5 research outputs found

    J Biomed Inform

    Get PDF
    In the last decade, the widespread adoption of electronic health record documentation has created huge opportunities for information mining. Natural language processing (NLP) techniques using machine and deep learning are becoming increasingly widespread for information extraction tasks from unstructured clinical notes. Disparities in performance when deploying machine learning models in the real world have recently received considerable attention. In the clinical NLP domain, the robustness of convolutional neural networks (CNNs) for classifying cancer pathology reports under natural distribution shifts remains understudied. In this research, we aim to quantify and improve the performance of the CNN for text classification on out-of-distribution (OOD) datasets resulting from the natural evolution of clinical text in pathology reports. We identified class imbalance due to different prevalence of cancer types as one of the sources of performance drop and analyzed the impact of previous methods for addressing class imbalance when deploying models in real-world domains. Our results show that our novel class-specialized ensemble technique outperforms other methods for the classification of rare cancer types in terms of macro F1 scores. We also found that traditional ensemble methods perform better in top classes, leading to higher micro F1 scores. Based on our findings, we formulate a series of recommendations for other ML practitioners on how to build robust models with extremely imbalanced datasets in biomedical NLP applications.HHSN261201800032C/CA/NCI NIH HHSUnited States/HHSN261201800009C/CA/NCI NIH HHSUnited States/NU58DP006344/DP/NCCDPHP CDC HHSUnited States/HHSN261201800015I/CA/NCI NIH HHSUnited States/HHSN261201800013C/CA/NCI NIH HHSUnited States/HHSN261201800016I/CA/NCI NIH HHSUnited States/HHSN261201800014I/CA/NCI NIH HHSUnited States/HHSN261201800032I/CA/NCI NIH HHSUnited States/HHSN261201800013I/HL/NHLBI NIH HHSUnited States/U58 DP003907/DP/NCCDPHP CDC HHSUnited States/HHSN261201800015C/CA/NCI NIH HHSUnited States/HHSN261201800013I/CA/NCI NIH HHSUnited States/HHSN261201800014C/CA/NCI NIH HHSUnited States/HHSN261201800016C/CA/NCI NIH HHSUnited States/P30 CA177558/CA/NCI NIH HHSUnited States/HHSN261201300021C/CA/NCI NIH HHSUnited States/HHSN261201800009I/CA/NCI NIH HHSUnited States/HHSN261201800007C/CA/NCI NIH HHSUnited States

    J Biomed Inform

    Get PDF
    Objective:In machine learning, it is evident that the classification of the task performance increases if bootstrap aggregation (bagging) is applied. However, the bagging of deep neural networks takes tremendous amounts of computational resources and training time. The research question that we aimed to answer in this research is whether we could achieve higher task performance scores and accelerate the training by dividing a problem into sub-problems.Materials and Methods:The data used in this study consist of free text from electronic cancer pathology reports. We applied bagging and partitioned data training using Multi-Task Convolutional Neural Network (MT-CNN) and Multi-Task Hierarchical Convolutional Attention Network (MT-HCAN) classifiers. We split a big problem into 20 sub-problems, resampled the training cases 2,000 times, and trained the deep learning model for each bootstrap sample and each sub-problem\u2014thus, generating up to 40,000 models. We performed the training of many models concurrently in a high-performance computing environment at Oak Ridge National Laboratory (ORNL).Results:We demonstrated that aggregation of the models improves task performance compared with the single-model approach, which is consistent with other research studies; and we demonstrated that the two proposed partitioned bagging methods achieved higher classification accuracy scores on four tasks. Notably, the improvements were significant for the extraction of cancer histology data, which had more than 500 class labels in the task; these results show that data partition may alleviate the complexity of the task. On the contrary, the methods did not achieve superior scores for the tasks of site and subsite classification. Intrinsically, since data partitioning was based on the primary cancer site, the accuracy depended on the determination of the partitions, which needs further investigation and improvement.Conclusion:Results in this research demonstrate that 1. The data partitioning and bagging strategy achieved higher performance scores. 2. We achieved faster training leveraged by the high-performance Summit supercomputer at ORNL.20202021-01-13T00:00:00ZHHSN261201800013C/CA/NCI NIH HHSUnited States/HHSN261201800016C/CA/NCI NIH HHSUnited States/U58 DP003907/DP/NCCDPHP CDC HHSUnited States/HHSN261201800007C/CA/NCI NIH HHSUnited States/P30 CA177558/CA/NCI NIH HHSUnited States/HHSN261201300021C/CA/NCI NIH HHSUnited States/HHSN261201800013I/CA/NCI NIH HHSUnited States/P30 CA042014/CA/NCI NIH HHSUnited States/32919043PMC82765801002

    Comparing End-to-End Machine Learning Methods for Spectra Classification

    Get PDF
    In scientific research, spectroscopy and diffraction experimental techniques are widely used and produce huge amounts of spectral data. Learning patterns from spectra is critical during these experiments. This provides immediate feedback on the actual status of the experiment (e.g., time-resolved status of the sample), which helps guide the experiment. The two major spectral changes what we aim to capture are either the change in intensity distribution (e.g., drop or appearance) of peaks at certain locations, or the shift of those on the spectrum. This study aims to develop deep learning (DL) classification frameworks for one-dimensional (1D) spectral time series. In this work, we deal with the spectra classification problem from two different perspectives, one is a general two-dimensional (2D) space segmentation problem, and the other is a common 1D time series classification problem. We focused on the two proposed classification models under these two settings, the namely the end-to-end binned Fully Connected Neural Network (FCNN) with the automatically capturing weighting factors model and the convolutional SCT attention model. Under the setting of 1D time series classification, several other end-to-end structures based on FCNN, Convolutional Neural Network (CNN), ResNets, Long Short-Term Memory (LSTM), and Transformer were explored. Finally, we evaluated and compared the performance of these classification models based on the High Energy Density (HED) spectra dataset from multiple perspectives, and further performed the feature importance analysis to explore their interpretability. The results show that all the applied models can achieve 100% classification confidence, but the models applied under the 1D time series classification setting are superior. Among them, Transformer-based methods consume the least training time (0.449 s). Our proposed convolutional Spatial-Channel-Temporal (SCT) attention model uses 1.269 s, but its self-attention mechanism performed across spatial, channel, and temporal dimensions can suppress indistinguishable features better than others, and selectively focus on obvious features with high separability.Peer Reviewe

    False textual information detection, a deep learning approach

    Get PDF
    Many approaches exist for analysing fact checking for fake news identification, which is the focus of this thesis. Current approaches still perform badly on a large scale due to a lack of authority, or insufficient evidence, or in certain cases reliance on a single piece of evidence. To address the lack of evidence and the inability of models to generalise across domains, we propose a style-aware model for detecting false information and improving existing performance. We discovered that our model was effective at detecting false information when we evaluated its generalisation ability using news articles and Twitter corpora. We then propose to improve fact checking performance by incorporating warrants. We developed a highly efficient prediction model based on the results and demonstrated that incorporating is beneficial for fact checking. Due to a lack of external warrant data, we develop a novel model for generating warrants that aid in determining the credibility of a claim. The results indicate that when a pre-trained language model is combined with a multi-agent model, high-quality, diverse warrants are generated that contribute to task performance improvement. To resolve a biased opinion and making rational judgments, we propose a model that can generate multiple perspectives on the claim. Experiments confirm that our Perspectives Generation model allows for the generation of diverse perspectives with a higher degree of quality and diversity than any other baseline model. Additionally, we propose to improve the model's detection capability by generating an explainable alternative factual claim assisting the reader in identifying subtle issues that result in factual errors. The examination demonstrates that it does indeed increase the veracity of the claim. Finally, current research has focused on stance detection and fact checking separately, we propose a unified model that integrates both tasks. Classification results demonstrate that our proposed model outperforms state-of-the-art methods
    corecore