
Statistical Machine Learning
for Modeling and Control of
Stochastic Structured Systems

Vom Fachbereich Informatik an der

Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Hany Abdulsamad, M.Sc.

Erstgutachter: Prof. Jan Peters, Ph.D.

Zweitgutachter: Prof. Thomas Schön, Ph.D.

Darmstadt, 2021



Abdulsamad, Hany — Statistical Machine Learning for Modeling
and Control of Stochastic Structured Systems

Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung der Dissertation auf TUprints: 2022
URN: urn:nbn:de:tuda-tuprints-225737
Tag der mündlichen Prüfung: 04.11.2021

Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/

https://creativecommons.org/licenses/


Erklärungen laut Promotionsordnung
§8 Abs. 1 lit. c PromO
Ich versichere hiermit, dass die elektronischeVersionmeinerDissertationmit der schriftlichen

Version übereinstimmt.

§8 Abs. 1 lit. d PromO
Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion ver-

sucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Disserta-

tionsthema und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO
Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Ver-

wendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO
Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 23. September 2021
Hany Abdulsamad





Abstract
Machine learning and its various applications have driven innovation in robotics, synthetic

perception, and data analytics. The last decade especially has experienced an explosion in

interest in the research and development of artificial intelligence with successful adoption

and deployment in some domains. A significant force behind these advances has been an

abundance of data and the evolution of simple computational models and tools with a ca-

pacity to scale up to massive learning automata. Monolithic neural networks with billions

of parameters that rely on automatic differentiation are a prime example of the significant

role efficient computation has had on supercharging the ability of well-established repre-

sentations to extract intelligent patterns from unstructured data.

Nonetheless, despite the strides taken in the digital domains of vision and natural language

processing, applications of optimal control and robotics significantly trail behind and have

not been able to capitalize as much on the latest trends of machine learning. This discrep-

ancy can be explained by the limited transferability of learning concepts that rely on full

differentiability to the heavily structured physical and human interaction environments,

not to mention the substantial cost of data generation on real physical systems. Therefore,

these factors severely limit the application scope of loosely-structured over-parameterized

data-crunching machines in the mechanical realm of robot learning and control.

This thesis investigatesmodeling paradigms of hierarchical and switching systems to tackle

some of the previously highlighted issues. This research direction is motivated by insights

into universal function approximation via local cooperating units and the promise of inher-

ently regularized representations through explicit structural design. Moreover, we explore

ideas from robust optimization that addressmodelmismatch issues in statisticalmodels and

outline how related methods may be used to improve the tractability of state filtering in

stochastic hybrid systems.

In Chapter 2, we consider hierarchical modeling for general regression problems. The pre-

sented approach is a generative probabilistic interpretation of local regression techniques

that approximate nonlinear functions through a set of local linear or polynomial units. The

number of available units is crucial in such models, as it directly balances representational

power with the parametric complexity. This ambiguity is addressed by using principles

from Bayesian nonparametrics to formulate flexible models that adapt their complexity to

the data and can potentially encompass an infinite number of components. To learn these

representations, we present two efficient variational inference techniques that scale well

with data and highlight the advantages of hierarchical infinite local regressionmodels, such

as dealingwith non-smooth functions, mitigating catastrophic forgetting, and enabling pa-

rameter sharing and fast predictions. Finally, we validate this approach on a set of large

inverse dynamics datasets and test the learned models in real-world control scenarios.

I



Abstract

Chapter 3 addresses discrete-continuous hybrid modeling and control for stochastic dy-

namical systems, which implies dealing with time-series data. In this scenario, we develop

an automatic system identification technique that decomposes nonlinear systems into hy-

brid automata and leverages the resulting structure to learn switching feedback control via

hierarchical reinforcement learning. In the process, we rely on an augmented closed-loop

hidden Markov model architecture that captures time correlations over long horizons and

provides a principled Bayesian inference framework for learning hybrid representations

and filtering the hidden discrete states to apply control accordingly. Finally, we embed this

structure explicitly into a novel hybrid relative entropy policy search algorithm that opti-

mizes a set of local polynomial feedback controllers and value functions. We validate the

overall switching-system perspective by benchmarking the open-loop predictive perfor-

mance against popular black-box representations. We also provide qualitative empirical

results for hybrid reinforcement learning on common nonlinear control tasks.

In Chapter 4, we attend to a general and fundamental problem in learning for control,

namely robustness in data-driven stochastic optimization. The question of sensitivity has

a strong priority, given the rising popularity of embedding statistical models into stochas-

tic control frameworks. However, data from dynamical, especially mechanical, systems

is often scarce due to a high extraction cost and limited coverage of the state-action space.

The result is usually poor models with narrow validity and brittle control laws, particularly

in an ill-posed over-parameterized learning example. We propose to robustify stochastic

control by finding the worst-case distribution over the dynamics and optimizing a corre-

sponding robust policy that minimizes the probability of catastrophic failures. We achieve

this goal by formulating a two-stage iterative minimax optimization problem that finds the

most pessimistic adversary in a trust region around a nominal model and uses it to opti-

mize a robust optimal controller. We test this approach on a set of linear and nonlinear

stochastic systems and supply empirical evidence of its practicality. Finally, we provide

an outlook on how similar multi-stage distributional optimization techniques can be ap-

plied in approximate filtering of stochastic switching systems in order to tackle the issue of

exponential explosion in state mixture components.

In summation, the individual contributions of this thesis are a collection of interconnected

principles for structured and robust learning for control. Although many challenges re-

main ahead, this research lays a foundation for reflecting on future structured learning

questions that strive to combine optimal control and statistical machine learning perspec-

tives for the automatic decomposition and optimization of hierarchical models.
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Kurzfassung
Maschinelles Lernen und seine verschiedenen Anwendungen haben Innovationen in der

Robotik, der synthetischenWahrnehmung und der Datenanalyse vorangetrieben. Vor al-

lem in den letzten zehn Jahren ist das Interesse an der Erforschung und Entwicklung künst-

licher Intelligenz explosionsartig gestiegen, und in einigen Bereichenwurden sie bereits er-

folgreich eingeführt und eingesetzt. Eine wichtige Triebkraft hinter diesen Fortschritten

war die Fülle anDaten und die Entwicklung einfacher Berechnungsmodelle undWerkzeu-

ge, die bis zu massiven Lernautomaten skaliert werden können. Monolithische neurona-

le Netze mit Milliarden von Parametern, die auf automatischer Differenzierung beruhen,

sind ein Paradebeispiel für die bedeutende Rolle, die effiziente Berechnungen bei der Ver-

besserung der Fähigkeit etablierter Darstellungen zur Extraktion intelligenter Muster aus

unstrukturierten Daten gespielt haben.

Trotz der Fortschritte, die in den digitalen Bereichen der Bildverarbeitung und der Verar-

beitung natürlicher Sprache gemacht wurden, hinken Anwendungen der optimalen Steue-

rung und der Robotik deutlich hinterher und waren nicht in der Lage, von den neuesten

Trends des maschinellen Lernens in gleichemMaße zu profitieren. Diese Diskrepanz lässt

sich durch die begrenzte Übertragbarkeit von Lernkonzepten, die auf vollständiger Dif-

ferenzierbarkeit beruhen, auf stark strukturierte physische und menschliche Interaktions-

umgebungen erklären, ganz zu schweigen von den erheblichen Kosten der Datengenerie-

rung bei realen physikalischen Systemen. Diese Faktoren schränken daher den Anwen-

dungsbereich von unstrukturierten, überparametrisierten Datenverarbeitungsmaschinen

im mechanischen Bereich des Roboterlernens und der Robotersteuerung stark ein.

In dieser Arbeit werden Modellierungsparadigmen für hierarchische und schaltende Sys-

teme untersucht, um einige der zuvor hervorgehobenen Probleme zu lösen. Diese For-

schungsrichtung ist motiviert durch die Erkenntnisse der universellen Funktionsappro-

ximation über lokal-kooperierende Einheiten und das Versprechen regularisierter Reprä-

sentationen durch explizites Strukturdesign. Darüber hinaus erforschen wir Ideen aus der

robustenOptimierung, die sichmit Problemen derModellabweichung in statistischenMo-

dellen befassen, und skizzieren, wie verwandte Methoden eingesetzt werden können, um

die Traktabilität von Filterung in stochastischen Hybridsystemen zu verbessern.

In Kapitel 2 betrachtenwir die hierarchischeModellierung für allgemeine Regressionspro-

bleme. Der vorgestellte Ansatz ist eine generative probabilistische Interpretation lokaler

Regressionstechniken, die nichtlineare Funktionen durch einen Satz lokaler linearer oder

polynomialer Einheiten approximieren. Die Anzahl der verfügbaren Einheiten ist bei sol-

chenModellen von entscheidender Bedeutung, da sie ein direktes Gleichgewicht zwischen

der Repräsentationsfähigkeit und der parametrischen Komplexität herstellt. Diese Ambi-

guität wird durch die Anwendung von Prinzipien aus der Bayes’schen Nichtparametrik
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angegangen, um flexibleModelle zu formulieren, die ihre Komplexität an die Daten anpas-

sen und potenziell eine unendliche Anzahl von Komponenten umfassen können. Um die-

se Repräsentationen zu erlernen, stellen wir zwei effiziente Variationsinferenztechniken

vor, die gut mit den Daten skalieren und die Vorteile hierarchischer lokaler Regressions-

modelle hervorheben, wie z.B. den Umgang mit nicht-kontinuierlichen Funktionen, die

Abschwächung katastrophalen Vergessens und die Ermöglichung von Paramaterteilung

und schnellen Vorhersagen. Schließlich validieren wir diesen Ansatz auf große Datensätze

der inversen Dynamik und testen die gelernten Modelle in realen Kontrollszenarien.

Kapitel 3 befasst sich mit der diskret-kontinuierlichen hybriden Modellierung und Steue-

rung stochastischer dynamischer Systeme, was den Umgang mit Zeitreihendaten voraus-

setzt. In diesem Szenario entwickeln wir eine automatische Systemidentifikationstechnik,

die nichtlineare Systeme in hybrideAutomaten zerlegt, und nutzen die resultierende Struk-

tur, um eine schaltende Rückkopplungssteuerung über hierarchisches Bestärkungslernen

zu erlernen. Dabei stützen wir uns auf eine erweiterte Markov-Modell-Architektur für

geschlossene Regelkreise, die Zeitkorrelationen über lange Horizonte erfasst und einen

grundlegendenBayes’schen Inferenzrahmen für das LernenhybriderRepräsentationen und

die Filterung der verborgenen diskreten Zustände bietet, um die Steuerung entsprechend

anzuwenden. Schließlich betten wir diese Struktur in einen neuartigen hybriden Such-

algorithmus mit relativer Entropie ein, der eine Reihe von lokalen polynomialen Rück-

kopplungsreglern und Wertfunktionen optimiert. Wir validieren den Gesamtansatz des

Schaltsystems, indem wir die Vorhersageleistung mit gängigen Black-Box-Darstellungen

vergleichen.Wir liefern auch qualitative empirische Ergebnisse für hybrides Bestärkungs-

lernen bei gängigen nichtlinearen Steuerungsaufgaben.

In Kapitel 4 widmen wir uns einem allgemeinen und grundlegenden Problem des Ler-

nens für die Steuerung, nämlich der Robustheit bei datengesteuerter stochastischer Opti-

mierung. Die Frage der Sensitivität hat angesichts der zunehmenden Popularität der Ein-

bettung statistischer Modelle in stochastische Kontrollsysteme hohe Priorität. Allerdings

sind die Daten dynamischer, insbesondere mechanischer Systeme aufgrund der hohen Er-

hebungskosten und der begrenzten Abdeckung des Zustands-Aktions-Raums oft knapp.

Das Ergebnis sind in der Regel schlechte Modelle mit enger Gültigkeit und brüchigen

Kontrollgesetzen, insbesondere in einem schlecht gestellten, überparametrisierten Lern-

beispiel. Wir schlagen vor, die stochastische Steuerung zu robustifizieren, indem wir die

schlimmstmögliche Verteilung über die Dynamik finden und eine entsprechende robuste

Strategie optimieren, die die Wahrscheinlichkeit von katastrophalen Fehlern minimiert.

Wir erreichen dieses Ziel durch die Formulierung eines zweistufigen iterativen Minimax-

Optimierungsproblems, das den pessimistischsten Gegner in einer Trust-Region um ein

nominales Modell findet und zur Optimierung eines robusten optimalen Reglers verwen-

det.Wir testen diesenAnsatz an einer Reihe von linearen und nichtlinearen stochastischen

Systemen und liefern empirische Beweise für seine Praxistauglichkeit. Schließlich geben
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wir einen Ausblick darauf, wie ähnliche mehrstufige Optimierungstechniken bei der ap-

proximativen Filterung stochastischer Schaltsysteme angewendet werden können, um das

Problem der exponentiellen Explosion von Zustandsmischungskomponenten zu lösen.

Zusammenfassend stellen die einzelnen Beiträge dieser Arbeit eine Sammlung von mit-

einander verbundenen Prinzipien für strukturiertes und robustes Lernen dar. Auch wenn

noch viele Herausforderungen zu bewältigen sind, legt diese Arbeit den Grundstein, um

über zukünftige Fragen des strukturierten Lernens nachzudenken, die darauf abzielen, die

Perspektiven der optimalen Steuerung und des statistischen maschinellen Lernens für die

automatische Dekomposition und Optimierung hierarchischer Modelle zu kombinieren.
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Chapter 1
Introduction

1.1 Motivation
The inception of the core ideas discussed in this thesis occurred at the beginning of my

doctoral study in 2016. During that time, deep learning approaches have already established

an inevitable dominance in themachine learning community and have upendedmany years

of hand-engineered solutions. However, the fields of optimal control and reinforcement

learning were noticeably slower to adopt the same set of tools due to the unique conditions

that apply in those areas and that set them apart fromproblems of visual perception, natural

language understanding, and abstract large-data applications.

In our opinion, the most important distinction that separates learning for control from

other data-driven machine intelligence domains is the data generation process. Typical

supervised and unsupervised learning commonly rely on stationary datasets that can be

aggregated from different sources, standardized, and benchmarked across algorithmic and

model design choices. In contrast, optimizing intelligent systems in dynamic environments

involves an interactive data generation process, posing problems of optimality and effi-

ciency, inadvertently entangling data acquisition and learning.

This difference has significant implications for the general learning process and the role

of poorly regularized over-parameterized representations. The nature of learning in phys-

ically interactive systems implies slow and expensive acquisition mechanisms that result

in individual data distributions for every agent-environment combination, thus drastically

limiting the possibility of aggregating large datasets. Moreover, the iterative accumula-

tion and evolution of information as agents progress in learning leads to inherently non-

stationary, distributionally shifting data streams. These aspects are serious challenges to

large-parameter discriminative learningmachines that commonly suffer from catastrophic

forgetting, i.e., neural networks.

Regardless, deep representations made their way into reinforcement learning and optimal

control and delivered outstanding never-before-observed results for a while. Neural net-

works became standard models for value and policy functions, and many algorithms were

designed to accommodate them. However, with time, the limitations became evident. De-

veloping reinforcement learning algorithms often degraded into an endeavor of endless

tuning of gradient step sizes, random seeds, and implementations in order to compensate

for scarce data and covariate shifts, despite relying on information-theoretic paradigms

that were supposedly designed to deal with these problems automatically.
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Our observation and understanding of these trends are the primary motivation for for-

mulating a different research plan focusing on structured models. In this thesis, we seize

the opportunity to study alternative representations that build up complexity from simple

units without abstracting away or hiding their structure. We argue for a parametric regu-

larization paradigm, regularization through simplicity. We adopt a switching-system view of

control to highlight the redundancies of over-parameterized representations and present

a powerful framework for dealing with discrete components of physical systems. In addi-

tion, we see potential in Bayesian nonparametrics, as it provides principled approaches to

constructing flexible models that adapt according to the data. Finally, the Bayesian view

allows for generative modeling that can deal with non-stationary information flows and

offers flexibility for intelligent systems with continual learning objectives.

1.2 Contributions
In this section, we summarize the main chapters and state their primary contributions.

1.2.1 Infinite Bayesian Local Regression Mixtures
In Chapter 2, we look at hierarchical modeling for general regression problems. Using

Bayesian nonparametric principles, we develop flexible models that approximate nonlin-

ear functions using a set of local linear or polynomial units and adapt their complexity

according to the data. These formulations are probabilistic generative interpretations of

a wide range of local regression algorithms. We derive variational Bayes algorithms for

efficient deterministic inference of these representations and highlight their properties on

a set of toy examples and robotic control scenarios.

1.2.2 Hybrid Reinforcement Learning for Switching Systems
Chapter 3 focuses on the paradigm of hybrid systems for modeling and control. We pro-

pose using an augmented hidden Markov model to enable the automatic decomposition

of general nonlinear dynamics by relying on Bayesian inference principles. Moreover, we

leverage the resulting discrete-continuous structure in learning switching feedback control

via a novel hybrid relative entropy policy search algorithm. Finally, we provide empirical

validation on a set of popular examples of dynamical systems and highlight how this struc-

tured control view helps to drastically reduce parametric complexity.

1.2.3 Distributionally Robust Optimal Control
In Chapter 4, we address the problem of robustness of data-driven control with respect

to statistical dynamics models. We propose an alternating minimax optimization problem

that identifies the worst-case dynamics within a trust region and optimizes a conserva-

tive policy that lowers the risk of catastrophic failures. We provide empirical evaluation

on probabilistic linear and nonlinear systems, emphasizing the advantages of robustifica-

tion. Moreover, we outline how multi-stage distributional optimization strategies might
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be used in approximate filtering of stochastic switching systems to address the problem of

exponential explosion in state mixture components.

1.3 Foundations
The approaches presented in this thesis heavily build upon various central concepts in to-

day’s machine learning, reinforcement learning, and stochastic optimal control. In this

section, we briefly introduce the foundations of conjugate Bayesian computation in expo-

nential family distributions, expectation-maximization and variational inference of struc-

tured models, trust region policy search and stochastic optimal control formulations, and

distributionally robust optimization.

1.3.1 Exponential Family
The upcoming chapters mainly consider random variables with probability density func-

tions belonging to the exponential family. The unified minimal parameterization of this

class of distributions lends itself to convenient and efficient posterior computation when

paired with conjugate priors.

We assume the natural form for a probability density of a random variable x

f (x|η) = h(x)exp
�

η · t(x)− a(η)
�

,

where h(x) is the base measure,η are the natural parameters, t(x) are the sufficient statis-
tics and a(η) is the log-partition function, or log-normalizer. Following the same nota-

tion, a conjugate prior g(η|λ) to the likelihood f (x|η) has the form

g(η|λ) = h(η)exp
�

λ · t(η)− a(λ)
�

,

with prior sufficient statistics t(η) = [η, −a(η)]> and hyperparameters λ = [α, β]>.
By applying Bayes’ rule, we can directly infer the posterior q(η|x)

q(η|x)∝ f (x|η)g(η|λ)
∝ exp

�

ρ(x,λ) · t(η)− a(ρ)
�

,

where the posterior natural parameters ρ(x,λ) are a function of the likelihood sufficient

statistics t(x) and prior hyperparameters [α, β]

ρ(x,λ) =
�

α+ t(x), β + 1
�>

.

The structure of the resulting posterior reveals a simple recipe for data-driven inference.

Bymoving into the natural space, the posterior parameters are computed by combining the

prior hyperparameters with the likelihood sufficient statistics and log-partition function.
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By definition, every exponential family distribution has aminimal natural parameterization

that leads to a unique decomposition of these quantities (Wainwright & Jordan, 2008).

1.3.2 Expectation-Maximization
The study of switching systems directly implies a mixture modeling paradigm that ad-

mits a set of hidden one-hot indicator states z, which define a structure over the observed
data x. In statistical machine learning, the inference of such models is often tackled using

expectation-maximization (EM) style algorithms (Dempster et al., 1977).

The objective in EM is to infer the parameters θ of a mixture model

p(x|θ ) =
∑

z

p(x,z|θ ),

by maximizing the log-likelihood of a dataset consisting of N independent and identically

distributed (i.i.d.) observations X= {x1, . . . ,xN}

maximize
θ

log p(X|θ ) = log
N
∏

p(xn|θ )

=
∑

N

log
∑

z

p(xn,zn|θ ).

The log-sum operator in this optimization is hard to deal with because its maximization

would require the consideration of all possible combinations of z for every x. This problem
can be side-stepped by introducing the variational distributions qn(zn) and using Jensen’s
inequality (Jensen, 1906) to optimize a lower bound of the log-likelihood instead

∑

N

log
∑

z

p(xn,zn|θ ) =
∑

N

log
∑

z

qn(zn)
p(xn,zn|θ )

qn(zn)

≥
∑

N

∑

z

qn(zn) log
p(xn,zn|θ )

qn(zn)
. (1.1)

By decomposing Equation (1.1), the lower bound can be reformulated

log
N
∏

p(xn|θ )≥
∑

N

∑

z

qn(zn) log
p(xn|θ )p(zn|xn,θ )

qn(zn)

=
∑

N

∑

z

qn(zn) log p(xn|θ ) +
∑

N

∑

z

qn(zn) log
p(zn|xn,θ )

qn(zn)

=
∑

N

log p(xn|θ )−
∑

N

KL(qn(zn) || p(zn|xn,θ )). (1.2)
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TheKullback-Leibler divergence (KL), in this instance an I-projectionminimizing distance

measure, is greater than or equal to zero, meaning that Equation (1.2) is always smaller

than or equal to the log-likelihood
∑

N log p(xn|θ ). This lower bound is tight if varia-

tional distribution qn(zn) is chosen to have the same functional form as the true posterior

p(zn|xn,θ ) (Beal, 2003).

The general scheme of an expectation-maximization algorithm is to alternate between two

procedures until convergence. In the expectation step, the KL divergence in Equation (1.2)

is maximized with respect to the variational distributions qn(zn) by relying on an interme-

diate estimate of the parameters θ̂

qn(zn) = p(zn|xn, θ̂ ),

while the maximization step optimizes the lower bound in Equation (1.1) with respect to

parameters θ after substituting the intermediate solution of the expectation step

log
N
∏

p(xn|θ )≥
∑

N

∑

z

qn(zn) log
p(xn,zn|θ )

qn(zn)

=
∑

N

∑

z

p(zn|xn, θ̂ ) log p(xn,zn|θ ) + const (1.3)

=Q(θ , θ̂ ).

The term in Equation (1.3) is the expected complete-data log-likelihood. Notice that the

sum over z is now outside the logarithm function. This new form makes it easy to plug in

the mixture densities and maximize Q(θ , θ̂ ) with respect to θ .

1.3.3 Variational Inference
Expectation-maximization techniques optimize a point estimate of the parameters θ . Un-
fortunately, these estimates are often only local optima considering the non-convex nature

of the objective. In scenarios involving many states z and high dimensional parameters θ ,
these approaches often get stuck in shallow local minima that reflect low-quality solutions.

One way to address this serious drawback is to consider a probabilistic paradigm to infer a

posterior distribution over θ and avoid catastrophic point estimates.

Markov chain Monte Carlo (MCMC) (Brooks et al., 2011) and variational inference (VI)

(Blei et al., 2017) have become the two main approaches for approximate probabilistic in-

ference in structured graphical models. While MCMC relies on constructing a stochastic

sampling process that converges to the posterior, VI formulates the inference task as a

deterministic optimization problem. Although VI usually relies on coarser functional pos-

terior approximations, nonetheless, it is often preferred as it admits a clear convergence

indicator. Moreover, deterministic optimization circumvents the issue of label switching
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in sampled-based multi-modal posterior inference of mixture models.

In a nutshell, in variational inference, a typically intractable posterior is approximated by

a tractable functional distribution q(β) that minimizes the KL to true posterior p(β |D)

q∗(β) = argmin KL(q(β) || p(β |D)), (1.4)

where D is observed data and the vector β subsumes both the parameters θ and hidden

indicators z in structured models. Note that the KL in Equation (1.4) is mode-seeking,

meaning it will lock on one mode of a possibly multi-modal posterior. In general, the pos-

terior p(β |D) is unknown, because the normalizer p(D) is not tractable. In consequence,

the KL cannot be minimized directly, but rather optimized via a related objective that is

equal up to the constant term equivalent to the evidence p(D)

KL(q(β) || p(β |D)) = E
�

log q(β)
�

−E
�

log p(β |D)
�

= E
�

log q(β)
�

−E
�

log p(D,β)
�

+ const.

This modified objective is denoted as the negative evidence lower bound (ELBO) and can

be reformulated to take the traditional form in VI algorithms

ELBO(q) = E
�

log p(β)
�

+E
�

log p(D|β)
�

−E
�

log q(β)
�

= E
�

log p(D|β)
�

− KL(q(β) || p(β)). (1.5)

The choice of the approximate posterior distribution q(β) is open. In this paper, we

focus on variational Bayes methods that rely on the (structured) mean-field assumption

as a general recipe for maximizing the ELBO (Opper & Saad, 2001; Beal, 2003). This

approximation requires that the posterior factorizes over the set of the hidden variables

q(β) =
∏M

i=1 qi(βi). It is emphasized that no other assumptions are made about q(β).
The resulting posterior will be determined solely by the assumed likelihood and priors.

In this thesis, we follow the schemeof variational Bayes expectation-maximization (VBEM)

as a probabilistic generalization of EM.This approach constitutes a coordinate ascent scheme

that iteratively optimizes the ELBO for individual factors of the approximate posterior

q(β) while holding the others constant

ln q j(β j) = Ei 6= j

�

log p(D,β)
�

+ const.

Amore practical version of this optimization can be achieved by using stochastic variational

inference (SVI), a batched stochastic gradient ascent approach. In the case of the conjugate

exponential family, SVI not only facilitates scalability over large datasets but also resembles

a natural gradient ascent algorithm on the ELBO with favorable convergence properties

(Hoffman et al., 2013).
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1.3.4 Relative Entropy Stochastic Control
We rely on trust region stochastic optimization principles to formulate switching and ro-

bust control frameworks. Our primary inspiration is model-free and model-based relative

entropy policy search algorithms, which constrain the policy updates by using a KL trust

region to limit the loss of information between iterations, and explicitly incorporate the

system dynamics (Peters et al., 2010; Levine & Koltun, 2013).

The general relative entropy infinite-horizon stochastic optimal control objective, defined

over a state space X and an action space U, takes the following form

maximize
π,µ

J =

∫∫

r(x,u)π(u|x)µ(x)dudx, (1.6a)

subject to µ(x') =

∫∫

π(u|x)µ(x)p(x'|x,u)dudx, (1.6b)

KL(π(u|x)µ(x) ||q(x,u))≤ ε, (1.6c)
∫∫

π(u|x)µ(x)dudx= 1, (1.6d)

where r(x,u) is a deterministic reward function. Equation (1.6b) describes the evolution

of the state distributionµ(x) according to the dynamics p(x'|x,u) and the state-conditional
policy densityπ(u|x). The trust region in Equation (1.6c) constrains the state action distri-
bution p(x,u) = π(u|x)µ(x) to a KL-ball of size ε around a reference distribution q(x,u).
Finally, Equation (1.6d) guarantees that π(u|x) and µ(x) are proper densities.

This optimization problem is generally not tractable for arbitrary nonlinear dynamics and

reward functions. In model-free reinforcement learning, a sampled-based approach can

be adopted to iteratively find the optimal policy π∗(u|x). However, problems that satisfy

the assumption of (time-variant) linear dynamics with quadratic rewards admit a closed-

form solution that leads to a regularized forward-backward algorithm closely related to the

Riccati equation (Arenz et al., 2016).

1.3.5 Distributional Robustness
Robustness analysis studies the sensitivity of an optimization objective

min
x∈X

max
θ∈Θ

J(x,θ )

with a decision variable x ∈ X with respect to to a parameter set θ ∈ Θ. The solution
x∗ is a conservative point that minimizes the worst-case objective with respect to θ and

delivers an upper-bound on the objective J (Rahimian & Mehrotra, 2019). Furthermore,

robust optimization assumes all parameters θ ∈Θ are equally probable.

7
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In contrast, stochastic optimization assumes the parameters θ are random variables drawn

from a known distribution p(θ ). Thus, the objective J can be minimized under a distri-

butional risk measure or an expectation operator, for example,

min
x∈X
Ep(θ )

�

J(x,θ )
�

.

Distributionally robust optimization is a paradigm that combines the concepts of worst-

case solutions and distributional uncertainty in one general framework. As in stochastic

optimization, the parameters θ are assumed to be random variables, however, the knowl-

edge about the distribution p(θ ) is uncertain. An example of a distributionally robust

optimization can be written as

min
x∈X

max
p∈P
Ep(θ )

�

J(x,θ )
�

,

where P is a set over distributions, commonly referred to as the ambiguity set, and contains
the worst-case distribution p∗(θ ) that upper-bounds the expected loss. The generality of
this formulation becomes evident when we consider two different scenarios. In one sce-

nario, the set P may contain a single distribution, which recovers the stochastic optimiza-

tion problem. In another, P may contain all possible distributions with support on θ , thus
delivering the classical robust optimization formulation.

The motivation behind distributional robustness considerations pertains to data-driven

stochastic learning applications, where the distribution p(θ ) is hard to estimate due to lim-

ited data. Defining an ambiguity set and optimizing for the worst case is a robust approach

to combat statistical learning biases and avoid catastrophic results.

Finally, the choice of the ambiguity set remains important, as it directly influences the over-

all solution and its usefulness. Sets that are very broadly defined can lead to over-powered

biases that cripple the optimization, while a restrictive set definition can undermine the

robustness objective. Related literature includes a wide spectrum of possible definitions

(Rahimian &Mehrotra, 2019). We focus on ambiguity sets defined using discrepancymea-

sures with respect to a nominal distribution p̂(θ )

Bδ(p̂) = {p |D(p, p̂)≤ δ},

where D is a measure of the distance or divergence between an arbitrary distribution p and

the reference p̂. The parameter δ is a set radius around p̂(θ ), which effectively bounds

the worst-case scenario or the strength of the worst possible case. More specifically, in

this thesis, we rely on the Kullback-Leibler divergence as a measure due to its tractable

computational properties and its compatibility with trust region stochastic optimization.

8



Chapter 2
Probabilistic Infinite

Local Regression Mixtures
Well-calibrated probabilistic regressionmodels are a crucial learning component in robotics

applications as datasets grow rapidly and tasks become more complex. Classical regression

models are usually either probabilistic kernel machines with a flexible structure that does

not scale gracefully with data or deterministic and vastly scalable automata, albeit with a

restrictive parametric form and poor regularization.

In this chapter, we consider a probabilistic hierarchical modeling paradigm that combines

the benefits of both worlds to deliver computationally efficient representations with inher-

ent complexity regularization. The presented approaches are probabilistic interpretations

of local regression techniques that approximate nonlinear functions through a set of local

linear or polynomial units. Importantly, we rely on principles from Bayesian nonparamet-

rics to formulate flexible models that adapt their complexity to the data and can potentially

encompass an infinite number of components. We derive two efficient variational infer-

ence techniques to learn these representations and highlight the advantages of hierarchical

infinite local regression models, such as dealing with non-smooth functions, mitigating

catastrophic forgetting, and enabling parameter sharing and fast predictions. Finally, we

validate this approach on a set of large inverse dynamics datasets and test the learned mod-

els in real-world control scenarios.

2.1 Introduction
Principled data-driven, adaptive and incremental learning is a desirable property in do-

mains inwhich datasets are dynamic and accumulate slowly over time. For example, robots

have to buildmodels of their dynamics and the environment as they interactwith theworld.

Moreover, these models have to be computationally efficient during both the learning and

evaluation process. In the case of general-purpose robots, these models must incorporate

different modalities of continuous and discrete stochastic random variables and possibly

incorporate heteroscedastic noise (Todorov, 2005; Büchler et al., 2018).

Predominant and successful regression techniques, such as Gaussian process regression

(GPR) (Rasmussen&Williams, 2006), artificial neural networks (ANNs) (Goodfellow et al.,

2016), and local regression (LR) (Wasserman, 2006), have a diverse set of properties that

are useful in different scenarios.
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Figure 2.1: Gap data learned with infinite local regression (ILR). The top plot depicts the

mean prediction (red) on the training data (dots) and the true mean func-

tion (dashed). The shaded blue area represents the predictive uncertainty of

two standard deviations. This example highlights how ILR deals with out-of-

distribution uncertainty. In areas lacking training data, the predictive uncer-

tainty of ILR is large, the mean prediction falls back to the prior. The bottom

plot shows the activation of the local regression models over the input space.

Gaussian process regression offers a principled Bayesian treatment that enables contin-

ual and incremental learning. Nonetheless, the vanilla formulation of GPR (Rasmussen

& Williams, 2006) suffered from many drawbacks that have been gradually addressed by

recent research. Some of these drawbacks are the functional smoothness assumption (Ca-

landra et al., 2016; Wilson et al., 2016; Salimbeni & Deisenroth, 2017), limitations when

scaling to large datasets (Herbrich et al., 2003; Titsias, 2009; Cao & Fleet, 2014; Deisenroth

&Ng, 2015; Bauer et al., 2016;Matthews, 2017) and difficultiesmodeling heteroscedasticity

(Le et al., 2005; Kersting et al., 2007; Liu et al., 2020).

On the other hand, artificial neural networks have proven themselves as very power-

ful, easy-to-train universal approximators. They are, however, still susceptible to over-

parameterization (Frankle & Carbin, 2019) and catastrophic forgetting (McCloskey & Co-

hen, 1989). Moreover, despite major progress on the front of Bayesian neural networks

(BNNs) (Neal, 1994; Blundell et al., 2015; Lakshminarayanan et al., 2017; Khan et al., 2018;

Sun et al., 2019b; Watson et al., 2021; Daxberger et al., 2021), new evidence suggests that

issues regarding the accuracy of uncertainty quantification still need to be tackled (Wenzel

et al., 2020; Foong et al., 2020).
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Figure 2.2: The cosmic microwave background (CMB) dataset learned by infinite local re-

gression (ILR). The top figure depicts the mean prediction (red) with three

standard deviations predictive uncertainty (shaded blue). ILR captures the het-

eroscedastic spread of the data with a handful of local regression models. The

bottom plot shows the activation of the models over the input space.

Finally, local regressionmethods have had great success in the domain of robotics and con-

trol (Atkeson et al., 1997a; Schaal & Atkeson, 1998; Schaal et al., 2002; Vijayakumar et al.,

2005), because of their flexibility, ability to model hard nonlinearities and to incorporate

new data online naturally. More generally, local regression is a family of generative mix-

ture of experts (MoE) techniques that take a basis-function approach to model the input

density and automatically induces local model responsibilities (Moody & Darken, 1989; Xu

et al., 1994; Nelles & Isermann, 1996; Moerland, 1999), see Figures 2.1 and 2.2. In contrast,

discriminative MoEs rely on an explicitly input-conditioned gating to choose the local ex-

pert (Jacobs et al., 1991; Jordan & Jacobs, 1994; Rasmussen & Ghahramani, 2002).

Two categories of LR exist (Ting et al., 2010), lazy learners, that maintain all seen data

points in memory (Atkeson et al., 1997a; Schaal et al., 2002), and memoryless learners that
compress data by constructing basis functions in the input space and fitting and storing

locally parameterized regression models (Nelles & Isermann, 1996). Prominent examples

of the latter include receptive field weighted regression (RFWR) (Schaal & Atkeson, 1998)

and locally weighted projection regression (LWPR) (Vijayakumar et al., 2005). However,

these methods are often difficult to tune as they possess many hyperparameters.

A limited attempt at a Bayesian treatment of LR is made in (Ting et al., 2009) by con-
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structing local nonparametric kernels and placing gamma priors on the kernel widths to

alleviate the need to tune the basis functions. This approach leads to a localized GP formu-

lation that needs to retain the training data in memory, again leading to the computational

issues of vanilla GPR. Local Gaussian regression (LGR) is a further Bayesian generalization

of LR (Meier et al., 2014). The authors treat the local models in a Bayesian framework and

couple them via the loss function that reinforces global coordination. Nonetheless, both

approaches rely on heuristics and thresholds for adding and pruning local models and fall

short of formulating a generative model over input and output.

Following this introduction, it is our opinion that local regressionwith a generative Bayesian

treatment has the potential to serve as a powerful general-purpose function approximator.

Moreover, as a probabilistic and efficient representation, it can drive many low-level ap-

plications in robotics that favor fast predictions and do not require deep representations.

In the upcoming sections, we introduce two probabilistic graphical mixture models for

local regression. The first, infinite local regression (ILR) (Abdulsamad et al., 2021), is

a generative formulation that relies on the paradigm of Bayesian nonparametrics (BNP)

(Hjort et al., 2010) to automatically grow the mixture size based on observed data. This

technique ultimately results in a general formulation of related methods that alleviates the

need for any heuristic considerations. However, despite the effectiveness of ILR, and like

other local regression techniques that rely on locally linear or polynomial approximations,

it maintains a one-to-one correspondence between the activations and local regression

units. This effect limits the model’s capacity to share parameters across the input space

and often forces the generation of duplicate components, needlessly increasing the overall

number of parameters. To address this limitation, we introduce hierarchical infinite local

regression (HILR), a multi-level development of ILR that enables multi-modal activations

of the same regression component, giving the model a structure that allows sharing of re-

gression parameters across repeating local patterns in the data. This architecture increases

the flexibility of the representation and contributes towards its compression.

For learning these models, we derive two general variational Bayes (VB) schemes (Beal,

2003) that efficiently infer the posterior parameters and overcome the need for computa-

tionally heavy sampling methods. We benchmark the models on a range of toy tasks that

highlight their strengths, such as dealing with heteroscedasticity, non-continuous func-

tions, andmulti-modal activation. Additionally, we test on large real-world high-dimensional

datasets for learning the inverse dynamics of robotic manipulators. Most importantly, we

finally deploy an instance of ILR to perform inverse dynamics control on a real Barrett-

WAM robotic manipulator.

Previously mentioned LR methods, including ILR and HILR, mainly rely on locally linear

regression models. On the one hand, linear and polynomial components offer a natural

unit of approximation. On the other hand, they satisfy real-time computation andmemory
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requirements in robotics. Nonetheless, multiple Bayesian extensions of generative mix-

ture of Gaussian process experts exist with inference techniques based on Markov chain

Monte Carlo (MCMC) (Meeds & Osindero, 2006), and variational inference (VI) (Yuan &

Neubauer, 2009). Given that a single Gaussian process is very effective in capturing non-

linear trends, the motivation of constructing such experts is not to increase the quality of

approximation but rather to reduce the computational complexity and memory usage dur-

ing inference and deployment. Furthermore, the infinite mixture paradigm used in ILR

and HILR is based on seminal work in Bayesian nonparametrics. We reference influen-

tial MCMC sampling techniques for Bayesian nonparametric density estimation (Escobar

& West, 1995; Neal, 2000; Ishwaran & James, 2001; Rasmussen, 1999), which developed

the first seeds of Bayesian inference for Dirichlet processes (Ferguson, 1973) under the

Pólya-urn sampling scheme (Blackwell et al., 1973).

Finally, comparable infinitemixture regressionmodels have been proposed. Prior attempts

exclusively rely on expensive Gibbs sampling algorithms for inference (Mueller et al., 1996;

Shahbaba & Neal, 2009; Hannah et al., 2011; Gadd et al., 2020). We focus on developing

efficient deterministic VI algorithms that improve the practical aspects of training and de-

ploying Bayesian finite and infinite mixture models (Attias, 2000; Blei & Jordan, 2006).

2.2 Preliminaries
In this section, we introduce some related concepts, such as Bayesian linear regression,

Bayesian finite mixture models, and the Dirichlet process.

2.2.1 Bayesian Linear Regression
We start by discussing the Bayesian treatment of a single component of a Bayesian local

regression model, namely Bayesian linear regression (Minka, 2000a). The conditional data

likelihood takes a feature vector x ∈Rm as a random input variable and returns a response

random variable y ∈ Rd according to a linear mapping A : Rm→ Rd , a bias vector c, and
additive zero-mean noise with a precision matrix V

y= Ax+ c+ e, e∼ N(0,V).

For a fully Bayesian treatment, we consider all parameters of this model to be random

variables on which we place proper conjugate or semi-conjugate priors. In this case, we

place matrix-normal (MN) and normal-Wishart (NW) priors on the matrix A, the bias
coefficient c, and precision matrix V

p(A,c,V) =MN(A|M,V,K)N(c|θ ,ρV)W(V|Φ,η),

where M, the mean of A, is a d ×m matrix and V and K are d × d and m×m that serve as

row and column precision matrices of A, respectively. The mean θ is an m-dimensional
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vector, and the scalar ρ modulates the amplitude of the precision. Finally, the parameters

of the Wishart distribution are the d × d positive definite scale matrix Φ and the degrees

of freedom η. Due to the conjugate nature of the priors, the joint posteriors p(A,c,V|D)
are matrix-normal and normal-Wishart distributions, conditioned on the data of N inde-

pendent and identically distributed data pairs D = {(x1,y1), . . . , (xN ,yN )}.

2.2.2 Bayesian Finite Mixture Models
Gaussian mixture models (GMMs) are hierarchical latent variable models with univer-

sal approximation capabilities for arbitrary continuous densities. This insight is of cen-

tral interest when connected to density estimation for local regression models, which are

themselves universal nonlinear function approximators (Wasserman, 2006). A finite K-
componentGaussianmixture of a randomvariable x is a weighted combination of densities

p(x|θ ) =
K
∑

k=1

p(z= k|π)p(x|θ k) =
K
∑

k=1

πk N(x|µk,Λk),

with K unique mean vectors µk and precision matrices Λk. The latent quantity z is a one-

hot random variable distributed according to a categorical distribution p(z) = Cat(π),
governed by the weights π= {π1, . . . ,πK} that satisfy 0≤ πk ≤ 1 and

∑K
k=1πk = 1.

TheBayesian extension of thismodel (Attias, 2000) introduces a conjugate normal-Wishart

prior on the means and precision matrices (µk,Λk) ∼ NW(λ), where λ contains the hy-

perparameters. Furthermore, a conjugate Dirichlet prior, with a concentration parameter

α, is placed on the mixing weights π∼ Dir(α).

This Bayesian approach has proven effective in regularizing GMMs by allowing super-

fluous components to fall back onto their priors instead of severely overfitting to small

clusters. This effect can be understood as sparsification bias over K (Beal & Ghahramani,

2006; Rousseau & Mengersen, 2011).

2.2.3 Dirichlet Process and Stick-Breaking
A Dirichlet process (DP) is a distribution over probability measures G. We write G ∼
DP(α,H), where α is the concentration parameter and H is the base measure (Murphy,

2012; Teh, 2010). Intuitively, a Dirichlet process is a distribution over distributions, mean-

ing each draw G is a distribution. The base distribution H is the mean of the DP, and the

concentration parameterα is the inverse variance. The largerα is, the smaller the variance,

and the process concentrates more of its mass around the mean distribution H.

We will rely on the stick-breaking construction (Sethuraman, 1994) of a DP as an algo-

rithmic realization. Stick-breaking delivers an infinite sequence of mixture weights πk of
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an infinite mixture model from the stochastic process

πk = sk

k−1
∏

l=1

�

1− sl

�

, sk ∼ Beta(1,α).

This process is sometimes denoted as π ∼ GEM(α) (Murphy, 2012). The stick-breaking

procedure describes how the random variables sk, representing stick lengths, are drawn

from a beta distribution and combined to obtain the mixture weightsπk. If the concentra-

tion parameter α increases, the magnitude of the mixing weights πk decreases on average,

and the number of possible active components increases. This representation of DPs can

be used to replace the priors placed on the finite Gaussian mixture model (Blei & Jordan,

2006). In such a setting, the baseH is a normal-Wishart distribution, and the sampledmea-

sureG∼ DP(α,NW) is a draw of an unbounded number of parameters (µk,Λk)∼ NW(λ)
for an infinite number of clusters, associated with an infinite number of weights πk gen-

erated by the stick-breaking process. These draws from a Dirichlet process are discrete

with probability one, which leads to the clustering effect of the DP. Eventually, the same

parameters will be sampled over and over, forcing the associated data points to cluster.

2.3 Infinite Mixture of Local Regression
Using the previously presented concepts of Bayesian linear regression, Bayesian mixture

models, and Dirichlet processes, we now construct the Bayesian infinite local regression

(ILR)model. Our approach to solving the regression task is mainly a Bayesian joint density

estimation task. We assume a generative process as depicted in Figure 2.3. A Dirichlet

process is sampled to generate the categorical weights π, mixture activations {µk,Λk}∞k=1,

and regression parameters {Ak,ck,Vk}∞k=1

π(s)∼ GEM(α),
Λk ∼W(Ψ,ν), µk ∼ N(m,κΛk),

Vk ∼W(Φ,η), Ak ∼MN(M,K,Vk), ck ∼ N(θ ,ρVk),

and those parameters generate the one-hot labels zn and data pairs xn,yn

zn ∼ Cat(π(s)), xn ∼ N(µzn
,Λzn
), yn ∼ N(Azn

xn + czn
,Vzn
).

Notice that the densities over the input space naturally play the role of basis functions or

so-called receptive fields as in the receptive field weighted regression (Schaal et al., 2002)

and locally weighted projection regression (Vijayakumar et al., 2005) algorithms.

The next step is to infer the joint posterior p(Z, s,µ,Λ,A,c,V|X,Y) over labels and pa-

rameters from data, where X = {x1, . . . ,xn}, Y = {y1, . . . ,yn}, and Z = {z1, . . . ,zn}.
Our method of choice, variational Bayes expectation-maximization (VBEM), alternates
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Chapter 2: Probabilistic Infinite Local Regression Mixtures

between a variational expectation step (E-step) and maximization step (M-step), see Sec-

tion 1.3.3. Deriving such an algorithm requires pinning down the following definitions of

the likelihood, prior and posterior.

2.3.1 Complete Data Likelihood
We assume the following form of the joint likelihood For the general case of multivariate

regression with m inputs and d outputs, we assume the following structured joint likeli-

hood over data and indicators

p(X,Y,Z|.) = p(Z) p(X|Z) p(Y|Z,X)

=
N
∏

n=1

Cat(zn|π(s))

×
N
∏

n=1

∞
∏

k=1

N(xn|µk,Λk)
znk

×
N
∏

n=1

∞
∏

k=1

N(yn|Akxn + ck,Vk)
znk .

2.3.2 Infinite Conjugate Prior
We assume the factorized conjugate infinite mixture prior

p(s,µ,Λ,A,c,V) = p(s) p(µ|Λ) p(Λ)p(A|V) p(c|V) p(V).

This prior samples the cluster meansµk and precisionmatricesΛk from a normal-Wishart

p(µ|Λ) p(Λ) =
∞
∏

k=1

N(µk|m0,κ0Λk)W(Λk|Ψ0,ν0),

while matrix-normal-Wishart and a normal-Wishart priors are placed on the regression

coefficients (Ak,ck) and the precision matrices Vk

p(A|V) p(c|V) p(V) =
∞
∏

k=1

MN(Ak|M0,K0,Vk)N(ck|θ 0,ρ0Vk)W(Vk|Φ0,η0).

The parameters πk are generated by a stick-breaking process πk(s) = sk

∏k−1
l=1 (1 − sl).

The parameters s= {si, . . . , sK} are independently beta distributed

p(s) =
∞
∏

k=1

Beta(sk|1,α0).
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2.3.3 Truncated Mean-Field Factorization
We rely on a structured mean-field approximation of the posterior (Opper & Saad, 2001)

that factorizes between the labels q(Z) and the remaining parameters q(s,µ,Λ,A,c,V),
thus automatically leading to the following decomposition

p(Z, s,µ,Λ,A,c,V|D)≈ q(Z)q(s)q(µ,Λ)q(A,c,V).

Further, we follow (Blei & Jordan, 2006) by allowing a truncation of the posterior while

maintaining an infinite prior, so that q(sK = 1) = 1, implying that πk = 0 for k > K

q = q(Z)q(s)q(µ,Λ)q(A,c,V)

=
N
∏

n=1

Cat(zn|rn)
K−1
∏

k=1

Beta(sk|γk,αk)

×
K
∏

k=1

N(µk|mk,κkΛk)W(Λk|Ψk,νk)

×
K
∏

k=1

MN(Ak|Mk,Kk,Vk)N(ck|θ k,ρkVk)W(Vk|Φk,ηk),

where rn are the expected responsibilities of themixture. During evaluation, the truncation

threshold K is chosen to be very high and is seldom reached.

2.3.4 Variational Expectation Step
In the E-step, the responsibilities rn are computed by following the recipe of VBEM. The

responsibilities are variational parameters of the posterior categorical

log q(Z) = Eq(s)

�

log p(Z|π(s))
�

+Eq(µ,Λ)

�

log p(X|Z)
�

+Eq(A,c,V)

�

log p(Y|Z,X)
�

+ const

=
N
∑

n=1

Eq(s)

�

logCat(zn|π)
�

+
K
∑

k=1

N
∑

n=1

znkEq(µ,Λ)

�

logN(xn|µk,Λk)
�

+
K
∑

k=1

N
∑

n=1

znkEq(A,c,V)

�

logN(yn|Akxn + ck,Vk)
�

+ const

=
K
∑

k=1

N
∑

n=1

znk log rnk.

The expectations associated with the Gaussian likelihoods are straightforwardly computed

(Bishop, 2006). The expectations associated with infinite-dimensional categorical require

more consideration (Blei & Jordan, 2006). We provide the necessary details in Appendix B.
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2.3.5 Variational Maximization Step
The M-step updates the variational distributions given the responsibilities as follows

log q(s) = Eq(z)

�

log p(Z|π(s))
�

+ log p(s) + const

=
K
∑

k=1

N
∑

n=1

Eq(z)

�

znk

�

log



sk

k
∏

l=1

(1− sl)



+
K
∑

k=1

logBeta(sk|1,α0) + const,

log q(µ,Λ) = Eq(z)

�

log p(X|Z)
�

+ log p(µ,Λ) + const

=
K
∑

k=1

N
∑

n=1

Eq(z)

�

znk

�

logN(xn|µk,Λk) +
K
∑

k=1

logW(Vk|Ψ0,ν0) + const,

log q(A,c,V) = Eq(z)

�

log p(Y|Z,X)
�

+ log p(A,c,V) + const

=
K
∑

k=1

N
∑

n=1

Eq(z)

�

znk

�

logN(yn|Akxn + ck,Vk) +
K
∑

k=1

logW(Vk|Φ0,η0)

+
K
∑

k=1

logMN(Ak|M0,K0,Vk) +
K
∑

k=1

logN(ck|θ 0,ρ0Vk) + const,

where Eq(z)

�

znk

�

= rnk. Consequently, each update reflects a conjugate computation of

K log-posterior densities given a log-prior and a weighted log-likelihood. We provide

general recipes for these updates in Appendix A.

2.3.6 Posterior Predictive Distribution
For predicting the function value ŷ conditioned on a test query x̂, we marginalize the like-

lihood over the posterior parameters to get the joint posterior predictive density. To make

the marginalization tractable, we replace the true posterior with our approximate varia-

tional posterior q(.|D) inferred under a training dataset D.

The conditional predictive for a single component z= k is a Student’s t-distribution

p(ŷ|x̂, ẑ= k,D) = Eq(Ak ,ck ,Vk)

�

p(ŷ|x̂,Ak,ck,Vk)
�

= T
�

Mkx̂+ θ k, akΦk,ηk + 1
�

,

where we have defined

ak = 1− x̃>
�

Lk + x̃x̃>
�−1

x̃,

with x̃= [x̂, 1]> and Lk = Block
�

Kk,ρk

�

.

Additionally, the joint activation of a component k is a Student’s t-distribution weighted
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Chapter 2: Probabilistic Infinite Local Regression Mixtures

by the expected categorical probability under the posterior stick-breaking process

p(x̂, ẑ= k|D)∝ Eq(sk)

�

p(ẑ= k|sk)
�

Eq(µk ,Λk)

�

p(x̂|µk,Λk)
�

=
γk

γk +αk

k−1
∏

l=1

�

1−
γl

γl +αl

�

× T

�

µk,
κk

1+κk
Ψk,νk + 1

�

.

These K-activations enable two prediction techniques. A mode-prediction, where the most

likely active component is selected and used to perform prediction with the corresponding

linear regression model, or a mean-prediction, that averages the predictions of all compo-

nents weighted by their activation probabilities.

2.3.7 Computational Complexity
We calculate the training-time computational cost to be O(NK(d + m)3), which can be

straightforwardly reduced to O(LK(d + m)3) by applying stochastic updates (Hoffman

et al., 2013), where L is the batch size. This result shows linear scalability with the data,

which is considerablymore efficient than simple variants of GPR.The test-time complexity

of a mean prediction isO(K(d3+dm)), which combines the input membership query and

the linear matrix transformation for every model k. This computation is, in contrast to

GPR, independent of the training data size, hence the advantage of memoryless locally-

parametric representations during real-time critical applications.

2.4 Hierarchical Infinite Mixture of Local Regression
The local regressionmodel presented in Section 2.3 offers a very flexible andwell-regularized

alternative to previously developed approaches (Schaal &Atkeson, 1998;Vijayakumar et al.,

2005;Meier et al., 2014). However, like other representations, it suffers froma subtle draw-

back that can cause it to generate duplicate regression components to account for similar

local function trends across disconnected regions of the input space.

This issue is a consequence of the hierarchical design that directly couples activations and

local function approximations via a one-to-one correspondence and enforces a uni-modal

activation per regression component. This coupling can be clearly observed in the defini-

tion of the likelihood in Section 2.3.1, where the activation and the local regression units

share the same assignment variable. It stands to reason that this architecture does not of-

fer enough flexibility and hinders parameter sharing between components. We, therefore,

argue for a modified formulation of ILR that explicitly accounts for shift-invariance in the

input space and provides the freedom to create regression units with multi-modal, theo-

retically infinitely-modal, activations, if needed.
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Following this motivation, we formulate hierarchical infinite local regression (HILR), an

infinitemixture over infinitemixtures, and sketch out a structured variational inference al-

gorithm to approximate its posterior. The resultingmodel shares some similaritieswith ex-

isting representations developed for hierarchical clustering (Yerebakan et al., 2014;Nguyen

et al., 2014; Huynh et al., 2016). We start by describing the generative process of the hi-

erarchical tied mixture as depicted in Figure 2.4. An upper-level Dirichlet process, the

meta-process indexed by m, generates the stick-breaking weightsω, the meta-activations

{τm,Λm}∞m=1, and the shared slope and output precision matrices {Am,Vm}∞m=1

ω(t)∼ GEM(β),
Λm ∼W(Ψ,ν), τm ∼ N(m,λΛm),

Vm ∼W(Φ,η), Am ∼MN(M,K,Vm),

where t are the stick lengths of the corresponding upper-level DP. The lower-level DPs,

indexed by k, generate the weights πm, the multi-modal activation centers {µmk}∞k=1 and

the affine shift coefficients {cmk}∞k=1

πm(sm)∼ GEM(α), µmk ∼ N(τm,κΛm), cmk ∼ N(θ ,ρVm),

which in turn generate the upper- and lower-level labels hn,zn and the data pairs xn,yn

hn ∼ Cat(ω(t)), zn ∼ Cat(π(s),hn),
xn ∼ N(µhn,zn

,Λhn
), yn ∼ N(Ahn

xn + chn,zn
,Vhn
).

Analogous to Section 2.3, we formulate the quantities involved in deriving a structured

VBEM algorithm for this model. These quantities are the complete data likelihood, the

infinite prior, and the mean-field posterior factorization.

2.4.1 Complete Data Likelihood
The likelihood model is a two-level precision-tied joint density over the observations X,Y
and the one-hot upper- and lower-labels H,Z

p(.) = p(H) p(Z|H) p(X|H,Z) p(Y|H,Z,X)

=
N
∏

n=1

Cat(hn|ω(t))
N
∏

n=1

Cat(zn|π(s),hn)

×
N
∏

n=1

∞
∏

m=1

∞
∏

k=1

N(xn|µmk,Λm)
znk×hnm

×
N
∏

n=1

∞
∏

m=1

∞
∏

k=1

N(yn|Amxn + cmk,Vm)
znk×hnm ,
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2.4.2 Infinite Conjugate Prior
We assume a factorized two-level tied conjugate infinite mixture prior

p(t, s,µ,τ,Λ,A,c,V) = p(t) p(s) p(µ|τ,Λ) p(τ|Λ) p(Λ) p(A|V) p(c|V) p(V).

The meta activation prior is a normal-Wishart distribution over the meta centers τm and

precision matrices Λm

p(τ|Λ)p(Λ) =
∞
∏

m=1

N(τm|m0,λ0Λm)W(Λm|Ψ0,ν0),

while the activation centers µmk are sampled from a conditional normal distribution

p(µ|τ,Λ) =
∞
∏

m=1

∞
∏

k=1

N(µmk|τm,κ0Λm).

The mappings Am and precision matrices Vm are sampled form a matrix-normal-Wishart

p(A|V)p(V) =
∞
∏

m=1

MN(Am|M0,K0,Vm)W(Vm|Φ0,η0).

while the biases cmk are drawn from a K-tied conditional normal

p(c|V) =
∞
∏

m=1

∞
∏

k=1

MN(cmk|θ 0,ρ0Vm).

Finally, the stick-breaking priors p(t, s) follow the definitions from Section 2.3

p(t) =
∞
∏

m=1

Beta(tk|1,β0),

p(s) =
∞
∏

m=1

∞
∏

k=1

Beta(smk|1,α0).

2.4.3 Truncated Mean-Field Factorization
We assume a structured decomposition of the posterior that leads to conjugate computa-

tion while maintaining the dependencies between the discrete labels, the input activations,

and the regression parameters, respectively. Moreover, we apply the truncation scheme
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from (Blei & Jordan, 2006) to establish the following posterior approximation

p(.|D)≈ q(H)q(Z|H)q(t)q(s)q(µ,τ,Λ)q(A,c,V)

=
N
∏

n=1

Cat(hn|gn)Cat(zn|hn, rn)

×
M−1
∏

m=1

Beta(tm|δm,βm)

×
M−1
∏

m=1

K−1
∏

k=1

Beta(smk|γmk,αmk)

×
M
∏

m=1

N(τm|mm,λmΛm)W(Λm|Ψm,νm)

×
M
∏

m=1

MN(Am|Mm,Km,Vm)W(Vm|Φm,ηm)

×
M
∏

m=1

K
∏

k=1

N(µmk|τm,κmkΛm)N(cmk|θmk,ρmkVk),

where gn and rn are the upper- and lower-level posterior responsibilities, respectively.

2.4.4 Variational Expectation Step
The E-step computes the joint posterior categorical over joint labels H and Z

log q(Z|H) = Eq(s)

�

log p(Z|H)
�

+Eq(µ,τ,Λ)

�

log p(X|H,Z)
�

+Eq(A,c,V)

�

log p(Y|H,Z,X)
�

+ const

=
M
∑

m=1

K
∑

k=1

N
∑

n=1

hnmznmk log rnmk,

log q(H) = Eq(t)

�

log p(H)
�

+ log q(Z|H) + const

=
M
∑

m=1

N
∑

n=1

hnm log gnm,

where these expectations can computed in a similar fashion to Section 2.3.4 andAppendixB.
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2.4.5 Variational Maximization Step
The M-step updates the variational gating, activation, and regression parameters

log q(t) = Eq(H)

�

log p(H)
�

+ log p(t) + const,

log q(s) = Eq(H,Z)

�

log p(Z|H)
�

+ log p(s) + const,

log q(µ) = Eq(H,Z,τ,Λ)

�

log p(X|H,Z)
�

+Eq(τ,Λ)

�

log p(µ|τ,Λ)
�

+ const,

log q(τ,Λ) = Eq(H,Z,µ)

�

log p(X|H,Z)
�

+ log p(τ,Λ)

+Eq(µ)

�

log p(µ|τ,Λ)
�

+ const,

log q(c) = Eq(H,Z,A,V)

�

log p(Y|H,Z,X)
�

+Eq(V)

�

log p(c|V)
�

+ const,

log q(A,V) = Eq(H,Z,c)

�

log p(Y|H,Z,X)
�

+ log p(A,V)

+Eq(c)

�

log p(c|V)
�

+ const .

Aspreviously stated, these updates resemble posterior computationsweighted byE[hnm] =
gnm and E[znmk] = rnmk. Appendices A and B provide further details.

2.4.6 Posterior Predictive Distribution
Prediction with HILR is akin to that with ILR, as described in Section 2.3.6. We briefly

state the conditional predictive for a component h= m and an activation z= k

p(ŷ|x̂, ĥ= m, ẑ= k,D) = Eq(A,c,V)

�

p(ŷ|x̂,Am,cmk,Vm)
�

= T
�

Mmx̂+ θmk, amkΦm,ηm + 1
�

,

where amk has the same structure as in ILR. Further, the weight of the k−th activation of

the m−th component is computed as follows

p(x̂, ĥ= m, ẑ= k|D)∝ Eq(tm)

�

p(ĥ= m|tm)
�

Eq(smk)

�

p(ẑ= k|smk)
�

×Eq(µmk ,τm,Λm)

�

p(x̂|µmk,Λm)
�

=
δm

δm + βm

m−1
∏

l=1

�

1−
δl

δl + βl

�

×
γmk

γmk +αmk

k−1
∏

l=1

�

1−
γml

γml +αml

�

× T

�

µmk,
κmk

1+κmk
Ψm,νm + 1

�

.
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Figure 2.5: Discontinuous functions learned by ILR. The top figures show the mode pre-

diction (red) and two standard deviations confidence (shaded blue). The left ex-

ample is a simple step function that can be captured with linear features, while

the on the right, we use a polynomial transformation of the input for more

flexibility. The bottom plots show the activation over the input space.

2.5 Empirical Evaluation
We evaluate different aspects of the presented models on a range of tasks. Our goals are

(1) to highlight some of the advantages of ILR and HILR, such as dealing with out-of-

distribution predictions, recovering an input-dependent noise function, hierarchical gat-

ing, sharing parameters, and the ability to perform Bayesian sequential updates, (2) to

benchmark the models on high dimensional datasets from real robots, and (3) to deploy

the models in a real-world scenario to further empirically demonstrate its validity. A pub-

lic open-source library is available at https://github.com/hanyas/mimo.

2.5.1 Out-of-distribution Uncertainty
In Figure 2.1, we apply ILR on a synthetic Sine dataset with two large gaps. We observe

how the predictive uncertainty strongly reflects the lack of training data in these regions

and how the mean prediction falls back to the prior values. This example highlights the

reasonable quantification of uncertainty by the model. Uncertainty is low, where the mean

prediction is accurate, and very high in regions where the prior dominates. The out-of-

distribution behavior of ILR is strongly influenced by the discrete gating and a query’s ac-

tivation probability that jointly define the overall membership weights.
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Figure 2.6: Tackling inverse mapping

problems with ILR. This example in-

cludes scattered data that maps the input

x to multiple output values y. A discrim-

inative modeling approach fails in these

scenarios, as it tries to capture the am-

biguous mean of the function f : x→ y.
By approximating the joint density over

both input and output, ILR can recon-

struct these non-unique relations via lo-

cal linear approximations.

2.5.2 Heteroscedastic Noise
We test on two different problems with input-dependent noise, the cosmic microwave

background (CMB) (Bennett et al., 2003), and a synthetic dataset from a stochastic Sinc

function y(x) = sinc(x) + ε, where the noise ε is distributed according to zero-mean

normalwith a standard deviationσε(x) = 0.05+0.2(1+sin(2x))/(1+e−0.2x). Figure 2.2
and Figure 2.7 show that ILR can approximate the nonlinear functions well. In particular,

the heteroscedastic noise functions are recovered in great detail.

2.5.3 Discontinuous and Local Polynomials
In Figure 2.5 (left), a step function is fitted using the mode of the predictive distribution.

More expressive local regressors can be realized by applying a polynomial feature transfor-

mation to the input space. Figure 2.5 (right) depicts an example of cubic regressors, which

are still linear in the parameters, fitted to data sampled from noisy cubic polynomials.

2.5.4 Inverse Mapping
One important advantage of generative over discriminative modeling is the ability to deal

with non-unique inverse mapping problems. Such scenarios arise when the same input

can be mapped to multiple output values. Joint modeling of the input-output data allows

for flexible conditioning and alleviates the directional graph constraints. In Figure 2.6, we

show a simple example of how ILR is able to learn these mappings.

2.5.5 Bayesian Sequential Updates
In Figure 2.8, we construct a sequential learning problem. Data from the Chirp function

arrives in batches. ILR uses sequential Bayesian updates to iteratively update the posterior
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Figure 2.7: A challenging heteroscedastic example of a Sinc function heavily overlayedwith

input-dependent noise. The first figure shows the mean prediction (red) on

the training data (dots) and the true mean function (dashed black) corrupted

by noise (dashed green). The blue dashed lines represent the complex noise

process recovered by ILR. The second figure shows the activation over the in-

put space. The bottom two figures depict the results of fitting the mean and

standard deviation functions averaged over ten different seeds to highlight the

robustness of the inference process.
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Figure 2.8: Bayesian sequential updates. Mean (red) and a two standard deviations interval

(shaded blue) of the predictive distribution fitted to sequentially arriving data

(three batches) from the chirp dataset (gray dots). For the second and third

plots, the posterior fitted to the previous batches is used as a prior to perform a

Bayesian sequential update. There is no catastrophic forgetting and in regions

with no data the prediction falls back to the prior.

given a new batch. This approach successfully captures the data trend with no significant

catastrophic forgetting. The mean-field posterior approximation errors have little influ-

ence because the posterior updates are localized in the input domain.

2.5.6 Hierarchical Parameter Sharing
In Figure 2.9, we test HILR’s ability to share slope parameters via multi-modal activations.

We consider a dataset stemming from a periodic triangle signal overlayed with additive

noise. HILR decides to activate two upper- and two lower-level regions tomatch the struc-

ture of the data, despite having more degrees of freedom at each level.

2.5.7 Robot Inverse Dynamics
Next, we use ILR and HILR to learn the inverse dynamics of anthropomorphic manipula-

tors. These dynamics are governed by the general mechanical equation

u=M(q)q̈+C(q, q̇) +G(q) + ε(q, q̇, q̈),

where q, q̇, q̈ are joint angles, velocities and accelerations, and u are torques. M(q) is the
inertia matrix, C(q, q̇) are the Coriolis and centripetal forces, andG(q) is the gravity force.
ε(q, q̇, q̈) are general unmodelled nonlinearities such as sticktion/friction and hydraulic

and tendon/cable dynamics, that motivate a data-driven approach to learn the mapping

q, q̇, q̈→ u. Later, we use the learned ILR model for online inverse dynamics control.

As evaluation criteria, we use themean squared error (MSE), normalizedmean squared er-

ror (NMSE), and the number of experts. These measures cover the prediction accuracy as

well as the complexity of the learned model. We compare to popular (probabilistic) meth-
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Figure 2.9: Multi-level local regression with HILR. An example of how HILR allows pa-

rameter sharing in shift-invariant functions. The top figure shows the mode

prediction (red) along with two standard deviations of predictive uncertainty

(shaded blue). The bottomplots highlight themulti-modal activation, which al-

lows this representation to share slope information over non-adjacent regions.

ods such as local Gaussian regression (LGR) (Meier et al., 2014), locallyweighted projection

regression (LWPR) (Vijayakumar et al., 2005), Gaussian process regression (GPR) (Ras-

mussen &Williams, 2006) and sparse Gaussian process regression (SGPR) (Titsias, 2009),

and two scalable Gaussian process product of experts: the robust Bayesian committee ma-

chine (rBCM) (Deisenroth &Ng, 2015) and the generalized product of experts (gPoE) (Cao

& Fleet, 2014).

We benchmark the prediction accuracy of all regression techniques on a high-dimensional

dataset collected from a 7-DoF (degrees of freedom) anthropomorphic SARCOS arm (Vi-

jayakumar et al., 2005). The dataset consists of 44484 training points and 4449 test cases.

Overall there are 21 input variables, q, q̇, q̈, mapping to 7motor torquesu. We also bench-

mark on an inverse dynamics dataset from a 4-DoF Barrett-WAMmanipulator, mapping

from a 12-D to 4-D space. This dataset contains 25000 training and 5000 test pairs.

Table 2.1 and Table 2.2 list the results for both datasets. We report the average MSE,

NMSE, and the number of active models over all joints. The results are obtained by run-

ning five seeds and computing themeans and standard deviations for every cell in the table,

except for LGR∗, because of the unreasonable training times achieved while using the au-

thors’ code. When evaluating GPR on the SARCOS dataset, we faced GPU-memory con-

straints (32GB), and we have discarded this evaluation. For rBCM and gPoE, we assigned
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Table 2.1: Accuracy on the SARCOS dataset

MSE NMSE Experts

ILR (4.80± 0.30)× 10−1 (3.40± 0.20)× 10−3 1700
HILR (5.30± 0.40)× 10−1 (3.90± 0.30)× 10−3 1450
LGR∗ 86.00× 10−1 50.00× 10−3 7000
LWPR (26.00± 0.30)× 10−1 (18.00± 0.20)× 10−3 32000
GPR N/A N/A -

SGPR (8.50± 0.03)× 10−1 (6.000± 0.008)× 10−3 -

rBCM (4.52± 0.05)× 10−1 (2.600± 0.030)× 10−3 315
gPoE (4.60± 0.06)× 10−1 (3.000± 0.075)× 10−3 315

Table 2.2: Accuracy on the Barrett-WAM dataset

MSE NMSE Experts

ILR (2.90± 0.50)× 10−1 (7.0± 0.5)× 10−3 1350
HILR (3.10± 0.65)× 10−1 (8.0± 0.6)× 10−3 1110
LGR∗ 7.70× 10−1 17.0× 10−3 3270
LWPR (10.00± 1.50)× 10−1 (37.0± 10.0)× 10−3 2900
GPR (1.00± 0.01)× 10−1 (2.30± 0.01)× 10−3 -

SGPR (1.80± 0.05)× 10−1 (6.30± 0.02)× 10−3 -

rBCM (3.80± 0.35)× 10−1 (19.00± 1.80)× 10−3 100
gPoE (3.40± 0.13)× 10−1 (16.00± 0.60)× 10−3 100

an expert to every 1000 data points, repeated for every output dimension.

The results show that ILR and HILR clearly outperform the related local regression meth-

ods LWPR and LGR, both in terms of prediction accuracy and number of used models.

However, GPR is still the gold standard when the kernel size is within memory limits. In-

terestingly, the results also indicate that ILR and HILR are competitive with sparse Gaus-

sian process regression (SGPR) and the two product of experts rBCM and gPoE. Finally,

the results reveal that HILR tends to activate roughly 10-15% fewer components than ILR.

This observation indicates that HILRmay be taking advantage of shift-invariance patterns

in the data and avoiding duplicate regression units. This hypothesis is hard to validate due

to the data’s high dimensionality.

2.5.8 Real Inverse Dynamics Control
Finally, we demonstrate the validity of the learned dynamics captured by ILR by using

the learned model in an online trajectory tracking scenario with inverse dynamics control

on the Barrett-WAM. In this experiment, we learn two separate models for two different

trajectory-tracking tasks.

The first task requires tracking an 8-shaped desired trajectory in the x y-plane of the end-
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Figure 2.10: 8-Shaped trajectory learning. Bayesian sequential updates on a dataset col-

lected from a Barrett-WAM. For five different seeds, we plot the NMSE on

accumulated data over the number of batches. The NMSE consistently im-

proves with new data and no catastrophic forgetting is observed.

Table 2.3: Tracking error and torque contributed by the PD-controller during the Barrett-

WAM real robot task.

PD Analytic+PD ILR+PD

T1
MSE 2.33× 10−2 2.16× 10−2 1.03× 10−3

PD-Torque 8.25× 100 7.12× 100 1.40× 100

T2
MSE 2.60× 10−2 2.55× 10−2 9.17× 10−4

PD-Torque 8.71× 100 7.41× 100 1.33× 100

T3
MSE 2.94× 10−2 3.08× 10−2 8.96× 10−4

PD-Torque 9.38× 100 8.06× 100 1.38× 100

effector. We collect 30000 training samples (roughly 1 minute) consisting of multiple tra-

jectories with different velocity profiles. We perform learning with Bayesian sequential

updates over 15 batches formultiple seeds. Figure 2.10 depicts the progression of the learn-

ing process, where the NMSE consistently improves. We then select the best model and

perform onlinemodel-based control to track held-out test trajectories with unseen velocity

profiles. ILR provides feed-forward torques supported by a low-gain PD-controller. We

compare the tracking precision to an analytical dynamics model accompanied by the same

low-gain PD-controller and a ”model-free” PD-controller. Figure 2.11 shows a comparison

of the different controllers on two test trajectories.

We construct a similar scenario for the second task, albeit we learn a model covering a

larger region of the state-action space and compute quantitative precision benchmarks.
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Figure 2.11: 8-shaped trajectory tracking on the Barrett-WAM. We compare three con-

trollers on two test trajectories (blue), a low-gain PD (black), a low-gain PD

+ feed-forward torques from an analytical model (red), and a low-gain PD +

feed-forward torques from ILR (green). The results indicate that ILR delivers

the best tracking performance.

We generate a larger real-world Barrett dataset consisting of 150000 training examples

(roughly 5 minutes). The movements are sinusoidal joint-space trajectories with slow and

fast velocity profiles. We repeat the process of the previous task and run ILR on held-

out test trajectories with the same low-gain PD-controller and compare with the analytical

model and ”model-free” PD. As benchmarking criteria, we evaluate the MSE with respect

to the desired trajectory and the mean torque contributed by the low-gain PD-controller

to the overall control signal. The rationale is as follows; A good inverse dynamics model

will consistently produce a low MSE while not relying on the PD-controller’s assistance

in the background. Table 2.3 shows the benchmarks for 3 test trajectories. The results

indicate that ILR significantly improves the performance and achieves good tracking with

little contribution from the PD-controller. During both tasks, we can consistently achieve

a prediction frequency of 2000 Hz, although the Barrett-WAM robot requires only 500 Hz.

2.6 Discussion
In this chapter, we presented two probabilistic hierarchical local regression models, ILR

and HILR, and derived an efficient variational inference technique for data-driven learn-

ing. These representations are based on the principles of infinite mixtures and Bayesian

nonparametrics. We situate our contributions as the next iteration in a large family of lo-

cal linear regression techniques such as RFWR, LWPR, and LGR. We have shown that

placing Dirichlet process priors on Bayesian mixtures of local regression units can regular-

ize model complexity with minor loss in performance and without relying on heuristics.
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Moreover, we have highlighted the advantages of the generative nature of these models in

a set of diverse tasks. Empirical evaluation indicates that the models offer well-calibrated

uncertainty quantification, outperform LWPR and LGR, and are competitive with sparse

GPR and product of expertss (PoEs). Finally, we have empirically confirmed the practical-

ity of this approach for online inverse dynamics control on a Barrett-WAM robot.

Nonetheless, these presented concepts still suffer from multiple drawbacks. The mean-

field assumption is a source of significant errors in posterior inference. Collapsed formu-

lations of Dirichlet process priors promise better approximations (Kurihara et al., 2007).

In addition, Bayesian mixture models are generally affected by a large number of hyperpa-

rameters, which cannot be directly optimized via empirical Bayes (Maritz & Lwin, 1989),

leading to lower predictive performance when compared to optimized GPR. Nonetheless,

the evidence lower bound (ELBO) offers a tractable objective based on which the param-

eters may be optimized. Naive gradient-based techniques have proven to be brittle due to

their reliance on Euclidean distance metrics. A natural-gradient approach appears to be a

suitable alternative in the future.

Further development of hierarchical local regression may focus on treating ILR and HILR

as layers in amulti-layered representation. This extensionwould allow themodels to bene-

fit from intermediate nonlinear projections into high dimensional spaces that have proven

powerful in deep neural networks. Another practical consideration is to incorporate phys-

ical inductive biases such as inverse dynamics (Nguyen-Tuong & Peters, 2010) to facilitate

learning meaningful quantities.
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Chapter 3
Reinforcement Learning
for Switching Systems

Optimal control of general nonlinear systems is a central challenge in automation. Enabled

by powerful function approximators, data-driven approaches to control have recently suc-

cessfully tackled challenging robotic applications. However, such methods often obscure

the structure of dynamics and control behind black-box over-parameterized representa-

tions, thus limiting our ability to understand closed-loop behavior.

This chapter adopts a hybrid-system view of nonlinear modeling and control that lends

an explicit hierarchical structure to the problem and breaks down complex dynamics into

simpler localized units. We consider a sequence modeling paradigm that captures the tem-

poral structure of the data and derive an expectation-maximization (EM) algorithm that

automatically decomposes nonlinear dynamics into stochastic piecewise affine dynamical

systems with nonlinear boundaries. Furthermore, we show that these time-series models

naturally admit a closed-loop extension that we use to extract local polynomial feedback

controllers from nonlinear experts via behavioral cloning. Finally, we introduce a novel

hybrid relative entropy policy search (Hb-REPS) technique that incorporates the hierarchi-

cal nature of hybrid systems and optimizes a set of time-invariant local feedback controllers

derived from a local polynomial approximation of a global value function.

3.1 Introduction
The class of nonlinear dynamical systems governs a vast range of real-world applications

and underpins themost challenging problems in classical control, and reinforcement learn-

ing (RL) (Fantoni & Lozano, 2002; Kober et al., 2013). Recent developments in learning-

for-control have pushed towards deploying more complex and highly sophisticated repre-

sentations, e.g., (deep) neural networks and Gaussian processes, to capture the structure of

both dynamics and controllers. This trend led to unprecedented success in the domain of

RL (Mnih et al., 2015) and can be observed in both approximate optimal control (Deisen-

roth & Rasmussen, 2011; Levine et al., 2016; Hafner et al., 2019) and approximate value

and policy iteration (Schulman et al., 2015; Lillicrap et al., 2015; Haarnoja et al., 2018).

However, before the latest successful revival of neural networks in control and robotics

applications, research focused on different paradigms for solving difficult control tasks.

One interesting concept relied on decomposing nonlinear structures of dynamics and con-

trol into simpler local (linear) components, each responsible for an area of the state-action
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Figure 3.1: A hybrid systemwith K = 3 local linear regimes. The top row depicts themean

unforced continuous transition dynamics in the phase space. The lower row

shows the probability of switching, with corresponding color, as a function of

the state. We show different decision boundary models: linear (left), quadratic

(middle), and third-order polynomial (right).

space. This decomposition is done to preserve interpretability and favorable mathematical

properties studied over decades in classical control theory, such as local linear-quadratic

assumptions (Liberzon, 2011). Instances of this abstraction can be found in the control

literature under the labels of hybrid systems or switched models (Liberzon, 2003; Haddad

et al., 2006; Goebel et al., 2012; Borrelli et al., 2017), while in the machine and reinforce-

ment learning communities, the terminology of switching dynamical systems (SDS) and

switching state-space models (SSM) is more widely adopted (Ghahramani & Hinton, 2000;

Beal, 2003; Fox, 2009; Linderman et al., 2017).

Building on this vision, we present in this work a view of data-driven automatic system

identification and learning of composite control from the perspective of hybrid systems

and switching linear dynamics. We are motivated by recent in-depth analysis of piecewise

linear (PWL) activation functions such as rectified linear units (ReLU) (Montufar et al.,

2014; Arora et al., 2016; Pan & Srikumar, 2016; Serra et al., 2017; Petersen & Voigtlaender,

2018), which shows that such representations effectively divide the input space into lin-

ear sub-regions. This insight highlights the hierarchical structure hidden between a neural

network’s input and output layers and supports viewing them as approximators that rely on

local experts. We take this interpretation as an impulse to follow up on ideas from optimal

control (Forestier & Varaiya, 1978; Lin, 1997), and reinforcement learning (Hauskrecht
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Figure 3.2: Examples of hybrid dynamical systems from the domain of robotics. Left, a ma-

nipulator executing a pick-and-place task can be modeled by 2-regime hybrid

dynamics that switch between manipulator dynamics with and without the ob-

ject in the end-effector. Right, the dynamics of a simplified legged robot can

also be modeled by 2-regime hybrid dynamics based on the state of foot con-

tact, which determines the possibility of actuation.

et al., 1998; Dietterich, 2000) that deviate from fully differentiable paradigms and inves-

tigate whether simpler, hybrid discrete-continuous representations may be sufficient for

solving certain tasks.

Furthermore, the interest in hybrid systems as graphical models is motivated by favorable

properties inherent in such representations. On the one hand, hybrid systems allow the

modeling of discrete events, hard nonlinearities, and region-dependent noise. On the other

hand, sequence models carry over the advantages of system identification via Bayesian in-

ference and naturally include built-in time recurrent dynamics, which capture correlations

over extended time horizons.

This chapter consolidates prior work on a hierarchical decomposition of nonlinear dynam-

ics (Abdulsamad & Peters, 2020) and introduces a novel reinforcement learning algorithm

for optimizing local polynomial policies and value functions. In the upcoming sections, we

review the literature and highlight the intersection points between prominent paradigms

in control and machine learning with respect to hybrid systems. Then, we introduce the

notation of stochastic switching models and the infinite horizon hybrid control problem.

Next, we derive a maximum a posteriori expectation-maximization (EM) algorithm for

inferring the probabilistic hybrid dynamics.

We use this inference procedure in three different scenarios. First, to perform automatic

decomposition of nonlinear open-loop dynamics into switching linear regimes with arbi-

trary boundaries. Second, to deconstruct state-of-the-art nonlinear expert controllers into

simpler local polynomial policies. Finally, we embed the EM procedure into a hybrid pol-

icy search algorithm with an explicit discrete-continuous structure. We use this approach

to learn hierarchical piecewise polynomial approximations of global value functions and

feedback controllers. We empirically evaluate the learned models and policies on a set of

numerical examples of stochastic hybrid and nonlinear systems.
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3.2 Related Work
This section reviews work related to the modeling and control of hybrid systems and high-

lights connections and parallels between approaches stemming from the control and ma-

chine and reinforcement learning literature.

Hybrid systems have been extensively studied in the control community and are widely

used in real-world/real-time applications (Borrelli et al., 2006; Menchinelli & Bemporad,

2008). For research on the topic of hybrid system identification, we refer to survey work

in (Paoletti et al., 2007), and (Garulli et al., 2012). There, the authors focus on piecewise

affine (PWA) systems and introduce taxonomies of different representations and proce-

dures commonly used for identifying sub-regimes of dynamics, ranging from algebraic ap-

proaches (Vidal et al., 2003) to mixed-integer optimization (Bemporad et al., 2001), and

Bayesian methods (Juloski et al., 2005). Furthermore, hybrid system identification tech-

niques for piecewise nonlinear systems have been developed based on sparse optimization

(Bako et al., 2010) and kernel methods (Lauer et al., 2010). Finally, it is worth noting that

the majority of literature considers deterministic mode-switching events with exceptions

in (Bemporad & Di Cairano, 2005; Cassandras & Lygeros, 2006).

Research in the area of optimal control for hybrid systems stretches back to the seminal

work of (Sontag, 1981), which highlights the possibility of general nonlinear control by

considering piecewise linear systems. In (Zhu & Antsaklis, 2015), an overview of con-

trol approaches for piecewise affine switching dynamics is presented. The authors cate-

gorize the literature by distinguishing between driven and un-driven systems with exter-

nally or internally forced switching mechanisms. Given the global nonlinear behavior of

switched systems, the bulk of optimal control approaches in this area focus on nonlinear

model predictive control (MPC) (Camacho et al., 2010). Here we highlight the influential

work in (Bemporad & Morari, 1999), which formulates the optimal control problem as a

mixed-integer quadratic program (MIQP). This approach was later extended in (Bempo-

rad et al., 2000), and (Borrelli et al., 2003) to solve multi-parametric MIQP and arrive at

time-variant local linear state-feedback controllers and local quadratic value functions with

affine boundaries. Recently, more efficient formulations of trajectory-centric hybrid con-

trol have been proposed (Marcucci & Tedrake, 2019), which leverage modern techniques

from mixed-integer and disjunctive programming and tackle large-scale problems.

Hybrid representations also play a central role in data-driven, general-purpose process

modeling and state estimation (Ackerson & Fu, 1970; Hamilton, 1990), where different

classes of stochastic hybrid systems serve as powerful generative models for complex dy-

namical behaviors (Pavlovic et al., 2001; Oh et al., 2005;Mesot & Barber, 2007). The domi-

nant paradigm in this domain has been that of probabilistic graphical models (PGM), more

specifically, hybrid dynamic Bayesian networks (HDBN) for temporal modeling (Koller

et al., 2009; Lerner, 2002). However, one crucial contribution of recent Bayesian interpre-

tations of switching systems is rooted in the Bayesian nonparametrics (BNP) view (Escobar
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&West, 1995; Rasmussen, 1999; Beal et al., 2002; Teh et al., 2005). This perspective the-

oretically allows for an infinite number of components, thus dramatically increasing the

expressiveness of such models. Given the limited scope of this review section, we high-

light only recent contributionswith high impacts, such as (Fox et al., 2009) and (Linderman

et al., 2017), which successfully developMarkov chainMonte Carlo (MCMC) and stochas-

tic variational inference (SVI) techniques for system identification. More recently, the rise

of variational auto-encoders (Kingma & Welling, 2013) has enabled a new and powerful

view on inference techniques (Becker-Ehmck et al., 2019) of hybrid systems. A distinct

property of such approaches is their reliance on end-to-end differentiability and the need

to relax discrete variables in order to perform inference.

In the domain of learning-for-control, the notion of switching systems is directly related to

the paradigm of model-free hierarchical reinforcement learning (HRL) (Barto & Mahade-

van, 2003; Parr, 1998), which combines simple representations to build complex policies.

Here it is useful to differentiate between two concepts of hierarchical learning, namely tem-
poral (Precup, 2000), and state abstractions (Andre & Russell, 2002). In their seminal work

(Sutton et al., 1999, 1998), the authors build on the framework of semi-Markov decision

processes (SMDP) (Bradtke & Duff, 1995) to learn activation/termination conditions of

temporally extended actions (options) for solving discrete environments. Additionally,

pioneering work in optimizing hierarchical control structures with temporally extended

actions for robotic applications is developed in (Huber &Grupen, 1997; Huber, 2000). Fur-

ther recent work has focused on different formulations of the option framework that facil-

itate simultaneous discovery and learning of options (Konidaris & Barto, 2009;Mankowitz

et al., 2016; Daniel et al., 2016; Bacon et al., 2017; Smith et al., 2018).

However, the concept of state abstraction - the aggregation of state-action spaces into sub-

regions, each governed by local dynamics and control - carries the most apparent parallels

to the classical view of hybrid systems. In (Dietterich, 2000), a proof of convergence for RL

in tabular environments with state abstraction is presented, while (Li et al., 2006) does a

comprehensive study of different abstraction schemes and gives a formal definition of the

problem. Furthermore, recent work has shown promising results in solving complex tasks

by combining local linear policies, albeit while still leveraging a complex neural network

architecture as an upper-level policy (Akrour et al., 2018).

Switching systems also serve as a powerful tool in behavioral cloning. For example, (Cali-

non et al., 2010) combines hidden Markov models (HMMs) with Gaussian mixture re-

gression to represent trajectory distributions. In contrast, (Daniel et al., 2016) uses a semi-

hiddenMarkovmodel (HSMM) to learn hierarchical policies, and (Burke et al., 2020) intro-

duces switching density networks for system identification and behavioral cloning. Finally,

a fully Bayesian framework for the hierarchical decomposition of policies is presented in

(Sosic et al., 2017), albeit while considering known transition dynamics.
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In light of the reviewed literature, we highlight the main differences that distinguish this

chapter from the approaches mentioned above. First, this work leverages probabilistic hy-

brid dynamic networks as hierarchical representations of nonlinear open- and closed-loop

behaviors. Contrary to standard piecewise autoregressive exogenous systems (PWARX),

HDBN can easily integrate stochasticity and nonlinear switching boundaries, leading to

more refined and less redundant segmentation of the state-action space. Furthermore, by

pursuing an abstraction over the states instead of time, we circumvent the need to infer

so-called termination policies, a characteristic of the option framework. Finally, the pro-

posed hybrid policy search approach formulates a non-convex infinite horizon objective

that optimizes a hierarchical local polynomial approximation of the value function. This

approximation is used to derive stationary switching feedback controllers. In contrast,

trajectory optimization and model predictive control techniques are often cast as sequen-

tial convex programs and optimize a fixed horizon objective that yields time-variant value

functions and controllers.

3.3 Problem Statement
Consider the discrete-time optimal control problem of a stochastic nonlinear dynamical

system to be defined as an infinite horizon Markov decision processes (MDP). An MDP is

an abstraction of an environment defined over a state space X ⊆ Rd and an action space

U ⊆ Rm. The probability of a state transition from state x to state x' by applying action u
is governed by the Markovian time-independent density function p(x'|x,u). The reward
r(x,u) is a function of the state x and action u and is discounted over time by a factor

ϑ ∈ [0,1). The state-dependent policy π(u|x), from which the actions are drawn, is a

density determining the probability of an action u given a state x. The general objective in
an infinite horizon optimal control problem is tomaximize the expected cumulative sum of

discounted rewards Vπ(x) = E
�∑∞

t ϑ
t r
�

, where Vπ denotes as the state-value function
under the policy π, starting from an initial state distribution µ1(x).

Given the context of this work and our choice to model the system with switching linear

models, we introduce to the MDP formulation a new hidden discrete variable z, an indica-
tor of the currently active local regime. The resulting transition dynamics can then be ex-

pressed by a factorized density function p(x',z'|x,u,z) = p(z'|z,x,u)p(x'|x,u,z'), which
we depict as a graphical model in Figure 3.3 and discuss in further detail in the upcoming

section. In the same spirit of simplification through hierarchical modeling, we employ a

mixture of switching polynomial controllers π(u|x,z), associated with local polynomial

value functions Vπ(x,z). The resulting framework becomes a combination of filtering

to infer the active local dynamics denoted by z and optimal control to apply appropriate

actions u given x and z. A general closed-loop schematic is available in Figure 3.4.
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u1 u2 ut uT

z1 z2 zt zT

x1 x2 xt xT

Figure 3.3: A probabilistic graphical model of recurrent autoregressive hidden Markov

models (rARHMMs) extended to support hybrid controls. rARHMMs are hy-

brid dynamic Bayesian networks that explicitly allow the discrete state z to de-

pend on the continuous variables x and u, as highlighted in red.

3.4 Hybrid Dynamic Bayesian Networks
We focus on recurrent autoregressive hidden Markov models (rARHMMs) as a represen-

tation of closed-loop stochastic hybrid systems. The rARHMM is a special case of recur-

rent switching linear dynamical systems (rSLDS) (Linderman et al., 2017), also known as

augmented SLDS (Barber, 2006). In contrast to rSLDS, an rARHMM lacks an observa-

tion model and directly describes the internal state with an additive noise process. We

extend rARHMMs to support exogenous and endogenous inputs in order to simulate the

open- and closed-loop behaviors of driven dynamics. Figure 3.3 depicts the corresponding

graphical model, which closely resembles the linear boundary PWARX.

An rARHMM with K regions models the trajectory of a hybrid system as follows. The

initial continuous state x1 ∈ Rd and continuous action u1 ∈ Rm are drawn from a pair of

Gaussian and conditionalGaussian distributions, respectively. The initial discrete indicator

z1 is a one-hot random vector modeled by a categorical density parameterized by ϕ

z1 ∼ Cat(ϕ), x1 ∼ N(µz1
,Ωz1
), u1 ∼ N(Kz1

φ(x1),∆z1
).

The transition to a state xt+1 and the actions ut are modeled by linear-Gaussian dynamics

xt+1 = Azt+1
xt +Bzt+1

ut + czt+1
+λt , λt ∼ N(0,Λzt+1

),

ut = Kzt
φ(xt) +δ t , δ t ∼ N(0,∆zt

),

where (A,B,c,K,Ω,Λ,∆) arematrices and vectors of appropriate dimensionswith respect

to x and u. Note that we parameterize all Gaussian distribution with precision instead of

covariance matrices. φ(x) are polynomial state features of arbitrary degree. The discrete

transition probability p(zt+1|zt ,xt ,ut) is governed by K categorical distributions param-
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Chapter 3: Reinforcement Learning for Switching Systems

Figure 3.4: A schematic of hybrid dynamics and control. Given the state x and region in-

dicator z, a corresponding controller π(u|x,z) is selected and the action u is

computed. The transition to a regime z' is determined based on the discrete

dynamics model p(z'|z,x, u), and in consequence influencing the progression

of the state x′ via the appropriate continuous dynamics model p(x'|x, u,z').

eterized by state-action dependent multi-class logistic functions

χi j = p(zt+1 = j|zt = i,xt ,ut) =
exp

�

f (xt ,ut;ωi j)
�

∑

k exp
�

f (xt ,ut;ωik)
� .

We abuse notation slightly by sometimes using z to refer to the discrete state index instead
of treating it as a one-hot vector. The function f may have any type of x and u features,

e.g. polynomial or neural. A set of vectors ωi j parameterize all transition combinations

i → j ∀i, j ∈ [1, K]. Figure 3.1 depicts realizations of different transition functions that

lead to a variety of state space decompositions.

For the sake of completeness, we point out that the Markov property of an rARHMM is

evident in Figure 3.3. By applying the principle of D-separation (Bishop, 2006), we con-

clude that the hidden discrete states zt−1 and zt+1 are conditionally independent given zt ,

more formally zt+1 ⊥⊥ zt−1|zt .

This representation of switching dynamics has a significant advantage over other non-

recurrent hybrid models (Davis, 1993; Fox et al., 2009), since it couples discrete and con-

tinuous dynamics of an HMM in both directions. This aspect has significant implications

for the model’s expressiveness and ability to capture the underlying dynamics of interest-

ing physical applications, as it limits redundancies in the hierarchical decomposition of the

state-action space. For example, one may consider a case in which one component can ex-

plain the local dynamics in the neighborhood ofmultiple non-connected discrete states. To

achieve a sharp decision boundary in such scenarios, a non-recurrentmodel has to duplicate

the continuous dynamics with a different transition probability for each set of neighbor-
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ing regions. This duplication leads to redundant discrete states with the same continuous

dynamics while differing in their switching behavior. One way to circumvent this explo-

sion is to consider a hierarchical abstraction over meta regions similar to factorial hidden

Markovmodel (FHMM) (Ghahramani & Jordan, 1997). Nonetheless, such representations

may still require multiple hierarchy levels to match the expensiveness of a recurrent tran-

sition, which compactly parameterizes a continuum of transition probabilities.

At the same time, the discrete-continuous coupling introduces inter-dependencies between

z, x and u, which in the case of rSLDS, make exact filtered and smoothed inference in-

tractable (Lerner, 2002; Koller et al., 2009). This issue arises because the hidden state of an

rSLDS becomes a mixture over x and z, whose number of components explodes exponen-

tially when propagated in time (Barber, 2006). Moreover, (rS)LDS are not uniquely iden-

tifiable due to rotational invariance (Barber, 2012). These two limitations have informed

our decision to focus on rARHMM as a first step since they admit tractable filtering and

smoothing over the hidden state z, as the upcoming section will reveal.

The remainder of this chapter focuses on using these hybridmodels in three ways. First, an

open-loop setting that treats the control u as an exogenous input is used for automatically

identifying nonlinear systems via decomposition into continuous and discrete switching

dynamics. Second, a closed-loop setting that assumes the control u to originate from a

nonlinear controller. We show that this setting can simultaneously decompose dynamics

and control in an behavioral cloning scenario. Finally, we leverage the same framework in

a model-based hybrid reinforcement learning algorithm to learn switching controllers of

general nonlinear systems.

3.5 Inference of Switching Dynamics and Control
In this section, we sketch the outline of an expectation-maximization/Baum-Welch algo-

rithm (Baum et al., 1970; Dempster et al., 1977; Rabiner, 1989) for inferring the parameters

θ of an rARHMM given time-series observations (X,U). The resulting algorithm can be

used two-fold. First, it can be applied to perform automatic hybrid system identification to

learn the open-loop dynamics of nonlinear systems given state-action observations. Sec-

ond, it can clone the closed-loop behavior of a nonlinear controller and decompose it into

a set of local experts.

Our developed approach is related in some aspects to the Baum-Welch algorithms pro-

posed in (Bengio & Frasconi, 1995) and (Daniel et al., 2016). However, we introduce suit-

able priors over all parameters and derive a maximum a posteriori (MAP) technique with

a stochastic maximization step and hyperparameter optimization. In our experience, the

priors and noisy gradient estimate significantly reduce the sensitivity of EM with respect

to initialization and appear to be less prone to get stuck in bad local minima - an effect

well-studied in neural networks (Bottou, 1998).
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Although our procedure is not fully Bayesian like methods that rely on Gibbs sampling

(Fox et al., 2009; Linderman et al., 2017), it has computational and predictive advantages.

On the one hand, Gibbs sampling can suffer from slow convergence in high dimensional

spaces leading to an overall high computational cost (Gelman et al., 2013). On the other

hand, standard Gibbs sampling-based approaches are not flexible enough to incorporate

neural transition predictor functions due to their reliance on conditionally conjugate com-

putation. Finally, a good prior specification is crucial in small data regimes since a vague

prior may dominate the predictive posterior and effectively cause under-fitting. We im-

plement a hyperparameter optimization scheme that elevates this concern by optimizing

the prior parameters via empirical Bayes (Maritz & Lwin, 1989), thus attenuating the prior

influence and improving the predictive performance significantly.

3.5.1 Maximum A Posteriori Optimization
Consider again the rARHMM in Figure 3.3 where the continuous state x and action u are

observed variables, while the K-region indicators z are hidden. To infer the model param-

eters, we assume a dataset consisting of N state-action trajectoriesD = {(Xn,Un)}Nn=1, each

of length T , where (Xn, Un,Zn) represent an entire trajectory. The inference objective is

to maximize the log-posterior probability of the observations (Xn,Un) conditioned on the

free parameters θ = {ϕ,µk,Ωk,Ak,Bk,ck,Λk,Kk,∆k,ωik} ∀i, k ∈ [1, K]

θMAP := argmax
θ

log
N
∏

n=1

∑

zn

p(Xn,Un,Zn|θ )p(θ ), (3.1)

where p(Xn,Un,Zn|θ ) is the likelihood of a trajectory and factorizes according to

p(Xn,Un,Zn|θ ) = p(zn
1)p(x

n
1|z

n
1)p(u

n
1|x

n
1,zn

1)
T
∏

t=2

p(xn
t |x

n
t−1,un

t−1,zn
t )p(u

n
t |x

n
t ,z

n
t )p(z

n
t |z

n
t−1,xn

t−1,un
t−1),

(3.2)

and p(θ |h) is the factorized parameter prior

p(θ |h) = p(ϕ)
K
∏

i=1

K
∏

k=1

p(ωik)
K
∏

k=1

p(µk|Ωk)p(Ωk)

×
K
∏

k=1

p(Ak|Λk)p(Bk|Λk)p(ck|Λk)p(Λk)

×
K
∏

k=1

p(Kk|∆k)p(∆k).
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We choose all priors to be conjugate or semi-conjugate with respect to their likelihoods, if

possible. Therefore, we place a normal-Wishart (NW) prior on the initial state distribu-

tion (µk,Ωk) ∼ NW(0,κ0,Ψ0,ν0), and a matrix-normal-Wishart (MNW) on the linear

transition dynamics (Ak,Bk,ck,Λk)∼MNW(0,R0,Φ0,ρ0). The initial discrete state takes
a Dirichlet prior ϕ ∼ Dir(τ0), while the logistic transition parameters are governed by a

non-conjugate zero-mean Gaussian prior with diagonal precisionωik ∼ N(0,αI). Finally,
we place a separate matrix-normal-Wishart prior on the action likelihood (Kk,∆k) ∼
MNW(0,S0,Γ0,ε0). The quantities (κ0,Ψ0,ν0,R0,Φ0,ρ0,τ0,α,S0,Γ0,ε0) are hyperpa-
rameters that we aggregate in the hyperparameter set h.

The choice of priors is not restricted to these distributions. Depending on modeling as-

sumptions, one can assume dynamics with diagonal noise matrices and pair them with

gamma distribution priors. Moreover, if the system is known to have a state-independent

noise process, the K Wishart and gamma priors can be tied across components, leading to

a more structured representation.

3.5.2 Baum-Welch Expectation-Maximization
Expectation-maximization algorithms introduce a variational posterior distribution over

the hidden variables q(Zn) and derive a lower bound on the complete log-probability

log
N
∏

n=1

∑

zn

p(Dn,Zn,θ )≥
N
∑

n=1

∑

zn

q(Zn) log
p(Dn,Zn,θ )

q(Zn)
. (3.3)

We can find a point estimate of the parameters θMAP by following a modified scheme of

EM, alternating between an expectation step (E-step), in which the lower bound in Equa-

tion (3.3) is maximized with respect to the variational distributions q(Zn) given a parame-

ter estimate θ̂ , a maximization step (M-step), that updates θ given (q̂(Zn), ĥ), and finally,
an empirical Bayes step (EB-step) that updates h given (q̂(Zn), θ̂ ). A sketch of the overall

iterative procedure is presented in Algorithm 3.1.

Exact Expectation Step. Maximizing the lower bound with respect to q(Zn) can be deter-
mined by reformulating Equation (3.3)

L =
N
∑

n=1

∑

zn

q(Zn) log
p(Xn,Un,Zn,θ |h)

q(Zn)

=
N
∑

n=1

∑

zn

q(Zn) log p(Xn,Un,θ |h) +
N
∑

n=1

∑

zn

q(Zn) log
p(Zn|Xn,Un,θ )

q(Zn)

=
N
∑

n=1

log p(Xn,Un,θ |h)− KL(q(Zn) || p(Zn|Xn,Un,θ )).
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Algorithm 3.1: Expectation-Maximization for rARHMM

input: K ,X,U,h

initialize: θ̂ ∼ p(θ |h), ĥ← h

1 while log p(X,U,θ |h) not converged do

// Expectation step

2 for n← 1 to N do

3 αn,β n← ForwardBackward(Xn,Un, θ̂ )

4 γn,ξn← SmoothedPosteriors(αn,β n, θ̂ )

// Maximization step

5 θ̂ ←Maximize Q(θ̂ ,γ,ξ, ĥ)

// Empirical Bayes

6 ĥ← ĥ+%∇hQ |h=ĥ

output: θ̂

This form of the lower bound implies that the optimal variational distribution q̂(Zn)min-

imizes the Kullback-Leibler divergence (KL), meaning

q̂(Zn) = p(Zn|Xn,Un,θ ) = p(Zn|xn
1:T ,un

1:T ,θ ). (3.4)

This update tightens the bound if the posterior model q̂(Zn) belongs to the same family

of the true posterior (Beal, 2003). Notice that the E-step is independent of the prior p(θ ).
Moreover, Equation (3.4) indicates that the E-step reduces to the computation of smoothed

marginals p(zn
t |x

n
1:T ,un

1:T , θ̂ ) under the current parameter estimate θ̂ . Following (Baum
et al., 1970) and (Murphy, 2012), we derive a forward-backward algorithm, which enables

closed-form exact inference of these quantities

γn
t (k) = p(zn

t = k|xn
1:T ,un

1:T )∝ p(zn
t = k|xn

1:t ,u
n
1:t)p(x

n
t+1:T ,un

t+1:T |z
n
t = k,xn

t ,u
n
t ),

where αn
t (k) = p(zn

t = k|xn
1:t ,u

n
1:t) is the forward message that computes the filtered

marginals via a forward recursion

αn
t (k)∝ p(xn

t |x
n
t−1,un

t−1,zn
t = k)p(un

t |x
n
t ,z

n
t = k)

×
K
∑

j=1

p(zn
t = k|zn

t−1 = j,xn
t−1,un

t−1)α
n
t−1( j),
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and β n
t (k) = p(xn

t+1:T |z
n
t = k,xn

t ,u
n
t ) is the backward message that performs smoothing

by computing the conditional likelihood of future evidence

β n
t (k) =

K
∑

j=1

β n
t+1( j)p(z

n
t+1 = j|zn

t = k,xn
t ,u

n
t )

× p(xn
t+1|x

n
t ,u

n
t ,z

n
t+1 = j)p(un

t+1|x
n
t+1,zn

t+1 = j).

Additionally, by combining both forward and backward messages, we can compute the

two-slice smoothedmarginals p(zn
t ,z

n
t+1|x

n
1:T ,un

1:T , θ̂ )whichwill be useful during themax-

imization and empirical Bayes steps

ξn
t,t+1(i, j) = p(zn

t = i,zn
t+1 = j|xn

1:T ,un
1:T )

∝ p(xn
t+1|x

n
t ,u

n
t ,z

n
t+1 = j)p(un

t+1|x
n
t+1,zn

t+1 = j)
×αn

t (i)p(z
n
t+1 = j|zn

t = i,xn
t ,u

n
t )β

n
t+1( j).

This concludes all needed computations for the forward-backward messages of the E-step.

StochasticMaximization Step. After performing the E-step and computing the smoothed

posteriors, we are able to evaluate the lower bound andmaximize it with respect to θ given

(q̂(Zn), ĥ). By plugging Equation (3.4) into (3.3) and leveraging conditional independence,
we arrive at the complete log-probability function

Q =
N
∑

n=1

∑

zn

q̂(Zn) log p(Xn,Un,Zn,θ |ĥ)

= log p(θ |ĥ) +
K
∑

k=1

N
∑

n=1

γn
1

h

logϕk + logN(xn
1|µk,Ωk)

i

+
K
∑

k=1

N
∑

n=1

T
∑

t=2

γn
t logN(xn

t |Akx
n
t−1 +Bku

n
t−1 + ck,Λk)

+
K
∑

k=1

N
∑

n=1

T
∑

t=1

γn
t logN(un

t |Kkφ(x
n
t−1),∆k)

+
K
∑

i=1

K
∑

j=1

N
∑

n=1

T
∑

t=2

ξn
t−1,t logχi j(x

n
t−1,un

t−1,ωi j).

The optimization of Q is commonly done via coordinate ascent. Simpler models, e.g.,

Gaussian- and Binomial-HMMs, lead to an exact, convex M-step with closed-form opti-

mality conditions. This is not the case in rARHMM, given the possibility of choosing non-

linear transition predictor functions. Such a choice leads to an approximate, non-convex
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M-step that requires gradient-based updates. In this case, stochastic optimization is recom-

mended (Robbins &Monro, 1951) as batched noisy gradient estimates allow algorithms to

escape shallow local minima and reduce the computational cost that comes with evaluating

the gradients for all data instances. When implementing the M-step, we apply stochastic

optimization on the transition parametersω. We use a stochastic gradient ascent direction

with an adaptive learning rate ε and batch size M (Robbins & Monro, 1951)

ω(l+1) =ωl +
ε

M

M
∑

m=1

∇ωQm |ω=ωl ,

∇ωQm =∇ω



log p(ω|α) +
K
∑

i=1

K
∑

j=1

ξm logχi j(xm,um,ωi j)



 .

For the parameters with conjugate priors, we derive closed-form optimality conditions.

Effectively, this part of the optimization constitutes formulating the posterior distribution

and taking the mode of each posterior density for a point estimate update. By considering

only relevant terms, we write the optimization of the initial gating parameter ϕ as

max
ϕ

log Dir(ϕ|τ̂0) +
K
∑

k=1

N
∑

n=1

γn
1 logϕk,

while the objective of the initial parameters (µk,Ωk) can be decoupled for each k

max
µ,Ω

log NW(µk,Ωk|(0, κ̂0, Ψ̂0, ν̂0)k) +
N
∑

n=1

γn
1 logN(xn

1|µk,Ωk).

Analogously, the objective terms related to the dynamics parameter (Ak,Bk,ck,Λk) are also
decoupled to k parts

max
A,B,c,Λ

log MNW(Ak,Bk,ck,Λk|(0, R̂0, Φ̂0, ν̂0)k)

+
N
∑

n=1

T
∑

t=2

γn
t logN(xn

t |Akx
n
t−1 +Bku

n
t−1 + ck,Λk),

and, finally, to learn closed-loop behavior, we infer the controller parameters (Kk,∆k)

max
K,∆

log MNW(Kk,∆k|(0, Ŝ0, Γ̂0, ε̂0)k)

+
N
∑

n=1

T
∑

t=1

γn
t logN(un

t |Kkφ(x
n
t ),∆k).
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We refrain from stating the explicit solution for these former problems. Instead, we pro-

vide a general outline of how to compute these posteriors and their modes in Appendix A.

Approximate Empirical Bayes. Inference techniques that leverage data-independent as-
sumptions run the risk of prior miss-specification. In our MAP approach, the priors are

weakly informative and carry little information. Theirmain purpose is to regularize greedy

updates that might lead to premature convergence. However, when there is little data, the

priors, especially those on the precision matrices, may dominate the posterior probability,

leading to over-regularization and under-fitting of the objective. See (Gelman, 2006) for a

discussion on the choice of weakly-informative and non-informative precision priors.

Empirical Bayes approaches remedy this issue by integrating out the parameters θ and op-

timizing the marginal likelihood with respect to the hyperparameters h (Maritz & Lwin,

1989). In our setting, marginalizing all hidden quantities does not admit a closed-form

formula. Instead, we interleave the E- and M-steps with hyperparameter updates that op-

timize the lower bound given an estimate of parameters θ̂ and an adaptive step size %

h(l+1) = h(l) +%∇hQ |h=hl , where ∇hQ =∇h log p(θ̂ |h).

3.6 Reinforcement Learning for Hybrid Systems
In our review of related work in Section 3.2, we highlight that many successful classical hy-

brid control algorithms are often limited to computationally expensive trajectory-centric

control policies, e.g., model predictive control. This type of controller is disadvantageous in

applications that require fast reactive feedback control with broad coverage over the state-

action space. Another common drawback of classical hybrid control approaches is their

reliance on linear separation boundaries of the local dynamics. On the other hand, wemen-

tioned several RL-based approaches that learn global time-invariant policies. Nonetheless,

these algorithms are exclusively model-free and mostly rely on time abstraction and tem-

porally extended actions, which require learning task-specific termination policies, in ad-

dition to the local controllers.

In this section, we present a stochastic infinite horizon sample-based optimization tech-

nique that leverages the structure and properties of hybrid systems under the paradigm of

state abstraction. Our algorithm extends the step-based formulation of relative entropy

policy search (REPS) (Peters et al., 2010; Van Hoof et al., 2015; Belousov & Peters, 2017)

by introducing a discrete state variable z and taking into account the structure of hybrid

dynamics. Our approach, hybrid REPS (Hb-REPS), leverages the state-action-dependent

nonlinear switches p(z'|z,x,u) as a task-independent upper-level coordinator to amixture

of K lower-level stationary polynomial policies π(u|x,z). While the proposed approach

sharesmany featureswith (Daniel et al., 2016), our formulation relies on a state-abstraction

representation of hybrid systems and embeds the hierarchical model structure into the op-
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timization problem in order to learn a hierarchy over the global value function. In contrast,

(Daniel et al., 2016) operates in the framework of semi-Markov decision processes and op-

timizes amixture over termination and feedback policies without considering the existence

of a hierarchical structure in the space of dynamics and value functions.

3.6.1 Infinite-Horizon Stochastic Hybrid Control
In theREPS framework an optimal control problem is presented as an iterative trust-region

optimization for a discounted average-reward objective under a stationary state-action dis-

tribution π(u|x,z)µ(x,z), Equation (3.5a). The trust-region is formulated as a KL (Kull-

back & Leibler, 1951), Equation (3.5c). Its purpose is to bound the information loss be-

tween iterations. The REPS formulation explicitly incorporates a dynamics consistency

constraint, Equation (3.5b), that describes how the stochastic state of the system evolves.

The following describes the optimization solved during a single iteration of what we refer

to as hybrid REPS

maximize
π,µ

J =
∑

z

∫∫

r(x,u)π(u|x,z)µ(x,z)dudx, (3.5a)

subject to µ(x',z') = (1− ϑ)µ1(x',z') (3.5b)

+ ϑ
∑

z

∫∫

π(u|x,z)µ(x,z)p(x',z'|x,u,z)dudx,

ε≥ KL(π(u|x,z)µ(x,z) ||q(x,u,z)), (3.5c)

1=
∑

z

∫∫

π(u|x,z)µ(x,z)dudx, (3.5d)

where µ(x,z) is the stationary mixture distribution, q(x,u,z) is the trust-region refer-

ence distribution, and the constraint in Equation (3.5d) guarantees the normalization of

the state-action distribution. The factor 1 − ϑ is the probability of an infinite process to

reset to an initial distribution µ1(x,z). The notion of resetting is necessary to ensure er-

godicity and allows the interpretation of ϑ as a discount factor, and regularization of the

MDP (Puterman, 2014; Belousov & Peters, 2017).

3.6.2 Optimality Conditions and Dual Optimization
Let p(x,u,z) = π(u|x,z)µ(x,z). Using the method of Lagrangian multipliers (Boyd &

Vandenberghe, 2004), we can solve the constrained primal problem with respect to state-

action distribution p(x,u,z)

p∗(x,u,z)∝ q(x,u,z)exp

�

A(x,u,z)
η

�

(3.6)
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where η is the Lagrangian variable associated with Equation (3.5c), and A(x,u,z) the ad-
vantage function given as

A(x,u,z) = r(x,u) + (1− ϑ)
∑

z'

∫

V (x',z')µ1(x',z')dx'

+ ϑ
∑

z'

∫

V (x',z')p(x',z'|x,u,z)dx'− V (x,z)

(3.7)

=Q(x,u,z)− V (x,z).

The functions V (x,z) and Q(x,u,z) are the state- and state-action value functions, re-

spectively. The function V (x,z) appears naturally in REPS as the Lagrangian function

associated with Equation (3.5b). The full Lagnrangian of the primal can be found in Ap-

pendix C. By substituting the optimal parameter p∗ back into the Lagrangian and factoriz-
ing q(x,u,z), we arrive at the dual function G as a function of the remaining Lagrangian

variables η and V

G = ηε+η log

∫∫

q(x,u)
∑

z

q(z|x,u)exp

�

A(x,u,z, V )
η

�

dudx,

where q(z|x,u) is the posterior over z given the observations x and u. In Section 3.5,

we derive a forward-backward algorithm for inferring these probabilities, allowing us to

compute the expectation over z. The expectations overX andU are analytically intractable,

therefore, we approximate them given samples from the reference distribution q(x,u).
The multipliers η and V are obtained by numerically minimizing the dual G(η, V )

minimize
η,V

G(η, V ), subject to η≥ 0,

that acts as the upper bound on the primal objective.

3.6.3 Stationarity of State Distribution Mixtures
The dynamics Equation (3.5b), which ensures the stationarity of µ(x,z), uncovers an in-

teresting aspect of our optimization problem. A careful inspection of that integral equa-

tion reveals that a mixture distribution µ(x,z) propagated through the mixture dynamics

p(x',z'|x,u,z) results in a mixture µ(x',z') that keeps growing with every pass, leading to
an explosion in the number of components of the joint state distribution. This problem

highlights a crucial computational issue of trajectory-based optimal control approaches of

stochastic hybrid systems, as it becomes expensive to maintain the full mixture state dis-

tribution µ(x,z) after several time steps. Common solutions to this issue usually involve

falling back to crude Gaussian mixture reduction techniques (Crouse et al., 2011) that in-

advertently sacrifice information and blur the distribution as it progresses in time.
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This consideration has motivated us to formulate the optimal control problem as one that

focuses on finding a stationary solution for µ(x,z). We hypothesize that including Equa-

tion (3.5b) as a constraint leads to an optimal mixture policy π(u|x,z) that acts as a filter
and dampens certain modes of µ(x',z') with little contribution to the average-reward ob-

jective. However, we recognize that a more in-depth analysis of the nature of this integral

equation is necessary.

3.6.4 Modeling Dynamics and State-Value Function
Up to this point, our derivation has been generic. We havemade no assumptions on initial

distributionsµ1(x,z), the dynamics p(x',z'|x,u,z), or the value function V (x,z). Nowwe

introduce the local Gaussian linear dynamics and logistic switching described in Section 3.4

and assume these representations to be available in parametric form as a result of a separate

learning process. Furthermore, we model the state-value function with local n-th degree

polynomial functions V (x,z) = ω>z φz(x), where φz(x) is the state-feature vector which
contains all polynomial features of the state x, andωz is the parameter vector assigned to

the different regions.

Under these assumptions, we can leverage the available joint densityµ1(x,z) and p(x'|x,u,z)
to compute the necessary expectations in Equation (3.7)

Ex',z'

�

V (x',z')
�

=
∑

z'

∫

V (x',z')p(x',z'|x,u,z)dx',

Ex1,z1

�

V (x',z')
�

=
∑

z'

∫

V (x',z')µ1(x',z')dx'.

This computation allows our approach to capture the stochasticity of the dynamics and

delivers an estimate of the advantage function A(x,u,z) instead of the temporal difference

(TD) error in the general REPS framework (Peters et al., 2010). Ultimately, this leads to

better estimates of the expected discounted future returns.

Practically, these integrals can be either naively approximated by applying Monte Carlo

integration (Robert et al., 1999), or, more efficiently, by leveraging the structure of the in-

tegrand V (x',z'), and using Gauss-Hermite cubature rules for exact integration over poly-

nomial functions (Särkkä, 2013).

3.6.5 Maximum-A-Posteriori Policy Improvement
Another important advantage of thismodel-based approach becomes evidentwhen consid-

ering the policy improvement step in the REPS framework. The policy update is incorpo-

rated into the optimality condition of the stationary state-action distribution p(x,u,z) =
π(u|x,z)µ(x,z) in Equation (3.6). As a consequence, updating themixture policiesπ(u|x,z)
requires the computation of state probabilitiesµ(x,z), which in turn require knowledge of
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Algorithm 3.2:Model-Based Relative Entropy Policy Search for Hybrid Systems

input: p0(x',z'|x,u,z)
initialize: q(u|x,z),ωz,η

1 while J not converged do
// Sample interactions

2 (X,U)← Environment(q, p0)

// Policy evaluation

3 η∗,ω∗z,w
∗←Minimize G(X,U, p0,η,ωz,ε)

// Policy improvement

4 π∗(u|x,z)← BaumWelch(X,U, p0,w∗)

// Update parameters

5 q,ωz,η← π∗,ω∗z,η
∗

output: π∗(u|x,z)

the dynamics model. This issue is circumvented in other model-free realizations of REPS

by introducing a crude approximation to enable a model-free policy update nonetheless. In

(Deisenroth et al., 2013), the authors postulate that the distributionµ(x,z) is usually “close
enough” to q(x,z), thus allowing the ratio q(x,z)/µ(x,z) to be ignored when a weighted

maximum-likelihood fit of the actions u is performed to update π.

While the assumption of “closeness” may be practical and empowers many successful fla-

vors of REPS, it is crucial to be aware of its technical ramifications, as it undermines the

primary motivation of a relative entropy bound on the state-action distribution in Equa-

tion (3.5c). This aspect is unique in the REPS framework when compared to other state-

of-the-art approximate policy iteration algorithms (Schulman et al., 2015, 2017; Haarnoja

et al., 2018), that optimize a similar objective, albeit with a relaxed bound that only limits

the change of the action distribution π.

In contrast, our proposed algorithm leverages the modeled continuous-discrete dynamics

and updates the policy π(u|x,z) with the correct weighting. The optimality condition in

Equation (3.6) is satisfied by deriving a weighted maximum a posteriori estimate based on

the state-action distribution p(x,z,u), and implicitly updating π(u|x,z). This procedure
is equivalent to a modified Baum-Welch expectation-maximization algorithm that fits a

closed-loop rARHMM, as derived in Section 3.5. The difference is that the EM objective
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in Equation (3.1) has to be augmented with the importance weights from Equation (3.6)

argmax
θ

log
N
∏

n=1

∑

zn

wnp(Xn,Un,Zn|θ )p(θ ),

where wn = exp
�

A(Xn,Un,Zn)/η
�

.

This augmentation leads to weighted M- and EB-steps while the E-step is not altered.

Note that during the policy improvement step, we can either assume an a priori estimate

of the open-loop dynamics p0(x',z'|x,u,z) and only update the control parameters cor-

responding to the conditional π(u|x,z), or we can continuously update p(x',z'|x,u,z) as
more data iteratively becomes available. A compact sketch of the overall optimization pro-

cess is available in Algorithm 3.2.

3.7 Empirical Evaluation
In this section, we benchmark different aspects related to the inference of rARHMMs and

the learning of hybrid controllers via Hb-REPS. First, we assess the predictive performance

of rARHMMs in an open-loop setting to validate the choice of this representation of hy-

brid dynamics. Second, we test the inference on closed-loop rARHMMs and their ability

to capture and decompose an expert nonlinear controller in a behavioral cloning scenario.

Finally, we use rARHMMs in the proposed RL algorithm Hb-REPS to solve the infinite

horizon stochastic control objective and optimize piecewise local polynomial controllers

and value functions. Here we make no claim to the absolute efficiency of our approach

when compared to other state-of-the-art algorithms. Instead, we aim to provide an em-

pirical proof-of-concept that supports further research into sample-based hybrid system

optimization as a framework for structured nonlinear control.

3.7.1 Hybrid System Identification Examples
We empirically benchmark rARHMMs on nonlinear systems. We aim to quantify the

quality of learned open-loop models and their ability to capture the underlying dynamics.

For this purpose, we set up a direct comparison to popular representations for dynamics

in a long-horizon and limited-data setting. A public code base is available on https://
github.com/hanyas/sds.

In this evaluation, we focus on rARHMMswith exogenous inputs. We learn the dynamics

of three simulated deterministic systems; a bouncing ball, an actuation-constrained pen-

dulum, and a cart-pole system. We compare the predictive accuracy of rARHMMs to clas-

sical non-recurrent autoregressive hidden Markov models (ARHMMs) (Fox, 2009), feed-

forward neural nets (FNNs), Gaussian processs (GPs), long-short-term memory networks

(LSTMs) (Hochreiter & Schmidhuber, 1997), and recurrent neural networks (RNNs).
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During the evaluation, we collected segregated training and test datasets. The training

dataset is randomly split into 24 groups, each containing a subset of trajectories, and used

to train different instances of all representations. These instances are then tested on the test

dataset. All neural models have two hidden layers, which we test for a variety of different

layer sizes, S = {16,32, 64,128, 256,512} for FNNs, S = {16,32, 64,128, 256} for
RNNs, and S = {16,32, 64,128} for LSTMs. In the case of (r)ARHMMs, we test for

different numbers of component K , dependent on the task. As a metric, we evaluate the

normalized mean squared error (NMSE), averaged over the 24 data splits for a range of

horizons. During evaluation, we comb through the test trajectories step by step and predict

the given horizon. Moreover, in Table 3.1, we qualitatively compare the complexity of all

representations in terms of their total number of parameters.

Bouncing Ball This example is a canonical instance of a dual-regime hybrid system due

to the hard velocity switch at the moment of impact. We simulate the dynamics with a

frequency of 20 Hz and collect 25 training trajectories with different initial heights and

velocities, each 30 s long. This dataset is split 24 folds with ten trajectories, 10× 150 data

points, in each subset. The test dataset consists of 5 trajectories, each 30 s long. We eval-

uate the NMSE for horizons h= {1,20, 40,60, 80} time steps. We did not evaluate a GP

model in this setting due to the long prediction horizons that led to a very high compu-

tational burden. The (r)ARHMMs are tested for K = 2. The logistic link function of an

rARHMM is parameterized by a neural net with one hidden layer containing 16 neurons.

The results in Figure 3.5 show that the rARHMM approximates the dynamics well and

outperforms both ARHMMs and the neural models.

Pendulum and Cart-Pole These systems are classical benchmarks from the control lit-

erature. Here we consider two different observation models, one in the wrapped joint

space, where the angle space θ ∈ [−π, π] includes a sharp discontinuity, and a second

model with smooth observations parameterized with the Cartesian trigonometric features

{cos(θ ), sin(θ )}. Both dynamics are simulated with a frequency of 100 Hz. We collect 25

training trajectories starting fromdifferent initial conditions and applying randomuniform

explorative actions. Each trajectory is 2.5 s long. The 24 splits consist of 10 trajectories

each, 10×250 data points. The test dataset consists of 5 trajectories, each 2.5 s long. Fore-
casting accuracy is evaluated for horizons h= {1,5, 10,15, 20,25}. The (r)ARHMMs are

tested for K = {3,5, 7,9} on both tasks. The logistic link function of the rARHMM is pa-

rameterized by a neural net with one hidden layer containing 24 neurons. As shown in Fig-

ure 3.5, the forecast evaluation provides empirical evidence for the representation power

of rARHMMs in both smooth and discontinuous state spaces. FNNs and GPs perform

equally well in the smooth Cartesian observation space and struggle in the discontinuous

space, similar to RNNs and LSTMs.
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Figure 3.5: System identification: comparing the h-step NMSE of rARHMMs to other dy-

namics approximation models. Every evaluation point is averaged over 24 data

splits. Benchmarking on three dynamical systems, a bouncing ball, a pendulum,

and a cart-pole. In limited-data scenario, rARHMMs exhibit the most consis-

tent approximation capabilities.
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Figure 3.6: Behavioral cloning: phase space of the pendulum. The identified unforced dy-

namics is on the left (blue). The learned model qualitatively captures the phase

portrait. On the right (red) are the closed-loop dynamics. The learned station-

ary hybrid policy with five regions successfully imitates a global nonlinear SAC

controller to stabilize the system around the origin.

3.7.2 Hierarchical Closed-Loop Behavioral Cloning
Before applying the RL method proposed in Section 3.6.1, we first want to analyze the

closed-loop rARHMM with endogenous inputs as a behavioral cloning framework. The

task is to reproduce the closed-loop behavior of expert policies on challenging nonlinear

systems. For this purpose, we train two different feedback experts on the pendulum and

cart-pole. The two environments are simulated at 50 Hz and are influenced by static Gaus-
sian noise with a standard deviation σ = 1× 10−2. The experts are two-layer neural nets

with 4545 parameters (pendulum) and 17537 parameters (cart-pole), optimized with the

soft actor-critic (SAC) algorithm (Haarnoja et al., 2018).

For cloning, we construct two 5-regime rARHMMs with local polynomial policies of the

third order. The hybrid controllers have a total number of parameters of 100 (pendulum)

and 280 (cart-pole). Learning is realized on a dataset of 25 trajectories, each 5 s long, for
each environment and using the EM technique from Section 3.5. The decomposed con-

trollers complete the task of swinging up and stabilizing both systems with over 95% suc-

cess rate. Figure 3.6 shows the phase portraits of the unforced dynamics and closed-loop

control identified during cloning. Figure 3.7 depicts sampled trajectories of the hybrid

policies highlighting the switching behavior.

3.7.3 Reinforcement Learning for Hybrid Systems
Finally, we evaluate the qualitative performance of the proposed hybrid policy search algo-

rithm Hb-REPS on two nonlinear stochastic dynamical systems: an underpowered pendu-
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Figure 3.7: Behavioral cloning: sample trajectories from the learned hybrid policies on the

pendulum (top) and cart-pole (bottom) environments. Both hybrid controllers

are able to consistently solve both tasks while relying on simple local represen-

tations of the feedback controllers. The colors indicate the active dynamics and

control regimes over time.
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Figure 3.8: Cart-pole with an elastic wall: a hybrid system with two linear regimes. The

cart-pole dynamics is linearized around the upright pole position, and the wall

is elastic and modeled by spring dynamics. The switching boundary is linear.

The unforced dynamics is depicted on the left (blue), and the aim is to stabilize

the pole around the origin.

lum swing-up and a cart-pole stabilization task that explicitly simulates an abrupt switch

in dynamics when the cart hits an elastic wall.

We compare the performance of Hb-REPS to two baselines. The first is a vanilla version
of REPS that does not maintain any hierarchical structure and uses nonlinear function ap-

proximators with random Fourier features (RFFs) (Rahimi & Recht, 2008) to represent

both policy and value function. The second baseline assumes a hierarchical policy struc-

ture and a nonlinear value function with Fourier features. This baseline is akin to what

is implemented in (Daniel et al., 2016), albeit with a hierarchy based on state abstraction

rather than time. We will refer to this algorithm version as hierarchical REPS (Hy-REPS).

We assume an offline learning phase in which the hybrid models are learned from pre-

collected data.

Pendulum Swing-up. In this experiment, the power-limited pendulum is simulated at

50 Hz and perturbed byGaussian noise with a standard deviationσ = 1×10−2. The REPS

agent relies on a policy and value function with 50 and 75 Fourier features, respectively.

Hy-REPS assumes a similar form of the value function but with five third-order polyno-

mial policies. Hb-REPS represents both policy and value function with five third-order

polynomials. Empirical results in Figure 3.9 feature comparable learning performance of

all algorithms over ten random seeds. Every iteration involves 5000 interactions with the

environment. We provide a phase portrait of the closed-loop behavior for a qualitative

assessment of the final stationary hybrid policy.
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Figure 3.9: Reinforcement learning: REPS, Hy-REPS and Hb-REPS evaluated on the pen-

dulum swing-up task. The learning curves, mean reward with two standard

deviations, show that all algorithms perform equally well in terms of transient

and final performance. However, Hb-REPS relies on simpler polynomial mod-

els of the policy and value function, while Hy-REPS andREPS rely on nonlinear

representations. The phase portraits depict the closed-loop behavior achieved

by Hb-REPS. Hb-REPS solves the task and stabilizes the pendulum.

Cart-pole Stabilization. This evaluation features a cart-pole constrained by an elastic wall
modeled as a spring, Figure 3.8. The dynamics is linearized around the upright position,

naturally resulting in a two-regimehybrid system. The environment is simulated at100 Hz
and perturbed by Gaussian noise with a standard deviation σ = 1× 10−4. The REPS pol-

icy and value function both use 25 random Fourier features. Hy-REPS adopts the same

value function structure with two affine linear policies. Hb-REPS also assumes two affine

linear policies combined with two second-order local value functions. The results in Fig-

ures 3.10 depict matching learning performance of the three approaches over 10 random

seeds. Every iteration involves 2500 interactions with the environment.

3.8 Discussion
We presented a data-driven view of hybrid system identification and control that serves

as an alternative paradigm to common popular techniques. Our approach is not restricted

to the class of explicit hybrid dynamics and can be seen as a general approach to structured

identification and nonlinear control. We argue that this structure often exists under the

hood of complex neural representation. Therefore, making it explicit may offer an avenue

to apply Occam’s razor and regularize over-parameterized representations. Initial empiri-

cal results support thismotivation. The proposed hybrid reinforcement learning technique

can do without neural networks and instead rely on a hierarchy of local polynomial repre-
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Figure 3.10: Reinforcement learning: REPS,Hy-REPS andHb-REPS evaluated on the cart-

pole stabilization task. By inspecting the learning curves, mean reward with

two standard deviations, we conclude that all algorithms perform equally well.

However, Hb-REPS relies on simpler polynomial models of the policy and

value function, while Hy-REPS and REPS rely on nonlinear representations.

The phase portraits depict the closed-loop behavior achieved by Hb-REPS.

sentations dictated by a hierarchical structure.

Nonetheless, the application of this work is limited to simple low-dimensional systems.

Although a viable alternative to expensive mixed-integer optimization, the inference tech-

niques used in this chapter still present a bottleneck in the face of scalability to more com-

plex systems and higher dimensions. While our MAP approach significantly improves the

quality of expectation-maximization solutions, it nevertheless struggles in more challeng-

ing environments.

A possible course of action is to investigate Bayesian nonparametric extensions of hybrid

dynamic Bayesian networks based on non-conjugate variational inference. Fully Bayesian

methods tend to improve learning in large structured models significantly. Another po-

tential avenue of research is to improve the hybrid reinforcement learning framework by

considering the control-as-inference paradigm. Such approaches may offer ways of in-

tegrating the Bayesian structure of the models into the control optimization and, in the

process, achieve an uncertainty-aware approach that is better equipped to deal with the

exploration-exploitation dilemma.
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Chapter 4
Distributionally Robust
Control and Filtering

Trajectory optimization and model predictive control (MPC) are essential techniques un-

derpinning advanced robotic applications, ranging from autonomous driving to full-body

humanoid control. State-of-the-art algorithms have focused on data-driven approaches

that infer the Bayesian system dynamics online and incorporate that posterior uncertainty

during planning and control. However, despite their success, such approaches are still sus-

ceptible to catastrophic errors due to statistical learning biases, unmodeled disturbances,

or even directed adversarial attacks.

In this chapter, we tackle the problem of dynamics mismatch and propose a distribution-

ally robust optimal control formulation that alternates between two relative entropy trust

region optimization problems. Our method finds the worst-case maximum entropy Gaus-

sian posterior over the dynamics parameters and the corresponding robust policy. Fur-

thermore, our approach admits a closed-form backward pass for a certain class of systems.

Finally, we demonstrate the resulting robustness on linear and nonlinear numerical exam-

ples. In addition, we propose using the same structure of multi-stage optimization to deal

with the exponentially growing mixture size in stochastic switching systems. We present

multiple variations that incorporate the cost into Gaussian reduction techniques and lead

to optimistic or pessimistic approximation of the stochastic state.

4.1 Introduction
Trajectory optimization (Mayne, 1966; Tassa et al., 2012; Watson et al., 2020a) is a well-

established tool for solving control problems that rely on a model of the system dynamics

to optimize a control signal that induces a desired system behavior. However, as systems of

interest are gettingmore complex, involving nonlinear effects and high-dimensional state-

action spaces, accurate analytical modeling has become challenging, if not impossible, in

some cases. Consequently, data-driven control approaches that employ black- and gray-

box statistical models are becoming popular rapidly.

However, trajectory optimization may exploit model imperfections that can arise as a re-

sult of statistical learning biases, resulting in brittle controllers that may fail at deployment

time due to modeling discrepancies. The recent trend of over-reliance on learning from

simulated data carries with it similar pitfalls with respect to optimization bias.
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Advanced trajectory optimization andMPC techniques successfully use learned probabilis-

tic models to incorporate the uncertainty of data-driven learning (Kamthe & Deisenroth,

2018; Hewing et al., 2018). However, those approaches are not robust against adversarial

disturbances and general model mismatch. An alternative to such probabilistic modeling is

the robust control paradigm. Unfortunately, robust methods tend to produce sub-optimal

controllers on average because the disturbance model gives too much power to the adver-

sary, forcing the controller to be too conservative.

Lately, a new class of methods at the intersection of robust and stochastic optimal control

is gaining momentum, based on distributionally robust optimization (DRO) (Scarf, 1958;

Delage & Ye, 2010; Van Parys et al., 2015; Coulson et al., 2019; Yang, 2020; Zhu et al., 2020;

Coppens et al., 2020), as it promises to combine the strengths of both approaches. In the

DRO framework, one seeks to find a controller that performs optimally under a worst-case

stochastic model chosen from a so-called ambiguity set. Here, the adversary’s strength is

easier to calibrate compared to the classical robust control.

Tomake distributionally robust optimization practical, one needs to be able to infer the op-

timal adversary, i.e., find the worst-case stochastic system in closed form or numerically.

So far, closed-form solutions have been obtained only for special choices of the ambigu-

ity set (Rahimian & Mehrotra, 2019). For example, when the ambiguity set is given as

a relative entropy ball around a nominal distribution (Hu & Hong, 2013; Charalambous

& Rezaei, 2007). In this chapter, we build upon this insight to develop an algorithm for

distributionally robust trajectory optimization.

We consider the problem of controlling a discrete-time stochastic dynamical system with

transition density f (x'|x,u,θ ) for which system uncertainty is encoded in the parameter

distribution p(θ ) and the ambiguity set is given by theKLballBδ(p̂) = {p |KL(p || p̂)≤ δ}
centered around the nominal parameter distribution p̂(θ ), that we assume is available after

a data-drivenmodel learning phase. We seek a time-varying stochastic policyπt(u|x) that
minimizes the worst-case expected cost maxp∈Bδ(p̂) J(π, p). In this setting, we develop

an iterative trust region algorithm that alternates between optimizing the worst-case dis-

tribution p and the corresponding distributionally robust policy π. We derive optimality

conditions for p andπ, and an efficient forward-backward procedure in the style of differ-
ential dynamic programming is provided for each optimization step.

The resulting method applies to nonlinear systems via iterative local linearization. Em-

pirical validation on uncertain linear and nonlinear dynamical systems demonstrates the

robustness of the optimized policies against adversarial disturbances. Furthermore, we

present an outlook to applying similar DROprinciples to stochastic switching systemswith

the motivation of managing the size of exponentially growing mixtures by deriving an op-

timistic and a pessimistic state-filtering approach.
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Our approach brings together several strands of research. First, we rely on distributionally

robust optimization to find the worst-case parameter distribution. Second, our problem

formulation is based on an iterative scheme of relative entropy policy search, a trust region

algorithm for policy optimization (Peters et al., 2010). Finally, we use iterative linearization

and numerical integration to enable the transfer to nonlinear systems. Below, we highlight

related work from these areas and point out key differences.

4.2 Related Work
Distributionally robust optimization finds numerous applications in control. However,

methods differ in ambiguity set representations, uncertainty, system modeling assump-

tions, and optimization algorithms. For example, in (Van Parys et al., 2015), the problem of

controlling a linear system under distributionally robust chance constraints was tackled us-

ing a moment-based ambiguity set. The moment-based representation was also employed

in (Coppens et al., 2020) to derive high-probability guarantees for the stability of a linear

system with multiplicative noise. For Wasserstein-based ambiguity sets, a general formu-

lationwas given in (Yang, 2020), which, however, requires solving a semi-infinite problem

numerically while we obtain a closed-form solution instead. Furthermore, aWasserstein-

based ambiguity set on the noise distributionwas used to solve a data-enabled control prob-

lem in (Coulson et al., 2019). For the linear-quadratic case, a relaxed version was solved

in (Kim&Yang, 2020) via amodified Riccati equation. Themodel, however, only included

ambiguity over the additive noise while the rest of the dynamics were assumed known and

time-invariant. In this chapter, in contrast, we employ a time-varying linearized proba-

bilistic dynamics model and allow ambiguity in the distribution over all model parameters.

Ambiguity sets based on relative entropy were also studied in several prior works. Dis-

tributionally robust optimization of stochastic nonlinear partially observable systems with

relative entropy constraints was studied in a general abstract setting in (Charalambous &

Rezaei, 2007), where the ambiguity set is formulated on the space of path measures. In

contrast, we consider ambiguity sets on the space of parameter distributions of the un-

derlying dynamical system. In (Petersen et al., 2000), a formulation for nonlinear sys-

tems was presented where the uncertainty in the additive disturbance was ambiguous.

Through Lagrangian duality, a connection to risk-sensitive control was furthermore es-

tablished. This connection was recently used to derive a model predictive control algo-

rithm (Nishimura et al., 2021) that builds upon the iterative linear-exponential-quadratic

Gaussian (iLEQG) (Farshidian&Buchli, 2015). That approach uses a cross-entropymethod

(CEM) to optimize the risk-sensitivity parameter and obtain the worst-case distribution,

as opposed to our algorithm, which uses a principled approach based on our trust region

optimization to solve the resulting DRO problem.

Finally, our DRO formulation captures the uncertainty in the whole trajectory rather than

considering only the noise distribution. This feature gives the adversary additional free-

65



Chapter 4: Distributionally Robust Control and Filtering

dom in allocating the disturbance budget along the trajectory at critical time steps.

Our approach builds upon relative entropy policy search (REPS) (Peters et al., 2010) by

extending it with an adversarial optimization with respect to the ambiguous distribution

over the dynamics parameters. A risk-sensitive formulation based on REPS involving the

entropic risk measure in a model-free setting was considered in (Nass et al., 2019). In this

chapter, we instead consider themodel-based setting (Levine&Koltun, 2013) and optimize

a controller under the worst-case distribution instead of the nominal one. Furthermore,

we introduce an additional approximate state propagation step to accommodate for uncer-

tainty in the dynamics parameters.

Stochastic optimal control with linearized dynamics (Mayne, 1966; Todorov & Li, 2005;

Watson et al., 2020a) is a powerful technique for controlling nonlinear systems. A locally

optimal controller can be found via dynamic programming techniques by using first-order

approximations of the dynamics along a given trajectory. The updated controller is used

to generate a new reference trajectory, and the process is iterated until convergence. Since

the linearized dynamics is only a good approximation around the linearization point, it is

important to limit the optimism in the controller updates. One successful approach has

been to enforce a relative entropy bound between the trajectory distributions of succes-

sive iterations. This technique is used for trajectory optimization in the context of guided

policy search (GPS) (Levine & Koltun, 2013) and is dubbed maximum-entropy iterative

linear quadratic Gaussian. Our approach relies on a similar formulation to optimize a time-

variant policy under uncertain dynamics.

In contrast to the aforementioned stochastic control frameworks, a distributionally robust

approach not only considers the stochasticity captured by the probabilistic model but also

accounts for ambiguity, meaning uncertainty about the probabilistic model itself.

4.3 Problem Statement
In this chapter, we concentrate on finite-horizonMarkov decision processess (MDPs) with

a state space X ⊆ Rd , an action space U ⊆ Rm, and a time horizon T . We assume a

probabilistic state transition density p(x',θ |x,u) = f (x'|x,u,θ )p(θ ), where p(θ ) is a
distribution over the dynamics parameters. The policyπt(u|x), a time-variant conditional

density, induces the state distribution µt(x) according to transition dynamics.

In this setting, the stochastic optimal control objective can be written as

J(πt , p) =
T−1
∑

t=1

∫∫

ct(x,u)µt(x)πt(u|x)dxdu+

∫

cT(x)µT(x)dx, (4.1)

where c(x,u) is the cost function. With slight abuse of notation, we refer to π1:T−1 with

πt . When necessary, we extend this notation to µt and pt . This objective is constrained
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by the following integral equation describing the evolution of µt(x) over time

µt+1(x') =

∫∫∫

µt(x)πt(u|x) f (x'|x,u,θ )p(θ )dudxdθ . (4.2)

The distributionally robust trajectory optimization can then be written as a minimax prob-

lem over the distributions πt(u|x) and p(θ )

minimize
πt

J(πt , p∗), (4.3a)

subject to

∫

πt(u|x)du= 1, ∀x,∀t < T, (4.3b)

where p∗(θ ) is the worst-case distribution given by

p∗ :=argmax
p

J(πt , p), (4.4a)

subject to KL(p(θ ) || p̂(θ ))≤ δ, (4.4b)
∫

p(θ )dθ = 1, (4.4c)

where p̂(θ ) is the nominal parameter distribution, and δ controls the size of the corre-

sponding KL-based distributional ambiguity set.

The robust optimization problem is typically hard to solve for general nonlinear dynami-

cal systems p(x'|x,u,θ ) and arbitrary forms of p(θ ). Our approach is to solve the nested

optimization via a regularized iterative sequential programming technique by using an ad-

ditional trust region imposed on the outer policy optimization problem in Equation (4.3).

4.4 Trust Region Distributionally Robust Control
Introducing a trust region overπt has multiple advantages. On the one hand, it regularizes

the policy optimization step, which is crucial for the convergence of the overall minimax

problem. On the other hand, it leads to a tractable maximum-entropy stochastic optimal

control framework for dealing with nonlinear dynamics through successive linearization

around a local trajectory distribution (Levine & Koltun, 2013; Arenz et al., 2016).

The resulting overall approach alternates between updating the parameter and policy dis-

tribution. For every iteration k, we compute the updated worst-case distribution pk+1

given the ambiguity set Bδ around the nominal p̂, and policy πk
t

pk+1 = argmax
p∈Bδ(p̂)

J(πk
t , p), (4.5)
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Algorithm 4.1: Distributionally Robust Trajectory Optimization

input: µ̂1, ct , f , p̂,δ,ε, K

initialize: π1
t

1 for k← 1 to K do

2 pk+1←WorstCaseParameters(p̂,πk
t , µ̂1, ct , f ,δ)

3 πk+1
t ←RobustPolicyUpdate(πk

t , pk+1, µ̂1, ct , f ,ε)

4 p∗← pK+1, π∗t ← π
K+1
t

output: π∗t , p∗

then we compute the updated robust policy πk+1
t under pk+1 in a trust region Bε around

the old policy πk
t

πk+1
t = argmin

πt∈Bε(πk
t )

J(πk, pk+1). (4.6)

These steps can also be seen as trust region versions of the proximal updates performed by

the mirror descent algorithm (Beck & Teboulle, 2003). Algorithm 4.1 offers a schematic

view of the optimization. The following sections provide further details.

4.4.1 Worst-Case Parameter Distribution
The parameter distribution optimization (4.5) for a single iteration k is given by

maximize
pt

T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k
t (u|x)dxdu+

∫

cT(x)µT(x)dx, (4.7a)

subject to

∫∫∫

µt(x)π
k
t (u|x) f (x'|x,u,θ ) pk+1

t (θ )dudxdθ = µt+1(x'), (4.7b)

T−1
∑

t=1

KL(pk+1
t (θ ) || p̂(θ ))≤ δ, (4.7c)

∫

pk+1
t (θ )dθ = 1, µ1(x) = µ̂1(x). (4.7d)

Notice that we have moved to a time-variant worst-case parameter distribution pt(θ ).
Although this formulation is more general, it is crucial to make this assumption in order

to disentangle the adversary’s influence over time and restrict it to future time steps. This

modificationmakes sensewhen considering that the robust policyπt(u|x) is likewise time-

variant and only influences the current and future time steps.
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By solving the former primal problem using the method of Lagrangian multipliers (Boyd

& Vandenberghe, 2004), we arrive at the optimal worst-case parameter distribution pk+1
t

pk+1
t (θ ) =

p̂(θ )exp
�

− 1
βQ t(θ )

�

∫

p̂(θ )exp
�

− 1
βQ t(θ )

�

dθ
(4.8)

a softmax distribution with a temperature β ≤ 0 that corresponds to the trust region con-

straint in Equation (4.7c) and a parameter value function Wt(θ )

Wt(θ ) =

∫∫∫

V θt+1(x')µt(x)π
k
t (u|x) f (x'|x,u,θ )dudxdx', (4.9)

where V θt+1(x') is the Lagrangian function associated with Equation (4.7b) and acts as an

adversarial state-value function under the last policy πk
t (u|x).

By plugging the solution in Equation (4.8) back into the primal, we retrieve the dual F as a

function of µ, V θ and β

F =
T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k
t (u|x)dudx+

∫

cT(x)µT(x)dx

+

∫

V θ1 (x)µ̂1(x)dx−
T−1
∑

t=1

∫

V θt (x')µt(x')dx'−
∫

V θ
T
(x')µT(x')dx'

− βδ− β
T−1
∑

t=1

log

∫

p̂(θ )exp

�

−
1
β

Wt+1(θ )

�

dθ .

(4.10)

We set the partial derivative of the dual with respect to µt(x) to zero and get a backward
recursion for computing V θt (x)

V θt (x) =

∫

ct(x,u)πk
t (u|x)du

+

∫∫∫

V θt+1(x')π
k
t (u|x) f (x'|x,u,θ ) pk+1(θ )dθ dudx',

(4.11)

where VT(x) = cT(x). Similarly, setting the partial derivative of the dual with respect to

V θ to zero delivers a forward recursion for µt(x)

µt+1(x') =

∫∫∫

µt(x)π
k
t (u|x) f (x'|x,u,θ ) pk+1

t (θ )dudxdθ , (4.12)
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Algorithm 4.2:Worst-Case Parameter Optimization

input: p̂,πk
t , µ̂1, ct , f ,δ

initialize: β

1 qt ← ParameterForwardPass(p̂,πk
t , f , µ̂1)

2 while F is not at minimum do

3 repeat

4 pk+1
t , V θt ← ParameterBackwardPass(qt ,π

k
t , ct , f ,β)

5 µt ← ParameterForwardPass(pk+1
t ,πk

t , f , µ̂1)

6 qt ← λµt + (1−λ)qt

7 until KL(qt ||µt)u 0

8
∂ F
∂ β
← ComputeBetaGradient(pk+1

t , p̂,δ)

9 β ← β −η
∂ F
∂ β

output: pk+1
t ,µt

Algorithm 4.3: Distributionally Robust Policy Optimization

input: πk
t , pk+1

t , µ̂1, ct , f ,ε

initialize: α

1 while G is not at maximum do

2 πk+1
t , Vπt ← PolicyBackwardPass(pk+1, ct , f ,α)

3 µt ← PolicyForwardPass(pk+1
t ,πk+1

t , f , µ̂1)

4
∂ G
∂ α
← ComputeAlphaGradient(πk+1

t ,πk
t ,ε,µt)

5 α← α+ρ
∂ G
∂ α

output: πk+1
t ,µt
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where the initial state distribution µ1(x) = µ̂1(x) which is assumed given.

Finally, the optimal temperature β that satisfies the trust region in Equation (4.7c) is opti-

mized numerically via gradient descent on the dual where

β i+1 = β i −ηi

T−1
∑

t=1

KL(pk+1
t (θ ) || p̂(θ )) +ηiδ,

and ηi is some step size. This process iterates over µ, V θ and β until convergence, see

Algorithm4.2. Given the circular dependency between V θ ,µ and p, we updateµ through a
barycentric interpolation scheme, analogous to (Abdulsamad et al., 2017). A more detailed

derivation of this optimization problem is available in Appendix D.

4.4.2 Worst-Case Robust Policy
Imposing a trust region constraint on the robust stochastic optimal control formulation in

(4.3) results in the following optimization problem

minimize
πt

T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k+1
t (u|x)dxdu+

∫

cT(x)µT(x)dx, (4.13a)

subject to

∫∫∫

µt(x)π
k+1
t (u|x) f (x'|x,u,θ ) pk+1

t (θ )dudxdθ = µt+1(x'), (4.13b)

T−1
∑

t=1

∫

µt(x)KL(πk+1
t (u|x) ||π

k
t (u|x))dx≤ ε, (4.13c)

∫

πk+1
t (u|x)du= 1, µ1(x) = µ̂1(x). (4.13d)

By formulating the Lagrangian and solving for the robust policy πk+1
t , we find

πk+1
t (u|x) =

πk
t (u|x)exp

�

− 1
αQπt (x,u)

�

∫

πk
t (u|x)exp

�

− 1
αQπt (x,u)

�

du
, (4.14)

where Q t(x,u) is the state-action value function

Q t(x,u) = ct(x,u) +

∫∫

Vπt+1(x') f (x'|x,u,θ ) pk+1
t (θ )dθ dx'.

The temperature parameter α ≥ 0 and function Vπt (x) are the Lagrangian variables asso-

ciated with Equation (4.13c) and Equation (4.13b).
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Substituting Equation (4.14) back into the primal delivers the policy dual function G

G =

∫

cT(x)µT(x)dx+

∫

Vπ1 (x)µ̂1(x)dx

−
T−1
∑

t=1

∫

Vπt (x')µt(x')dx'−
∫

Vπ
T
(x')µT(x')dx'−αε

−α
T−1
∑

t=1

πk
t (u|x)exp

�

−
1
α

Qπt+1(x,u)
�

dudx.

(4.15)

By setting the derivatives of G with respect to µt(x) to zero, we arrive at an optimality

condition in the form of a backward recursion for calculating Vπt (x)

Vπt (x) = α log

∫

πk
t (u|x)exp

�

−
1
α

Q t(x,u)
�

du, (4.16)

where Vπ
T
= cT(x). On the other hand, the derivatives of G with respect to Vπ(x) lead to

a forward recursion for µt(x) that fulfills the propagation constraint

µt+1(x') =

∫∫∫

µt(x)π
k+1
t (u|x) f (x'|x,u,θ ) pk+1

t (θ )dudxdθ . (4.17)

Similar to the optimization in Section 4.4.1, the temperature α is optimized via gradient

ascent on the policy dual with

αi+1 = αi +ρi

T−1
∑

t=1

∫

µt(x)KL(πk+1
t (u|x) ||π

k
t (u|x))dx−ρiε,

where ρi is an adaptive step size. We refer to (Nocedal & Wright, 2006) for the conver-

gence properties of trust region optimization and specific rules for choosing and adapting

the size ε. Algorithm 4.3 gives an outline of the overall optimization procedure. A more

detailed derivation is available in Appendix D.

4.5 Practical Realization Conditions
The recursive optimality conditions in Section 4.4.1 and Section 4.4.2 offer a general solu-

tion to the optimization problems without any guarantees for computational tractability.

In this section, we discuss the assumptions necessary so that the proposed forward and

backward passes are feasible.
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4.5.1 Linearized Quadratic Systems
Firstly, we assume linear dynamics with a Gaussian additive noise

f (x'|x,u,θ ) = N(x'|Θτ,Σx'),

whereΘ=
�

A, B, c
�

is the aggregate linear parameter matrix and τ =
�

x, u, 1
�>

is

the combined state-action vector. Moreover, the cost function c(x,u) is presumed quadratic

in state and action. Finally, the nominal parameter distribution is aGaussian density p̂(θ ) =
N(θ |µθ ,Σθ ). Under these assumptions, the following holds

1. The state- and parameter-value functions Vπ and V θ start at time T as quadratic

functions and remain as such during the backward recursion due to the functional

compatibility with the Gaussian probabilistic dynamics.

2. The resulting policy is a time-variant linearGaussianπt(u|x) = N(u|Ktx+kt ,Σu,t),
where (Kt ,kt) are the linear feedback matrix and affine offset.

3. The optimal time-variant worst-case distribution pt is a Gaussian density.

4. Propagation of the state through probabilistic dynamics results in a non-Gaussian

distribution due to the expectation over pt(θ ). We circumvent this issue by ap-

proximating the forward recursion via spherical cubature.

This setting can be extended to support nonlinear dynamical systems and non-convex costs

via local approximations, which mirrors the iterative schemes used in differential dynamic

programming (DDP) (Mayne, 1966) and iterative linear-quadratic regulator (iLQR) (Tassa

et al., 2012). However, in our formulation, a more principled regularization is achieved

through the trust region constraint on the policy (Levine & Koltun, 2013). Note that this

extension requires a new reference nominal distribution p̂k(θ ) for every linearization it-

eration k, which we assume is given by an external statistical learning process.

4.5.2 Cubature-Based State Propagation
We briefly discuss the details of the approximate cubature forward recursion. The state

propagation adheres to the probabilistic dynamics constraint

µ(x') =

∫∫∫

µ(x)π(u|x) f (x'|x,u,θ )p(θ )dudxdθ , (4.18)

in which we omit the superscripts and subscripts for brevity. Under the assumptions in-

troduced in the previous section, the expected dynamics can be written as

p(x'|x,u) =

∫

f (x'|x,u,θ )p(θ )dθ = N(x'|Mθτ,Σx' + (τ
> ⊗ Iθ )

>Σθ (τ⊗ Iθ )),
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where Mθ is defined according to µθ = vec(Mθ ) with vec denoting the vectorization

operator, the operator ⊗ stands for the Kronecker product, and Iθ is the identity matrix

with size equal to the dimension of θ . We write the covariance as

Σ(τ) = Σx' + (τ
> ⊗ Iθ )

>Σθ (τ⊗ Iθ )

where the second term depends on both state and action through τ. This leads to the inte-
gral in Equation (4.18) being non-Gaussian. We use the cubature transform as described in

(Solin, 2010), which constitutes a variant of the unscented transform (Wan et al., 2001), to

approximate the propagated state distribution. Therefore, we rewrite the dynamics equiv-

alently as

x'=Mθτ+
Æ

Σ(τ)ξ, ξ∼ N(0, I),

where the matrix square root is the triangular Cholesky factor. If we include the noise ξ in

the augmented state τ̂ :=
�

x, u, ξ
�>
, the cubature computation resembles propagating

an augmented distribution p(τ̂) through nonlinear deterministic dynamics

p(τ̂) = µ(x|m,Σx)π(u|Kx+ k,Σu) p(ξ|0, Ix)

= N











x
u
ξ



|





m
Km+ k

0



,





Σx ΣxK
> 0

KΣx Σu +KΣxK
> 0

0 0 Ix










.

This reformulation allows us to apply standard cubature rules to obtain the next approxi-

mation of the state distribution µ(x').

4.5.3 Existence of The Worst-Case Distribution
Given the assumptions in Section 4.5, it is possible to compute the worst-case parameter

distribution p∗t (θ ) = N(θ |Ω−1
t ωt ,Ω−1

t ) in closed-form

ωt = Λ̂θ µ̂θ −
1
β
(s>xu,t ⊗ Ix)

>vθt+1,

Ωt = Λ̂θ + (Σxu,t ⊗Vθt+1) +
2
β
(s>xu,t ⊗ Ix)

>Vθt+1(s
>
xu,t ⊗ Ix),

where µ̂θ and Λ̂θ are the mean and precision of the nominal distribution p̂(θ ), Vθ and

vθ are the quadratic and linear terms of the adversarial state-value function V θ and sxu

is the state-action distribution mean. Considering that β ≤ 0 and V θ ≥ 0, depending
on Λ̂θ , there exists a value of β , for which Ω becomes a negative-definite matrix and the

distribution p∗t (θ ) does not exist anymore in a Gaussian form. To overcome such issues,

we propose a variant of our algorithm that mimics the trust region sequential quadratic

programming method (Nocedal & Wright, 2006). Instead of the p-update in (4.5), we
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Figure 4.1: Uncertain linear system experiment. Right, the worst-case KL budget alloca-

tion over the whole trajectory. Notice that most of the deviation happens in

the first part of the trajectory. Left, the expected cost of the uncertainty-aware

(blue) and robust (red) controllers evaluated on a range of distributions inter-

and extrapolated between and beyond the nominal and worst-case distribution.

The robust controller shows much lower sensitivity to changes in the distur-

bance. Note the double logarithmic scale.

iteratively update the worst-case distribution over smaller trust regions

pk+1 = max
p∈Bδ(p̂)∩Bδk

(pk)
J(πk, p),

where Bδk
is the KL-divergence trust region Bδk

(pk) = {p | KL(p‖pk)≤ δk}. In practice,
this iterative update is performed until the constraint in (4.5) becomes active.

4.6 Empirical Evaluation
We empirically evaluate the proposed distributionally robust control on a set of linear and

nonlinear dynamical systemswith uncertain dynamics. Without loss of generality, we limit

the scope and assume the existence of a probabilistic dynamics model that has been won

from data at an earlier stage. We linearize this model along a trajectory to deliver the

probabilistic time-variant dynamics, i.e., the nominal distribution. Moreover, we limit the

evaluation to a classic finite-horizon trajectory optimization scenario and do not consider

a receding horizon control scheme.

The evaluation highlights the performance of the distributionally robust controller, itera-

tively optimized under its worst-case distribution, compared to an uncertainty-aware opti-

mal controller, optimized under the nominal distributional dynamics using only the policy

optimization stage of our approach. We perform this comparison by using the worst-

case parameter optimization to compute an optimal disturbance on the uncertainty-aware

controller and subsequently evaluate the performance of both controllers under this distur-
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bance. This comparison allows the assessment of both controllers under previously unseen

distributional disturbances since the worst-case attack on the uncertainty-aware controller

may vary from theworst-case attack on the iteratively optimized robust controller. As eval-

uation criteria, we consider (1) the overall expected cost on a set of intermediate distribu-

tions between the nominal and worst-case, which we find using barycentric interpolation,

(2) the induced trajectory distributions, and (3) the allocation strategy of the disturbance

budget over the complete trajectory distribution. The source code of an efficient imple-

mentation can be found under https://github.com/hanyas/trajopt.

4.6.1 Uncertain Linear Dynamical System.
We consider a simple actuated mass-spring-damper linear system with a mass m = 1kg,
a spring constant k = 0.01N/m, and a damping factor d = 0.1N s/m. The linear differ-

ential equation has the form

�

ẋ t

ẍ t

�

=

�

0 1
−0.01 −0.1

��

x t

ẋ t

�

+

�

0
1

�

ut ,

which is integrated in time for a horizon T = 75 with a step size ∆t = 0.01 s. More-

over, we assume an initial distribution µ1(x) centered at x0 = 0 with a diagonal standard

deviation of σx0
= 1× 10−1 and a discrete-time zero-mean process noise with a diagonal

standard deviation σx = 1 × 10−2. The aim is to drive the system towards a goal state

xg = [1, 0]>, under a quadratic state-action cost with the matrices Cx = diag([100, 0])
and Cu = diag([0.001]). As stated previously, we assume the existence of a nominal dis-

tribution p̂(θ ), which in this case is centered at the true linear dynamics with a diagonal

standard deviation of σθ = 1 × 10−4 to represent uncertainty over the parameters. We

initialize a zero-mean controller with a diagonal standard deviation σπ = 10 and set the

trust region sizes ε = 0.25 and δ = 750.

The comparison between the controllers on the linear system is depicted in Figure 4.2. The

plots on the left show the trajectory distribution induced by the uncertainty-aware (blue)

and robust (red) policies under the nominal parameter distribution p̂(θ ). The figures show
an aggressive uncertainty-aware controller that takes advantage of the nominal dynamics

to reach the goal as fast as possible, while the robust controller shows sub-optimal behavior.

However, when evaluated on the worst-case dynamics, on the right, the uncertainty-aware

controller (green) overshoots beyond the target incurring a massive cost, while the robust

policy (magenta) maintains a consistent behavior associated with much lower overall cost.

Furthermore, the right plot in Figure 4.1 illustrates the worst-case KL allocation over the

trajectory. A large portion of the overall deviation takes place in the first 20 time steps, lead-

ing to the sub-optimal performance of the uncertainty-aware controller in the same time

window. Finally, the left plot highlights the superior performance of the robust policy (red)

on a continuumof distributions interpolated between the nominal andworst-case distribu-

76

https://github.com/hanyas/trajopt


Section 4.6: Empirical Evaluation

0

0.5

1

x

Nominal Dynamics p̂(θ )

Stochastic

Robust

0

3

6

ẋ

0 20 40 60

0

150

300

Time Steps

u

−2

−1

0

1

Worst-Case Dynamics p∗(θ )

Stochastic

Robust

0

10

20

0 20 40 60

0

200

400

Time Steps

Figure 4.2: Uncertain linear system experiment. Comparison between the uncertainty-

aware and distributionally robust controllers. Left, the trajectory distributions

induced by standard (blue) and robust (red) controllers evaluated under the

nominal dynamics distribution. The uncertainty-aware controller is aggressive

and reaches the target faster. Right, the trajectory distributions induced by stan-

dard (green) and robust (magenta) controllers evaluated under the worst-case

disturbance. The uncertainty-aware controller overshoots dramatically beyond

the target, while the robust controller is barely affected.
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Figure 4.3: Uncertain nonlinear robot experiment. Right, allocation of the worst-case KL

budget over time steps. Most of the deviation is concentrated toward the early

phase of the trajectory. Left, the expected cost of the uncertainty-aware (blue)

and robust (red) controllers evaluated on a range of distributions inter- and ex-

trapolated from the nominal andworst-case distribution: The robust controller

shows much lower sensitivity to changes in the disturbance.

tions and beyond using barycentric interpolation. The uncertainty-aware controller (blue)

delivers better performance in a small region around the nominal distribution but very

quickly worsens as the distance to that distribution increases.

4.6.2 Uncertain Nonlinear Robot Car
This experiment validates our approach for general nonlinear dynamical systems via iter-

ative linearization of the dynamics around a trust region. We consider a nonholonomic

robot moving in 2D-space. The state vector consists of the x , y-coordinates of the posi-
tion, the speed v, and the orientationψ, while the acceleration a and the steering angle φ
are used for actuation. The global dynamics is nonlinear in state and action and given by









ẋ t

ẏt

ψ̇t

v̇t









=









vt sinψt

vt cosψt

vt tan (φt)/d
at









,

where the constant d = 0.1m is the car length. This ODE is integrated for a horizon

T = 100 with a step size ∆t = 0.025s. The initial state distribution is centered at

[5, 5, 0, 0]> with a diagonal standard deviation σx0
= 1 × 10−2 and the discrete-time

process noise is zero-mean with a diagonal standard deviation σx = 1 × 10−4. The goal

state is g = [0, 0, 0, 0]> and the quadratic costmatrices areCx = diag([10, 10, 1, 1]) and
Cu = diag([0.1, 0.1]). Analogous to the previous experiment, we assume the nominal pa-

rameter distribution to be centered at the linearized dynamics with a diagonal standard
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Figure 4.4: Uncertain nonlinear robot experiment. Comparison of standard and distribu-

tionally robust controllers. Left, the trajectory induced by the standard (blue)

and robust (red) controllers evaluated under the nominal dynamics distribu-

tion. The uncertainty-aware controller takes advantage of the nominal dy-

namics and applies large controls to reach the target faster. Right, the trajec-

tory distributions induced by standard (green) and robust (magenta) controllers

evaluated under the worst-case disturbance. The uncertainty-aware controller

shows clear sub-optimal behavior, while the robust controller is barely affected.
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deviation σθ = 1× 10−3. We initialize a zero-mean controller with a diagonal standard

deviation σπ =
p

0.1 and set the trust regions to ε = 0.25 and δ = 500.

Figure 4.4 depicts the results in a similar fashion to what we presented in the last exper-

iment. Here again, the uncertainty-aware controller (blue) acts aggressively under the

nominal dynamics, while the robust controller (red) is slower and applies smaller controls.

When evaluating the controllers under the uncertainty-aware controller’s optimal adver-

sary, the uncertainty-aware controller (green) overshoots and shows sub-optimal behav-

ior, while the trajectory distribution induced by the robust controller (magenta) is hardly

affected. Lastly, the comparison of both controllers on a set of distributions interpolated

between the nominal and the adversary highlights the overwhelming advantage of the ro-

bust controller, Figure 4.3.

4.7 Discussion
We have presented a technique to robustify data-driven stochastic optimal control ap-

proaches that rely on probabilistic models of the dynamics. Our approach consists of an

iterative two-stage relative entropy trust region optimization. The first stage optimizes

the maximum entropy worst-case Gaussian distributional dynamics in a KL-ball around

a nominal distribution, while the second stage optimizes the policy with respect to the

worst-case dynamics. We show that both stages admit closed-form backward value re-

cursions and approximate cubature forward passes for probabilistic time-variant dynamics

models. Furthermore, empirical results on linear and nonlinear dynamical systems validate

the benefits of robustifying stochastic control against worst-case model disturbances.

Despite the encouraging initial results, our approach still has multiple limitations. The

assumption of Gaussian densities for the nominal and worst-case distributions is rather

limiting. Similarly, although reasonable, the restriction of the adversary to a time-variant

form does not reflect the statistical errors that arise while approximating stationary repre-

sentations of dynamics. In addition, long-horizon trajectory optimization is often prone to

get stuck in local minima. An investigation of a nonlinear model predictive control formu-

lation can prove very beneficial, despite the additional computational load it may require.

Finally, the KL divergence is not a proper distance metric in the space of distributions.

Analyzing the drawbacks of this design choice can inspire better alternatives, e.g., using

kernel methods and optimal transport.
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4.8 Filtering in Markov Jump Systems
Continuing the central theme of focusing on structured models, we discuss how the previ-

ously presentedmulti-stage trust region optimization inspires cost-oriented state inference

methods and aids tractable control of stochastic switching systems.

We consider the discrete-time stochastic optimal control problem for Markov jump linear

systems (MJLS) with quadratic costs. AlthoughMJLS admit tractable closed-form optimal

control computation (Fragoso, 1989), we propose a trust region formulation in order to

account for an iterative data-driven process of dynamics learning. This formulation can

be considered equivalent to the trust region regularized linear-quadratic case, albeit with

an augmented state vector containing a discrete component. Remember, adding a trust

region leads to a forward-backward solution scheme (Levine & Koltun, 2013; Arenz et al.,

2016; Abdulsamad et al., 2017).

In this section, we do not focus on thewhole control optimization problem. Instead, we are

interested in the issue of mixture-state propagation during the forward recursion. Prop-

agating a state distribution through discrete-continuous dynamics results in an explosion

in the number of mixture components after a few steps. This effect poses a significant

challenge for long-horizon planning in stochastic switching systems.

Common solutions to themixture explosion problem rely on approximate Gaussian reduc-

tion techniques (Crouse et al., 2011) with the generalized pseudo Bayesian approximation

(GPB) (Kim, 1994) and interacting multiple model (IMM) filtering (Blom & Bar-Shalom,

1988) being prominent examples. However, these methods are used mainly in state esti-

mation scenarios and take no consideration of a cost minimization objective.

The following sections outline an approach that augments stochastic control optimization

with a cost-orientedGaussianmixture reduction technique. The overall method closely re-

sembles the two-stage optimization problems discussed in this chapter. By incorporating

the cost into the state estimation scheme, we can interpolate between variational approxi-

mations on a scale ranging from optimistic to pessimistic estimates with respect to cost.

4.8.1 Switching Stochastic Optimal Control
Let’s assume a finite-horizon MDP with a continuous state space X ⊆ Rd , a set of one hot

discrete state vectors z ∈ {0,1}K :
∑K

k=1 zk = 1, and an action space U ⊆Rm. The switch-

ing state transition follows the standard Markov jump process definition as a stochastic

function with a density p(x',z'|x,u,z) = f (x'|x,u,z')h(z'|z).

The set of stochastic hybrid policiesπt(u|x,z) reflect the discrete-continuous structure and
induce the state distribution mixture µt(x,z) = pt(z)pt(x|z), where pt(z) is a categorical
distribution and pt(x|z) are the individual Gaussian state components. Finally, the cost

function ct(x,z,u) is assumed to be quadratic in both state and action, with the dependency

an optional on the discrete state z.
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The optimization problem solved at every iteration k can be written as

minimize
πt

T−1
∑

t=1

∑

z

∫∫

ct(x,u,z)µt(x,z)πk+1
t (u|x,z)dxdu+

∫

cT(x,z)µT(x,z)dx,

subject to
∑

z

∫∫∫

µt(x,z)πk+1
t (u|x,z) f (x'|x,u,z')h(z'|z)dudx= µt+1(x',z'),

T−1
∑

t=1

∑

z

∫

µt(x,z)KL(πk+1
t (u|x,z) ||πk

t (u|x,z))dx≤ ε,
∫

πk+1
t (u|x,z)du= 1, µ1(x,z) = µ̂1(x,z).

This problem can be solved via the method of Lagrangian multipliers (Boyd & Vanden-

berghe, 2004) and yields the forward-backward recursions to compute the value function

Vt(x,z) and state distribution mixtures µt(x,z). As previously highlighted, the forward
recursion is computationally intractable for moderate and long horizons since the number

of mixture components increases exponentially over time.

4.8.2 Optimistic and Pessimistic State Propagation
Nonetheless, to perform the forward recursion, we can fall back on Gaussian sum filtering

methods such as IMM filters andGPB, which collapse the state distribution into an approx-

imateGaussianmixturewith a smaller number of components. However, these approaches

do not reflect the cost landscape of the control objective and may lead to unpredictable and

large deviations from the true expected cost due to their coarse approximations.

We propose to explicitly incorporate the cost into Gaussian sum filtering algorithms by

formulating a secondary optimization problem to find the worst- or best-case mixture

weights qt(z) in a trust region around the nominal distribution pt(z). This approach leads
to a more accentuated weighting of the individual components and potentially a complete

suppression of some. Mathematically, we write the following

min
qt
/max

qt

∫∫

ct(x,u,z)qt(z) pt(x|z)πk+1
t (u|x,z)dxdu,

subject to KL(qt(z) || pt(z))≤ ε,
∑

z

qt(z) = 1,

whereµt(x,z) = pt(z)pt(x|z) is the state distribution approximation at the current time

step, and ε controls the trust region size. Notice that we account for maximization and

minimization objectives that result in pessimistic and optimistic weights, respectively.
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The previous optimization is solved by constructing the Lagrangian and solving for qt(z)
to get the optimal point

q∗t (z)∝ pt(z)exp

�

1
λ

∫∫

ct(x,u,z)πk+1
t (u|x,z)dxdu

�

,

where λ is the Lagrangian multiplier associated with the trust region constraint. Note

that λ ≤ 0 for the maximization objective and λ ≥ 0 for the minimization variant. This

solution is computed in closed-form for a given scalar value of λ, a quadratic cost ct(x,u),
and linear Gaussian hybrid policies πt(u|x,z).

4.8.3 Qualitative Examples
We illustrate the effect of the proposed weight optimization on a simple example of a sta-

tionary mixture of Gaussians at a time slice t . We assume a quadratic cost ct(x) centered
at zero and analyze the trust region effect by modulating the variable λ directly. Without

loss of generality, we can discard the role of the policy πt(x,u) in this example.

The initial results confirm the motivation behind this approach. In Figure 4.5, we assume

an optimistic approximation scenario and observe the tendency to suppress mixture com-

ponents that are far from the minimum cost, around zero, and thus incur higher costs. In

contrast, Figure 4.5 depicts the results of a pessimistic approximation which leads to the

opposite effect. Gaussian components close to the minimum cost are heavily dampened,

while the others are amplified.

Although these results are encouraging, further validation and more elaborate settings are

required. For example, an evaluation of a long-horizon control task and comparing the cost

objective under pessimistic, optimistic, andMonte Carlo estimates of the state distribution

can reveal the magnitude of approximation errors induced by Gaussian mixture reduction

techniques and their overall effects on planning.

83



Chapter 4: Distributionally Robust Control and Filtering

−10 −5 0 5 10
0

0.1

0.2

x

λ= −1000

True PDF

Optimistic PDF

−10 −5 0 5 10
0

0.1

0.2

x

λ= −200

−10 −5 0 5 10
0

0.1

0.2

x

λ= −50

−10 −5 0 5 10
0

0.1

0.2

x

λ= −10

Figure 4.5: The effect of modulating the weights of Gaussian mixture through a cost-

optimistic optimization. Large absolute values of λ correspond to a small trust

region and small deviation from the reference weights and overall mixture. By

lowering |λ|, we observe the gradual dampening of Gaussian components that

correlate with higher costs, while components in lower-cost regions are ampli-

fied to account for the shifting of probability mass.
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Figure 4.6: The effect of modulating the weights of Gaussian mixture through a cost-

pessimistic optimization. Large values of λ correspond to a small trust region

and small deviation from the reference weights and overall mixture. By low-

ering λ, we observe the gradual dampening of Gaussian components that cor-

relate with lower costs, while components in higher-cost regions are amplified

to account for the shifting of probability mass.
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Chapter 5
Conclusion

This manuscript is the culmination of the main themes that dominated my doctoral stud-

ies. The topics covered in the previous chapters span a wide intersection area of Bayesian

statistics, optimal control, hierarchical modeling, reinforcement learning, and robust opti-

mization. These are foundational topics for achieving a level of intelligent automation that

can effectively interact with the physical world.

The primary drive behind this research has often been grounded in a philosophical view

of complexity that emerges from a transparent structure of simple cooperating local units

and rules. This view, although fascinating, is exceptionally challenging, as it poses complex

questions about the proper levels of abstraction. Furthermore, this hierarchical paradigm

stands for an understanding of intelligence as a structured mixed program of symbolic and

continuous processes, which, in our opinion, at the moment cannot rise to the level of

achievements reached by massive black-box differentiable learning automata. One obser-

vation made throughout this research that may explain this current trend is the explosion

in algorithmic complexity that accompanies structured modeling paradigms, in contrast to

simple learning principles in opaque differentiable machines.

Nonetheless, hierarchical processes have a natural legitimacy that arises from their inher-

ent ability to model discrete phenomena and compress representation by abstracting over

repeating patterns. Moreover, a structured model delivers automatic complexity regular-

ization by offering a mold for the data to fit in. However, this property is a double-edged

sword, as it is often the case that a sub-optimal structure choice can severely restrict the

power of a model to capture the underlying data patterns.

Reflecting on these aspects is and has been a matter of life-long research. The previous

chapters are a first step focused on a collection of ideas to leverage structure and hierarchy

in different scenarios of optimal control and reinforcement learning. In the following, we

summarize the contributions of the individual chapters, draw conclusions, and highlight

open questions and potential extensions.

5.1 Summary
In Chapter 2, we set out to construct large flexible regression models that can adapt their

complexity according to the data. This objective implies the need for representations that

grow their parametric structure to integrate information that the current state of themodel

cannot explain. Bayesian nonparametric statistics offers the most principled approach to

tackling this problem by realizing infinite-dimensional stochastic processes such as the
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Dirichlet process. Inspired by these concepts, we formulated two infinite mixtures of local

regression models that upended the need for heuristics to extend or prune the structure

and enjoy a set of amenable properties. On the one hand, these representations offer a

compromise between memory-intensive kernel machines and common rigid parametric

models. On the other hand, they maintain a probabilistic generative view of the data that

supports a continual learning setting and avoids catastrophic forgetting. The Bayesian for-

mulation is critical for regularizing large parametric models. This insight led us to rely on

scalable variational inference techniques to infer the posterior parameters of the proposed

representations. Furthermore, we presented a wide range of evaluations to highlight the

capabilities of these models in approximating non-differentiable functions, dealing with

heteroscedastic noise, and admitting sequential Bayesian updates. Finally, we used these

models in large-scale experiments to learn the inverse dynamics of anthropomorphic ma-

nipulators and leveraged them in real-world control scenarios.

Chapter 3 focuses on modeling time series data and infinite-horizon control of nonlinear

dynamical systems. This area of research is traditionally dominated by neural representa-

tions of value functions and policies. Our objective was to investigate the potential of em-

ploying a hierarchical approach to system identification and control. Thus, we adopted a

data-driven view of hybrid systems as a structuredmodeling paradigm of general nonlinear

dynamics. This decision wasmotivated by a certain interpretation of neural networks with

rectified linear unit activations that views them as discriminative mixtures of interacting

but often redundant local experts. Our approach relies on making hidden hierarchies visi-

ble in order to avoid over-parameterization. We used augmented hidden Markov models

to capture and decompose the temporal dynamics of a control loop into linear sub-regions.

In addition, we designed a reinforcement learning algorithm that explicitly integrates the

hybrid dynamics and optimizes hierarchical polynomial policies and value functions. We

empirically evaluated the ability of the proposed representation and demonstrated that it is

able to capture long-horizon trends sufficiently well while drastically reducing parametric

complexity. Moreover, the hierarchical reinforcement learning technique delivered en-

couraging results on common control tasks and carries potential as an alternative to com-

mon hybrid control techniques based on finite-horizon optimal control.

Lastly, Chapter 4 revolves around stochastic optimal control and the issues of its sensitivity

w.r.t. to models learned from data. The current trend of incorporating statistical repre-

sentations of dynamics into control frameworks has unleashed a significant potential for

scalability to more complex environments. However, in scenarios where little data is avail-

able, the brittle validity of inferred models poses a severe challenge to optimality in general

and risk-sensitive applications in specific. We proposed using the concept of distributional

robustness as a mathematical framework for dealing with these concerns. We presented a

formalism to robustify stochastic optimal control against statistical biases of probabilistic

dynamics models. We formulated an iterative minimax relative entropy trust-region op-
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timization. This approach alternates between finding the worst-case distribution over the

dynamics in a trust region in the vicinity of a nominal distribution and optimizing a robust

policy w.r.t. said the worst-case dynamics. Notably, we demonstrate that these steps admit

closed-form backward recursions for time-variant linearized probabilistic dynamics. Our

validation results illustrate the risk of optimizing controllers under model mismatch and

how our treatment based on distributional robustness can mitigate the effects of worst-

case statistical disturbances. Finally, we highlighted how a related two-stage optimization

formulation could help tackle tractability issues of state estimation in stochastic switching

linear systems and provided qualitative examples.

5.2 Outlook
We have successfully demonstrated the significance of previously presented concepts with

a multitude of evaluations. However, as common in experimental machine learning, these

approaches still lack the generality and scalability required for deployment and broad adop-

tion. What follows is a critical view of this thesis’ contributions and a reflection on the

future steps that may build upon its ideas constructively.

A general point can be made on whether the algorithmic effort connected to constructing

and learning hierarchical representations is always justifiable. The practical algorithms

developed in this thesis are often considerably more complex thanwidely adopted standard

solutions. Although we have highlighted the general benefits of each contribution, their

importance might vary depending on the application domain.

On a technical level, there are critical challenges deeply rooted in the inference paradigms

of structured models. For instance, expectation-maximization algorithms are notoriously

sensitive to their initial conditions and do not scale well to higher dimensions and many

components. In contrast, Variational Bayes approaches are less fragile due to the priors’

regularizing effects. Nonetheless, they still suffer from approximation errors due to the

mean-field assumptions. This concern can be addressed by adopting collapsed mixture

formulations that reduce the posterior approximation gap (Kurihara et al., 2007).

Moreover, Bayesian model design, in general, is profoundly affected by prior misspeci-

fication. Too broad prior definitions lead to under-fitting and poor posterior predictive

performance. Empirical Bayes approaches, although controversial, as they undermine the

Bayesian principle, can remedy this issue by optimizing the priors after the fact. However,

structuredmodels often do not admit tractable empirical Bayes computation. Nevertheless,

despite these significant difficulties, relaxation strategies of discrete variables may offer a

way to perform prior optimization (Jang et al., 2016).

Concerning design decisions, most models presented in this thesis assume a structure to

be directly available in the data space in one way or another. For example, the hierarchical

infinite mixtures discussed in Chapter 2 cluster the activations in the input space, and the
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output ismodeled via a direct linear dependency on the input. Such assumptionsmay prove

inefficient in some cases. Onemay envision a scenario in which the data is more compactly

structured on a higher-dimensional manifold. Incorporating and automatically learning

nonlinear projections of the data can lead to further compression of these representations

(Iwata et al., 2013).

On the other hand, the hidden Markov models used in Chapter 3 do, in fact, rely on non-

linear embeddings of discrete switching probabilities. However, the individual linear re-

gions still operate under the assumptions of a fully observable state, which is used to model

continuous dynamics. A more general framework of hybrid control can be achieved by in-

ferring the switching dynamics in a latent space (Becker-Ehmck et al., 2019). In addition,

a fully Bayesian treatment of these models could make the learning process more reliable

and improve scalability (Beal et al., 2002; Wenzel et al., 2019).

In addition, it is common to assume a data collection process independent of the learn-

ing process. Generating data may involve uniform sampling or sinusoidal excitation of a

dynamical system. These approaches are often either expensive and inefficient or plainly

sub-optimal. More principled methods couple data generation and learning by actively

seeking information that improves the model’s predictive accuracy (Aoki, 1967; Schultheis

et al., 2020). We postulate that certain structured representations may be exceptionally

compatible with such learning strategies.

Onemore interesting subject of research is to consider viewing hierarchical control through

the lens of control-as-inference. The hybrid reinforcement learning approach we pre-

sented in Chapter 3 heavily relies on tractable inference in hidden Markov models. We

posit that the corresponding graphical models can be readily extended to directly incorpo-

rate an external reward signal, thus creating a unifying framework for action optimization

by relying on Bayesian inference principles (Toussaint & Storkey, 2006; Toussaint, 2009;

Hoffman et al., 2013; Watson et al., 2020a).

Finally, the distributionally robust optimal control algorithm we presented in Chapter 4

can benefit from several extensions. On the one hand, the limitations of Gaussian nominal

densities and time-varying linearized dynamics can be done without. Instead, an iterative

model-free trajectory optimization in the style of (Akrour et al., 2016) appears to be within

reach. On the other hand, forgoing the idea of a parametric nominal density in favor of

empirical reference distributions that directly incorporate the data, although computation-

ally challenging, may offer a more general optimization framework that circumvents the

need for a parametric representation of the dynamics.
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Appendix A
Bayesian Posteriors

A.1 Categorical with a Dirichlet Prior
Likelihood: Assuming a one-hot random variable z of size K
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N
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A.2 Infinite Categorical with a Stick-Breaking Prior
Likelihood: Assuming a one-hot random variable z of infinite size

p(Z|π(s)) =
N
∏

n=1

Cat(zn|π(s))wnk

=
N
∏

n=1

∞
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Truncated Posterior: (Blei & Jordan, 2006)

q(s) =
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A.3 Gaussian with a Normal-Wishart Prior
Likelihood: Assuming a random variable x ∈Rm
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Posterior:
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TheoperationA:B stands for a double tensor contraction, or a double dot product, between

two tensors A and B. This operation is a generalization of the trace tr(A>B) = A:B.
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A.4 Tied Gaussians with Normal-Wishart Priors
Likelihood: Assuming a random variable x ∈ Rm governed by K precision-tied compo-

nents
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Posterior:

q(µ,Λ) =W(Λ|Ψ,ν)
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A.5 Linear Gaussian with a Matrix-Normal-Wishart Prior
Likelihood: Assuming a conditional model with an input variable x ∈ Rm and a random

response y ∈ Rd according to a linear mapping A :Rm→Rd
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Posterior:

q(A,V) =MN(A|M,K,V) W(V|Ψ,ν)
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











:















YWX>

−1
2XWX>

−1
2YWY>

−1
2 Nw









































× exp









































M0K0

−1
2K0

−1
2(Ψ

−1
0 +M0K0M>0 )
1
2(ν0 − d)















:













VA

A>VA

V

log |V|







































= exp









































M0K0 + YWX>

−1
2(K0 +XWX>)

−1
2(Ψ

−1
0 +M0K0M>0 + YWY>)

1
2(ν0 − d − 1+m+ Nw)















:













VA

A>VA

V

log |V|




































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A.6 Tied Lin-Gauss with Matrix-Normal-Wishart Priors
Likelihood: Assuming a conditional model with an input x ∈Rm and a random response

y ∈ Rd according to a linear mapping A :Rm→Rd and K precision-tied components

p(Y|X,A,V) =
K
∏

k=1

N
∏

n=1

N(yn|xn,Ak,V)wnk

=
K
∏

k=1

N
∏

n=1

�

(2π)−d/2|V|1/2 exp
§

−
1
2
(yn −Akxn)

>V(yn −Akxn)
ª

�wnk

∝
K
∏

k=1

|V|Nk/2 exp
§

−
1
2

tr
�

VYWkY
> − 2A>k VYWkX

> +A>k VAkXWkX
>
�

ª

∝ exp











V

log |V|



 :





− 1
2K

∑K
k=1 YWkY

>

1
2K Nk











×
K
∏

k=1

exp











VAk

A>k VAk



 :





YWkX
>

−1
2XWkX

>











,

where Nk =
∑N

n=1 wnk and Wk = diag(wnk).

Prior:

p(A,V) =W(V|Ψ0,ν0)
K
∏

k=1

N(Ak|M0,K0,V)

∝ |V|
ν0−d−1

2 exp
§

−
1
2

tr(Ψ0
−1V)

ª

×
K
∏

k=1

|V|m/2 exp
§

−
1
2

tr
�

K0(Ak −M0)
>V(Ak −M0)

�

ª

= exp











−1
2(Ψ

−1
0 +

1
K

∑K
k=1 M0K0M>0 )

1
2(ν0 − d − 1+m)



 :





V

log |V|











×
K
∏

k=1

exp











M0K0

−1
2K0



 :





VAk

A>k VAk










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Chapter A: Bayesian Posteriors

Posterior:

q(A,V) =W(V|Ψ,ν)
K
∏

k=1

N(Ak|Mk,Kk,V)

∝ exp











V

log |V|



 :
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

− 1
2K
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k=1 YWkY
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





×
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∏
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







VAk

A>k VAk


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


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>

−1
2XWkX

>


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





× exp











−1
2(Ψ
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1
K
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1
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log |V|











×
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∏
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






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−1
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
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

VAk
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
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





= exp











−1
2(Ψ

−1
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1
K

∑K
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1
K
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1
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K
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
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


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log |V|











×
K
∏

k=1

exp


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k=1 Nk)



 :





VAk

A>k VAk











100



Appendix B
Infinite Linear

Regression Mixtures
B.1 E-Step of Infinite Linear Regression

log q(Z) = Eq(s)

�

log p(Z|π(s))
�

+Eq(µ,Λ)

�

log p(X|Z)
�

+Eq(A,c,V)

�

log p(Y|Z,X)
�

+ const

= const+
N
∑

n=1

h

Eq(s)

�

logCat(zn|π(s))
�

+
K
∑

k=1

znkEq(µ,Λ)

�

logN(xn|µk,Λk)
�

+
K
∑

k=1

znkEq(A,c,V)

�

logN(yn|Akxn + ck,Vk)
�

i

=
K
∑

k=1

N
∑

n=1

znk log rnk,

where

Eq(s)

�

logCat(zn|π(s))
�

=
K
∑

k=1

znkEq(sk)

�

log sk

�

+
K
∑

k=1

znkEq(sk)





k−1
∑

l=1

log(1− sl)



 .

The individual expectations of the log-sticks under the beta posteriors are given by

Eq(sk)

�

log sk

�

= Ψ
�

γk

�

−Ψ
�

γk +αk

�

,

Eq(sk)

�

log(1− sk)
�

= Ψ
�

αk

�

−Ψ
�

γk +αk

�

,

where Ψ is the Digamma function.
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B.2 M-Step of Infinite Linear Regression

log q(s) = Eq(Z)

�

log p(Z|π(s))
�

+ log p(s) + const

=
K
∑

k=1

N
∑

n=1

rnk log



sk

k−1
∏

l=1

(1− sl)





+
K−1
∑

k=1

logBeta(sk|1,α0) + const,

log q(µ,Λ) = Eq(Z)

�

log p(X|Z)
�

+ log p(µ,Λ) + const

=
K
∑

k=1

N
∑

n=1

rnk logN(xn|µk,Λk)

+
K
∑

k=1

logN(µk|m0,κ0Λk)

+
K
∑

k=1

logW(Λk|Ψ0,ν0) + const,

log q(A,c,V) = Eq(Z)

�

log p(Y|Z,X)
�

+ log p(A,c,V) + const

=
K
∑

k=1

N
∑

n=1

rnk logN(yn|Akxn + ck,Vk)

+
K
∑

k=1

logMN(Ak|M0,K0,Vk)

+
K
∑

k=1

logN(ck|θ 0,ρ0Vk)

+
K
∑

k=1

logW(Vk|Φ0,η0) + const,

where rnk = Eq(Z)

�

znk

�

are the expected responsibilities computed in the E-step. Further

details on how to perform these updates via general exponential family recipes are provided

in Appendix A.
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B.3 M-Step of Hierarchical Infinite Linear Regression

log q(t) = Eq(H)

�

log p(H|ω(t))
�

+ log p(t) + const

=
M
∑

m=1

N
∑

n=1

ĝ log



tm

m−1
∏

l=1

(1− t l)





+
M
∑

m=1

logBeta(tm|1,β0) + const,

log q(s) = Eq(H,Z)

�

log p(Z|H)
�

+ log p(s) + const

=
M
∑

m=1

K
∑

k=1

N
∑

n=1

ĝ r̂ log



smk

k−1
∏

l=1

(1− sml)





+
M
∑

m=1

K
∑

k=1

logBeta(smk|1,α0) + const,

log q(µ) = Eq(H,Z,τ,Λ)

�

log p(X|H,Z)
�

+Eq(τ,Λ)

�

log p(µ|τ,Λ)
�

+ const

=
M
∑

m=1

K
∑

k=1

N
∑

n=1

ĝ r̂ Eq(Λ)

�

logN(xn|µmk,Λm)
�

+
M
∑

m=1

K
∑

k=1

Eq(τ,Λ)

�

logN(µmk|τm,κ0Λm)
�

+ const,

log q(τ,Λ) = Eq(H,Z,µ)

�

log p(X|H,Z)
�

+ log p(τ,Λ) +Eq(µ)

�

log p(µ|τ,Λ)
�

+ const

=
M
∑

m=1

K
∑

k=1

N
∑

n=1

ĝ r̂ Eq(µ)

�

logN(xn|µmk,Λm)
�

+
M
∑

m=1

logN(τm|m0,λ0Λm)

+
M
∑

m=1

logW(Λm|Ψ0,ν0)

+
M
∑

m=1

K
∑

k=1

Eq(µ)

�

logN(µmk|τm,κ0Λm)
�

+ const,
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log q(c) = Eq(H,Z,A,V)

�

log p(Y|H,Z,X)
�

+Eq(V)

�

log p(c|V)
�

+ const

=
M
∑

m=1

K
∑

k=1

N
∑

n=1

ĝ r̂ Eq(A,V)

�

logN(yn|Amxn + cmk,Vm)
�

+
M
∑

m=1

K
∑

k=1

Eq(V)

�

MN(cmk|θ 0,ρ0Vm)
�

+ const,

log q(A,V) = Eq(H,Z,c)

�

log p(Y|H,Z,X)
�

+ log p(A,V)

+Eq(c)

�

log p(c|V)
�

+ const

=
M
∑

m=1

K
∑

k=1

N
∑

n=1

ĝ r̂ Eq(c)

�

logN(yn|Amxn + cmk,Vm)
�

+
M
∑

m=1

K
∑

k=1

Eq(c)

�

MN(cmk|θ 0,ρ0Vm)
�

+ const,

where the quantities ĝ = gnm = Eq(H)

�

hnm

�

and r̂ = rnmk = Eq(Z)

�

znmk

�

. After com-

puting the necessary expectations, these computations largely correspond to the posterior

update recipes described in Appendix A.
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Appendix C
Reinforcement Learning
For Switching Systems

C.1 Hybrid Relative Entropy Policy Search

maximize
π,µ

J =
∑

z

∫∫

r(x,u)π(u|x,z)µ(x,z)dudx,

subject to µ(x',z') = (1− ϑ)µ1(x',z')

+ ϑ
∑

z

∫∫

π(u|x,z)µ(x,z)p(x',z'|x,u,z)dudx,

KL(π(u|x,z)µ(x,z) ||q(x,u,z))≤ ε
∑

z

∫∫

π(u|x,z)µ(x,z)dudx= 1,

The Lagrangian function

L =
∑

z

∫∫

r(x,u)p(x,u,z)dudx+λ

�

1−
∑

z

∫∫

p(x,u,z)dudx

�

+ ϑ
∑

z'

∫

V (x',z')
∑

z

∫∫

p(x,u,z)p(x',z'|x,u,z)dudxdx'

+ (1− ϑ)
∑

z'

∫∫

V1(x',z')p1(x',u',z')dx'du'−
∑

z'

∫∫

V (x',z')p(x',u',z')dx'du'

+η

�

ε−
∑

z

∫∫

p(x,u,z) log
p(x,u,z)
q(x,u,z)

dudx

�

,

assuming p(x,u,z) = µ(x,z)π(u|x,z) and µ(x,z) =
∫

p(x,u,z)du
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Taking the partial derivative of L with respect to p(x,u,z)

∂ L
∂ p
= r(x,u)−λ+ (1− ϑ)

∑

z'

∫

V (x',z')µ1(x',z')dx'

+ ϑ
∑

z'

∫

V (x',z')p(x',z'|x,u,z)dx'− V (x,z)−η log
p∗(x,u,z)
q(x,u,z)

−η

and set it to zero to get the solution

p∗(x,u,z) = q(x,u,z)exp

�

A(x,u,z)
η

−
λ

η
− 1

�

,

where

A(x,u,z) = r(x,u) + (1− ϑ)
∑

z'

∫

V (x',z')µ1(x',z')dx'

+ ϑ
∑

z'

∫

V (x',z')p(x',z'|x,u,z)dx'− V (x,z).

By solving for the gradient of λ

1=
∑

z

∫∫

p∗(x,u,z)dudx

1=
∑

z

∫∫

q(x,u,z)exp

�

A(x,u,z)
η

−
λ∗

η
− 1

�

dudx

λ∗ = −η+η log
∑

z

∫∫

q(x,u,z)exp

�

A(x,u,z)
η

�

dudx.

Plugging λ∗ back into the optimal distribution p∗, we retrieve the softmax form

p∗(x,u,z) =
q(x,u,z)exp

�

A(x,u,z)/η
�

∑

z

∫∫

q(x,u,z)exp
�

A(x,u,z)/η
�

dudx
.

Substituting p∗ and λ∗ into the Lagrangian L, we get the dual G

G = ηε+η log
∑

z

∫∫

q(x,u,z)exp

�

A(x,u,z)
η

�

dudx.
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Appendix D
Distributionally Robust

Optimal Control
D.1 Worst-Case Parameter Optimization

maximize
pk+1

t (θ )

T−1
∑

t=1

∫ ∫

ct(x,u)µt(x)π
k
t (u|x)dudx+

∫

cT(x)µT(x)dx,

subject to

∫∫∫

µt(x)π
k
t (u|x) f (x'|x,u,θ )pk+1

t (θ )dudxdθ = µt+1(x'), ∀x',∀t > 1,

T−1
∑

t=1

∫

pk+1
t (θ ) log

pk+1
t (θ )

p̂(θ )
dθ ≤ δ,

∫

pk+1
t (θ )dθ = 1, ∀t < T,

µ1(x) = µ̂1(x), ∀x, t = 1.

The Lagrangian

H =
T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k
t (u|x)dudx+

∫

cT(x)µT(x)dx

+
T−1
∑

t=1

γt

�

∫

θ

pk+1
t (θ )dθ − 1

�

+

∫

V θ1 (x)µ̂1(x)dx

+
T−1
∑

t=1

∫

V θt+1(x')

∫∫∫

µt(x)π
k
t (u|x) f (x'|x,u,θ )pk+1

t (θ )dudxdθ dx'

−
T−1
∑

t=1

∫

V θt (x')µt(x')dx'+

∫

V θ
T
(x')µT(x')dx'

+ β

 

T−1
∑

t=1

∫

pk+1
t (θ ) log

pk+1
t (θ )

p̂(θ )
dθ −δ

!

.
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Take partial derivative of H with respect to pk+1
t (θ )

∂ H
∂ pk+1

t

= γt +

∫

V θt+1(x')

∫∫

µt(x)π
k
t (u|x) f (x'|x,u,θ )dudxdx'+ β

�

log
p∗t (θ )

p̂(θ )
+ 1

�

.

and set it to zero to get the optimal solution pk+1
t (θ )

pk+1
t (θ ) = exp

�

−
1
β

�

γt + β − β log p̂(θ )

+

∫

V θt+1(x')

∫∫

µt(x)π
k
t (u|x) f (x'|x,u,θ )dudxdx'

�

�

= p̂(θ )exp

�

−
1
β

�

γt + β +Q t(θ )
�

�

,

where

Q t(θ ) =

∫

V θt+1(x')

∫∫

µt(x)π
k
t (u|x) f (x'|x,u,θ )dudxdx'.

Plug p∗t (θ ) into Lagrangian H to get the dual F

F =
T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k
t (u|x)dudx+

∫

cT(x)µT(x)dx

+

∫

V θ1 (x)µ̂1(x)dx−
T−1
∑

t=1

∫

V θt (x')µt(x')dx'−
∫

V θ
T
(x')µT(x')dx'

−
T−1
∑

t=1

γt − β
T−1
∑

t=1

∫

pk+1
t (θ )dθ − βδ

Take partial derivative with respect to γt and set it to zero

1=

∫

pk+1
t (θ )dθ

1=

∫

p̂(θ )exp

�

−
1
β

�

γ∗t + β +Q t(θ )
�

�

dθ

γ∗t = −β + β log

∫

p̂(θ )exp

�

−
1
β

Q t(θ )

�

dθ

108



Section D.1: Worst-Case Parameter Optimization

Plug γ∗t into pk+1
t (θ ) to get the normalized distribution

pk+1
t (θ ) =

p̂(θ )exp
�

− 1
βQ t(θ )

�

∫

p̂(θ )exp
�

− 1
βQ t(θ )

�

dθ

Plug γ∗t and pk+1
t (θ ) back into F

F =
T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k
t (u|x)dudx+

∫

cT(x)µT(x)dx

+

∫

V θ1 (x)µ̂1(x)dx−
T−1
∑

t=1

∫

V θt (x')µt(x')dx'−
∫

V θ
T
(x')µT(x')dx'− βδ

− β
T−1
∑

t=1

log

∫

p̂(θ )exp

�

−
1
β

Q t(θ )

�

dθ

Take partial derivatives with respect to µT and µt

∂ F
∂ µt

= −V θ
T
(x) + cT(x)

∂ F
∂ µt

= − V θt (x) +

∫

ct(x,u)πk
t (u|x)du

+

∫

V θt+1(x')

∫∫

pk+1
t (θ )πk

t (u|x) f (x'|x,u,θ )dθ dudx',

and set it to zero to get the backward recursion for V θt (x).

Take partial derivatives with respect to V θ1 and V θt

∂ F
∂ V θ1

= µ̂1(x)−µ1(x)

∂ F
∂ V θt

= −µt(x') +

∫∫∫

pk+1
t−1 (θ )µt−1(x)π

k
t−1(u|x) f (x'|x,u,θ )dudxdθ ,
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and set it to zero to get the forward recursion for µt(x). Finally, insert µt and V θt into F

F =
T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k
t (u|x)dudx+

∫

V θ1 (x)µ̂1(x)dx

−
T−1
∑

t=1

∫

V θt (x)µt(x)dx− βδ− β
T−1
∑

t=1

log

∫

p̂(θ )exp

�

−
1
β

Q t(θ )

�

dθ

=

∫

V θ1 (x)µ̂1(x)dx+ β

 

T−1
∑

t=1

KL
�

pk+1
t (θ ) || p̂(θ )

�

−δ

!

.

The dual is optimized with respect to β via gradient descent where

∂ F
∂ β
=

T−1
∑

t=1

KL
�

pk+1
t (θ ) || p̂(θ )

�

−δ.
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D.2 Worst-Case Policy Optimization

minimize
πk+1

t (u|x)

T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k
t (u|x)u|x)dudx+

∫

cT(x)µT(x)dx,

subject to

∫∫∫

µt(x)π
k+1
t (u|x) f (x'|x,u,θ )pk+1

t (θ )dudxdθ = µt+1(x'), ∀x',∀t ≥ 1,

T−1
∑

t=1

∫

µt(x)

∫

πk+1
t (u|x) log

πk+1
t (u|x)
πk

t (u|x)
dudx≤ ε,

∫

πk+1
t (u|x)du= 1, ∀x,∀t < T,

µ1(x) = µ̂1(x), ∀x, t = 1.

The Lagrangian function

L =
T−1
∑

t=1

∫∫

ct(x,u)µt(x)π
k+1
t (u|x)dudx+

∫

cT(x)µT(x)dx

+
T−1
∑

t=1

∫

λt(x)

�

∫

πk+1
t (u|x)du− 1

�

dx+

∫

Vπ1 (x)µ̂1(x)dx

+
T−1
∑

t=1

∫

Vπt+1(x')

∫∫∫

µt(x)π
k+1
t (u|x) f (x'|x,u,θ )pk+1

t (θ )dudxdθ dx'

−
T−1
∑

t=1

∫

Vπt (x')µt(x')dx'−
∫

Vπ
T
(x')µT(x')dx'

+α

 

T−1
∑

t=1

∫

µt(x)

∫

πk+1
t (u|x) log

πk+1
t (u|x)
πk

t (u|x)
dudx− ε

!

Take the partial derivative of L with respect to πk+1
t

∂ L
∂ πk+1

t

= ct(x,u)µt(x) +λt(x)α

�

µt(x) log
πk+1

t (u|x)
πk

t (u|x)
+µt(x)

�

+

∫

Vπt+1(x')µt(x)

∫

f (x'|x,u,θ )pk+1
t (θ )dθ dx',
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and set it to zero to get the solution

πk+1
t (u|x) = π

k
t (u|x)exp

�

−
1
α

�

Qπt (x,u) +
λt(x)
µt(x)

+α

�

�

,

where

Qπt (x,u) = ct(x,u) +

∫

Vπt+1(x')

∫

f (x'|x,u,θ )pk+1
t (θ )dθ dx'.

Substitute πk+1
t back into the Lagrangian L to get the dual G

G =

∫

cT(x)µT(x)dx−
T−1
∑

t=1

∫

λt(x)dx

+

∫

Vπ1 (x)µ̂1(x)dx−
T−1
∑

t=1

∫

Vπt (x')µt(x')dx'−
∫

Vπ
T
(x')µT(x')dx'

−α
T−1
∑

t=1

∫∫

µt(x)π
k+1
t (u|x)dudx−αε.

Take partial derivative with respect to λt and set it to zero

1=

∫

πk+1
t (u|x)du

1=

∫

πk
t (u|x)exp

�

−
1
α

�

Qπt (x,u) +
λ∗t (x)

µt(x)
+α

�

�

du

λ∗t (x) = −αµt(x) +αµt(x) log

∫

πk
t (u|x)exp

�

−
1
α

Qπt (x,u)
�

du.

Plug λ∗t into π
k+1
t to get the normalized softmax distribution

πk+1
t (u|x) =

πk
t (u|x)exp

�

− 1
αQπt (x,u)

�

∫

πk
t (u|x)exp

�

− 1
αQπt (x,u)

�

du
.
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Plug λ∗t and π
k+1
t back into dual

G =

∫

cT(x)µT(x)dx+

∫

Vπ1 (x)µ̂1(x)dx

−
T−1
∑

t=1

∫

Vπt (x')µt(x')dx'−
∫

Vπ
T
(x')µT(x')dx'−αε

−α
T−1
∑

t=1

πk
t (u|x)exp

�

−
1
α

Qπt (x,u)
�

dudx.

Take partial derivatives with respect to µT and µt

∂ G
∂ µt

= −Vπ
T
(x) + cT(x),

∂ G
∂ µt

= −Vπt (x)−α log

∫

πk
t (u|x)exp

�

−
1
α

Qπt (x,u)
�

du,

and set it to zero to get a backward recursion for Vπt (x).

Take partial derivatives with respect to Vπ1 and Vπt

∂ G
∂ Vπ1

= µ̂1(x)−µ1(x),

∂ G
∂ Vπt

= −µt(x') +

∫∫∫

pk+1
t−1 (θ )µt−1(x)π

k+1
t−1(u|x) f (x'|x,u,θ )dudxdθ ,

and set it to zero to get a forward recursion for µt(x).

Insert µt and Vπt back into G

G =

∫

Vπ1 (x)µ̂1(x)dx−αε.

The dual is optimized with respect to α via gradient descent where

∂ G
∂ α
=

T−1
∑

t=1

∫

µt(x)KL
�

πk+1
t (u|x) ||π

k
t (u|x)

�

dx− ε.
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List of Acronyms
ANN artificial neural network.

ARHMM autoregressive hidden Markov model.

BNN Bayesian neural network.

BNP Bayesian nonparametrics.

Cat categorical.

CEM cross-entropy method.

CMB cosmic microwave background.

DDP differential dynamic programming.

Dir Dirichlet.

DP Dirichlet process.

DRO distributionally robust optimization.

E-step expectation step.

EB-step empirical Bayes step.

ELBO evidence lower bound.

EM expectation-maximization.

FHMM factorial hidden Markov model.

FNN feed-forward neural net.

GMM Gaussian mixture model.

GP Gaussian process.

GPB generalized pseudo Bayesian approximation.

gPoE generalized product of experts.

GPR Gaussian process regression.

GPS guided policy search.
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List of Acronyms

Hb-REPS hybrid relative entropy policy search.

HDBN hybrid dynamic Bayesian networks.

HILR hierarchical infinite local regression.

HMM hidden Markov model.

HRL hierarchical reinforcement learning.

HSMM semi-hidden Markov model.

iLEQG iterative linear-exponential-quadratic Gaussian.

iLQR iterative linear-quadratic regulator.

ILR infinite local regression.

IMM interacting multiple model.

KL Kullback-Leibler divergence.

LGR local Gaussian regression.

LR local regression.

LSTM long-short-term memory network.

LWPR locally weighted projection regression.

M-step maximization step.

MAP maximum a posteriori.

MCMC Markov chain Monte Carlo.

MDP Markov decision processes.

MIQP mixed-integer quadratic program.

MJLS Markov jump linear systems.

MN matrix-normal.

MNW matrix-normal-Wishart.

MoE mixture of experts.

MPC model predictive control.

MSE mean squared error.
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List of Acronyms

NMSE normalized mean squared error.

NW normal-Wishart.

PGM probabilistic graphical models.

PoE product of experts.
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2.1 Gap data learned with infinite local regression (ILR). The top plot depicts

the mean prediction (red) on the training data (dots) and the true mean

function (dashed). The shaded blue area represents the predictive uncer-

tainty of two standard deviations. This example highlights how ILR deals

with out-of-distribution uncertainty. In areas lacking training data, the

predictive uncertainty of ILR is large, the mean prediction falls back to the

prior. The bottom plot shows the activation of the local regressionmodels

over the input space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The cosmic microwave background (CMB) dataset learned by infinite lo-

cal regression (ILR). The top figure depicts the mean prediction (red) with

three standard deviations predictive uncertainty (shaded blue). ILR cap-

tures the heteroscedastic spread of the data with a handful of local regres-

sion models. The bottom plot shows the activation of the models over the

input space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 A unified plate notation for infinite mixtures of Bayesian local regression.

Assuming Gaussian and linear Gaussian densities, the basis parameters

(µk,Λk) are sampled from a normal-Wishart distribution, while the re-

gression parameters (Ak, ck), and precisionmatrices Vk, are sampled from

a matrix-Normal-Wishart, for every component k. The latent variables
zn assign every xn and yn to a component and are drawn from a categori-

cal distribution parameterized byπ. The mixture weightsπ are generated

by a stick-breaking process with a concentration parameter α. . . . . . . . 17

2.4 A unified plate notation for hierarchical infinite tied mixtures of Bayesian

local regression models. This model outlines a two-level architecture that

allows sharing of parameters between single components in order to com-

press the representation. It can be interpreted as a local regression model

with multi-modal activation. Each unit of the upper level is itself a mix-

ture of local regression models that share the same slope Am and output

precision Vm. Each of these m different slopes can be activated at k unique

lower-level input regions centered around µmk and tied via a shared in-

put precision Λm. The upper- and lower-level mixtures are governed by

independent Dirichlet process priors. . . . . . . . . . . . . . . . . . . . . . . 21
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2.5 Discontinuous functions learned by infinite local regression (ILR). The

top figures show the mode prediction (red) and two standard deviations

confidence (shaded blue). The left example is a simple step function that

can be captured with linear features, while the on the right, we use a poly-

nomial transformation of the input for more flexibility. The bottom plots

show the activation over the input space. . . . . . . . . . . . . . . . . . . . . 26

2.6 Tackling inversemapping problemswith ILR. This example includes scat-

tered data that maps the input x to multiple output values y. A discrimi-

native modeling approach fails in these scenarios, as it tries to capture the

ambiguous mean of the function f : x → y. By approximating the joint

density over both input and output, ILR can reconstruct these non-unique

relations via local linear approximations. . . . . . . . . . . . . . . . . . . . . 27

2.7 A challenging heteroscedastic example of a Sinc function heavily overlayed

with input-dependent noise. The first figure shows the mean prediction

(red) on the training data (dots) and the true mean function (dashed black)

corrupted by noise (dashed green). The blue dashed lines represent the

complex noise process recovered by ILR. The second figure shows the ac-

tivation over the input space. The bottom two figures depict the results of

fitting the mean and standard deviation functions averaged over ten dif-

ferent seeds to highlight the robustness of the inference process. . . . . . . 28

2.8 Bayesian sequential updates. Mean (red) and a two standard deviations

interval (shaded blue) of the predictive distribution fitted to sequentially

arriving data (three batches) from the chirp dataset (gray dots). For the

second and third plots, the posterior fitted to the previous batches is used

as a prior to performaBayesian sequential update. There is no catastrophic

forgetting and in regions with no data the prediction falls back to the prior. 29

2.9 Multi-level local regressionwith hierarchical infinite local regression (HILR).

An example of howHILR allows parameter sharing in shift-invariant func-

tions. The top figure shows the mode prediction (red) along with two

standard deviations of predictive uncertainty (shaded blue). The bottom

plots highlight the multi-modal activation, which allows this representa-

tion to share slope information over non-adjacent regions. . . . . . . . . . 30

2.10 8-Shaped trajectory learning. Bayesian sequential updates on a dataset col-

lected from a Barrett-WAM. For five different seeds, we plot the normal-

ized mean squared error (NMSE) on accumulated data over the number

of batches. The NMSE consistently improves with new data and no catas-

trophic forgetting is observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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2.11 8-shaped trajectory tracking on the Barrett-WAM. We compare three

controllers on two test trajectories (blue), a low-gain PD (black), a low-

gain PD + feed-forward torques from an analytical model (red), and a low-

gain PD + feed-forward torques from ILR (green). The results indicate

that ILR delivers the best tracking performance. . . . . . . . . . . . . . . . . 33

3.1 A hybrid system with K = 3 local linear regimes. The top row depicts the

mean unforced continuous transition dynamics in the phase space. The

lower row shows the probability of switching, with corresponding color,

as a function of the state. We show different decision boundary models:

linear (left), quadratic (middle), and third-order polynomial (right). . . . . 36

3.2 Examples of hybrid dynamical systems from the domain of robotics. Left,

amanipulator executing a pick-and-place task can bemodeled by 2-regime

hybrid dynamics that switch betweenmanipulator dynamicswith andwith-

out the object in the end-effector. Right, the dynamics of a simplified

legged robot can also be modeled by 2-regime hybrid dynamics based on

the state of foot contact, which determines the possibility of actuation. . . 37

3.3 Aprobabilistic graphicalmodel of recurrent autoregressive hiddenMarkov

models (rARHMMs) extended to support hybrid controls. rARHMMs are

hybrid dynamic Bayesian networks that explicitly allow the discrete state

z to depend on the continuous variables x and u, as highlighted in red. . . 41

3.4 A schematic of hybrid dynamics and control. Given the state x and region

indicator z, a corresponding controllerπ(u|x,z) is selected and the action
u is computed. The transition to a regime z' is determined based on the

discrete dynamics model p(z'|z,x, u), and in consequence influencing the
progression of the state x′ via the appropriate continuous dynamics model

p(x'|x, u,z'). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 System identification: comparing the h-step NMSE of recurrent autore-

gressive hidden Markov models (rARHMMs) to other dynamics approx-

imation models. Every evaluation point is averaged over 24 data splits.

Benchmarking on three dynamical systems, a bouncing ball, a pendulum,

and a cart-pole. In limited-data scenario, rARHMMs exhibit themost con-

sistent approximation capabilities. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Behavioral cloning: phase space of the pendulum. The identified unforced

dynamics is on the left (blue). The learned model qualitatively captures

the phase portrait. On the right (red) are the closed-loop dynamics. The

learned stationary hybrid policy with five regions successfully imitates a

global nonlinear soft actor-critic (SAC) controller to stabilize the system

around the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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3.7 Behavioral cloning: sample trajectories from the learned hybrid policies

on the pendulum (top) and cart-pole (bottom) environments. Both hybrid

controllers are able to consistently solve both tasks while relying on simple

local representations of the feedback controllers. The colors indicate the

active dynamics and control regimes over time. . . . . . . . . . . . . . . . . 59

3.8 Cart-pole with an elastic wall: a hybrid system with two linear regimes.

The cart-pole dynamics is linearized around the upright pole position, and

the wall is elastic and modeled by spring dynamics. The switching bound-

ary is linear. The unforced dynamics is depicted on the left (blue), and the

aim is to stabilize the pole around the origin. . . . . . . . . . . . . . . . . . . 60

3.9 Reinforcement learning: relative entropy policy search (REPS), Hy-REPS

and hybrid relative entropy policy search (Hb-REPS) evaluated on the pen-

dulum swing-up task. The learning curves, mean reward with two stan-

dard deviations, show that all algorithms perform equally well in terms

of transient and final performance. However, Hb-REPS relies on simpler

polynomial models of the policy and value function, while Hy-REPS and

REPS rely on nonlinear representations. The phase portraits depict the

closed-loop behavior achieved by Hb-REPS. Hb-REPS solves the task and

stabilizes the pendulum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 Reinforcement learning: REPS, Hy-REPS and Hb-REPS evaluated on the

cart-pole stabilization task. By inspecting the learning curves, mean re-

ward with two standard deviations, we conclude that all algorithms per-

form equally well. However, Hb-REPS relies on simpler polynomial mod-

els of the policy and value function, while Hy-REPS and REPS rely on

nonlinear representations. The phase portraits depict the closed-loop be-

havior achieved by Hb-REPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Uncertain linear system experiment. Right, the worst-case KL budget

allocation over the whole trajectory. Notice that most of the deviation

happens in the first part of the trajectory. Left, the expected cost of the

uncertainty-aware (blue) and robust (red) controllers evaluated on a range

of distributions inter- and extrapolated between and beyond the nominal

andworst-case distribution. The robust controller showsmuch lower sen-

sitivity to changes in the disturbance. Note the double logarithmic scale. . 75
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4.2 Uncertain linear systemexperiment. Comparison between the uncertainty-

aware and distributionally robust controllers. Left, the trajectory distribu-

tions induced by standard (blue) and robust (red) controllers evaluated un-

der the nominal dynamics distribution. The uncertainty-aware controller

is aggressive and reaches the target faster. Right, the trajectory distribu-

tions induced by standard (green) and robust (magenta) controllers evalu-

ated under the worst-case disturbance. The uncertainty-aware controller

overshoots dramatically beyond the target, while the robust controller is

barely affected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Uncertain nonlinear robot experiment. Right, allocation of theworst-case

KL budget over time steps. Most of the deviation is concentrated toward

the early phase of the trajectory. Left, the expected cost of the uncertainty-

aware (blue) and robust (red) controllers evaluated on a range of distribu-

tions inter- and extrapolated from the nominal and worst-case distribu-

tion: The robust controller shows much lower sensitivity to changes in

the disturbance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Uncertain nonlinear robot experiment. Comparison of standard and dis-

tributionally robust controllers. Left, the trajectory induced by the stan-

dard (blue) and robust (red) controllers evaluated under the nominal dy-

namics distribution. The uncertainty-aware controller takes advantage of

the nominal dynamics and applies large controls to reach the target faster.

Right, the trajectory distributions induced by standard (green) and robust

(magenta) controllers evaluated under the worst-case disturbance. The

uncertainty-aware controller shows clear sub-optimal behavior, while the

robust controller is barely affected. . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 The effect of modulating the weights of Gaussian mixture through a cost-

optimistic optimization. Large absolute values of λ correspond to a small

trust region and small deviation from the reference weights and overall

mixture. By lowering |λ|, we observe the gradual dampening of Gaussian

components that correlate with higher costs, while components in lower-

cost regions are amplified to account for the shifting of probability mass. . 84

4.6 The effect of modulating the weights of Gaussian mixture through a cost-

pessimistic optimization. Large values of λ correspond to a small trust

region and small deviation from the reference weights and overall mix-

ture. By lowering λ, we observe the gradual dampening of Gaussian com-

ponents that correlate with lower costs, while components in higher-cost

regions are amplified to account for the shifting of probability mass. . . . 85
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