11 research outputs found

    Provisioning of Service Mashup Topologies

    Get PDF

    Coordinating service composition

    Get PDF
    The fundamental paradigm shift from traditional value chains to agile service value networks implies new economic and organizational challenges. As coordination mechanisms, auctions have proven to perform quite well in situations where intangible and heterogeneous goods are traded. Nevertheless traditional approaches in the area of multiattribute combinatorial auctions are not quite suitable to enable the trade of composite services. A flawless service execution and therefore the requester\u27s valuation highly depends on the accurate sequence of the functional parts of the composition, meaning that in contrary to service bundles, composite services only generate value through a valid order of their components. We present an abstract model as a formalization of a service value network. The model comprehends a graph-based mechanism design to allocate multiattribute service offers within the network, to impose penalties for non-performance and to determine prices for complex services. The mechanism and the bidding language support various types of QoS attributes and their (semantic) aggregation. We analytically show that this variant is incentive compatible with respect to all dimensions of the service offer (quality and price)

    Mitigating Misbehavior In Wireless Networks: A Game Theoretic Approach

    Get PDF
    In a distributed wireless system, multiple network nodes behave cooperatively towards a common goal. Though such assumptions on cooperation are desirable (e.g., controlling the transmit power level, reducing interference for each other, revealing private information, adhering to network policies) for analyzing and modeling, certain nodes belonging to a real-world system have often shown to deviate. These nodes, known as misbehaving nodes, bring more challenges to the design of the wireless network because the unreliable channel makes the actions of the nodes hidden from each other. In this dissertation, we analyze two types of misbehavior, namely, selfish noncooperation and malicious attacking. We apply game theoretic techniques to model the interactions among the nodes in the network. First, we consider a homogeneous unreliable channel and analyze the necessary and sufficient conditions to enforce cooperative packet forwarding among a node pair. We formulate an anti-collusion game and derive the conditions that achieve full cooperation when the non-cooperative nodes collude. In addition, we consider multi-hop communication with a heterogeneous channel model. We refine our game model as a hidden action game with imperfect private monitoring. A state machine based strategy is proposed to reach Nash Equilibrium. The strategy attains cooperative packet forwarding with heterogeneous channel and requires only partial and imperfect information. Furthermore, it also enforces cooperation in multi-hop packet forwarding. To tackle the malicious attacks, we use Bayesian game analysis to show the existence of equilibrium in the detection game and argue that it might not be profitable to isolate the malicious nodes upon detection. We propose the concept of coexistence with malicious nodes by proving the co-existence equilibrium and derive the conditions that achieve the equilibrium. This research is further accomplished by extensive simulation studies. Simulation results illustrate the properties of the games and the derived equilibria. The results validate our design philosophy and clearly indicate that the proposed game theoretic solutions can be effectively used to enforce cooperation and mitigate attacks

    Security in peer-to-peer communication systems

    Get PDF
    P2PSIP (Peer-to-Peer Session Initiation Protocol) is a protocol developed by the IETF (Internet Engineering Task Force) for the establishment, completion and modi¿cation of communication sessions that emerges as a complement to SIP (Session Initiation Protocol) in environments where the original SIP protocol may fail for technical, ¿nancial, security, or social reasons. In order to do so, P2PSIP systems replace all the architecture of servers of the original SIP systems used for the registration and location of users, by a structured P2P network that distributes these functions among all the user agents that are part of the system. This new architecture, as with any emerging system, presents a completely new security problematic which analysis, subject of this thesis, is of crucial importance for its secure development and future standardization. Starting with a study of the state of the art in network security and continuing with more speci¿c systems such as SIP and P2P, we identify the most important security services within the architecture of a P2PSIP communication system: access control, bootstrap, routing, storage and communication. Once the security services have been identi¿ed, we conduct an analysis of the attacks that can a¿ect each of them, as well as a study of the existing countermeasures that can be used to prevent or mitigate these attacks. Based on the presented attacks and the weaknesses found in the existing measures to prevent them, we design speci¿c solutions to improve the security of P2PSIP communication systems. To this end, we focus on the service that stands as the cornerstone of P2PSIP communication systems¿ security: access control. Among the new designed solutions stand out: a certi¿cation model based on the segregation of the identity of users and nodes, a model for secure access control for on-the-¿y P2PSIP systems and an authorization framework for P2PSIP systems built on the recently published Internet Attribute Certi¿cate Pro¿le for Authorization. Finally, based on the existing measures and the new solutions designed, we de¿ne a set of security recommendations that should be considered for the design, implementation and maintenance of P2PSIP communication systems.Postprint (published version

    Coordination in Service Value Networks - A Mechanism Design Approach

    Get PDF
    The fundamental paradigm shift from traditional value chains to agile service value networks (SVN) implies new economic and organizational challenges. This work provides an auction-based coordination mechanism that enables the allocation and pricing of service compositions in SVNs. The mechanism is multidimensional incentive compatible and implements an ex-post service level enforcement. Further extensions of the mechanism are evaluated following analytical and numerical research methods

    Incentive-driven QoS in peer-to-peer overlays

    Get PDF
    A well known problem in peer-to-peer overlays is that no single entity has control over the software, hardware and configuration of peers. Thus, each peer can selfishly adapt its behaviour to maximise its benefit from the overlay. This thesis is concerned with the modelling and design of incentive mechanisms for QoS-overlays: resource allocation protocols that provide strategic peers with participation incentives, while at the same time optimising the performance of the peer-to-peer distribution overlay. The contributions of this thesis are as follows. First, we present PledgeRoute, a novel contribution accounting system that can be used, along with a set of reciprocity policies, as an incentive mechanism to encourage peers to contribute resources even when users are not actively consuming overlay services. This mechanism uses a decentralised credit network, is resilient to sybil attacks, and allows peers to achieve time and space deferred contribution reciprocity. Then, we present a novel, QoS-aware resource allocation model based on Vickrey auctions that uses PledgeRoute as a substrate. It acts as an incentive mechanism by providing efficient overlay construction, while at the same time allocating increasing service quality to those peers that contribute more to the network. The model is then applied to lagsensitive chunk swarming, and some of its properties are explored for different peer delay distributions. When considering QoS overlays deployed over the best-effort Internet, the quality received by a client cannot be adjudicated completely to either its serving peer or the intervening network between them. By drawing parallels between this situation and well-known hidden action situations in microeconomics, we propose a novel scheme to ensure adherence to advertised QoS levels. We then apply it to delay-sensitive chunk distribution overlays and present the optimal contract payments required, along with a method for QoS contract enforcement through reciprocative strategies. We also present a probabilistic model for application-layer delay as a function of the prevailing network conditions. Finally, we address the incentives of managed overlays, and the prediction of their behaviour. We propose two novel models of multihoming managed overlay incentives in which overlays can freely allocate their traffic flows between different ISPs. One is obtained by optimising an overlay utility function with desired properties, while the other is designed for data-driven least-squares fitting of the cross elasticity of demand. This last model is then used to solve for ISP profit maximisation

    Strategisches Verhalten in Systemen mit Interaktions- und Kontaktwahl

    Get PDF
    Verteilte Systeme haben große gesellschaftliche und wirtschaftliche Bedeutung. Bisher war unklar, ob sich ihre Teilnehmer effizient verhalten. Theoretische Analysen und verhaltensökonomische Experimente zeigen, dass kooperatives Verhalten entstehen kann. Die gebildeten Netzwerke sind fast effizient und können durch in dieser Arbeit entwickelte Strategien in ihrer Effizienz weiter erhöht werden
    corecore