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Abstract

In the last decade, the widespread adoption of electronic health record documentation has created 

huge opportunities for information mining. Natural language processing (NLP) techniques using 

machine and deep learning are becoming increasingly widespread for information extraction tasks 

from unstructured clinical notes. Disparities in performance when deploying machine learning 

models in the real world have recently received considerable attention. In the clinical NLP domain, 

the robustness of convolutional neural networks (CNNs) for classifying cancer pathology reports 

under natural distribution shifts remains understudied. In this research, we aim to quantify and 

improve the performance of the CNN for text classification on out-of-distribution (OOD) datasets 

resulting from the natural evolution of clinical text in pathology reports. We identified class 
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imbalance due to different prevalence of cancer types as one of the sources of performance drop 

and analyzed the impact of previous methods for addressing class imbalance when deploying 

models in real-world domains. Our results show that our novel class-specialized ensemble 

technique outperforms other methods for the classification of rare cancer types in terms of macro 

F1 scores. We also found that traditional ensemble methods perform better in top classes, leading 

to higher micro F1 scores. Based on our findings, we formulate a series of recommendations 

for other ML practitioners on how to build robust models with extremely imbalanced datasets in 

biomedical NLP applications.
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1. Introduction

One of the tasks of the Surveillance, Epidemiology, and End Results (SEER) program of 

the National Cancer Institute (NCI) is to provide statistics and analyze cancer trends in the 

US. Every year, cancer registries receive thousands of electronically transmitted pathology 

reports from pathology laboratories. These pathology reports consist of unstructured clinical 

text. Specialized human annotators are required to extract valuable information. This process 

is costly and time consuming. Therefore, developing reliable models to classify cancer 

pathology reports automatically remains one of the priorities of SEER.

Recently, numerous machine learning researchers have shown that models which are trained 

in labs often exhibit a significant performance drop when they are deployed in the real 

world. Some researchers have identified certain aspects of the modeling process and model 

training as the source of performance disparity [1]. Others have perceived the issue as a 

robustness problem and focused on building models that learn generalizable features so that 

they can maintain their performance under natural distribution shifts. Performance drop at 

deployment time is a serious issue that could affect every machine learning practitioner and 

the reliability of AI systems [1].

Significant research progress has been made in developing deep learning models for 

information extraction from cancer pathology reports [2, 3, 4, 5]. Difficulties in sharing 

data between healthcare systems has made analyses of the performance of models on 

out-of-distribution (OOD) datasets very challenging. As registries around the country are 

legally required to collect cancer pathology reports for all residents of their state, natural 

statistical variations arise in the datasets. These variations may occur due to different data 

acquisition pipelines as the pathology reports can come from different laboratories, disparate 

disease prevalence patterns, or the evolution of language and reporting protocols over time 

[6].

Class imbalance occurs when the proportion of samples belonging to one or more classes 

in a dataset varies drastically. Class imbalance is of extreme importance for the clinical 

NLP domain because many clinical conditions such as certain cancer histologies are very 

rare. For example, extracting the histology code from pathology reports is a task that 
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involves text classification with over 600 classes. Some types of cancers are extremely 

common (e.g. adenocarcinoma, ductal carcinoma), while others occur less frequently (e.g. 

squamous cell carcinoma). These phenomena lead to datasets with extreme levels of class 

imbalance, which impacts the performance of the classifiers. Models trained with such 

datasets will exhibit bias towards the most prevalent majority classes because of their higher 

prior probabilities, while often ignoring the minority classes. Although the effects of class 

imbalance in machine learning have been well documented [7, 8, 9], previous researchers 

have concurred that class imbalance in the context of deep learning is understudied [10]. 

Additionally, most of the existing work on class imbalance has been done in the computer 

vision field [11].

The class imbalance problem can become crucial when deploying models to classify 

pathology reports on unseen registries from states and geographical regions outside the 

training data (OOD datasets). The distribution between the minority groups may differ 

widely across registries, and classifiers’ bias towards the top classes leads to deteriorated 

deployment performance. Few researchers in the clinical NLP domain have focused on 

characterizing and improving the performance of deep learning models under natural 

distribution shifts. Our aim is to narrow this literature gap with a specific focus on minority 

classes (rare cancer types). Our contributions are as follows:

• We show that natural distribution shifts have a considerable impact in 

performance when classifying cancer pathology reports.

• We identify class imbalance and class distribution as one of the sources of 

performance drop at deployment time, and analyze some of the existing methods 

to solve the problems associated with these issues.

• To strengthen the consistency of our results, we compare the methods under 

two different classification tasks commonly found in cancer pathology reports: 

histology and subsite.

• We demonstrate that an ensemble of 12 CNNs can improve the generalization 

power at deployment time. However, we show that most of the performance gain 

comes from the majority classes.

• We propose a novel implementation of ensemble learning where each model 

specializes in a different group of classes. Our class-specialized ensemble 

outperforms other class imbalance techniques in terms of macro F1 scores when 

testing on unseen registries while maintaining competitive micro F1 scores.

Our research is at the intersection of robustness and class imbalance for clinical NLP. Our 

novel ensemble model, which improves performance in rare cancers, is generalizable and 

can also benefit other practitioners working on problems related to bias and fairness in 

machine learning.
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2. Previous Work

2.1. Class Imbalance

In this section, we present existing work in the class imbalance literature that is relevant to 

our research. Generally, class imbalance techniques in the context of machine learning are 

grouped into data-level techniques and algorithm-level methods. We note that our specific 

problem involves extreme levels of imbalance (described in detail in our methods 3.7), 

which are uncommonly observed in previous works. Nevertheless, some of their methods, 

results, and findings are still applicable.

Data-level techniques focus on manipulating the distribution of the training dataset in order 

to reduce the imbalance present in the original data. The two most basic paradigms in 

this group are: 1) random oversampling (ROS), where samples from minority classes are 

duplicated, and 2) random undersampling (RUS), where samples from majority classes are 

discarded.

Masko et al. [12] presented a comprehensive study of the effects ROS using CNNs for 

image classification. They used the MNIST, ImageNet, CIFAR-10, and CIFAR-100 datasets. 

They performed experiments with relatively small levels of imbalance and showed that ROS 

improved the baseline scores.

The effects of RUS have also been studied extensively. For example, Kubat et al. [13] 

presented an algorithm that selectively removed samples from the majority classes. The 

downside of their study is that they only focus on 2-class datasets. Hulse et al. [14] 

developed an extensive analysis of seven sampling techniques using 35 benchmark datasets 

and 11 classifiers. They found that the performance of the sampling techniques is dependent 

upon the machine learning model and showed that, in some circumstances, RUS can 

outperform other classical techniques.

Dynamic sampling is a technique which combines both RUS and ROS. Pouyanfar et al. [15] 

developed this sampling strategy based on the way humans often operate: repeating a certain 

task until the error is reduced. Thus, the researchers created an algorithm which adjusts the 

distribution of classes in the training dataset based on a performance metric (e.g. F1 score). 

As a result, majority classes are expected to be undersampled while minority classes will be 

oversampled. Chawla et al. [16] proposed a novel technique called SMOTE which also uses 

a combination of RUS and ROS. It had previously been noticed that simply oversampling 

minority documents with replacement does not improve minority performance significantly 

[17]. For this reason, the authors developed a special case of oversampling which selects 

synthetically created samples from the minority classes.

Although the simplicity and efficiency of methods that combine ROS and RUS may seem 

appealing, in applications with extreme levels of class imbalance such as ours (where the top 

classes appears 17k times and the bottom class appear only once), oversampling repeatedly 

from the same documents within minority classes will only force the model to memorize 

features that may not even be useful for the respective classes. In addition, event though 

SMOTE is a standard class imbalance tool for traditional machine learning [18, 19, 20], 
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it still has important limitations when it comes to deep learning models. Some of the 

challenges come from the implementation of the algorithm itself. For example, in problems 

such as ours when the input to a model is a matrix composed of word vectors, sampling the 

K nearest neighbors is not adequate. Moreover, previous researchers have demonstrated that 

in situations where high-dimensional data are common, SMOTE does not improve model 

performance [21]

Algorithm-level methods for class imbalance focus on modifying the learning process 

without altering the distribution of the dataset [10]. The most popular paradigm in this 

group is cost-sensitive learning, where models are penalized for the classification of certain 

(minority) classes. The cost associated with the misclassification of each class is assigned 

using a cost matrix, where an entry Ci,j in this matrix represents the cost of predicting 

class i for the true class j. In the context of text classification, Padurariu et al. showed that 

cost-sensitive methods can outperform data-sampling methods [22]. Previous researchers 

have noted that the biggest challenge of cost-sensitive methods is building an effective cost 

matrix [10]. Depending on the specific problem, experts could use previous knowledge to 

define costs. However, in complex problems with a lot of classes and extreme level of class 

imbalance, coming up with an optimal cost matrix is a serious challenge.

Some authors have built novel approaches for class imbalance that borrow ideas from 

both data and algorithm-level methods. This is the case of Lee et al. [23] who showed 

that a particular implementation of transfer learning, also known as two-phase learning, 

can outperform other classical class-imbalance techniques. Their application involves the 

classification of plankton images using CNNs. During the first phase, they trained a model 

with a subset of the data using some threshold N. In this subset of data, samples are rejected 

so that the frequency of each class present in the dataset does not exceed N = 5000 (found 

experimentally). The authors’ reasoning is that the model trained with the thresholding data 

is less biased, and it can learn features that are relevant for the minority classes, but it loses 

population information. Therefore, to recover the lost information, they fine-tune the model 

with the entire dataset. The authors compared two-phase learning with other models trained 

with noise addition, data augmentation, and a combination of both. Our class-specialized 

ensemble method presented in this paper was partially inspired by their two-phase learning 

implementation.

For a detailed analysis of previous results in the imbalance literature, we refer to [10], 

a survey paper where the authors review 15 deep learning methods for class imbalance. 

Their extensive review discusses all three types of techniques: data-level methods, 

algorithmic-level methods, and hybrid-methods. For an overview of imbalance methods 

focusing specifically in text classification, we recommend [22]. Additionally, [8] provides a 

comparative study of different data-level methods.

2.2. Robustness

Numerous authors have recently identified and evaluated the disparities in a model’s 

performance during deployment [1, 24, 6, 25, 26, 27, 28, 29, 30]. From the pool of existing 

research, notable work includes [1], where the authors identified underspecification as a key 

factor diminishing the reliability of machine learning systems. In their paper, they performed 
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a series of stress tests and showed how different modeling aspects, even as simple as a 

random seed, can lead to almost unpredictable performance when deploying a model in 

the real world. Although the authors provided substantial examples of the performance 

discrepancy when testing in OOD datasets, a distinct solution was not provided.

In computer vision, prior work has often focused on the ImageNet dataset using CNNs. For 

example, in [24], the authors analyzed the reliability of robustness techniques which were 

developed using datasets with synthetic distribution shifts. They showed that most of the 

existing techniques are not effective under natural distribution shifts, and they found that 

most improvement comes from data size and diversity. Conversely, Hendrycks et al. [27] 

argued that using synthetic data can improve the performance of a model on OOD data. In 

addition, they built three robustness benchmarks for image classification and introduced a 

new data augmentation technique. Djolonga et al. [28] also used the ImageNet dataset, but 

their analysis focused on the effects that data/model scale and transfer learning have in OOD 

performance. Their conclusion is that given the limitations associated with data and model 

scaling, transfer learning is the most promising approach in the short term. In this study, we 

analyzed the effects of transfer learning through our two-phase learning implementation.

In the clinical field, Stacke et al. [6] presented a technique to quantify how robust a model 

is to domain shifts and how to identify new data for which the model would struggle to 

generalize. They achieve this by measuring the differences in feature representation by an 

arbitrary model. Their specific application is tumor classification from images. Although the 

authors provide a useful metric to quantify the robustness of a model, they do not focus on 

the aspects of the learning process which enhance the models’ performance.

In the context of NLP, Wu et al. [29] approached the OOD robustness problem by modifying 

existing models to produce multiple disentangled representations. They argue that it is 

important for a model to separate between general, target-specific, and source-specific 

features. Intuitively, their approach is an ensemble of models combined together into a single 

architecture. The down-side of their study is that they used datasets with very few classes, 

making it hard to predict the efficiency of their methods in more challenging problems.

2.3. Ensemble Methods

Ensemble learning [31] is a machine learning technique that solves a given task with 

multiple models. The purpose of applying multiple models is to obtain collective decisions 

from them, thus reducing the likelihood of incorrect selections. Aggregating decisions from 

multiple models adds generalizability to the outcomes, improving overall task performance 

and avoiding overfitting the training dataset. This is a desirable feature for the classification 

of under-represented class labels.

Since ensembles of classifiers combine decisions from multiple models, the individual 

models should exhibit some level of diversity. Bootstrap aggregation [32], also known as 

bagging, is a popular technique that infuses variability via the bootstrapping of the training 

samples. However, a recent study [33] demonstrated that the intrinsic variability from the 

randomized initial values of trainable parameters in artificial neural network-based models 

adds enough variability.
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Ensemble learning does not necessarily require the models to be trained in the same feature 

space. Combining models of multiple local experts trained by different portions of the 

feature space is an alternative ensembling technique. In this approach, inferring the final 

decision can be done with an additive classifier by concatenating the outputs of local experts 

(stacked generalization) [34]. Another way to infer the final decision is by the use of a 

gating network to determine a generalized linear rule, a method known as mixture-of-experts 

(MoE) [35]. Our class specialized ensemble technique borrows some ideas from the MoE 

method.

In the ensemble learning literature, one particular work that is relevant to our research is 

[36]. Here, the authors train an ensemble of models where there is a generalist (trained in the 

entire dataset) and multiple specialists (trained on a confusable set of classes in the dataset). 

Using the MNIST dataset, the authors shows that the specialist ensemble outperforms their 

baseline ensemble by ~3%. Their research shares some conceptual similarities with MoE, 

and therefore it is applicable to our research. However, their implementation of “ensemble of 

specialists” is completely different: we do not separate the models between generalists and 

specialists, and we focus specifically on class imbalance and rare classes.

3. Methods

3.1. CNN Architecture

The baseline for our experiments is a standard TextCNN used extensively in previous 

work involving cancer pathology reports classification [5, 37, 38, 39] and clinical text 

classification in general [40, 41, 42, 43, 44]. In addition to being an universally used 

architecture, previous work showed that, for the task of pathology report classification, the 

TextCNN has competitive performance with other machine learning models [37], including 

BERT-based approaches [45]. We used this base TextCNN for every model in this study 

with some training variations described in greater detail in the following subsections. The 

network consists of an embedding layer followed by three parallel convolution layers with 

filter sizes of 3,4, and 5 consecutive words and 300 filters each, a global max pooling layer, 

and a dense layer. The network has ~91 million trainable parameters, where ~90 million of 

them belong to the embedding layer.

3.2. CNN with Class Weights

When training DL models, one can simply implement cost-sensitive learning by using 

custom class weights. These weights dictate how the model will be punished by the 

misclassification of certain classes. Thus, assigning higher weights to minority classes 

would force the model to pay special attention to these classes. There is a lot flexibility on 

how to assign weights to each class. After experimenting with an inverse frequency function, 

we found that giving minority classes too much weight brings the micro score down to 

non-permissible levels. That is because the proportion of the most rare cancer types in the 

dataset is extremely low, which leads to excessively high weights for the rarest classes. As a 

result, the model focuses on learning features for these rare classes and ignores the majority 

classes, which highly impacts the micro F1 score.
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For our class weight implementation, we used a variation of the inverse class frequency 

where minority classes are assigned non-excessive, larger weights. we set the class weights 

W Cc following Equations 1 and 2.

weigℎtc = log Y
yc

(1)

W Cc = weigℎtc weigℎtc > 1
W Cc = 1 otℎerwise (2)

In the equations above, |Y | is the total number of samples in the dataset, and yc  is the 

number of samples belonging to class c. Using this rule gives a weight of 1 to the majority 

classes and a class weight close to 14 for the most rare cases. This approach gives higher 

importance to the rarest cancer types without ignoring the majority classes.

3.3. Two-phase Learning

We implemented a version of two-phase learning originally introduced by Lee et al. [23]. 

In their paper, the authors first train the model with a class-normalized dataset which has 

a thresholded class distribution. Due to extreme imbalance and the large frequency of 

the top classes, we implemented a variation of this method in which the top 50 classes 

are completely left out during the first phase of training. The model is then fine-tuned 

with the entire dataset during the second phase. We tried a standard version of two-phase 

learning without class weights, and we also tried another version in which class weights are 

introduced (as described in 3.2) during both learning phases.

3.4. Undersampling

In the simplest form, undersampling methods discard a portion of the majority class to 

balance the dataset. In problems with moderate levels of class imbalance, one can simply 

discard majority class samples until reaching equal number of samples with the minority 

classes. For our specific problem, discarding the top classes based on the frequency of 

the rarest cancer types is not possible because these rare classes appear at extremely low 

proportions (see Section 3.7 and 7). Alternatively, we discarded a number of documents 

from the top classes using a threshold based on certain percentiles (50th, 90th, and 95th) of 

class frequency. The specific implementation procedure is described as follows:

• Find number of documents belonging to the class in the respective percentile 

(50th, 90th, and 95th). We call this value the undersampling threshold α.

• Discard documents from the dataset so that there are at most a documents in each 

class. No documents are discarded for classes with fewer than α samples.

• Train model with this smaller, more balanced dataset.

9.Appendix
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3.5. Class-Specialized Ensemble

Our novel method was inspired by MoE and two-phase learning with class weights. We 

wanted to create an ensemble of models were each TextCNN would specialize in different 

group of classes. Thus, we first ordered the classes by frequency based on the training and 

validation datasets. Then we created groups of 50 (histology) and 28 (subsite) classes based 

on their frequency order. The reasoning behind forming frequency-based groups is that the 

imbalance between the individual groups will be reduced, as opposed to creating groups of 

classes selected randomly. We decided to use group sizes of 50 and 28 because that will 

keep the ensemble relatively small (12 models). However, one could easily experiment with 

having larger ensembles which specialize in smaller groups of classes.

During the first learning phase, we let individual members of the ensemble learn features 

that are key for their assigned class group. Then, each member was fine-tuned with the 

entire dataset. For example, during the first training phase of the histology task, we trained 

one TextCNN with the top 50 classes (classes 0–49) and another TextCNN with the second 

group of 50 classes (classes 50–99), and so on. During the second learning phase (fine-

tuning), we trained each of the models with the entire dataset. Figure 1 shows a general 

overview of the steps we took to train the class-specialized ensemble.

To aggregate the individual predictions of the ensemble and generate the final prediction, 

we use a simple multilayer perceptron (MLP) model. This MLP model is trained with input 

vectors that are created by concatenating the softmax vectors from each of the 12 models in 

the ensemble and the respective y label associated with the documents. Thus, for the case 

of histology where there are 645 classes, the input to the MLP is a vector of size 7740 

(number of classes multiplied by the number of models). The architecture consists of two 

dense layers with 4000 and 3000 neurons, respectively. We also included a dropout layer 

between each of the dense layers (dropout rate = 0.5). The number of layers, neurons, and 

hyperparameters were found experimentally. The MLP network has ~47 million trainable 

parameters.

3.6. Ensemble

Since our proposed model involves an ensemble of models which naturally presents an 

advantage against individual models, we implemented two traditional ensemble learning 

techniques. We used an ensemble of 12 models to be consistent with our class-specialized 

method and perform a fair comparison.

The first ensemble technique implemented is majority voting. Here, the final prediction is 

the class that is predicted the most often across the 12-model ensemble (ties are resolved by 

randomly selecting one of the classes with the most votes). The other technique is softmax 

averaging. This method consists of taking the average of the softmax vectors across the 

ensemble. For example, for the ensemble trained in the histology task, we simply take the 

average of 12 vectors (ensemble size) of size 645 (number of classes) and then predict the 

class with the highest softmax value in this average vector.
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We note that our selection of ensemble methods can easily be applied by other machine 

learning practitioners, it is highly parallelizable, and it is computationally cheap compared to 

other ensemble methods.

3.7. Dataset

The dataset consists of cancer pathology reports from the Louisiana Tumor Registry (LTR), 

Kentucky Cancer Registry (KCR), Utah Cancer Registry (UCR), New Jersey State Cancer 

Registry (NJSCR), Seattle Cancer Registry (SCR), New Mexico Cancer Registry (NMCR), 

and California Cancer Registry (CCR). The total number of pathology reports from these 

seven registries is 2,059,758 documents. Table 1 shows the size of each of the individual 

datasets associated with the seven registries. We use numerical values instead of the actual 

registry names to preserve anonymity. Even though there are other tasks associated with our 

dataset (site, laterality, and behavior), in this study we focus on the histology and subsite 

tasks because these are the top priority for NCI; our labels are based on the ICD-O-3 system 

from the World Health Organization Classification of Tumors [46]. Additionally, histology 

and subsite have the largest numbers of classes and highest level of class imbalance, making 

them good targets for our robustness study.

There are 645 histology classes, and the dataset presents extreme cases of class imbalance. 

For example, 22.0% of the reports belong to the top class (adenocarcinoma in situ/NOS) 

and 19.0% belong to the second most popular class (duct carcinoma). The top 10 classes 

constitute 62.8% of the dataset. The least prevalent 635 classes constitute only 37.2% of 

the data. Some of the cancer types (31 classes) are exceptionally rare and only appear once 

in the entire dataset. Although removing these classes could make sense from a modeling 

perspective, these cancer types may still be encountered at deployment time, and they are 

still part of the classification problem. Therefore, all the classes were considered during 

training.

Identifying the subsite of a cancer pathology reports is a task with 327 classes. The level 

of imbalance found in this task is still high but slightly lower than what we observed in the 

histology task. Here, only 8.9% of the reports belong to the top class (compared to 22.0%), 

and the top 10 classes constitute 49.5% of the documents (compared to 62.8%). Just as in 

the histology task, there are cancer subsites in the dataset which are extremely rare. For 

example, 16 cancer subsites appear less than ten times in the dataset.

Researchers in the class imbalance field often use metrics to quantify the levels of 

imbalance in the datasaet. For example, one common metric is ρ =
maxi Ci
mini Ci

. Where 

maxi Ci  and mini Ci  represents the number of samples in the top class and the bottom 

class, respectively. Computing this value for histology leads to ρ = 452, 363. We note that 

this value is substantially larger than what one usually finds in previous work, which further 

demonstrates the extreme levels of imbalance in our problem.
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3.8. Experimental Setup

For our experiments, we took a leave-one-out approach. In each run, we first define which 

of the seven registries will be the OOD dataset. This dataset is left-out of the training 

process. The other remaining six registries are then combined and shuffled. The combined 

dataset represents what a machine learning practitioner may be given to train a model in 

a lab setting and the left-out registry represents what one may find when deploying the 

model in the real world. After training the model with the combined dataset, we recorded 

performance metrics for both the test set from the combined dataset and the left-out (OOD) 

registry. In order to consider every possible combination case, we repeat this process seven 

times for each of the two tasks. Thus, every registry is used as the OOD dataset once. This 

experimental setup leads to a total of 14 individual results (7 possible dataset combinations 

and two tasks).

We used standard training practices to prevent serious overfitting issues. We performed 

a 80/10/10 train-validation-test split on the combined dataset. At the end of each epoch, 

we monitored the validation loss. We let the models train until the validation loss stopped 

decreasing for five consecutive epochs. Once training stops, we recovered the best set of 

weights based on the validation loss. To further prevent overfitting, our CNN model uses 

50% dropout on the dense layer (Section 3.1).

The parameters and software used in this study are similar to previous work involving 

pathology report classification [5, 37, 38]. We used Keras 2.3 with the Adam optimizer, a 

batch size of 128, and a learning rate of 1e-4.

We set the document length size to 1500 words, meaning that longer documents are 

truncated and shorter documents are zero-padded. The word embeddings consist of vectors 

of size 300 which were randomly initialized; previous studied showed that random 

embeddings are as effective as other pre-trained word embeddings when applied to our 

dataset [47].

All experiments were run on individual NVIDIA V100 GPUs. The ensemble models were 

trained in parallel, with their output combined to form the final predictions.

3.9. Evaluation Metrics

We evaluated the performance of the models by computing the micro F1 score (Equations 

3–5) in the test dataset and in the OOD dataset. We note that for our problem, micro F1 

score is equivalent to accuracy.

When working with highly imbalanced datasets, using micro F1 scores can be misleading. 

That is because the majority classes will drive a large portion of this score, and information 

about the model performance on the rare classes is lost. In order to better understand the 

performance of the model in minority classes, we also calculated macro F1 scores (Equation 

6). The macro F1 score is a common evaluation metric used in problems with class 

imbalance because it averages the model’s accuracy on individual classes independently 

of their frequency in the datasets. In other words, this metric gives equal importance to every 

class.
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Precision = True Positive
True Positives + False Positives (3)

Recall = True Positives
True Positives + False Negatives (4)

Micro F1 = 2 ∗ (Precision) × (Recall)
Precision + Recall (5)

Macro F1 = 1
C ∑

Ci

C
F1 Ci (6)

In Equation 6, F1 Ci  is the accuracy score for class i, and |C| represents the total number of 

classes in the dataset.

3.10. Performance on Rare Cancer Types

We performed an additional analysis of the model performances in minority classes. This 

in-depth study focused on the histology task because it has a larger number of classes and 

more extreme levels of class imbalance. For this analysis, we sorted the classes by frequency 

in the dataset and then created groups of 50 classes so that the first group contains the top 

50 classes and the last group consists of the 50 least common classes. Then, we used the 

models that were trained in the entire datasets to predict on each of the specific groups. The 

motivation for this analysis is to gain more insight into the models’ performance on minority 

classes beyond a single macro F1 score.

4. Results

4.1. Class distribution in OOD datasets

Given the large number of classes in the two tasks considered, we hypothesize that the class 

distribution in the training and OOD datasets will differ considerably for the rare cancer 

types. In order to test this hypothesis, we plotted the distribution of classes as percentages 

of their respective datasets in Figure 2, using registry 6 as the OOD dataset. We note that 

for the top classes (Figure 2a), the distribution is similar in both datasets. However, there are 

substantial differences in the distribution of the least common cancer types (Figure 2b).

The implications of these distributional differences are one of the focus of this study. Deep 

learning models are known to be biased towards the top classes since they drive the loss 

function. Hence, the distribution of classes will affect the features it learns and which classes 

receive higher priority. The distribution of minority classes differs greatly across registries 

leading to a large underperformance of the model in OOD datasets in terms of macro scores.
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4.2. F1 Scores

Our experimental setup yields seven individual sets of results (one for each registry left-out) 

for each of our two tasks. Here, we present the average scores across the seven registries for 

histology (Table 2) and subsite (Table 3). The pattern found in this table is representative of 

the outcomes found in the individual registry results, but the scale may differ slightly (see 

Appendix A for individual registry results).

We found that training a baseline CNN leads to decent micro scores but low macro scores. 

This was an indication of the model’s bias against the top classes: it learned features that 

were important to classify common cancer types and reduce the loss, but it ignored patterns 

that were relevant for the more rare cancer types.

Adding class weights to the model helped the minority classes but it also hurt the 

performance on the majority classes (in the case of the histology task). We note that this 

technique is prone to produce a trade-off between micro and macro scores, since giving 

special attention to minority classes will reduce the performance on top classes.

Using two-phase learning without weights effectively improved the test macro scores in 

both tasks by a significant amount (~7% and ~4%). It also improved the micro test scores 

(~1% for both tasks). This method also introduced a small decrease in OOD micro. In terms 

of OOD macro scores, the improvement was small (~1%) for histology, and there was no 

improvement for subsite.

Two-phase learning with class weights pushed the macro scores further but resulted in 

mediocre micro scores that were below the baseline CNN. We also note that the increase 

in macro scores between the test and OOD datasets was highly disproportional when 

comparing it with the baseline CNN: for histology, the test macro increased by ~10% 

and the OOD macro increased by ~2%. For subsite, the test macro increased by ~9% and 

the OOD macro increased by only 0.2%. In both cases, the test macros were the highest 

scores across the board. The disproportional increase in macro scores between test and OOD 

is a potential sign of overfitting in some of the minority classes. Two-phase learning is 

potentially more susceptible to overfitting the minority classes since these documents are 

introduced during both training phases.

Ensemble methods outperformed other models in terms of micro test and micro OOD. They 

also provided high macro scores when compared to single models. Between the two standard 

ensemble methods that we implemented (majority-voting and softmax-average), the scores 

were similar for subsite. For histology, taking the average of the softmax vectors across the 

ensemble showed slightly better performance.

Our class-specialized ensemble method produced the highest OOD macro score across the 

board, outperforming the baseline CNN results by ~4% for both tasks. It also produced 

higher test macro scores (between ~3% and ~4%) than the standard ensemble methods. 

In terms of micro scores, the class-specialized model outperformed the baseline CNN but 

performed slightly worse than the other ensemble models.
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We also compared the performance gap between test and OOD scores for all models 

(Table 4). Higher values in this table indicates lack of robustness. We observed that two-

phase learning led to the highest performance gap. The implication of this result is that 

methods like two-phase learning can be highly misleading when trained in a lab setting 

without access to an OOD dataset because lab results may not correlate with real world 

performance. The table also shows the baseline CNN with class weights resulted in the 

smallest performance gap.

During our experiments, we found that undersampling is not an effective technique for 

the classification of cancer pathology reports. Discarding documents from the majority 

classes diminishes the model micro F1 scores to non-permissible levels with no significant 

improvement in macro F1 scores. The results table with different undersampling thresholds 

are included in Appendix B (Section 8, Table 6)

We note that in task such as ours, with extreme class imbalance and a large number of 

classes, it is common to observe relatively low macro F1 scores. Classifiers are not able 

to correctly identify features that are relevant for classes that are extremely rare. This 

is exacerbated by the lengthiness of cancer pathology reports - on average each report 

is approximately 700 words in length, so it is difficult to distinguish which words are 

relevant to a particular class when there are very few samples. In our previous work, we 

demonstrated that low macro scores persist across different deep learning architectures 

([37]).

4.6. Classification Performance in Minority Classes

Figure 3 shows the micro F1 scores obtained when predicting in different class groups 

ordered by frequency. In the case of the test dataset, we observed that two-phase learning 

with class weights clearly outperforms other methods for all the groups, except for the first 

one (the top 50 classes). However, for the OOD dataset, the differences in performance 

becomes smaller and class-specialized ensemble outperforms other methods for some of the 

groups. We note that the top 50 classes drive most of the micro F1 score, and we observe 

that models which excel in this group often show lower performance in the rest of the 

groups.

Figure 2a (also see 3.7 for exact percentage values) shows that the top two classes were 

especially common in the dataset. These two classes have a lot of influence during the 

training phase because they drive most of the loss function. Models which focus on learning 

features that are important for top classes will show degraded performance on the rest of the 

classes while obtaining high F1 micro scores. Therefore, we also analyzed the performance 

of the models when these two top classes are left out at testing time. The motivation of 

this experiment was to understand how much bias is involved in the learning process. We 

were interested in observing which model captures the most characteristics relevant for the 

non-top classes. The results for this experiment complement the macro F1 score further, 

and provide a broader insight about models performance on minority classes and their 

differences in performance with respect to test and OOD datasets.
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Table 5 shows the micro and macro F1 scores obtained when predicting in a subset of the 

datasets which excludes the top two classes. We found that under this experimental setting, 

the class-specialized ensemble outperforms other methods in terms of test micro scores and 

OOD macro scores. Moreover, consistent with previous results, two-phase learning obtains 

the highest test macro.

5. Discussion

This is the first study which quantifies the performance of the TextCNN for cancer 

pathology report classification on OOD datasets. In the histology task, we observed drops 

in performance of up to 3.48% and 13.98% for micro and macro scores, respectively. For 

the subsite task, the observed values were 5.59% (micro) and 15.83% (macro). These scores 

demonstrated that the baseline CNN model is not robust under natural distribution shifts 

when classifying cancer reports.

We note that our methods have different effects in the test and OOD datasets. While we tried 

to increase the performance of the model on the OOD dataset, we often found that what 

works well in the OOD dataset also works well (or better) in the test dataset. Thus, there 

was a consistent gap between the test and OOD dataset. The implication of this result is that 

improving performance in a closed environment can be highly misleading. That is because 

improvements in the test dataset do not necessarily correlate with improved performance 

at deployment time on new data. Other authors have found that larger and diverse datasets 

can help with robustness [24]. Our models were trained with a large amount of data from 

different registries across the country, yet we still identified serious drops in performance 

when predicting on unseen registries.

Through a data profiling analysis, we detected large class distribution differences of the 

non-common cancer types. Some of the minority classes which appeared in low proportions 

in the training dataset can often appear much more frequently on the unseen registries. 

We argue that these class distribution differences are one of the sources of performance 

drop when deploying the model, especially in terms of macro score. Thus, we explored 

techniques developed in prior studies to deal with imbalanced datasets and improve the 

performance on the rare cancer types. While some common methods such as ROS and 

RUS are not adequate for our specific problem, we showed that other techniques such as 

two-phase learning and class weights are efficient.

Our experiments showed that the CNN with class weight effectively improves the macro 

score and provides the lowest difference when comparing the test and OOD scores. The 

downside of this method was that the micro scores were relatively lower. Using two-phase 

learning pushed the macro scores further without degrading the micro score performance. 

In fact, this method provided the highest test macro scores among all experiments. As one 

would expect when combining multiple models, ensemble methods had the highest micro 

scores across the board and improved the OOD macro. Finally, our novel class-specialized 

ensemble method, inspired by the mixture-of-experts model, obtained the highest OOD 

macro score while maintaining competitive test macro and micro scores.
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For two-phase learning, the increase in macro scores was highly disproportional when 

comparing the test and OOD scores; that is, the increase in OOD macro is relatively 

low. We hypothesize that the performance of this technique is highly dependent on the 

class distribution of minority class documents. Two-phase learning is able to capture more 

features that are relevant for the classification of non-majority classes. Because of the large 

differences in class distribution with respect to the OOD dataset, the OOD macro score did 

not experience a meaningful improvement. Another possibility is that two-phase learning is 

overfitting on the minority documents, which leads to low generalization power.

Our methods comparison provided insight that can help other machine learning practitioners 

deal with extreme class imbalance and issues caused by natural distribution shifts. Based on 

our results, we provide the following four recommendations: 1) if micro score or accuracy is 

the main concern independently of the model’s performance in minority classes, then using 

traditional ensembles is appropriate, 2) if classification of minority classes is a priority, 

we recommend using our class-specialized ensemble implementation, 3) if one is primarily 

concerned with minimizing differences in performance between the test and OOD datasets, 

then simply using the CNN with class weights may be sufficient, and 4) if one cannot 

afford the computational cost of ensemble methods, then two-phase learning is a simple 

and effective option. However, the high test macro scores can be misleading in terms of the 

robustness and generalization of the model.

We acknowledge that our study lacks a formal analysis of the statistical significance of our 

results. The main reason for this design choice is that we used large datasets (~2 million 

documents) which made the experiments computationally expensive (a single model trained 

on six registries and tested on the seventh unseen registry takes ~8hs). We considered 

statistical tests such as the McNemar’s test, which are common in circumstances where 

training multiple models is expensive. However, this test computes a p-value based on the 

differences in class predictions between two models, and we observed that for the tasks 

considered in this research (with large number of classes) the p-value is too close to 0. 

Nevertheless, the main results of this paper (Table 2, 3) are the average of seven individual 

registries which exhibit the same pattern (micro and macro scores for each individual 

registry are included in Appendix A). Therefore, we feel confident of the validity of our 

results.

6. Conclusion

The issue of performance drop at deployment time is complex, and the source of the 

problem is likely due to multiple factors. In this study, we showed that natural distribution 

shifts degrade the performance of a TextCNN for the task of classifying cancer pathology 

reports. We particularly focused on improving the performance of the model on rare cancer 

types, increasing the macro scores of the model. We presented a novel version of ensemble 

learning in which each model learns features that are relevant for a specific group of classes. 

Our class-specialized ensemble model outperformed other techniques implemented in this 

paper in terms of OOD macro scores while obtaining competitive test macro and micro 

scores. Our results helped formulate a series of suggestions for other machine learning 

practitioners working with highly imbalanced datasets and robustness issues.
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Our methods are computationally intensive due to ensembles of models operating on 

millions of pathology reports from seven different states. Although computation at this scale 

is feasible for supercomputing centers, the average medical center may not have the same 

volume of data and therefore require the same computational capabilities. Additionally, the 

majority of resources are needed for training and not for applying the models. And if the 

trained models are more robust to begin with, less frequent training and deployments are 

needed. This is of particular importance for models integrated in clinical workflows where 

minimization of system downtimes and clinical disruptions is a target.

The results presented in this paper form the basis for future research in model robustness 

on out-of-distribution clinical text. We showed that the class distribution of rare cancers 

varies widely across different registries, which translates into diminished performance on 

minority classes and low macro scores. We hypothesize that distinct vocabulary patterns that 

are unique to individual registries can also contribute to the disparity in performance. In 

addition, we showed that ensemble methods outperform single models even when testing 

on OOD datasets. A natural question that follows is whether a model distilled from the 

ensemble can maintain the performance advantage over baseline models. This would enable 

us to obtain similar robustness levels while enjoying the low-resource advantages of a single 

model.
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7.: Appendix A. Supplementary material

ClassDistributions.xlsx: class frequencies for histology and subsite. Full names associated 

with each class code can be found in [46].

IndividualRegistryResults.xlsx: micro and macro scores for each individual registry.

8.: Appendix B. Undersampling Results

Table 6:

Undersampling results for the histology task. As in our previous result, this table represents 

the average of 7 individual results, one for each left-out registry (see 3.8). Discarding 

pathology reports from the top classes diminishes the micro F1 scores to non-permissive 

levels.

Percentile Threshold Test Micro Test Macro OOD Micro OOD Macro

50th 0.4528 0.3585 0.4456 0.2979

90th 0.6330 0.4585 0.6222 0.3768

95th 0.6885 0.4539 0.6705 0.3808
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Figure 1: 
Training pipeline of the proposed model. The MLP network takes as input a vector of 

concatenated softmax vectors and their respective Y label.
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Figure 2: 
Differences in class distribution between the training data and registry 6 (see Section 3.7) for 

the histology task. The specific class names associated with the encoded labels can be found 

in the SEER website [46].
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Figure 3: 
Class group performance for the histology task using registry 7 as the OOD dataset. Classes 

are ordered by frequency which is shown by the gray bars.
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Table 1:

Number of pathology reports in each individual dataset.

Registry R1 R2 R3 R4 R5 R6 R7

Dataset Size 85,789 577,094 137,135 92,481 441,732 360,375 365,152
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Table 2:

Histology Results. Overall micro and macro scores for the test and the out-of-distribution data (unseen 

registry). Scores were calculated by taking the average of the individual results for each of the seven registries.

Model Test Micro Test Macro OOD Micro OOD Macro

CNN 0.8007 0.4089 0.7749 0.3552

CNN w/ Class Weights 0.7885 0.4104 0.7704 0.3677

Two-Phase 0.8071 0.4815 0.7723 0.3624

Two-Phase w/ Class Weights 0.7942 0.5169 0.7631 0.3771

Ensemble (Maj.Vot.) 0.8096 0.4373 0.7866 0.3781

Ensemble (Softmax. Avg.) 0.8119 0.4458 0.7876 0.3841

Class-Specialized Ensemble 0.8085 0.4809 0.7778 0.4003
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Table 3:

Subsite Results. Overall micro and macro scores for the test and the out-of-distribution data (unseen registry). 

Scores were calculated by taking the average of the individual results for each of the seven registries.

Model Test Micro Test Macro OOD Micro OOD Macro

CNN 0.7133 0.4005 0.6717 0.3269

CNN w/ Class Weights 0.7077 0.4232 0.6701 0.3371

Two-Phase 0.7230 0.4476 0.6671 0.3232

Two-Phase w/ Class Weights 0.7090 0.4873 0.6543 0.3290

Ensemble (Maj.Vot.) 0.7319 0.4320 0.6902 0.3462

Ensemble (Softmax. Avg.) 0.7371 0.4397 0.6896 0.3492

Class-Specialized Ensemble 0.7253 0.4785 0.6746 0.3658
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Table 4:

Absolute differences in micro and macro scores between the corresponding test scores and the OOD score. 

Bold values represent the largest differences (lack of robustness) while underlined values represent the 

smallest differences.

Histology Subsite

Model Test-OOD Mic Test-OOD Mac Test-OOD Mic Test-OOD Mac

CNN 2.57 5.36 4.16 7.35

CNN w/ Class Weights 1.81 4.28 3.76 8.61

Two-Phase 3.48 11.92 5.59 12.44

Two-Phase w/ Class Weights 3.12 13.98 5.48 15.83

Ensemble (Maj.Vot.) 2.30 5.91 4.16 8.58

Ensemble (Softmax. Avg.) 2.43 6.17 4.75 9.06

Class-Specialized Ensemble 3.06 8.10 5.08 11.26
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Table 5:

Histology Results. Accuracy results when testing in all but the two most frequent classes. The top two classes 

represent 40.95% of the dataset.

Model Test Micro Test Macro OOD Micro OOD Macro

CNN 0.6985 0.4090 0.6663 0.3559

CNN w/ Class Weights 0.7118 0.4144 0.6899 0.3720

Two-Phase 0.7077 0.4816 0.6590 0.3623

Two-Phase w/ Class Weights 0.6885 0.5203 0.6445 0.3797

Ensemble (Maj.Vot.) 0.7077 0.4365 0.6770 0.3779

Ensemble (Softmax. Avg.) 0.7119 0.4453 0.6792 0.3842

Class-Specialized Ensemble 0.7251 0.4890 0.6831 0.3994
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