153 research outputs found

    Siamese hierarchical attention networks for extractive summarization

    Full text link
    [EN] In this paper, we present an extractive approach to document summarization based on Siamese Neural Networks. Specifically, we propose the use of Hierarchical Attention Networks to select the most relevant sentences of a text to make its summary. We train Siamese Neural Networks using document-summary pairs to determine whether the summary is appropriated for the document or not. By means of a sentence-level attention mechanism the most relevant sentences in the document can be identified. Hence, once the network is trained, it can be used to generate extractive summaries. The experimentation carried out using the CNN/DailyMail summarization corpus shows the adequacy of the proposal. In summary, we propose a novel end-to-end neural network to address extractive summarization as a binary classification problem which obtains promising results in-line with the state-of-the-art on the CNN/DailyMail corpus.This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R). Work of Jose-Angel Gonzalez is also financed by Universitat Politecnica de Valencia under grant PAID-01-17.González-Barba, JÁ.; Segarra Soriano, E.; García-Granada, F.; Sanchís Arnal, E.; Hurtado Oliver, LF. (2019). Siamese hierarchical attention networks for extractive summarization. Journal of Intelligent & Fuzzy Systems. 36(5):4599-4607. https://doi.org/10.3233/JIFS-179011S45994607365N. Begum , M. Fattah , and F. Ren . Automatic text summarization using support vector machine 5(7) (2009), 1987–1996.J. Cheng and M. Lapata . Neural summarization by extracting sentences and words. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers, 2016.K.M. Hermann , T. Kocisky , E. Grefenstette , L. Espeholt , W. Kay , M. Suleyman , and P. Blunsom . Teaching machines to read and comprehend, CoRR, abs/1506.03340, 2015.D.P. Kingma and J. Ba . Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-zLouis, A., & Nenkova, A. (2013). Automatically Assessing Machine Summary Content Without a Gold Standard. Computational Linguistics, 39(2), 267-300. doi:10.1162/coli_a_00123Miao, Y., & Blunsom, P. (2016). Language as a Latent Variable: Discrete Generative Models for Sentence Compression. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d16-1031R. Mihalcea and P. Tarau . Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004.T. Mikolov , K. Chen , G. S. Corrado , and J. Dean . Efficient estimation of word representations in vector space, CoRR, abs/1301.3781, 2013.Minaee, S., & Liu, Z. (2017). Automatic question-answering using a deep similarity neural network. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). doi:10.1109/globalsip.2017.8309095R. Paulus , C. Xiong , and R. Socher , A deep reinforced model for abstractive summarization. CoRR, abs/1705.04304, 2017.Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. doi:10.1109/78.650093See, A., Liu, P. J., & Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/p17-1099Takase, S., Suzuki, J., Okazaki, N., Hirao, T., & Nagata, M. (2016). Neural Headline Generation on Abstract Meaning Representation. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d16-1112G. Tur and R. De Mori . Spoken language understanding: Systems for extracting semantic information from speech, John Wiley & Sons, 2011

    Measuring Short Text Semantic Similarity with Deep Learning Models

    Get PDF
    Natural language processing (NLP) is the ability of a computer program to understand human language as it is spoken, which is a subfield of artificial intelligence (AI). The development of NLP applications is challenging because computers traditionally require humans to speak" to them in a programming language that is precise, unambiguous and highly structured, or through a limited number of clearly enunciated voice commands. We study the use of deep learning models, the state-of-the-art artificial intelligence (AI) method, for the problem of measuring short text semantic similarity in NLP area. In particular, we propose a novel deep neural network architecture to identify semantic similarity for pairs of question sentence. In the proposed network, multiple channels of knowledge for pairs of question text can be utilized to improve the representation of text. Then a dense layer is used to learn a classifier for classifying duplicated question pairs. Through extensive experiments on the Quora test collection, our proposed approach has shown remarkable and significant improvement over strong baselines, which verifies the effectiveness of the deep models as well as the proposed deep multi-channel framework
    corecore