
applied
sciences

Article

Comparing End-to-End Machine Learning Methods for
Spectra Classification

Yue Sun 1,2, Sandor Brockhauser 1,3 and Péter Hegedűs 1,4,*

����������
�������

Citation: Sun, Y.; Brockhauser, S.;

Hegedűs, P. Comparing End-to-End

Machine Learning Methods for

Spectra Classification. Appl. Sci. 2021,

11, 11520. https://doi.org/10.3390/

app112311520

Academic Editor:

Alessandra Biancolillo

Received: 3 November 2021

Accepted: 29 November 2021

Published: 5 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Software Engineering Department, Institute of Informatics, University of Szeged, Dugonics tér 13,
6720 Szeged, Hungary; yue.sun@xfel.eu (Y.S.); sandor.brockhauser@xfel.eu (S.B.)

2 European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
3 NOMAD HUB Data Center, Humboldt University of Berlin, Zum Großen Windkanal 2,

12489 Berlin, Germany
4 MTA-SZTE Research Group on Artificial Intelligence, ELKH, Dugonics tér 13, 6720 Szeged, Hungary
* Correspondence: hpeter@inf.u-szeged.hu; Tel.: +36-70-554-0167

Abstract: In scientific research, spectroscopy and diffraction experimental techniques are widely used
and produce huge amounts of spectral data. Learning patterns from spectra is critical during these
experiments. This provides immediate feedback on the actual status of the experiment (e.g., time-
resolved status of the sample), which helps guide the experiment. The two major spectral changes
what we aim to capture are either the change in intensity distribution (e.g., drop or appearance)
of peaks at certain locations, or the shift of those on the spectrum. This study aims to develop
deep learning (DL) classification frameworks for one-dimensional (1D) spectral time series. In this
work, we deal with the spectra classification problem from two different perspectives, one is a
general two-dimensional (2D) space segmentation problem, and the other is a common 1D time
series classification problem. We focused on the two proposed classification models under these
two settings, the namely the end-to-end binned Fully Connected Neural Network (FCNN) with
the automatically capturing weighting factors model and the convolutional SCT attention model.
Under the setting of 1D time series classification, several other end-to-end structures based on FCNN,
Convolutional Neural Network (CNN), ResNets, Long Short-Term Memory (LSTM), and Transformer
were explored. Finally, we evaluated and compared the performance of these classification models
based on the High Energy Density (HED) spectra dataset from multiple perspectives, and further
performed the feature importance analysis to explore their interpretability. The results show that
all the applied models can achieve 100% classification confidence, but the models applied under
the 1D time series classification setting are superior. Among them, Transformer-based methods
consume the least training time (0.449 s). Our proposed convolutional Spatial-Channel-Temporal
(SCT) attention model uses 1.269 s, but its self-attention mechanism performed across spatial, channel,
and temporal dimensions can suppress indistinguishable features better than others, and selectively
focus on obvious features with high separability.

Keywords: end-to-end machine learning; spectra classification; deep learning (DL); convolutional
neural network (CNN); transformer; long short-term memory (LSTM); self-attention

1. Introduction

Time series are generated in many real-world applications [1] ranging from speech
recognition [2], human activity recognition [3], and cyber-security [4] to remote sens-
ing [5,6], and experimental techniques (e.g., imaging, scattering or diffraction, and spec-
troscopy) for advanced research in materials science, physical and chemical sciences, etc.
Among them, spectroscopy and diffraction technologies are central to natural sciences
and engineering, one of the primary methods to investigate the real world, discover new
phenomena and characterize the properties of substances or materials [7], and is one of
the important sources of time series data. These experiments are often time-consuming

Appl. Sci. 2021, 11, 11520. https://doi.org/10.3390/app112311520 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4592-6504
https://doi.org/10.3390/app112311520
https://doi.org/10.3390/app112311520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311520
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311520?type=check_update&version=1

Appl. Sci. 2021, 11, 11520 2 of 26

and sometimes require large, very expensive scientific facilities such as synchrotron light
sources or X-ray free-electron lasers (XFELs) [7]. In these experiments, different kinds of
large volume of time-resolved spectra are produced, such as data from Raman spectroscopy,
X-ray Diffraction (XRD), X-ray absorption spectroscopy, mass spectroscopy, and infrared
spectroscopy, etc. These one-dimensional (1D) spectra time series may have different
sources and functions, but their representation forms are the same [8], and information
about their peak positions, intensities, shapes, and areas is crucial.

In scientific research, changes in spectra can indicate changes in the system under
investigation. In order to evaluate the experiment status, the measured spectra need to be
classified so that each class is assigned to a different state of the system under investigation.
The two major spectral changes that we aim to capture in this study are:

• The change in intensity distribution (e.g., drop or appearance) of peaks at certain
locations, or;

• The shift of those in the spectrum.

Recently, spectra analysis based on big data has become a trend [8]. With developments
in machine learning, data-driven machine learning/deep learning (ML/DL) methods have
turned out to be very good at discovering intricate structures in high-dimensional data [9].
The ML/DL-based methods have applied broadly to a set of algorithms and techniques
that train systems from raw data rather than a priori models [10]; thus, useful for research
facilities that produce large, multidimensional spectral data.

In this study, our goal is to derive an end-to-end statistical model for the application
of spectra classification. The spectral data used in this work were collected during an HED
experiment, which was obtained through azimuthal integration of raw X-ray diffraction
patterns, as shown in Figure 1. In High Energy Density (HED) [11] experiments with
high-density materials, changes in pressure will cause changes in the spectral peaks (van-
ishing, shifting, broadening, or splitting); therefore, our diffraction spectra dataset is very
representative. The dataset consists of 349 samples, each with 4023 features, and is publicly
available (at https://zenodo.org/record/4424866 accessed on 26 November 2021). To show
more clearly how the diffraction changes while the pressure on the sample is changing,
we show one for every 10 diffractograms, as displayed in Figure 1. It can be clearly seen
from this figure that the amplitude of spectral peaks changes (increases, decreases, and
vanishes) at certain locations, and peaks also shift in a 2θ-angle dimension, or split, or
start to broaden [12]. These changes correspond to modifications of the crystal lattice (e.g.,
indicating phase changes). Among them, 31 original spectra samples (the 16 marked in
red belong to class label 0 and the 15 marked in blue belong to class label 1) are used as a
training dataset in supervised methods. We also added 1550 simulated samples for training
(by adding sufficiently small random noise, 50 simulated spectral curves can be added to
each original diffraction spectrum).

In this work, we provide a standard baseline to exploit several current state-of-the-art
deep neural networks for end-to-end 1D spectral time series classification with few labeled
samples. We show how DL architectures can be designed and trained efficiently to learn
hidden discriminative features from time-resolved spectra in an end-to-end manner. We
deal with the spectra classification problem from two different perspectives, either as a gen-
eral 2D space segmentation problem, or as a common 1D time series classification problem.
The explored end-to-end model structures are based on Fully Connected Neural Networks
(FCNNs), convolutional neural networks (CNNs), ResNets, Long Short-Term Memory
(LSTM), Transformer, and the hybrid architecture of convolution and self-attention.

The performance of these models was compared by reporting their classification confi-
dence, training time, memory consumption, and trainable parameters, and interpretability
on HED spectra dataset. Our results show that all classification models can achieve 100%
classification confidence, but the models proposed or applied under the 1D time series
classification setting are superior. Among them, the LSTM-based model and Transformer-
based model consume less time (0.463 s and 0.449 s, respectively) compared with other
models. Our proposed convolutional Spatial-Channel-Temporal (SCT) attention model

https://zenodo.org/record/4424866

Appl. Sci. 2021, 11, 11520 3 of 26

uses 1.269 s and does not take up much memory. Furthermore, a gradient-based feature
importance analysis experiment is conducted to exploit the differentiable nature of deep
learning models.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 26

series classification setting are superior. Among them, the LSTM-based model and Trans-

former-based model consume less time (0.463 s and 0.449 s, respectively) compared with

other models. Our proposed convolutional Spatial-Channel-Temporal (SCT) attention

model uses 1.269 s and does not take up much memory. Furthermore, a gradient-based

feature importance analysis experiment is conducted to exploit the differentiable nature

of deep learning models.

Figure 1. Diffraction spectra (one for every 10 diffractograms) collected during the experiment after

baseline subtraction. Please note that in the 1D time series spectral data classification problem set-

ting, the 31 spectra marked as red or blue are used as the basis for the training set such as LSTM-

based model, Transformer-based model, CNN-based model, Convolutional Attention model, 1D

FCNN model, and ResNets model. Among them, the 16 marked in red belong to class label 0 and

the 15 marked in blue belong to class label 1. The spectra drawn in a dot-dash line and marked in

red or blue are used as the basis of the training set of the end-to-end binned FCNN with the auto-

matically capturing weighting factors model proposed in the 2D space segmentation problem set-

ting.

It should be noted that, although our classification models are tested on HED diffrac-

tion spectra, they are also very suitable for other spectra collected in various diffraction

and spectroscopy experiments due to the nice representation of HED spectral data. In ad-

dition, since we treat the time-resolved spectra as a standard time series, these models can

be easily extended to any other 1D time series classification tasks.

The main contributions of this work can be summarized as follows:

• We propose an end-to-end binned FCNN with the automatically capturing

weighting factors model in the 2D space segmentation problem setting. The bin-

weighting technique can improve classification confidence by minimizing or even

eliminating the effects of misclassifications of indistinguishable features, while re-

ducing training time. The structure is particularly suitable for the classification of

time series with a large amount of overlap;

• We propose a convolutional SCT attention model in the 1D time series classification

problem setting. The proposed self-attention architecture can model dependencies

across the spatial, channel, and temporal dimensions, which allows it to selectively

Figure 1. Diffraction spectra (one for every 10 diffractograms) collected during the experiment after
baseline subtraction. Please note that in the 1D time series spectral data classification problem setting,
the 31 spectra marked as red or blue are used as the basis for the training set such as LSTM-based
model, Transformer-based model, CNN-based model, Convolutional Attention model, 1D FCNN
model, and ResNets model. Among them, the 16 marked in red belong to class label 0 and the
15 marked in blue belong to class label 1. The spectra drawn in a dot-dash line and marked in red or
blue are used as the basis of the training set of the end-to-end binned FCNN with the automatically
capturing weighting factors model proposed in the 2D space segmentation problem setting.

It should be noted that, although our classification models are tested on HED diffrac-
tion spectra, they are also very suitable for other spectra collected in various diffraction
and spectroscopy experiments due to the nice representation of HED spectral data. In
addition, since we treat the time-resolved spectra as a standard time series, these models
can be easily extended to any other 1D time series classification tasks.

The main contributions of this work can be summarized as follows:

• We propose an end-to-end binned FCNN with the automatically capturing weighting
factors model in the 2D space segmentation problem setting. The bin-weighting
technique can improve classification confidence by minimizing or even eliminating
the effects of misclassifications of indistinguishable features, while reducing training
time. The structure is particularly suitable for the classification of time series with a
large amount of overlap;

• We propose a convolutional SCT attention model in the 1D time series classification
problem setting. The proposed self-attention architecture can model dependencies
across the spatial, channel, and temporal dimensions, which allows it to selectively
focus on a few classification-relevant features or observations and suppress indistin-
guishable features better than others;

Appl. Sci. 2021, 11, 11520 4 of 26

• In addition to the two models proposed above, we also applied several other state-of-
the-art DL models based on FCNN, CNN, ResNets, LSTM, and Transformer in the 1D
time series spectra classification problem setting.

• Furthermore, we evaluated and compared the classification performance of these
DL models on HED spectra data from multiple perspectives. In this way, our work
provides a standard baseline for 1D spectral time series classification in an end-to-end
manner.

The rest of this study is organized as follows: Section 2 reviews the recent works related
to the commonly state-of-the-art DL mechanisms (FCNN, CNNs, ResNets, RNNs, and
Transformer/Self-attention) applied in time series analysis. Section 3 details the proposed
or applied classification models individually. The experiment studies and discussion of
results are shown in Section 4. Finally, the conclusion and future research are provided in
Section 5.

2. Related Work

Many traditional machine learning models, such as k-nearest neighbor (KNN) [13],
Partial Least Squares Discriminant Analysis (PLS-DA) [14], Extreme Learning Machine
(ELM) [15], and support vector machine (SVM) [16], have been successfully applied in
time series data, as well as time-resolved spectra data in diffraction and spectroscopy
techniques. Recently, deep neural networks have received an increasing amount of atten-
tion in real-world time series analysis [17]. A large variety of modeling approaches for
univariate and multivariate time series, with deep learning models are recently challenging
or replacing the-state-of-the-art in a broad range of tasks such as forecasting, regression,
and classification [18–20]. The most common established deep learning models in this
area are CNN [21–23], recurrent neural networks (RNNs) [18,24,25], and attention-based
neural networks [26–28]. The fully connected architecture is the simplest and most basic
architecture, and it is the foundation of all deep learning methods. Usually, it is used in
conjunction with other architectures. CNN is based on the shared-weight architecture of
the convolution kernels [29], which can easily capture features. However, since the CNN-
based models can only learn local neighborhood features, recently, RNN-based models,
attention-based models, and hybrid models are increasingly popular for learning from
time series data.

2.1. Tranditional Machine Learning-Based Approach

Numerous traditional machine learning methods have been developed for time series
data or specifically spectra data classification [30]. These traditional methods are unsu-
pervised learning or nonparametric algorithms that do not contain learnable parameters
but are more procedural [31]. Time series data, especially time-resolved spectra data,
commonly has a high dimensionality, and it is very common for the number of input
variables (features) to be greater than the number of samples. These algorithms can effec-
tively identify underlying patterns or key descriptors in spectra data [31]. For instance,
principle component analysis (PCA) is usually used as a dimensionality reduction by using
an orthogonal transformation to convert original data into a set uncorrelated variables of
higher space; k-means clustering, is widely used for exploratory data analysis, applied to
data clustering; random forest, which is an ensemble learning method based on multiple
decision trees, always results in the convergence of generalization error [32], and can
be used for classification and regression. The authors of [33] presented a novel method
called nearest clusters based PLS-DA (NCPLS-DA) to analyze the classification of spectral
data. The proposed method can effectively address the multimodality and nonlinearity
issues. The work [30] proposed a framework for spectra data classification using the kernel
extreme learning machine (KELM). They used PCA as spectra preprocessing and dimen-
sionality reduction, and then applied the kernel extreme learning machine for classification.
One of the most relevant studies to our work [34] presented the Phase-Mapper, based
on convolutive nonnegative matrix factorization (NMF), which can effectively solve the

Appl. Sci. 2021, 11, 11520 5 of 26

multi-phase identification problem in the context of x-ray diffraction (XRD). Even though
these traditional ML classification methods are widely recognized, there are still some
questions. For example, they usually require the pretreatment of data and rely heavily on
preprocessing such as the PCA, which makes end-to-end work difficult.

2.2. Convolutional-Based Approach

Convolutional neural network (CNN) [21–23,27] is one of the most commonly estab-
lished deep learning models in time series data analysis. It can easily and effectively capture
features in multi-scale by different convolution kernels and pooling operations. Many pow-
erful CNN-based models have been proposed and have achieved great success. Among
them, the authors of [29] applied a combination of 1D and 2D CNN to multisource multi-
temporal satellite imagery for crop classification. It explored the features across spectral
and spatial dimensions but did not consider temporal information. Meanwhile, Temporal
Convolutional Neural Network (TempCNN) [35] where convolutions are applied in tem-
poral dimension, is also well-explored. In [35], an exhaustive study of one-dimensional
TempCNNs for the Classification of Satellite Image Time Series was conducted, their exper-
imental results show that TempCNNs are superior to RNNs in terms of SITS classification.
The Conv1D-based classification model designed in [36] further proved the effectiveness
of TempCNNs in processing the temporal dimension of time series classification. Residual
Networks (ResNets) [37] are another common backbone architecture in computer vision
and are also adapted to time series classification [5,27,38], the residual connections or
shortcut [37] in the model numerically add higher-level features to the forward propagated
representation [5] and help to propagate the gradient back through the network, so very
deep models can be trained [37]. Based on ResNet, Multiscale architectures [38] can process
time series at multiple scales and achieve feature fusion by concentrating each stream. The
Fully Convolutional Network (FCN) [39] which can yield a fixed-length feature for classi-
fication has also been well-exploited and has been shown to achieve the state-of-the-art
performance for end-to-end time series classification [17]. In addition, dilated convolutions
are also widely used to improve the feature resolution [40,41]. In scientific research, the
enormous potential of CNN-based methods has also been demonstrated in spectroscopy
and diffraction technologies, including bacterial classification from Raman spectra [42],
classification of edible oils using low field nuclear magnetic resonance [43], and spectra
classification in the field of Neutron and X-ray Diffraction (XRD) [31,44]. For example,
Oviedo et al. [44] represented their XRD pattern as time series and applied a CNN-based
model to achieve the rapid prediction and classification of crystallographic dimensionality
and space group.

Although great progress has been achieved through CNN-based networks, there are
still some limitations, namely the inability of leveraging the relationship between features in
a global view. To utilize both spatial and temporal features from time series, combinations
of convolutional operation and recurrent operation [17,45] or attention mechanism [46,47]
were explored and comprehensively compared.

2.3. Recurrent-Based Approach

For time series data processing, two variants of the RNN models, Long Short-Term
Memory (LSTM) [48], Gated Recurrent Unit (GRU) [49], in particular, can effectively cap-
ture temporal dependencies, thus can work efficiently on various complex time series
processing tasks, such as prediction, recognition, and classification [18,24,25,50–52]. For ex-
ample, Lipton et al. [25] showed the ability of LSTMs to recognize patterns in multivariate
time series of clinical measurements. In the meantime, RNN-based architecture is also used
in combination with the CNN-based module to construct a hybrid convolutional-recurrent
neural architecture that can automatically extract features and capture their short-term and
long-term dependencies at the same time [17,18,21]. Lai et al. [18] developed a Long- and
Short-term Time-series network (LSTNet) framework for multivariate time series forecast-
ing. The method combines the strengths of CNN and RNN, and can effectively extract

Appl. Sci. 2021, 11, 11520 6 of 26

short-term local dependency patterns and long-term patterns in data at the same time. In
addition, they exploited an attention mechanism to alleviate the issue of nonseasonal time
series prediction. Karim et al. [17] proposed LSTM FCN and ALSTM-FCN deep learning
models for end-to-end time series classification, which are enhancements of a Fully Convo-
lutional Network (FCN) with LSTM sub-module or attention LSTM sub-module. Although
the enhanced models can significantly improve classification performance, the limitation is
that it is designed for univariate time series. In 2019, the authors of [45] subsequently intro-
duced squeeze-and-excitation block to augment the FCN block in the existing LSTM-FCN
and ALSTM-FCN models, which can capture the contexture information and channel-wise
dependencies, so that the model can be used for multivariate time series classification.
Interdonato et al. [52] proposed an end-to-end DuPLO deep learning architecture for the
analysis of Satellite Image Time Series data. It is also a combination of both CNNs and
GRUs models, which can exploit feature information from different points of view, and
then produce more diverse and complete information representations for classification
tasks [52].

RNN-based models have also been applied to spectra classification in spectroscopy.
For example, in [53], Dandıl et al. detected the pseudo-brain tumors via stacked LSTM neu-
ral network with Magnetic resonance spectroscopy (MRS) data, achieving high-precision
binary classification of brain tumors and normal brain tissue. In [54], the RNN models
were built to analyze Raman spectra to classify blood species. However, the application of
RNNs to time-resolved neutron or x-ray scattering experiments is still scarce [31].

2.4. Attention-Based Approach

Very recently, inspired by the Transformer scaling successes in NLP [26], researches
have also successfully developed their Transformer-based or attention-based models in the
tasks of time series analyses such as video understanding [28], forecasting of multivariate
time series data [51], satellite image time series classification [21], hyperspectral image (HSI)
classification [55], and other time series classification tasks [20,27]. Instead of processing
data in an ordered sequence manner, the Transformer model processes an entire sequence
of data and uses self-attention mechanisms to learn dependencies in the sequence [56]. Ma
et al. [57] first proposed a novel approach called Cross-Dimensional Self-Attention (CDSA)
for the multivariate, geo-tagged time series data imputation task. The CDSA model can
jointly capture the self-attention across multiple dimensions (time, location, measurement),
yet in an order-independent way [57]. Garnot et al. [21] proposed a spatio-temporal
classifier for automatic classification of satellite image time series, in which a Pixel-Set
Encoder is used to extract spatial features, and a self-attention-based temporal encoder is
used to extract temporal features. This architecture has achieved significant improvements
in accuracy, time, and memory consumption. Rußwurm et al. [5] explored and compared
several commonly used state-of-the-art deep learning mechanisms on preprocessed and raw
satellite data, such as convolution, recurrence, and self-attention, for crop type identification.
They pointed out that preprocessing still improved the classification performance of all
models they applied, while the choice of model was less crucial [5]. In addition, their
experiments showed that self-attention and RNNs outperform CNNs on raw satellite time
series. They investigated this further though a gradient-based feature importance analysis
and qualitatively showed that self-attention mechanism can focus selectively on a few
classification-relevant observations. Their work focuses on applying, comparing, and
analyzing existing models, rather than proposing new architectures or models. Although
attention-based DL models are increasingly popular in various time series classification
tasks, its application in X-ray spectroscopy and diffraction techniques is still limited.

Similar to [5], our work also applies and compares the state-of-the-art 1D-CNN, RNN
(LSTM), and self-attention mechanism. We focus on proposing new architectures for spec-
tral time series classification, and deal with this problem from two different perspectives,
either as a 2D space segmentation problem (end-to-end binned FCNN with the automati-
cally capturing weighting factors model, as described in Section 3.1), or as a general 1D

Appl. Sci. 2021, 11, 11520 7 of 26

time series classification problem (e.g., convolutional SCT attention model, as described in
Section 3.2). Moreover, their models are designed for crop type classification, while our
models focus on the application of spectral data classification. In our previous work [12], we
used PCA as data preprocessing for dimensionality reduction, and applied unsupervised
spectra clustering, and supervised LSTM-based and Transorformer-based models for HED
diffraction spectra classification. These models are not end-to-end solutions, nor can they
take advantage of temporal dependencies. Another work by Fawaz et al. [1] conducted a
detailed and comprehensive study of the most recent state-of-the-art performance of deep
learning algorithms for time series classification. In their review work, they detailed several
deep learning models based on Multi-layer perceptrons, CNN, ResNet, Encoder [58], and
Time-CNN [59]. They trained and tested these models across multiple time series datasets
including univariate and multivariate, and analyzed the corresponding advantages and
drawbacks. They did not include and compare the state-of-the-art Transformer-based or
self-attention-based model, and RNN-based models (such as LSTM or GRU), which are cur-
rently the most state-of-the-art structures. The only attention calculation they involved is in
the Encoder model, and it is soft attention. Different from [1], our work implements these
two methods for spectra times series classification, and also focuses on the attention-based
architecture to leverage information from different dimensions to extract more complete
and powerful feature representations.

3. Data-Driven End-to-End Neural Network Methods

In this section, we describe in detail the DL classification models we proposed or
applied in different problem settings. The reasons behind our design or choice of these
end-to-end methods are also explained. The first model is proposed in the setting of 2D
space segmentation, which applies the bin-weighting technique to suppress the effects of
misclassifications of indistinguishable features in overlapping regions. The second model
is proposed under the setting of 1D time series classification. It is a hybrid model of CNN
and self-attention architecture, where self-attention is calculated across spatial, channel,
and temporal dimensions. The remaining models in the third part of this section are other
state-of-the-art solutions that we applied to 1D spectra classification in the 1D time series
classification problem setting, based on FCNN, CNN, Resnet, LSTM, and Transformer.

3.1. End-to-End Binned FCNN with the Automatically Capturing Weighting Factors Model

In this model, the spectra classification task is regarded as a general two-dimensional
(2D) space segmentation problem. The 2D mentioned here means that instead of inputting
a single variable, the values of the two coordinates (x, y) of each feature point are input into
the neural network model, and the model is taught which class label this point belongs to.
The model aims to automatically prominent features with high separability and suppress
features with low separability. Obviously, the separability of the spectra in the overlapping
regions is very low, which is indicated by the low classification accuracy and reliability.
Taking this into account, we divided the spectral data into several bins of the same size
and used a two-layer Fully Connected Neural Network (FCNN) with the same structure
to learn representative features in each local bin. The learned features are then fed into
another fully connected (FC) layer to learn the local believability weighting factors of
different bins, which are used to classify any spectral time series.

The structure of the end-to-end binned FCNN with the automatically capturing
weighting factors model is shown in Figure 2, which is an extension of our previous
work [60]. In this model, each FCNN sub-module consists of two fully connected layers
(FCs), with each one followed by a batch normalization operation and a rectified linear
unit (ReLU) [61] or sigmoid activation function [62] to speed up the training process and
avoid overfitting. The input layer has 2 input neurons, corresponding to the dimensions
(two coordinates) of the input spectra, the hidden layer has 150 neurons, and the output
layer has 2 output neurons. Then, the output of these FCNN sub-modules is concentrated
and fully connected to the final output neuron. The weighting factors learned by the last

Appl. Sci. 2021, 11, 11520 8 of 26

FC layer can assign different weights to different bins, thereby reducing the influence
of the interval of indistinguishable features, and making the features in bins with high
separability and reliability more dominant, which can better extract features and learn
patterns from the input data. The reason why the sigmoid function is used instead of
ReLU after the second FC layer is that we treat each FCNN sub-module as a complete
classification model in each bin, so the function of the last FC layer is mainly to assign an
overall classification influence weight to each bin.

When the number of bins is 1, the model becomes a standard three-layer FCNN, also
known as a multi-layer perceptron (MLP). In Section 4, we experimentally demonstrate the
advantages of the bin-weighting technique in terms of classification confidence, required
training epochs, and training time.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 26

The structure of the end-to-end binned FCNN with the automatically capturing

weighting factors model is shown in Figure 2, which is an extension of our previous work

[60]. In this model, each FCNN sub-module consists of two fully connected layers (FCs),

with each one followed by a batch normalization operation and a rectified linear unit

(ReLU) [61] or sigmoid activation function [62] to speed up the training process and avoid

overfitting. The input layer has 2 input neurons, corresponding to the dimensions (two

coordinates) of the input spectra, the hidden layer has 150 neurons, and the output layer

has 2 output neurons. Then, the output of these FCNN sub-modules is concentrated and

fully connected to the final output neuron. The weighting factors learned by the last FC

layer can assign different weights to different bins, thereby reducing the influence of the

interval of indistinguishable features, and making the features in bins with high separa-

bility and reliability more dominant, which can better extract features and learn patterns

from the input data. The reason why the sigmoid function is used instead of ReLU after

the second FC layer is that we treat each FCNN sub-module as a complete classification

model in each bin, so the function of the last FC layer is mainly to assign an overall clas-

sification influence weight to each bin.

When the number of bins is 1, the model becomes a standard three-layer FCNN, also

known as a multi-layer perceptron (MLP). In Section 4, we experimentally demonstrate

the advantages of the bin-weighting technique in terms of classification confidence, re-

quired training epochs, and training time.

Figure 2. Illustration of end-to-end FCNN with automatically capturing weighting factors model.

3.2. Convolutional SCT Attention Network

More generally, the spectral data can be regarded as typical 1D time series data. In

this setting, several other classification models can be explored. As a powerful network,

CNN can learn features from different scales, but unfortunately, it cannot capture feature

dependencies in a global view. To solve this problem, some methods involving attention

mechanisms have been proposed [5,26,46,47,63], which investigate attention across single

or multiple dimensions. Inspired by the study [26,63], we designed a lightweight convo-

lutional Spatial-Channel-Temporal (SCT) attention network for the application of time-

resolved spectra classification, as shown in Figure 3

The framework consists of two branches. The upper branch models the global con-

textual information in the temporal dimension. The lower branch model captures global

dependencies across the channel and temporal dimensions. These two branches are then

Figure 2. Illustration of end-to-end FCNN with automatically capturing weighting factors model.

3.2. Convolutional SCT Attention Network

More generally, the spectral data can be regarded as typical 1D time series data. In
this setting, several other classification models can be explored. As a powerful network,
CNN can learn features from different scales, but unfortunately, it cannot capture feature
dependencies in a global view. To solve this problem, some methods involving atten-
tion mechanisms have been proposed [5,26,46,47,63], which investigate attention across
single or multiple dimensions. Inspired by the study [26,63], we designed a lightweight
convolutional Spatial-Channel-Temporal (SCT) attention network for the application of
time-resolved spectra classification, as shown in Figure 3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 26

aggregated together to better represent features. Finally, a Feed Forward module and a

FC module are applied for the classification task.

Figure 3. Illustration of convolutional SCT attention network architecture. In this architecture, attention is calculated across

spatial, channel and temporal dimensions.

3.2.1. Spatial Attention Module and Channel Attention Module

In the lower branch (also the main branch), two convolutional modules Conv 1 and

Conv 2 are first applied to extract local features. They have the same structure as the con-

volution modules in the CNN model, consisting of a 1D convolutional layer, a

BatchNorm1d function, a ReLU activation function, and a MaxPool1D operation. The

number of filters of the convolutional layer in Conv 1 and Conv 2 is 64 and 8, respectively,

the kernel size is 5 and 5, respectively, and the step size is 2 and 1, respectively. The size

of the kernel and the stride of the MaxPool1D operation in these two modules are 2. In

order to facilitate the follow-up Multi-Head attention operation, the embedding module

is added, which contains a fully connected layer, and a 1D layer normalization operation.

It produces an output of dimension 𝑑𝑒𝑚𝑏 = 256.

We denote the input shape of this branch as of (𝐵, 𝐶𝑖𝑛, 𝑁), where B is the batch size,

𝐶𝑖𝑛 is the number of channels, equal to 1 in the input, and 𝑁 = 4023 is the number of

features. After embedding the module, the output is of shape (𝐵, 𝐶, 𝐸), where E is the

number of embedded features, 𝐸 = 𝑑𝑒𝑚𝑏 = 256.

In this branch, two parallel attention modules are applied, a spatial attention module

and a channel attention module. The spatial attention module is designed to model the

spatial dependencies between any two local features. The channel attention module is de-

signed to capture the global interdependencies over any two channel maps introduced by

the Conv 1 and Conv 2 module. These two attention modules are performed concurrently

and simply fused through element-wise addition.

Specifically, the Multi-Head spatial attention module is designed based on [26]. If the

batch dimension is not considered, we can denote the input of the attention module as

𝐗 ∈ ℝ𝐶×𝐸, then Multi-Head spatial attention can be expressed as:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄𝑆, 𝐾𝑆, 𝑉𝑆) = 𝑆𝑆𝑊𝑠
𝑂

= 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1
𝑆, ⋯ , ℎ𝑒𝑎𝑑𝑖

𝑆, ⋯ , ℎ𝑒𝑎𝑑ℎ
𝑆)𝑊𝑠

𝑂,
(1)

𝑀ℎ𝑒𝑎𝑑𝑖
𝑆 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑆𝑊𝑖

𝑄𝑆 , 𝐾𝑆𝑊𝑖
𝐾𝑆 , 𝑉𝑆𝑊𝑖

𝑉𝑆)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑆𝑊𝑖

𝑄𝑆(𝐾𝑆𝑊𝑖
𝐾𝑆)

𝑇

𝑑𝑘

) 𝑉𝑆𝑊𝑖
𝑉𝑆

(2)

where 𝑊𝑖
𝑄𝑆 , 𝑊𝑖

𝐾𝑆 ∈ ℝ𝑑𝑒𝑚𝑏×𝑑𝑘 , 𝑊𝑖
𝑉𝑆 ∈ ℝ𝑑𝑒𝑚𝑏×𝑑𝑣 and 𝑊𝑠

𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑒𝑚𝑏 . In this work, we

employ ℎ = 2 parallel attention heads, with 𝑑𝑣 = 𝑑𝑘 = 128. At last, a residual connec-

tion is added, which can be expressed as:

𝐴𝑆 = 𝐗 + 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄𝑆, 𝐾𝑆, 𝑉𝑆) (3)

Figure 3. Illustration of convolutional SCT attention network architecture. In this architecture, attention is calculated across
spatial, channel and temporal dimensions.

Appl. Sci. 2021, 11, 11520 9 of 26

The framework consists of two branches. The upper branch models the global con-
textual information in the temporal dimension. The lower branch model captures global
dependencies across the channel and temporal dimensions. These two branches are then
aggregated together to better represent features. Finally, a Feed Forward module and a FC
module are applied for the classification task.

3.2.1. Spatial Attention Module and Channel Attention Module

In the lower branch (also the main branch), two convolutional modules Conv 1
and Conv 2 are first applied to extract local features. They have the same structure as
the convolution modules in the CNN model, consisting of a 1D convolutional layer, a
BatchNorm1d function, a ReLU activation function, and a MaxPool1D operation. The
number of filters of the convolutional layer in Conv 1 and Conv 2 is 64 and 8, respectively,
the kernel size is 5 and 5, respectively, and the step size is 2 and 1, respectively. The size
of the kernel and the stride of the MaxPool1D operation in these two modules are 2. In
order to facilitate the follow-up Multi-Head attention operation, the embedding module is
added, which contains a fully connected layer, and a 1D layer normalization operation. It
produces an output of dimension demb = 256.

We denote the input shape of this branch as of (B, Cin, N), where B is the batch size,
Cin is the number of channels, equal to 1 in the input, and N = 4023 is the number of
features. After embedding the module, the output is of shape (B, C, E), where E is the
number of embedded features, E = demb = 256.

In this branch, two parallel attention modules are applied, a spatial attention module
and a channel attention module. The spatial attention module is designed to model the
spatial dependencies between any two local features. The channel attention module is
designed to capture the global interdependencies over any two channel maps introduced by
the Conv 1 and Conv 2 module. These two attention modules are performed concurrently
and simply fused through element-wise addition.

Specifically, the Multi-Head spatial attention module is designed based on [26]. If the
batch dimension is not considered, we can denote the input of the attention module as
X ∈ RC×E, then Multi-Head spatial attention can be expressed as:

MultiHead(QS, KS, VS)= SSWs
O

= Concat
(

headS
1 , · · · , headS

i , · · · , headS
h

)
Ws

O,
(1)

MheadS
i = Attention

(
QSWi

QS , KSWi
KS , VSWi

VS
)

= so f tmax
(

QSWi
QS(KSWi

KS)
T

dk

)
VSWi

VS
(2)

where Wi
QS , Wi

KS ∈ Rdemb×dk , Wi
VS ∈ Rdemb×dv and Ws

O ∈ Rhdv×demb . In this work, we
employ h = 2 parallel attention heads, with dv = dk = 128. At last, a residual connection is
added, which can be expressed as:

AS = X + MultiHead(QS, KS, VS) (3)

Here, the query, key, value QS, KS, VS used to calculate Multi-Head attention are
obtained directly from X without transformation. The spatial attention matrix SS =

Concat
(

so f tmax
(

QSWi
QS(KSWi

KS)
T

dk

))
∈ Rdemb×demb . According to Equation (3), the ob-

tained spatial feature AS is a weighted sum of all local features and original features.
It achieved global spatial interdependencies by selectively aggregating spatial contexts
according to the spatial attention matrix Ss.

Appl. Sci. 2021, 11, 11520 10 of 26

The channel attention module is designed based on [63], and we extend their method
from three-dimensional image processing to a 1D time series analysis. The channel attention
matrix is calculated through SC = so f tmax

(
QcKc

T) which can be described as:

AC = X + α·SC·Vc = X + α·so f tmax
(

QcKc
T
)

Vc, (4)

where QC, KC, VC = XT , and SC ∈ RC×C, it models the dependencies or similarity between
any two channels.

These two attention modules are fused together through element-wise addition. A
convolution module 1 × 1 conv3 is performed after the parallel attention modules, which
consists of a layer of normalization operation, 1 × 1 convolution, batch normalization, and
a ReLU function. It is used for channel-wise pooling and dimensionality reduction. After
this module, the output shape is (B, 1, E).

3.2.2. Temporal Attention Module

The temporal attention module is illustrated in the upper branch of Figure 3. It is
introduced to model the interconnections of any two spectral time series. Before applying
the Multi-Head temporal attention, the input spectra are first fed into an FC embedding
module and a position embedding module. Its dimension of output XT is set to dT

emb =
demb = 256, which is the same as the output dimension of the embedding module in the
spatial and channel attention path.

The shape of input in the upper branch is (L, Bt, N), where L is the sequence length,
and Bt is the batch size in the temporal attention branch. Similar to the Transformer-based
model, the input sequence length L is set to 31 during training and 349 during testing,
which corresponds to the number of original training examples and the total number of
spectral curves in the test dataset. The Multi-Head temporal attention is expressed as:

MultiHead(QT , KT , VT) = Concat
(

headT
1 , · · · , headT

i , · · · , headT
l

)
WT

O, (5)

headT
i = Attention

(
QTWi

QT , KTWi
KT , VTWi

VT
)

= so f tmax

(
QTWi

QT
(
KTWi

KT
)T

dT
k

)
VTWi

VT ,
(6)

where Wi
QT , Wi

KT ∈ RdT
emb×dT

k , Wi
VT ∈ RdT

emb×dT
v and Ws

O ∈ RldT
v×dT

emb . In this work, we
employ l = 8 parallel temporal attention heads. At last, a residual connection is added,
which can be expressed as:

AT = XT + MultiHead(QT , KT , VT) (7)

The temporal query, key, value QT , KT , VT used to calculate the temporal Multi-Head
attention are obtained from the XT . The temporal attention matrix ST =

Concat
(

so f tmax
(

QTWi
QT (KTWi

KT)
T

dT
k

))
∈ RL×L. According to Equation (7), in our ap-

plication, the shape of the obtained temporal feature map AT is (31, 31) during training,
and (349, 349) during testing.

After calculating Multi-Head temporal attention, we reshape the output into the shape
of (B, 1, E), and apply a 1 × 1 Conv 4 module. The convolutional layer in the 1 × 1 Conv 4
module serves as a scaling function for embedded temporal attention features, instead of
changing the depth of feature maps as in the 1 × 1 Conv 3 module.

The temporal features with attention are also simply fused with the other two attention
modules through element-wise addition. By applying the 1 × 1 convolution modules, the
features in these three attention modules can be easily fused.

Appl. Sci. 2021, 11, 11520 11 of 26

After that, a residual feed forward module with the same structure as in [26] is applied
to further capture the features. Finally, an FC layer with the sigmoid activation function is
applied to the classification task.

In fact, the attention modules designed in this architecture can also be used individu-
ally or concurrently in combination with any other models applied in our work (i.e., FC,
ResNet, LSTM, et al.). If we only model connections across spatial and channel dimensions,
we can obtain another architecture, named the convolutional SC attention model, which
discards the upper temporal attention branch, as illustrated in Appendix A.

3.3. Other State-of-the-Art Deep Learning Approaches
3.3.1. D Multi-Layer Fully Connected Neural Network (1D FCNN) Model

In this solution, we apply a 1D multi-layer Fully Connected Neural Network (1D
FCNN) model for time series spectra classification, which has the most interpretable
structure, as shown in Figure A2. It is a basic MLP by stacking four fully connected layers
and is designed by following two design rules: (i) using Layer Normalization operation
and dropout [64] (optionally) after each FC layer to speed up training and improve the
generalization capability; and (ii) applying ReLU activation function to prevent saturation
of the gradient [27]. See Appendix B for more details.

3.3.2. Convolutional Neural Network (CNN) Solution

The key feature of a convolution operation is weight sharing, which makes it very
suitable for automatically and adaptively learning hierarchies of features [29]. Based on
this, we design a CNN-based model with reasonable layers of different sizes of kernels.
This model is powerful enough for the spectral time series classification in our application.
The architecture of the CNN model is shown in Figure A3. It is mainly composed of
three sequential convolutional modules and one FC module, which are used as the feature
extractor and classifier respectively. More details can be found in Appendix C.

3.3.3. ResNets-Based Solution

In addition to the standard convolutional architecture, we also applied and imple-
mented Residual Networks (ResNets) [37] to the spectral data classification. It was origi-
nally proposed to better cope with the degradation problem in deep CNNs. Details on the
architecture are included in Appendix D.

3.3.4. LSTM-Based Solution

As a variance of RNN in particular, Long short-term memory (LSTM) was originally
applied in NLP tasks, and it also yielded promising results in time series analysis [5,18,19].
A cell and three gates (input gate, output gate, and forget gate) in the LSTM unit allow
this architecture to remember values over arbitrary time intervals and regulate the flow of
information [65]. The pointwise operations used to update the cell state and hidden state
in the LSTM architecture can assign different weights to different features/variables in our
spectral time series, thereby improving the role of distinguishable features in the classifica-
tion task and weakening the impact of indistinguishable features on classification. These
characteristics make it very suitable for time-resolved spectra analysis. The details of the
designed LSTM-based model for spectral data classification are provided in Appendix E.

3.3.5. Transformer-Based Solution

The Transformer model relies on the so-called self-attention mechanism and is found
to be superior in quality while being more parallelizable [26]. There are many successful ap-
plications of Transformers in time series processing tasks, including classification [20,21]. In
this work, we adopted the encoder part architecture of the self-attention-based Transformer
network as a comparison model, and we show details in Appendix F.

Appl. Sci. 2021, 11, 11520 12 of 26

4. Experiments and Results

In this section, we first introduce the implementation details of the above DL classifi-
cation models and describe the specific performance metrics we used, and then evaluate
and compare their classification performance from multiple perspectives. Further, we
conducted a feature importance contribution analysis to explain and interpret these DL
classification models. In addition, we analyzed the self-attention scores across the spatial,
channel, and temporal dimensions in the convolutional SCT attention model to better
investigate its ability to selectively focus on a few classification-related information.

4.1. Implementation Details

All the models are performed in a supervised learning manner and implemented on
the Jupyter notebook platform using PyTorch. These models are trained by backpropa-
gation using gradient descent, with the adaptive learning-rate method Adam [66] as the
optimizer (learning rate is set to 8 × 10−3 for convolutional SCT/SC attention model and
2 × 10−3 for other models; weight decay is set to 2 × 10−4 for convolutional SCT/SC
attention model and 2 × 10−5 for other models). We use the binary cross-entropy loss
function for our classification task. The statistical models are obtained by minimizing the
loss function on the training dataset. All these models are trained on one machine with
Tesla P100-PCIE-16GB GPU.

For the end-to-end binned FCNN with the automatically capturing weighting factors
model proposed in the 2D space segmentation problem setting, the training dataset consists
of 4 original representative spectra samples and 60 simulated ones (by adding some random
noise, 15 simulated spectral curves are generated based on each original spectrum), for
a total of 64. The reason why we use only a small amount of training data samples in
this model is that in this case, the data is only two-dimensional, so the amount of training
examples is much larger than the data dimension, which is well-acceptable. The spectra
drawn in a dot-dash line and marked in red or blue are used as the basis of the training
set, as shown in Figure 1. In this model, we set the initial training epochs to 550. As the
number of bins increases, the training examples in each bin decreases linearly, which may
cause the model to easily overfit. To deal with this problem, two early training stop criteria
are applied, that is, when the training accuracy is greater than 99.0% or the training loss is
less than 0.15. The epochs required during training is shown in Figure 4.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 26

3.3.5. Transformer-Based Solution

The Transformer model relies on the so-called self-attention mechanism and is found

to be superior in quality while being more parallelizable [26]. There are many successful

applications of Transformers in time series processing tasks, including classification

[20,21]. In this work, we adopted the encoder part architecture of the self-attention-based

Transformer network as a comparison model, and we show details in Appendix F.

4. Experiments and Results

In this section, we first introduce the implementation details of the above DL classi-

fication models and describe the specific performance metrics we used, and then evaluate

and compare their classification performance from multiple perspectives. Further, we

conducted a feature importance contribution analysis to explain and interpret these DL

classification models. In addition, we analyzed the self-attention scores across the spatial,

channel, and temporal dimensions in the convolutional SCT attention model to better in-

vestigate its ability to selectively focus on a few classification-related information.

4.1. Implementation Details

All the models are performed in a supervised learning manner and implemented on

the Jupyter notebook platform using PyTorch. These models are trained by backpropaga-

tion using gradient descent, with the adaptive learning-rate method Adam [66] as the op-

timizer (learning rate is set to 8 × 10−3 for convolutional SCT/SC attention model and 2 ×

10−3 for other models; weight decay is set to 2 × 10−4 for convolutional SCT/SC attention

model and 2 × 10−5 for other models). We use the binary cross-entropy loss function for

our classification task. The statistical models are obtained by minimizing the loss function

on the training dataset. All these models are trained on one machine with Tesla P100-

PCIE-16GB GPU.

For the end-to-end binned FCNN with the automatically capturing weighting factors

model proposed in the 2D space segmentation problem setting, the training dataset con-

sists of 4 original representative spectra samples and 60 simulated ones (by adding some

random noise, 15 simulated spectral curves are generated based on each original spec-

trum), for a total of 64. The reason why we use only a small amount of training data sam-

ples in this model is that in this case, the data is only two-dimensional, so the amount of

training examples is much larger than the data dimension, which is well-acceptable. The

spectra drawn in a dot-dash line and marked in red or blue are used as the basis of the

training set, as shown in Figure 1. In this model, we set the initial training epochs to 550.

As the number of bins increases, the training examples in each bin decreases linearly,

which may cause the model to easily overfit. To deal with this problem, two early training

stop criteria are applied, that is, when the training accuracy is greater than 99.0% or the

training loss is less than 0.15. The epochs required during training is shown in Figure 4.

Figure 4. Training information and classification result of the end-to-end binned FCNN with auto-
matically capturing weighting factors model.

For the applied models in the 1D time series data analysis setting, there are 31 original
spectra samples with 1550 simulated ones as mentioned above (by adding some random
noise, 50 simulated spectral curves are generated based on each original spectrum), a
total of 1581. The small random noise in the simulated spectral data is generated using
the Mersenne Twister [67] as the core generator. The 31 original spectra samples used
as the basis for training are also shown in Figure 1. Their training information, such as
training epochs, training time, memory consumption, etc., are listed in Table 1. The analysis

Appl. Sci. 2021, 11, 11520 13 of 26

scripts as Jupyter notebooks are publicly available at https://github.com/sunyue-xfel/
Comparing-End-to-End-Machine-Learning-Methods-for-Spectra-Classification (accessed
on 30 November 2021).

Table 1. Evaluation and Comparison of the state-of-the-art models on HED spectra dataset.

Model Training
Samples

Trainable
Parameters

Training
Time (s)

Memory
(GB) Epochs Classification

Confidence
Classification

Boundary

1D FCNN 1581
(31 + 50 × 31) 1,204,335 1.576 0.1 300 100% (188,189)

CNN: 1581
(31 + 50 × 31) 23,307 0.753 0.0 5 100% (173,174)

ResNets: 1581
(31 + 50 × 31) 2,354,535 8.208 7.1 6 100% (178,179)

LSTM: 1581
(31 + 50 × 31) 6,273,391 0.463 0.9 25 100% (175,176)

Transformer: 1581
(31 + 50 × 31) 1,830,511 0.449 0.1 30 100% (185,186)

Convolutional
SCT Attention:

1581
(31 + 50 × 31) 1,953,353 1.269 0.5 5 100% (188,189)

Convolutional
SC Attention:

1581
(31 + 50 × 31) 659,525 1.652 0.4 8 100% (182,183)

4.2. Performance Metric

In this work, our goal is to find the phase transition point, which also means clas-
sifying the spectra into 2 phases or classes during the experiment [12]. As there is no
ground-truth phase transition information, we are interested in whether there is a clear
classification boundary or an ambiguity zone during the experiment when the classifica-
tion jumps inconsistently between the phases [12]. The classification confidence is used
as the performance metric, which was defined in our previous work [12]. It can indicate
how small the ambiguous zone is during the experiment. The classification confidence

is defined as Pcon f = 1− N f
Nt

, where N f represents the number of spectral curves in the
classification boundary or ambiguous region with the class label jump, Nt represents the
number of all the tested spectral curves. The classification boundary can be represented by(

C0
upper, C1

lower

)
, where C0

upper represents the upper bound or the last spectra of continuous

class 0, and C0
upper represents the lower bound or the first spectra of continuous class 1.

Then N f can be calculated by N f = C1
lower − C0

upper − 1. Therefore, a clear boundary be-
tween these two classes of spectra yields 100% confidence, which would otherwise be less
than 100%. Particularly, if no phase transition or boundary between two classes is detected,
all the spectral curves are in the ambiguous region, and the classification confidence is 0.

4.3. Quantitative Model Evaluation

In the 2D space segmentation problem setting, the training information and classifi-
cation result of the proposed end-to-end binned FCNN with the automatically capturing
weighting factors model is shown in Figure 4. It can be seen from the result that the
classification confidence increases as the number of bins increases, and finally achieves
100% confidence. In addition, we can also easily understand that although the trainable
parameters increase linearly, as the required training epochs decrease, the required training
time also decreases. The classification results show that the binned weighting technique can
minimize or even eliminate the impact of misclassification of data points in the overlapping
regions with low separability, and even greatly reduce the training time. When using 15 or
16 bins, the model consumes approximately 20 s training time.

When regarded as a general 1D time series data classification problem, all the applied
or proposed models can achieve 100% classification confidence, and the classification
boundaries obtained by different models are very stable, and only fluctuate in a small range,

https://github.com/sunyue-xfel/Comparing-End-to-End-Machine-Learning-Methods-for-Spectra-Classification
https://github.com/sunyue-xfel/Comparing-End-to-End-Machine-Learning-Methods-for-Spectra-Classification

Appl. Sci. 2021, 11, 11520 14 of 26

that is (188− 173)/349 = 4.3%, as shown in Figure 5 and Table 1. Among these models,
the CNN-based model requires the least training parameters. The LSTM-based model
has the most trainable parameters, which is mainly introduced by the LSTM units, but its
convergence speed is very fast, the training time is short, and the memory consumption is
low. Regarding the training time, the Transformer-based model requires the least training
time (0.449 s), followed by the LSTM-based model, which needs slightly more training time
(0.463 s). At the same time, it can be clearly seen that the curve of memory usage during
training has a similar trend to the training time curve. Although the 1D FCNN model
requires 300 training epochs, it does not consume so much training time (1.576 s), which is
only 3 times that of the LSTM-based model, and it does not consume much memory. From
the result, it can be noted that the ResNets model consumes the most time training (8.208 s),
and takes up the most memory, but the trainable parameters are still much less than the
LSTM-based model. The reason for the long training time may be that there are a bunch of
convolution kernels of different scales in this model. The related training information and
results are listed in Table 1.

Nevertheless, the time consumption of ResNets is still much smaller than that of
end-to-end binned FCNN with the automatically capturing weighting factors model. In
the 2D space segmentation problem setting, the way the model processes data is equivalent
to switching from parallel processing to serial processing. The resulting more training
examples in 2D space segmentation setting greatly increases the training time. Therefore,
although the binned-weighting technique greatly improved the classification performance
in the 2D space segmentation problem setting, the models proposed or applied under the
1D time series classification setting are superior.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 26

4.3. Quantitative Model Evaluation

In the 2D space segmentation problem setting, the training information and classifi-

cation result of the proposed end-to-end binned FCNN with the automatically capturing

weighting factors model is shown in Figure 4. It can be seen from the result that the clas-

sification confidence increases as the number of bins increases, and finally achieves 100%

confidence. In addition, we can also easily understand that although the trainable param-

eters increase linearly, as the required training epochs decrease, the required training time

also decreases. The classification results show that the binned weighting technique can

minimize or even eliminate the impact of misclassification of data points in the overlap-

ping regions with low separability, and even greatly reduce the training time. When using

15 or 16 bins, the model consumes approximately 20 s training time.

When regarded as a general 1D time series data classification problem, all the applied

or proposed models can achieve 100% classification confidence, and the classification

boundaries obtained by different models are very stable, and only fluctuate in a small

range, that is (188 − 173) 349 = 4.3%⁄ , as shown in Figure 5 and Table 1. Among these

models, the CNN-based model requires the least training parameters. The LSTM-based

model has the most trainable parameters, which is mainly introduced by the LSTM units,

but its convergence speed is very fast, the training time is short, and the memory con-

sumption is low. Regarding the training time, the Transformer-based model requires the

least training time (0.449 s), followed by the LSTM-based model, which needs slightly

more training time (0.463 s). At the same time, it can be clearly seen that the curve of

memory usage during training has a similar trend to the training time curve. Although

the 1D FCNN model requires 300 training epochs, it does not consume so much training

time (1.576 s), which is only 3 times that of the LSTM-based model, and it does not con-

sume much memory. From the result, it can be noted that the ResNets model consumes

the most time training (8.208 s), and takes up the most memory, but the trainable param-

eters are still much less than the LSTM-based model. The reason for the long training time

may be that there are a bunch of convolution kernels of different scales in this model. The

related training information and results are listed in Table 1.

Nevertheless, the time consumption of ResNets is still much smaller than that of end-

to-end binned FCNN with the automatically capturing weighting factors model. In the 2D

space segmentation problem setting, the way the model processes data is equivalent to

switching from parallel processing to serial processing. The resulting more training exam-

ples in 2D space segmentation setting greatly increases the training time. Therefore, alt-

hough the binned-weighting technique greatly improved the classification performance

in the 2D space segmentation problem setting, the models proposed or applied under the

1D time series classification setting are superior.

Figure 5. Training information and classification results of these models under the 1D time series

data classification problem setting.
Figure 5. Training information and classification results of these models under the 1D time series
data classification problem setting.

4.4. Feature Importance Attribution Analysis Based on Gradient Backpropagation

To better interpret the classification models, the feature importance attribution analysis
is usually employed to quantify the interpretability of designed networks. An explainable
and interpretable classification model would be expected to have an attribution map that
can dynamically highlight the highly separable features (corresponding to the peak area in
our application) while suppressing the indistinguishable features as much as possible. Since
gradients can reflect the influence of each input data point on the current class prediction,
and this analysis is model agnostic, does not require ground-truth labels [5], we conducted
a feature importance analysis based on gradient backpropagation. In this experiment,
we estimate the contribution of each input feature on the classification prediction of each
model applied under the 1D time series classification setting, as shown in Figure 6. The
contribution map is the cumulative result of all 1581 training examples.

Appl. Sci. 2021, 11, 11520 15 of 26

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 26

4.4. Feature Importance Attribution Analysis Based on Gradient Backpropagation

To better interpret the classification models, the feature importance attribution anal-

ysis is usually employed to quantify the interpretability of designed networks. An ex-

plainable and interpretable classification model would be expected to have an attribution

map that can dynamically highlight the highly separable features (corresponding to the

peak area in our application) while suppressing the indistinguishable features as much as

possible. Since gradients can reflect the influence of each input data point on the current

class prediction, and this analysis is model agnostic, does not require ground-truth labels

[5], we conducted a feature importance analysis based on gradient backpropagation. In

this experiment, we estimate the contribution of each input feature on the classification

prediction of each model applied under the 1D time series classification setting, as shown

in Figure 6. The contribution map is the cumulative result of all 1581 training examples.

Figure 6. Feature importance analysis result of different models under 1D time series data analysis

settings. The feature importance is calculated based on the sum of the gradients of all training ex-

amples. (a) The first and the last original training examples. (b) The feature importance map of the

Figure 6. Feature importance analysis result of different models under 1D time series data analysis
settings. The feature importance is calculated based on the sum of the gradients of all training
examples. (a) The first and the last original training examples. (b) The feature importance map of
the 1D FCNN model. (c) The feature importance map of the CNN-based model. (d) The feature
importance map of the ResNets model. (e) The feature importance map of the LSTM-based model.
(f) The feature importance map of the Transformer-based model. (g) The feature importance map of
the Convolutional SCT attention model. (h) The feature importance map of the Convolutional SC
attention model.

The results of this experiment show that in the 1D FCNN model (Figure 6b), the
feature importance curve maintains a smooth shape, and focuses on most of the obvious
features of the spectra. Among them, features close to class 0 obtain a positive contribution
value, and features close to class 1 have a negative contribution value. In addition, the
contribution of most features in the overlapping area is close to zero, which can reduce
the misleading effect of indistinguishable features on classification, and further make the
classification-relevant features dominate. Since the 1D FCNN model is only composed of
FC layers, it is the most interpretable. The smooth feature importance curve also reflects

Appl. Sci. 2021, 11, 11520 16 of 26

this point. In order to investigate this further, we visualized the weights learned in each FC
layer, as shown in Figure 7. It can be clearly seen that in each FC layer, only some features
are assigned higher weights. The high interpretability of FC layers reveals particularly
classification relevant features.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 26

1D FCNN model. (c) The feature importance map of the CNN-based model. (d) The feature im-

portance map of the ResNets model. (e) The feature importance map of the LSTM-based model. (f)

The feature importance map of the Transformer-based model. (g) The feature importance map of

the Convolutional SCT attention model. (h) The feature importance map of the Convolutional SC

attention model.

The results of this experiment show that in the 1D FCNN model (Figure 6b), the fea-

ture importance curve maintains a smooth shape, and focuses on most of the obvious fea-

tures of the spectra. Among them, features close to class 0 obtain a positive contribution

value, and features close to class 1 have a negative contribution value. In addition, the

contribution of most features in the overlapping area is close to zero, which can reduce

the misleading effect of indistinguishable features on classification, and further make the

classification-relevant features dominate. Since the 1D FCNN model is only composed of

FC layers, it is the most interpretable. The smooth feature importance curve also reflects

this point. In order to investigate this further, we visualized the weights learned in each

FC layer, as shown in Figure 7. It can be clearly seen that in each FC layer, only some

features are assigned higher weights. The high interpretability of FC layers reveals partic-

ularly classification relevant features.

Figure 7. The weights learned in each FC layer of the 1D FCNN model.

In the CNN-based model (Figure 6c), the obvious features are also well-highlighted,

which further proves the powerful feature extraction ability of the convolution operation.

However, one of the imperfections is that the curve is not well-shaped. For ResNets (Fig-

ure 6d), due to the large strides used in the convolution kernel and pooling operations,

the feature importance attribution curve of ResNets is more discrete. Its attribution map

is also a bit noisy, some indistinguishable features have considerable weight, such as fea-

tures in the range of 1500 to 2000, but most of the obvious features with high separability

are still emphasized.

The gradients through the LSTM-based model (Figure 6e) and Transformer-based

model (Figure 6f) were a little noisy, its importance values in the overlapping regions are

not very well-suppressed We can still easily see that the obtained feature importance con-

tribution curve can well-describe the position and strength of distinguishable features. It

can be seen from the importance maps that the features with higher separability achieved

higher feature importance values, especially the obvious features with lower intensity val-

ues in the latter half of the spectral curve, which are also well-captured.

For convolutional attention networks, most of the obvious features are well-empha-

sized, and the importance contribution values of the features with low separability is

much lower than that of the features with high separability. In the convolutional SCT

model (Figure 6g), the feature importance value of some overlapping regions is even zero,

which perfectly suppresses the indistinguishable features with low separability and low

Figure 7. The weights learned in each FC layer of the 1D FCNN model.

In the CNN-based model (Figure 6c), the obvious features are also well-highlighted,
which further proves the powerful feature extraction ability of the convolution operation.
However, one of the imperfections is that the curve is not well-shaped. For ResNets
(Figure 6d), due to the large strides used in the convolution kernel and pooling operations,
the feature importance attribution curve of ResNets is more discrete. Its attribution map is
also a bit noisy, some indistinguishable features have considerable weight, such as features
in the range of 1500 to 2000, but most of the obvious features with high separability are
still emphasized.

The gradients through the LSTM-based model (Figure 6e) and Transformer-based
model (Figure 6f) were a little noisy, its importance values in the overlapping regions
are not very well-suppressed We can still easily see that the obtained feature importance
contribution curve can well-describe the position and strength of distinguishable features.
It can be seen from the importance maps that the features with higher separability achieved
higher feature importance values, especially the obvious features with lower intensity
values in the latter half of the spectral curve, which are also well-captured.

For convolutional attention networks, most of the obvious features are well-
emphasized, and the importance contribution values of the features with low separa-
bility is much lower than that of the features with high separability. In the convolutional
SCT model (Figure 6g), the feature importance value of some overlapping regions is even
zero, which perfectly suppresses the indistinguishable features with low separability and
low classification confidence. In addition, the shape of its feature importance curve is
similar to that in the 1D FCNN model, indicating that it has high interpretability. Com-
pared with the convolutional SC attention model (Figure 6h), it shows its advantages of
introducing temporal attention. This indicates that the attention mechanism applied in
this model can promote the distinguishable features and suppresses the unobvious and
misleading features.

Among all these models, only some of the non-obvious features in the convolu-
tional SCT attention model can reach an importance value of 0, which benefits from the
self-attention mechanism applied across three dimensions. We further show its feature
importance attribution map of the test dataset in Appendix G.

The gradient-based feature importance analysis can also be used as one of the refer-
ences for classification performance, which can be combined with loss function for model
training and evaluation. Usually, if the model is not well-trained, the feature contribution
map will be rather messy, distinguishing features will not dominate the classification task,

Appl. Sci. 2021, 11, 11520 17 of 26

and many unobvious features will have a great impact; thereby, reducing the credibility of
the classification result.

4.5. Qualitative Analysis of Self-Attention Scores in Convolutional Attention Model

In the feature importance analysis part, we experimentally observed from the con-
tribution map in the convolutional SCT attention models, the distinguishing features can
be well-emphasized, which is indicated by high importance contribution values, while
the importance values of features in overlapping regions with low separability is close
to zero or even zero. It shows the ability to selectively focus on classification-relevant
features and suppress the indistinguishable features with low classification confidence.
Here, we investigate this further by focusing on the self-attention mechanism performed
across spatial, channel, and temporal dimensions and analyze their attention scores.

These attention matrixes can be regarded as an adjacency matrix between the input
feature vectors and output feature vectors. The attention scores define the dependencies
between any two higher-level embedded feature vectors across different dimensions. In our
showcase example, the input shape of the spatial attention module and channel attention
module is (8, 256). Therefore, the shape of the resulting attention matrix in the spatial
dimension and channel dimension are (256, 256) and (8, 8), respectively, as described in
Section 3.2. In this model, the first batch of the input vectors of the spatial attention and
channel attention modules are visualized in Figure 8a, top. The corresponding spatial
attention matrix obtained during testing is shown in Figure 8a, bottom, and the channel
attention matrix is visualized in Figure 8b. From this result, we can understand that only
some obvious spatial feature vectors and channel feature vectors are emphasized, which
correspond well to the attention matrices. For example, by exploiting the interdependen-
cies between channel maps, we can emphasize interdependent feature maps and further
improve feature representation [64].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 26

(a) (b)

Figure 8. (a) The first batch of the spatial attention matrix during testing in the convolutional SCT attention model (top).

The input to the spatial attention module (bottom). We can see clearly that the spatial attention matrix can selectively focus

on obvious features. (b) The first batch of the channel attention matrix of the test dataset in the convolutional SCT attention

model.

In addition, we also visualized the temporal attention matrices obtained from the

training dataset and the testing dataset, and the results show that the self-attention scores

only focus on the feature vectors of a few time steps, as shown in Figure 9. The temporal

attention matrix of the test dataset is obtained according to the parameter matrixes learned

in the Multi-Head temporal attention module, as described in Section 3.2.2. From these

two temporal attention matrixes, we can find that they have similar shapes, and can se-

lectively focus on some high-level embedded temporal feature vectors that are more rele-

vant to the classification task. In this way, the long-range dependencies modeled across

spatial, channel, and temporal dimensions feature greatly enhanced the ability of feature

representation.

(a) (b)

Figure 9. (a) The first batch of temporal attention matrix during training and (b) the temporal attention matrix of the test

dataset in the convolutional SCT attention model.

5. Conclusions and Future Work

In this study, we focus on the application of spectra classification in the fields of dif-

fraction and spectroscopy and on developing and evaluating deep learning classification

Figure 8. (a) The first batch of the spatial attention matrix during testing in the convolutional SCT attention model (top).
The input to the spatial attention module (bottom). We can see clearly that the spatial attention matrix can selectively
focus on obvious features. (b) The first batch of the channel attention matrix of the test dataset in the convolutional SCT
attention model.

In addition, we also visualized the temporal attention matrices obtained from the
training dataset and the testing dataset, and the results show that the self-attention scores
only focus on the feature vectors of a few time steps, as shown in Figure 9. The temporal
attention matrix of the test dataset is obtained according to the parameter matrixes learned

Appl. Sci. 2021, 11, 11520 18 of 26

in the Multi-Head temporal attention module, as described in Section 3.2.2. From these
two temporal attention matrixes, we can find that they have similar shapes, and can
selectively focus on some high-level embedded temporal feature vectors that are more
relevant to the classification task. In this way, the long-range dependencies modeled
across spatial, channel, and temporal dimensions feature greatly enhanced the ability of
feature representation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 26

(a) (b)

Figure 8. (a) The first batch of the spatial attention matrix during testing in the convolutional SCT attention model (top).

The input to the spatial attention module (bottom). We can see clearly that the spatial attention matrix can selectively focus

on obvious features. (b) The first batch of the channel attention matrix of the test dataset in the convolutional SCT attention

model.

In addition, we also visualized the temporal attention matrices obtained from the

training dataset and the testing dataset, and the results show that the self-attention scores

only focus on the feature vectors of a few time steps, as shown in Figure 9. The temporal

attention matrix of the test dataset is obtained according to the parameter matrixes learned

in the Multi-Head temporal attention module, as described in Section 3.2.2. From these

two temporal attention matrixes, we can find that they have similar shapes, and can se-

lectively focus on some high-level embedded temporal feature vectors that are more rele-

vant to the classification task. In this way, the long-range dependencies modeled across

spatial, channel, and temporal dimensions feature greatly enhanced the ability of feature

representation.

(a) (b)

Figure 9. (a) The first batch of temporal attention matrix during training and (b) the temporal attention matrix of the test

dataset in the convolutional SCT attention model.

5. Conclusions and Future Work

In this study, we focus on the application of spectra classification in the fields of dif-

fraction and spectroscopy and on developing and evaluating deep learning classification

Figure 9. (a) The first batch of temporal attention matrix during training and (b) the temporal attention matrix of the test
dataset in the convolutional SCT attention model.

5. Conclusions and Future Work

In this study, we focus on the application of spectra classification in the fields of
diffraction and spectroscopy and on developing and evaluating deep learning classification
frameworks for 1D spectral time series. We regard the task either as a 2D space segmen-
tation problem or as a 1D time series data analysis problem. We focus on two proposed
classification models, namely the end-to-end binned FCNN with the automatically captur-
ing weighting factors model when viewed as a 2D space segmentation problem and the
convolutional SCT attention model when viewed as a 1D time series classification problem.
Several other end-to-end model structures based on FCNN, CNN, ResNets, Transformer,
and LSTM are explored. Finally, we evaluated and compared the performance of these
classification models based on the HED spectra dataset.

In the 2D space segmentation problem setting, for the proposed binned FCNN with the
automatically capturing weighting factors model, a quantitative comparison experiment
was carried out under different numbers of bins. The classification results show that
the classification confidence increases with the increase in the number of bins, while the
training time decreases, which means that the binned weighting technique can minimize or
even eliminate the effects of misclassifications of indistinguishable features in overlapping
regions and speed up the training.

In the 1D time series data analysis problem setting, the 1D FCNN model, CNN-based
model, ResNets model, LSTM-based model, Transformer-based model, and our proposed
hybrid convolutional attention models are applied, and these models were compared from
multiple angles by reporting their classification performance on an HED spectra dataset.
Our results show that in this setting, all the models can achieve 100% confidence. Among
them, the LSTM-based model and Transformer-based model architecture consume less time
(0.463 s and 0.449 s, respectively) compared with the convolutional-based models or the
FCNN-based model. Our proposed convolutional SCT attention model also achieved good
performance, consuming 1.269 s of training time and does not consume much memory. The
CNN-based model has the least trainable parameters and occupies the least memory, while
the ResNet model occupies the most training memory and consumes the most training
time. As the most time-consuming model, ResNet still uses much less time than the model

Appl. Sci. 2021, 11, 11520 19 of 26

proposed in the 2D space segmentation problem setting. Therefore, the proposed or applied
models under the 1D time series classification setting are superior.

In addition, we investigated all the models in the 1D time series classification setting
further through a feature importance analysis using gradients backpropagation. We ob-
served that the 1D FCNN model has the smoothest feature importance map, which also
reflects its high interpretability. Further analysis shows that the well-learned weights of
each FC layer can focus on most of the obvious features. Moreover, we found that the
convolutional SCT attention model has a feature importance map similar to the 1D FCNN
model, and the importance value of some indistinguishable features can even reach 0.
We studied this further by visualizing the self-attention matrices obtained during train-
ing and testing. The results show that the self-attention mechanism performed across
spatial, channel, and temporal dimensions can greatly help it focus on obvious features
with high separability and suppress indistinguishable feature vectors better than others.
These superior characteristics make it suitable for the real-time analysis of experimental
spectra data.

It should be noted that our dataset is a very nice representative. All these models
implemented in this work can be applied to other spectra datasets generated by other
diffraction techniques or spectroscopy techniques, because the spectra have similar charac-
teristics, such as peak increasing, decreasing, broadening, and shifting. We also provide
the data analysis scripts as Jupyter notebooks for reproducibility. In addition, the proposed
classification models can also be generally applied or easily extended to the classification
of any 1D time series.

In this work, only the univariate dataset was tested. In the future, we will improve our
DL classification model to make it a general architecture for univariate and multivariate
classification tasks. At the same time, multiple datasets from different diffraction or spec-
troscopy techniques, including univariate and multivariate, will be used for more accurate
and reliable evaluation of the algorithms. In addition, the parameters and hyperparame-
ters of these algorithms are currently manually selected. In subsequent research, we will
consider conducting parameter analysis work, such as using some optimization algorithms
to fine-tune these parameters. We will also further extend our classification model to
two-dimensional or three-dimensional image data classification tasks. Finally, learning
interpretable, explainable, and generalizable models from data is one of the important
directions of our follow-up research.

Author Contributions: Conceptualization, S.B. and P.H.; methodology, P.H. and S.B.; software, Y.S.;
validation, P.H. and S.B.; formal analysis, Y.S.; investigation, P.H.; resources, S.B.; data curation,
Y.S.; writing—original draft preparation, Y.S.; writing—review and editing, P.H., S.B. and Y.S.;
visualization, Y.S.; supervision, S.B. and P.H.; project administration, S.B.; funding acquisition, S.B.
and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from China Scholarship Council (CSC, No.201904890020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is publicly available at https://zenodo.org/record/4424
866 (accessed on 26 November 2021).

Acknowledgments: The authors would like to thank Christian Plueckthun and Zuzana Konopkova
at European XFEL for providing the HED experimental spectral data and valuable discussions and
interpretations. This work was supported by the China Scholarship Council (CSC), the European
XFEL, and the Hungarian Ministry of Innovation and Technology NRDI Office within the framework
of the Artificial Intelligence National Laboratory Program (MILAB). Furthermore, Péter Hegedűs
was supported by the Bolyai János Scholarship of the Hungarian Academy of Sciences.

Conflicts of Interest: The authors declare no conflict of interest.

https://zenodo.org/record/4424866
https://zenodo.org/record/4424866

Appl. Sci. 2021, 11, 11520 20 of 26

Appendix A. Convolutional SC Attention Model Architecture

The architecture of the convolutional SC attention model is illustrated in Figure A1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 26

spectroscopy techniques, including univariate and multivariate, will be used for more ac-

curate and reliable evaluation of the algorithms. In addition, the parameters and hyperpa-

rameters of these algorithms are currently manually selected. In subsequent research, we

will consider conducting parameter analysis work, such as using some optimization algo-

rithms to fine-tune these parameters. We will also further extend our classification model

to two-dimensional or three-dimensional image data classification tasks. Finally, learning

interpretable, explainable, and generalizable models from data is one of the important

directions of our follow-up research.

Author Contributions: Conceptualization, S.B. and P.H.; methodology, P.H. and S.B.; software, Y.S.;

validation, P.H. and S.B.; formal analysis, Y.S.; investigation, P.H.; resources, S.B.; data curation,

Y.S.; writing—original draft preparation, Y.S.; writing—review and editing, P.H., S.B. and Y.S.; vis-

ualization, Y.S.; supervision, S.B. and P.H.; project administration, S.B.; funding acquisition, S.B. and

Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from China Scholarship Council (CSC, No.201904890020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is publicly available at https://zenodo.org/record/4424866

(accessed on 26 November 2021).

Acknowledgments: The authors would like to thank Christian Plueckthun and Zuzana Konopkova

at European XFEL for providing the HED experimental spectral data and valuable discussions and

interpretations. This work was supported by the China Scholarship Council (CSC), the European

XFEL, and the Hungarian Ministry of Innovation and Technology NRDI Office within the frame-

work of the Artificial Intelligence National Laboratory Program (MILAB). Furthermore, Péter

Hegedűs was supported by the Bolyai János Scholarship of the Hungarian Academy of Sciences.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Convolutional SC Attention Model Architecture

The architecture of the convolutional SC attention model is illustrated in Figure A1.

Figure A1. Illustration of Convolutional SC attention network architecture. In this architecture, attention is calculated

across spatial and channel dimensions.

In this architecture, attention is calculated across position and channel dimension, we

call it a convolutional PC attention model. It should be noted that, if the 1 × 1 Conv 3

module is not used or if you exchange its position with the Feed Forward module, the

modules in the red box can be performed multiple times to better represent the features

However, we would better strike a balance between performance and memory and com-

putational consumption.

Appendix B. 1D FCNN Model

The architecture of the 1D FCNN model is illustrated in Figure A1. The number of

neurons in each hidden FC layer is 256, 512, 64, respectively. The output layer has 1 neu-

ron, followed by a sigmoid activation function to convert the predicted values into prob-

abilities. It should be noted that a dropout layer can be optionally added to prevent over-

fitting in this architecture.

Figure A1. Illustration of Convolutional SC attention network architecture. In this architecture, attention is calculated across
spatial and channel dimensions.

In this architecture, attention is calculated across position and channel dimension, we
call it a convolutional PC attention model. It should be noted that, if the 1 × 1 Conv 3 mod-
ule is not used or if you exchange its position with the Feed Forward module, the modules
in the red box can be performed multiple times to better represent the features However,
we would better strike a balance between performance and memory and computational
consumption.

Appendix B. 1D FCNN Model

The architecture of the 1D FCNN model is illustrated in Figure A1. The number of
neurons in each hidden FC layer is 256, 512, 64, respectively. The output layer has 1 neuron,
followed by a sigmoid activation function to convert the predicted values into probabilities.
It should be noted that a dropout layer can be optionally added to prevent overfitting in
this architecture.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 26

Figure A2. Illustration of 1D multi-layer Fully Connected Neural Network (1D FCNN) model.

Appendix C. CNN-based Solution

In the CNN-based solution, the input is first normalized by the layer normalization

function, and then fed into convolutional blocks. Each convolutional block consists of a

1D convolutional layer succeeded by a BatchNorm1d function, a ReLU activation func-

tion, and an 1D MaxPool operation. After that, the output of the convolution module is

flattened and input into an FC block, which consists of a LayerNorm1d function and an

FC layer with one output neuron. Sigmoid is used as the activation function to perform

the classification task. The first and second convolutional layers have 64 filters with the

kernel sizes of 5 and 3, respectively. The last convolution layer is designed with 4 output

channels with a kernel size of 3, and stride of 1 to reduce the number of channels and

retain the most obvious features. The size of the kernel and the stride of max pooling op-

eration are 2. The number of neurons in the flattened layer (the FC layer) depends on the

parameters of the three convolution modules and the number of features (data points) in

the input, which is 496 in our case. In this architecture, the batch normalization and layer

normalization are used to speed up the training process.

Figure A3. Illustration of convolutional neural network solution.

Appendix D. Multi-Scale Residual Networks (ResNets) Solution

Residual Networks (ResNets) [37] are introduced to cope with the degradation prob-

lem in deep convolutional neural networks. The identity shortcut connections embedded

in the ResNets can aid gradient backpropagation through the network and allow the train-

ing of very deep models, as shown in Figure A4. Currently, ResNets are a common back-

bone architecture in computer vision and also have been adapted to time series classifica-

tion [39] where 2D convolutions through the spatial dimensions are replaced by 1D con-

volutions through time [5]. They consist of residual blocks of convolution layers and batch

normalization layers (optionally), followed by a Rectified Linear Unit (ReLU) activation

function.

Multiscale ResNets architecture, constructed by multiple residual CNN blocks with

different convolutional kernel sizes that can capture complex features at multiple scales,

has shown good results on time series benchmark datasets [5,39]. In this work, we utilize

the ResNets model proposed by Liu et al. [39] where the input time series are processed

in three independent streams, each stream has three residual blocks, and the convolution

kernel sizes are 3, 5, and 7, respectively. After the residual blocks are in each stream, the

features are then average pooled with pooling kernel sizes of 16, 11, 6; thus, yielding mul-

tiple-scale feature representations. Because their architecture is well-designed, we

adopted their architecture. One difference from the architecture [39] is that we added a

Figure A2. Illustration of 1D multi-layer Fully Connected Neural Network (1D FCNN) model.

Appendix C. CNN-Based Solution

In the CNN-based solution, the input is first normalized by the layer normalization
function, and then fed into convolutional blocks. Each convolutional block consists of a 1D
convolutional layer succeeded by a BatchNorm1d function, a ReLU activation function, and
an 1D MaxPool operation. After that, the output of the convolution module is flattened and
input into an FC block, which consists of a LayerNorm1d function and an FC layer with
one output neuron. Sigmoid is used as the activation function to perform the classification
task. The first and second convolutional layers have 64 filters with the kernel sizes of 5
and 3, respectively. The last convolution layer is designed with 4 output channels with
a kernel size of 3, and stride of 1 to reduce the number of channels and retain the most
obvious features. The size of the kernel and the stride of max pooling operation are 2. The
number of neurons in the flattened layer (the FC layer) depends on the parameters of the
three convolution modules and the number of features (data points) in the input, which is
496 in our case. In this architecture, the batch normalization and layer normalization are
used to speed up the training process.

Appl. Sci. 2021, 11, 11520 21 of 26

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 26

Figure A2. Illustration of 1D multi-layer Fully Connected Neural Network (1D FCNN) model.

Appendix C. CNN-based Solution

In the CNN-based solution, the input is first normalized by the layer normalization

function, and then fed into convolutional blocks. Each convolutional block consists of a

1D convolutional layer succeeded by a BatchNorm1d function, a ReLU activation func-

tion, and an 1D MaxPool operation. After that, the output of the convolution module is

flattened and input into an FC block, which consists of a LayerNorm1d function and an

FC layer with one output neuron. Sigmoid is used as the activation function to perform

the classification task. The first and second convolutional layers have 64 filters with the

kernel sizes of 5 and 3, respectively. The last convolution layer is designed with 4 output

channels with a kernel size of 3, and stride of 1 to reduce the number of channels and

retain the most obvious features. The size of the kernel and the stride of max pooling op-

eration are 2. The number of neurons in the flattened layer (the FC layer) depends on the

parameters of the three convolution modules and the number of features (data points) in

the input, which is 496 in our case. In this architecture, the batch normalization and layer

normalization are used to speed up the training process.

Figure A3. Illustration of convolutional neural network solution.

Appendix D. Multi-Scale Residual Networks (ResNets) Solution

Residual Networks (ResNets) [37] are introduced to cope with the degradation prob-

lem in deep convolutional neural networks. The identity shortcut connections embedded

in the ResNets can aid gradient backpropagation through the network and allow the train-

ing of very deep models, as shown in Figure A4. Currently, ResNets are a common back-

bone architecture in computer vision and also have been adapted to time series classifica-

tion [39] where 2D convolutions through the spatial dimensions are replaced by 1D con-

volutions through time [5]. They consist of residual blocks of convolution layers and batch

normalization layers (optionally), followed by a Rectified Linear Unit (ReLU) activation

function.

Multiscale ResNets architecture, constructed by multiple residual CNN blocks with

different convolutional kernel sizes that can capture complex features at multiple scales,

has shown good results on time series benchmark datasets [5,39]. In this work, we utilize

the ResNets model proposed by Liu et al. [39] where the input time series are processed

in three independent streams, each stream has three residual blocks, and the convolution

kernel sizes are 3, 5, and 7, respectively. After the residual blocks are in each stream, the

features are then average pooled with pooling kernel sizes of 16, 11, 6; thus, yielding mul-

tiple-scale feature representations. Because their architecture is well-designed, we

adopted their architecture. One difference from the architecture [39] is that we added a

Figure A3. Illustration of convolutional neural network solution.

Appendix D. Multi-Scale Residual Networks (ResNets) Solution

Residual Networks (ResNets) [37] are introduced to cope with the degradation prob-
lem in deep convolutional neural networks. The identity shortcut connections embedded in
the ResNets can aid gradient backpropagation through the network and allow the training
of very deep models, as shown in Figure A4. Currently, ResNets are a common backbone
architecture in computer vision and also have been adapted to time series classification [39]
where 2D convolutions through the spatial dimensions are replaced by 1D convolutions
through time [5]. They consist of residual blocks of convolution layers and batch normal-
ization layers (optionally), followed by a Rectified Linear Unit (ReLU) activation function.

Multiscale ResNets architecture, constructed by multiple residual CNN blocks with
different convolutional kernel sizes that can capture complex features at multiple scales,
has shown good results on time series benchmark datasets [5,39]. In this work, we utilize
the ResNets model proposed by Liu et al. [39] where the input time series are processed
in three independent streams, each stream has three residual blocks, and the convolution
kernel sizes are 3, 5, and 7, respectively. After the residual blocks are in each stream, the
features are then average pooled with pooling kernel sizes of 16, 11, 6; thus, yielding
multiple-scale feature representations. Because their architecture is well-designed, we
adopted their architecture. One difference from the architecture [39] is that we added
a LayerNorm1d layer after the original input and before the FC layer. In addition, we
replaced the feature concentration operation with a simple element-wise feature addition
operation after the three residual blocks. If we denote the feature representations in the
three streams as χc1, χc2, χc3, then this operation can be expressed as χc = χc1 + χc2 + χc2.
Another commonly used operation for the features fusion is to perform a weighted element-
wise feature addition, which can be expressed as χc = αχc1 + βχc2 + γχc2, where α, β,
γ are learnable parameters during training Usually learning these three parameters will
greatly slow down the training process and need more training samples.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 26

LayerNorm1d layer after the original input and before the FC layer. In addition, we re-

placed the feature concentration operation with a simple element-wise feature addition

operation after the three residual blocks. If we denote the feature representations in the

three streams as χ𝑐1, χ𝑐2, χ𝑐3, then this operation can be expressed as χ𝑐 = χ𝑐1 + χ𝑐2 + χ𝑐2.

Another commonly used operation for the features fusion is to perform a weighted ele-

ment-wise feature addition, which can be expressed as χ𝑐 = αχ𝑐1 + βχ𝑐2 + γχ𝑐2, where α,

β, γ are learnable parameters during training Usually learning these three parameters

will greatly slow down the training process and need more training samples.

Figure A4. Illustration of a building residual block.

Appendix E. LSTM-Based Solution

In the LSTM-based model, during training, we processed 31 spectral data vectors in

each batch, corresponding to the number of original training examples described in Sec-

tion 3.3.3, so the connections between different spectral observations at different time

steps (sequential correlation of spectral time series) can be effectively leveraged. During

the test, the sequence length is set to 349, which is the total number of our spectra data.

The spectra data classification model based on the LSTM structure is shown in Figure A5.

In this model, a dense layer or a convolutional layer can be used for input embedding,

followed by a LayerNorm layer and ReLU activation function. In this process, the dimen-

sionality of the input signal can be reduced as well. For simplicity, a dense layer is applied

in our implementation, with 512 output units. The learned input embeddings are then fed

into the two layers LSTM module, with 512 neurons in the hidden state. Next is the clas-

sification decoder module, which consists of a LayerNorm layer and a dense layer (512

input neurons and 1 output neuron), where sigmoid is used as the activation function for

the classification task. LayerNorm operations applied in this model prevent overfitting

and speed up training. Compared with our previous work [12], the PCA preprocessing

process is replaced by the input embedding module, so an end-to-end LSTM-based clas-

sification model is constructed. In addition, the model also makes use of time dimension

information to make the extracted features more complete.

Figure A5. Illustration of Multi-LSTM-based model for spectra data classification.

Figure A4. Illustration of a building residual block.

Appendix E. LSTM-Based Solution

In the LSTM-based model, during training, we processed 31 spectral data vectors
in each batch, corresponding to the number of original training examples described in
Section 3.3.3, so the connections between different spectral observations at different time
steps (sequential correlation of spectral time series) can be effectively leveraged. During

Appl. Sci. 2021, 11, 11520 22 of 26

the test, the sequence length is set to 349, which is the total number of our spectra data.
The spectra data classification model based on the LSTM structure is shown in Figure A5.

In this model, a dense layer or a convolutional layer can be used for input embed-
ding, followed by a LayerNorm layer and ReLU activation function. In this process, the
dimensionality of the input signal can be reduced as well. For simplicity, a dense layer is
applied in our implementation, with 512 output units. The learned input embeddings are
then fed into the two layers LSTM module, with 512 neurons in the hidden state. Next is
the classification decoder module, which consists of a LayerNorm layer and a dense layer
(512 input neurons and 1 output neuron), where sigmoid is used as the activation function
for the classification task. LayerNorm operations applied in this model prevent overfitting
and speed up training. Compared with our previous work [12], the PCA preprocessing
process is replaced by the input embedding module, so an end-to-end LSTM-based classi-
fication model is constructed. In addition, the model also makes use of time dimension
information to make the extracted features more complete.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 26

LayerNorm1d layer after the original input and before the FC layer. In addition, we re-

placed the feature concentration operation with a simple element-wise feature addition

operation after the three residual blocks. If we denote the feature representations in the

three streams as χ𝑐1, χ𝑐2, χ𝑐3, then this operation can be expressed as χ𝑐 = χ𝑐1 + χ𝑐2 + χ𝑐2.

Another commonly used operation for the features fusion is to perform a weighted ele-

ment-wise feature addition, which can be expressed as χ𝑐 = αχ𝑐1 + βχ𝑐2 + γχ𝑐2, where α,

β, γ are learnable parameters during training Usually learning these three parameters

will greatly slow down the training process and need more training samples.

Figure A4. Illustration of a building residual block.

Appendix E. LSTM-Based Solution

In the LSTM-based model, during training, we processed 31 spectral data vectors in

each batch, corresponding to the number of original training examples described in Sec-

tion 3.3.3, so the connections between different spectral observations at different time

steps (sequential correlation of spectral time series) can be effectively leveraged. During

the test, the sequence length is set to 349, which is the total number of our spectra data.

The spectra data classification model based on the LSTM structure is shown in Figure A5.

In this model, a dense layer or a convolutional layer can be used for input embedding,

followed by a LayerNorm layer and ReLU activation function. In this process, the dimen-

sionality of the input signal can be reduced as well. For simplicity, a dense layer is applied

in our implementation, with 512 output units. The learned input embeddings are then fed

into the two layers LSTM module, with 512 neurons in the hidden state. Next is the clas-

sification decoder module, which consists of a LayerNorm layer and a dense layer (512

input neurons and 1 output neuron), where sigmoid is used as the activation function for

the classification task. LayerNorm operations applied in this model prevent overfitting

and speed up training. Compared with our previous work [12], the PCA preprocessing

process is replaced by the input embedding module, so an end-to-end LSTM-based clas-

sification model is constructed. In addition, the model also makes use of time dimension

information to make the extracted features more complete.

Figure A5. Illustration of Multi-LSTM-based model for spectra data classification.

Figure A5. Illustration of Multi-LSTM-based model for spectra data classification.

Appendix F. Transformer-Based Solution

The transformer-based method for spectral data classification is illustrated in Figure A6
below. Since our spectral time series data lives in a continuous space of spectral intensity
values, the dense layer or the convolutional layer for input embedding can be used instead
of the word embedding step. In the implementation, we adopt a dense FC layer for the
input embedding, it produces outputs of dimension 256. The sequence length setting in
the training and testing process is the same as that of the LSTM model, so as to utilize the
sequential correlation information of different spectral time series. The step of positional
encoding is adopted according to [26]. In this work, we employ two Transformer encoder
layers with 8 attention heads, running in parallel.

In the decoder part, similar to the input embedding, a dense layer with sigmoid as
the activation function is used to predict the probability of the class label of each spectral
curve. Here, the input dimension of the dense layer is 256, and the output dimension is 1.

Appl. Sci. 2021, 11, 11520 23 of 26

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 26

Appendix F. Transformer-Based Solution

The transformer-based method for spectral data classification is illustrated in Figure

A6 below. Since our spectral time series data lives in a continuous space of spectral inten-

sity values, the dense layer or the convolutional layer for input embedding can be used

instead of the word embedding step. In the implementation, we adopt a dense FC layer

for the input embedding, it produces outputs of dimension 256. The sequence length set-

ting in the training and testing process is the same as that of the LSTM model, so as to

utilize the sequential correlation information of different spectral time series. The step of

positional encoding is adopted according to [26]. In this work, we employ two Trans-

former encoder layers with 8 attention heads, running in parallel.

In the decoder part, similar to the input embedding, a dense layer with sigmoid as

the activation function is used to predict the probability of the class label of each spectral

curve. Here, the input dimension of the dense layer is 256, and the output dimension is 1.

Figure A6. Illustration of Transformer-based Model. Single transformer layer is used for spectra

data classification. In the decoder part, the dense layer with sigmoid as the activation function is

used for the classification task.

Appendix G. Further Information about Feature Importance Attribution Analysis

In Figure A7, we further show the feature importance map of the test dataset in the

convolutional SCT attention model and visualize the feature importance attribution curve

of each test spectra. It can be seen from this figure that the distribution of the feature im-

portance map of the spectral dataset is consistent with its intensity distribution. The clas-

sification model can selectively focus on obvious features and can even capture the de-

pendencies across temporal dimensions.

Figure A6. Illustration of Transformer-based Model. Single transformer layer is used for spectra data
classification. In the decoder part, the dense layer with sigmoid as the activation function is used for
the classification task.

Appendix G. Further Information about Feature Importance Attribution Analysis

In Figure A7, we further show the feature importance map of the test dataset in the
convolutional SCT attention model and visualize the feature importance attribution curve
of each test spectra. It can be seen from this figure that the distribution of the feature
importance map of the spectral dataset is consistent with its intensity distribution. The
classification model can selectively focus on obvious features and can even capture the
dependencies across temporal dimensions.

Appl. Sci. 2021, 11, 11520 24 of 26Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 26

Figure A7. Top row: A contour plot showing the time evolution of the diffraction spectra of the HED

dataset. Second row: Visualization of the feature importance map of the test dataset in the convolu-

tional SCT attention model. Third row: The sum of the gradient-based feature importance values in

the test dataset. Bottom row: Representative diffraction spectra of class 0 and class 1 (first and last

spectral curves).

References

1. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.

Knowl. Discov. 2019, 33, 917–963.

2. Kamath, U.; Liu, J.; Whitaker, J. Deep Learning for NLP and Speech Recognition; Springer: Cham, Switzerland, 2019; Volume 84.

3. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and

wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261,

https://doi.org/10.1016/j.eswa.2018.03.056.

4. Sarker, I.H. Deep cybersecurity: A comprehensive overview from neural network and deep learning perspective. SN Computer

Science 2021, 2, 1-16.

5. Rußwurm, M.; Körner, M. Self-attention for raw optical satellite time series classification. ISPRS J. Photogramm. Remote. Sens.

2020, 169, 421–435.

6. Liu, J.; Yan, J.; Wang, L.; Huang, L.; He, H.; Liu, H. Remote Sensing Time Series Classification Based on Self-Attention Mecha-

nism and Time Sequence Enhancement. Remote Sens. 2021, 13, 1804, https://doi.org/10.3390/rs13091804.

7. Ghosh, K.; Stuke, A.; Todorović, M.; Jørgensen, P.B.; Schmidt, M.N.; Vehtari, A.; Rinke, P. Deep learning spectroscopy: Neural

networks for molecular excitation spectra. Adv. Sci. 2019, 6, 1801367.

8. Liu, Y. Adversarial nets for baseline correction in spectra processing. Chemom. Intell. Lab. Syst. 2021, 213, 104317.

9. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444, doi:10.1038/nature14539.

10. Edelen, A.; Mayes, C.; Bowring, D.; Ratner, D.; Adelmann, A.; Ischebeck, R.; Snuverink, J.; Agapov, I.; Kammering, R.; Edelen,

J. Opportunities in machine learning for particle accelerators. arXiv 2018, arXiv:1811.03172.

11. Nakatsutsumi, M.; Tschentscher, T.; Cowan, T.; Ferrari, A.; Schlenvoigt, H.P.; Appel, K.; Strempfer, J.; Zimmermann, M.V.

Scientific Instrument High Energy Density Physics (HED); European X-ray Free-Electron Laser Facility GmbH: Hamburg, Ger-

many, 2014.

Figure A7. (Top row): A contour plot showing the time evolution of the diffraction spectra of the
HED dataset. (Second row): Visualization of the feature importance map of the test dataset in the
convolutional SCT attention model. (Third row): The sum of the gradient-based feature importance
values in the test dataset. (Bottom row): Representative diffraction spectra of class 0 and class 1 (first
and last spectral curves).

References
1. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.

Knowl. Discov. 2019, 33, 917–963. [CrossRef]
2. Kamath, U.; Liu, J.; Whitaker, J. Deep Learning for NLP and Speech Recognition; Springer: Cham, Switzerland, 2019; Volume 84.
3. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and

wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef]
4. Sarker, I.H. Deep cybersecurity: A comprehensive overview from neural network and deep learning perspective. SN Comput. Sci.

2021, 2, 1–16.
5. Rußwurm, M.; Körner, M. Self-attention for raw optical satellite time series classification. ISPRS J. Photogramm. Remote Sens. 2020,

169, 421–435. [CrossRef]
6. Liu, J.; Yan, J.; Wang, L.; Huang, L.; He, H.; Liu, H. Remote Sensing Time Series Classification Based on Self-Attention Mechanism

and Time Sequence Enhancement. Remote Sens. 2021, 13, 1804. [CrossRef]
7. Ghosh, K.; Stuke, A.; Todorović, M.; Jørgensen, P.B.; Schmidt, M.N.; Vehtari, A.; Rinke, P. Deep learning spectroscopy: Neural

networks for molecular excitation spectra. Adv. Sci. 2019, 6, 1801367. [CrossRef]
8. Liu, Y. Adversarial nets for baseline correction in spectra processing. Chemom. Intell. Lab. Syst. 2021, 213, 104317. [CrossRef]
9. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
10. Edelen, A.; Mayes, C.; Bowring, D.; Ratner, D.; Adelmann, A.; Ischebeck, R.; Snuverink, J.; Agapov, I.; Kammering, R.; Edelen, J.

Opportunities in machine learning for particle accelerators. arXiv 2018, arXiv:1811.03172.
11. Nakatsutsumi, M.; Tschentscher, T.; Cowan, T.; Ferrari, A.; Schlenvoigt, H.P.; Appel, K.; Strempfer, J.; Zimmermann, M.V. Scientific

Instrument High Energy Density Physics (HED); European X-ray Free-Electron Laser Facility GmbH: Hamburg, Germany, 2014.

http://doi.org/10.1007/s10618-019-00619-1
http://doi.org/10.1016/j.eswa.2018.03.056
http://doi.org/10.1016/j.isprsjprs.2020.06.006
http://doi.org/10.3390/rs13091804
http://doi.org/10.1002/advs.201801367
http://doi.org/10.1016/j.chemolab.2021.104317
http://doi.org/10.1038/nature14539

Appl. Sci. 2021, 11, 11520 25 of 26

12. Sun, Y.; Brockhauser, S.; Hegedűs, P. Machine Learning Applied for Spectra Classification. In International Conference on
Computational Science and Its Applications; Springer: Cham, Switzerland, 2021; pp. 54–68.

13. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for knn classification. ACM Trans. Intell. Syst. Technol. (TIST) 2017, 8,
1–19. [CrossRef]

14. Chen, H.; Lin, Z.; Tan, C. Nondestructive discrimination of pharmaceutical preparations using near-infrared spectroscopy and
partial least-squares discriminant analysis. Anal. Lett. 2018, 51, 564–574. [CrossRef]

15. da Costa, N.L.; Llobodanin, L.A.G.; de Lima, M.D.; Castro, I.A.; Barbosa, R. Geographical recognition of Syrah wines by combining
feature selection with Extreme Learning Machine. Measurement 2018, 120, 92–99. [CrossRef]

16. Zou, A.M.; Shi, J.; Ding, J.; Wu, F.X. Charge state determination of peptide tandem mass spectra using support vector machine
(SVM). IEEE Trans. Inf. Technol. Biomed. 2010, 14, 552–558.

17. Karim, F.; Majumdar, H.S.; Darabi, S.C. Lstm fully convolutional networks for time series classication. arXiv 2017,
arXiv:1709.05206.

18. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In Proceedings
of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, New York, NY, USA, 8–12
July 2018; pp. 95–104.

19. Tan, C.W.; Bergmeir, C.; Petitjean, F.; Webb, G.I. Monash University, UEA, UCR Time Series Regression Archive. arXiv 2020,
arXiv:2006.10996.

20. Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; Eickhoff, C. A Transformer-based Framework for Multivariate Time Series
Representation Learning. arXiv 2020, arXiv:2010.02803.

21. Garnot, V.S.F.; Landrieu, L.; Giordano, S.; Chehata, N. Satellite image time series classification with pixel-set encoders and
temporal self-attention. arXiv 2019, arXiv:1911.07757.

22. Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning to predict soil properties from regional spectral data. Geoderma
Reg. 2019, 16, e00198. [CrossRef]

23. Dempster, A.; Petitjean, F.; Webb, G.I. ROCKET: Exceptionally fast and accurate time series classification using random convolu-
tional kernels. Data Min. Knowl. Discov. 2020, 34, 1454–1495. [CrossRef]

24. Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, convolutional, and recurrent models for human activity recognition using wearables.
arXiv 2016, arXiv:1604.08880.

25. Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv 2015,
arXiv:1511.03677.

26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

27. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings
of the IJCNN 2017: International Joint Conference on Neural Networks, Anchorage, Alaska, 14–19 May 2017; pp. 1578–1585.

28. Bertasius, G.; Wang, H.; Torresani, L. Is Space-Time Attention All You Need for Video Understanding? arXiv 2021,
arXiv:2102.05095.

29. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]

30. Zheng, W.; Shu, H.; Tang, H.; Zhang, H. Spectra data classification with kernel extreme learning machine. Chemom. Intell. Lab.
Syst. 2019, 192, 103815. [CrossRef]

31. Chen, Z.; Andrejevic, N.; Drucker, N.; Nguyen, T.; Xian, R.P.; Smidt, T.; Wang, Y.; Ernstorfer, R.; Tennant, A.; Chan, M. Machine
learning on neutron and x-ray scattering. arXiv 2021, arXiv:2102.03024.

32. Singhal, G.; Bansod, B.; Mathew, L.; Goswami, J.; Choudhury, B.U.; Raju, P.L.N. Chlorophyll estimation using multi-spectral
unmanned aerial system based on machine learning techniques. Remote Sens. Appl. Soc. Environ. 2019, 15, 100235. [CrossRef]

33. Song, W.; Wang, H.; Maguire, P.; Nibouche, O. Nearest clusters based partial least squares discriminant analysis for the
classification of spectral data. Anal. Chim. Acta 2018, 1009, 27–38. [CrossRef]

34. Bai, J.; Xue, Y.; Bjorck, J.; Le Bras, R.; Rappazzo, B.; Bernstein, R.; Suram, S.K.; Van Dover, R.B.; Gregoire, J.M.; Gomes, C.P. Phase
Mapper: Accelerating Materials Discovery with AI. AI Mag. 2018, 39, 15–26. [CrossRef]

35. Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series.
Remote Sens. 2019, 11, 523. [CrossRef]

36. Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2018, 221, 430–443.
[CrossRef]

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

38. Liu, R.; Wang, F.; Yang, B.; Qin, S.J. Multiscale kernel based residual convolutional neural network for motor fault diagnosis
under nonstationary conditions. IEEE Trans. Ind. Inform. 2019, 16, 3797–3806. [CrossRef]

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

40. Yazdanbakhsh, O.; Dick, S. Multivariate time series classification using dilated convolutional neural network. arXiv 2019,
arXiv:1905.01697.

http://doi.org/10.1145/2990508
http://doi.org/10.1080/00032719.2017.1339070
http://doi.org/10.1016/j.measurement.2018.01.052
http://doi.org/10.1016/j.geodrs.2018.e00198
http://doi.org/10.1007/s10618-020-00701-z
http://doi.org/10.1007/s13244-018-0639-9
http://www.ncbi.nlm.nih.gov/pubmed/29934920
http://doi.org/10.1016/j.chemolab.2019.103815
http://doi.org/10.1016/j.rsase.2019.100235
http://doi.org/10.1016/j.aca.2018.01.023
http://doi.org/10.1609/aimag.v39i1.2785
http://doi.org/10.3390/rs11050523
http://doi.org/10.1016/j.rse.2018.11.032
http://doi.org/10.1109/TII.2019.2941868
http://doi.org/10.1109/TPAMI.2015.2389824

Appl. Sci. 2021, 11, 11520 26 of 26

41. Borovykh, A.; Bohte, S.; Oosterlee, C.W. Dilated convolutional neural networks for time series forecasting. J. Comput. Financ.
2018, 22, 73–101. [CrossRef]

42. Ho, C.-S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.E.; Ermon, S.; Dionne, J. Rapid
identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 1–8. [CrossRef]

43. Hou, X.; Wang, G.; Wang, X.; Ge, X.; Fan, Y.; Nie, S. Convolutional neural network based approach for classification of edible oils
using low-field nuclear magnetic resonance. J. Food Compos. Anal. 2020, 92, 103566. [CrossRef]

44. Oviedo, F.; Ren, Z.; Sun, S.; Settens, C.; Liu, Z.; Hartono, N.T.P.; Ramasamy, S.; DeCost, B.L.; Tian, S.I.P.; Romano, G.; et al. Fast
and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. NPJ
Comput. Mater. 2019, 5, 60. [CrossRef]

45. Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019, 116,
237–245. [CrossRef]

46. Gao, S.; Ramanathan, A.; Tourassi, G. Hierarchical convolutional attention networks for text classification. In Proceedings of the
Third Workshop on Representation Learning for NLP, Melbourne, Australia, 20 July 2018; pp. 11–23.

47. Cheng, J.; Tian, S.; Yu, L.; Lu, H.; Lv, X. Fully convolutional attention network for biomedical image segmentation. Artif. Intell.
Med. 2020, 107, 101899. [CrossRef]

48. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
49. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
50. Dasgupta, S.; Osogami, T. Nonlinear dynamic Boltzmann machines for time-series prediction. In Proceedings of the AAAI

Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.
51. Shih, S.-Y.; Sun, F.-K.; Lee, H.-Y. Temporal pattern attention for multivariate time series forecasting. Mach. Learn. 2019, 108,

1421–1441. [CrossRef]
52. Interdonato, R.; Ienco, D.; Gaetano, R.; Ose, K. DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn.

ISPRS J. Photogramm. Remote Sens. 2019, 149, 91–104. [CrossRef]
53. Dandıl, E.; Karaca, S. Detection of pseudo brain tumors via stacked LSTM neural networks using MR spectroscopy signals.

Biocybern. Biomed. Eng. 2021, 41, 173–195. [CrossRef]
54. Wang, P.; Guo, L.; Tian, Y.; Chen, J.; Huang, S.; Wang, C.; Bai, P.; Chen, D.; Zhu, W.; Yang, H. Discrimination of blood species

using Raman spectroscopy combined with a recurrent neural network. OSA Continuum 2021, 4, 672–687. [CrossRef]
55. He, X.; Chen, Y.; Lin, Z. Spatial-Spectral Transformer for Hyperspectral Image Classification. Remote Sens. 2021, 13, 498. [CrossRef]
56. Wu, N.; Green, B.; Ben, X.; O’Banion, S. Deep transformer models for time series forecasting: The influenza prevalence case. arXiv

2020, arXiv:2001.08317.
57. Ma, J.; Shou, Z.; Zareian, A.; Mansour, H.; Vetro, A.; Chang, S.F. CDSA: Cross-dimensional self-attention for multivariate,

geo-tagged time series imputation. arXiv 2019, arXiv:1905.09904.
58. Serrà, J.; Pascual, S.; Karatzoglou, A. Towards a universal neural network encoder for time series. Artif. Intell. Res. Dev. Curr.

Chall. New Trends Appl. 2018, 308, 120.
59. Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 2017,

28, 162–169. [CrossRef]
60. Sun, Y.; Brockhauser, S. Machine Learning Applied for Spectra Classification in XFEL Sciences. Data Sci. J. 2021. submitted.
61. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International

Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.
62. Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In International

Workshop on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–201. ISBN 978-3-540-59497-0.
63. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.
64. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
65. Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955.

[CrossRef]
66. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
67. Matsumoto, M.; Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number

generator. ACM Trans. Model. Comput. Simul. (TOMACS) 1998, 8, 3–30. [CrossRef]

http://doi.org/10.21314/JCF.2019.358
http://doi.org/10.1038/s41467-019-12898-9
http://doi.org/10.1016/j.jfca.2020.103566
http://doi.org/10.1038/s41524-019-0196-x
http://doi.org/10.1016/j.neunet.2019.04.014
http://doi.org/10.1016/j.artmed.2020.101899
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1007/s10994-019-05815-0
http://doi.org/10.1016/j.isprsjprs.2019.01.011
http://doi.org/10.1016/j.bbe.2020.12.003
http://doi.org/10.1364/OSAC.416351
http://doi.org/10.3390/rs13030498
http://doi.org/10.21629/JSEE.2017.01.18
http://doi.org/10.1007/s10462-020-09838-1
http://doi.org/10.1145/272991.272995

	Introduction
	Related Work
	Tranditional Machine Learning-Based Approach
	Convolutional-Based Approach
	Recurrent-Based Approach
	Attention-Based Approach

	Data-Driven End-to-End Neural Network Methods
	End-to-End Binned FCNN with the Automatically Capturing Weighting Factors Model
	Convolutional SCT Attention Network
	Spatial Attention Module and Channel Attention Module
	Temporal Attention Module

	Other State-of-the-Art Deep Learning Approaches
	D Multi-Layer Fully Connected Neural Network (1D FCNN) Model
	Convolutional Neural Network (CNN) Solution
	ResNets-Based Solution
	LSTM-Based Solution
	Transformer-Based Solution

	Experiments and Results
	Implementation Details
	Performance Metric
	Quantitative Model Evaluation
	Feature Importance Attribution Analysis Based on Gradient Backpropagation
	Qualitative Analysis of Self-Attention Scores in Convolutional Attention Model

	Conclusions and Future Work
	Convolutional SC Attention Model Architecture
	1D FCNN Model
	CNN-Based Solution
	Multi-Scale Residual Networks (ResNets) Solution
	LSTM-Based Solution
	Transformer-Based Solution
	Further Information about Feature Importance Attribution Analysis
	References

