flow controller 0.5 0.25 

10 Hydrogen to aromatics ratio controller 0.5 0.25 

11 Permeate flow controller 0.5 0.25 

12 Toluene split controller 0.5 0.25 

13 Stabilizer bottoms temperature controller 2.41 1.21 

14 
Product column bottoms temperature 

controller 
9.26 1.33 

15 Stabilizer overhead purity controller 0.14 11.0 

16 Product column overhead controller 1.13 11.6 

17 1st reactor inlet temperature controller 1.58 0.18 

18 2nd reactor inlet temperature controller 0.54 0.18 

19 Flash temperature controller 0.07 0.29 



                                    

 216 

APPENDIX D 

Steady-State Simulation Models of Ethylene Glycol and Propylene 

Glycol Processes 

 

As shown in Figure D.1, ethylene glycol (EG) is produced from the raw 

materials ethylene-oxide (EO) and water. The reactor is modeled as a CSTR in which 

the reaction (ethylene + water  ethylene glycol) takes place. Mixture of the product 

and unconverted raw materials are then separated in a distillation column. Distillation 

column has 10 trays and the feed is introduced at the 5th tray. Unconverted raw 

materials are recovered as distillate and recycled to the reactor, while the product 

(EG) is recovered from the bottom.  

 

Figure D.1: Steady-State Simulation Model of Ethylene Glycol Process
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As shown in Figure D.2, propylene glycol (PG) is manufactured from 

propylene-oxide (PO) and water. Reactor is modeled as a CSTR. Unconverted raw 

materials and product are then sent to a distillation column. Pure PG is recovered at 

the bottom of the column and unconverted raw materials are recovered in the 

distillate. Distillate is then recycled to reactor section.   

 

Figure D.2: Steady-State Simulation Model of Propylene Glycol Process 
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