1,371 research outputs found

    Heuristics for the dynamic facility layout problem with unequal area departments

    Get PDF
    The facility layout problem (FLP) is a well researched problem of finding positions of departments on a plant floor such that departments do not overlap and some objective(s) is (are) optimized. In this dissertation, the FLP with unequal area rectangular shaped departments is considered, when material flows between departments change during the planning horizon. This problem is known as the dynamic FLP. The change in material flows between pairs of departments in consecutive periods may require rearrangements of departments during the planning horizon in order to keep material handling costs low. The objective of our problem is to minimize the sum of the material handling and rearrangement costs. Because of the combinatorial structure of the problem, only small sized problems can be solved in reasonable time using exact techniques. As a result, construction and improvement heuristics are developed for the proposed problem. The construction algorithms are boundary search heuristics as well as a dual simplex method, and the improvement heuristics are tabu search and memetic heuristics with boundary search and dual simplex (linear programming model) techniques. The heuristics were tested on a generated data set as well as some instances from the literature. In summary, the memetic heuristic with the boundary search technique out-performed the other techniques with respect to solution quality

    Overview of Dynamic Facility Layout Planning as a Sustainability Strategy

    Full text link
    [EN] The facility layout design problem is significantly relevant within the business operations strategies framework and has emerged as an alternate strategy towards supply chain sustainability. However, its wide coverage in the scientific literature has focused mainly on the static planning approach and disregarded the dynamic approach, which is very useful in real-world applications. In this context, the present article offers a literature review of the dynamic facility layout problem (DFLP). First, a taxonomy of the reviewed papers is proposed based on the problem formulation current trends (related to the problem type, planning phase, planning approach, number of facilities, number of floors, number of departments, space consideration, department shape, department dimensions, department area, and materials handling configuration); the mathematical modeling approach (regarding the type of model, type of objective function, type of constraints, nature of market demand, type of data, and distance metric), and the considered solution approach. Then, the extent to which recent research into DFLP has contributed to supply chain sustainability by addressing its three performance dimensions (economic, environmental, social) is described. Finally, some future research guidelines are provided.This research was funded by the Spanish Ministry of Science, Innovation and Universities Project CADS4.0, grant number RTI2018-101344-B-I00; and the Valencian Community ERDF Programme 2014-2020, grant number IDIFEDER/2018/025.PĂ©rez-Gosende, P.; Mula, J.; DĂ­az-Madroñero Boluda, FM. (2020). Overview of Dynamic Facility Layout Planning as a Sustainability Strategy. Sustainability. 12(19):1-16. https://doi.org/10.3390/su12198277S1161219Ghassemi Tari, F., & Neghabi, H. (2015). A new linear adjacency approach for facility layout problem with unequal area departments. Journal of Manufacturing Systems, 37, 93-103. doi:10.1016/j.jmsy.2015.09.003Kheirkhah, A., Navidi, H., & Messi Bidgoli, M. (2015). Dynamic Facility Layout Problem: A New Bilevel Formulation and Some Metaheuristic Solution Methods. IEEE Transactions on Engineering Management, 62(3), 396-410. doi:10.1109/tem.2015.2437195Altuntas, S., & Selim, H. (2012). Facility layout using weighted association rule-based data mining algorithms: Evaluation with simulation. Expert Systems with Applications, 39(1), 3-13. doi:10.1016/j.eswa.2011.06.045Ku, M.-Y., Hu, M. H., & Wang, M.-J. (2011). Simulated annealing based parallel genetic algorithm for facility layout problem. International Journal of Production Research, 49(6), 1801-1812. doi:10.1080/00207541003645789Navidi, H., Bashiri, M., & Messi Bidgoli, M. (2012). A heuristic approach on the facility layout problem based on game theory. International Journal of Production Research, 50(6), 1512-1527. doi:10.1080/00207543.2010.550638Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2017). Classification of facility layout problems: a review study. The International Journal of Advanced Manufacturing Technology, 94(1-4), 957-977. doi:10.1007/s00170-017-0895-8Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387. doi:10.1108/09600030810882816Carter, C. R., & Washispack, S. (2018). Mapping the Path Forward for Sustainable Supply Chain Management: A Review of Reviews. Journal of Business Logistics, 39(4), 242-247. doi:10.1111/jbl.12196Roy, V., Schoenherr, T., & Charan, P. (2018). The thematic landscape of literature in sustainable supply chain management (SSCM). International Journal of Operations & Production Management, 38(4), 1091-1124. doi:10.1108/ijopm-05-2017-0260Barbosa-PĂłvoa, A. P., da Silva, C., & Carvalho, A. (2018). Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 268(2), 399-431. doi:10.1016/j.ejor.2017.10.036Tonelli, F., Evans, S., & Taticchi, P. (2013). Industrial sustainability: challenges, perspectives, actions. International Journal of Business Innovation and Research, 7(2), 143. doi:10.1504/ijbir.2013.052576SĂĄnchez-Flores, R. B., Cruz-Sotelo, S. E., Ojeda-Benitez, S., & RamĂ­rez-Barreto, M. E. (2020). Sustainable Supply Chain Management—A Literature Review on Emerging Economies. Sustainability, 12(17), 6972. doi:10.3390/su12176972Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. doi:10.1016/j.jclepro.2016.04.150Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. doi:10.1016/j.psep.2018.05.009Khuntia, J., Saldanha, T. J. V., Mithas, S., & Sambamurthy, V. (2018). Information Technology and Sustainability: Evidence from an Emerging Economy. Production and Operations Management, 27(4), 756-773. doi:10.1111/poms.12822Roy, S., Das, M., Ali, S. M., Raihan, A. S., Paul, S. K., & Kabir, G. (2020). Evaluating strategies for environmental sustainability in a supply chain of an emerging economy. Journal of Cleaner Production, 262, 121389. doi:10.1016/j.jclepro.2020.121389Morais, D. O. C., & Silvestre, B. S. (2018). Advancing social sustainability in supply chain management: Lessons from multiple case studies in an emerging economy. Journal of Cleaner Production, 199, 222-235. doi:10.1016/j.jclepro.2018.07.097Stindt, D. (2017). A generic planning approach for sustainable supply chain management - How to integrate concepts and methods to address the issues of sustainability? Journal of Cleaner Production, 153, 146-163. doi:10.1016/j.jclepro.2017.03.126MOSLEMIPOUR, G., LEE, T. S., & LOONG, Y. T. (2017). Performance Analysis of Intelligent Robust Facility Layout Design. Chinese Journal of Mechanical Engineering, 30(2), 407-418. doi:10.1007/s10033-017-0073-9Emami, S., & S. Nookabadi, A. (2013). Managing a new multi-objective model for the dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2215-2228. doi:10.1007/s00170-013-4820-5Al Hawarneh, A., Bendak, S., & Ghanim, F. (2019). Dynamic facilities planning model for large scale construction projects. Automation in Construction, 98, 72-89. doi:10.1016/j.autcon.2018.11.021Pournaderi, N., Ghezavati, V. R., & Mozafari, M. (2019). Developing a mathematical model for the dynamic facility layout problem considering material handling system and optimizing it using cloud theory-based simulated annealing algorithm. SN Applied Sciences, 1(8). doi:10.1007/s42452-019-0865-xTuranoğlu, B., & Akkaya, G. (2018). A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem. Expert Systems with Applications, 98, 93-104. doi:10.1016/j.eswa.2018.01.011Moslemipour, G., Lee, T. S., & Rilling, D. (2011). A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 60(1-4), 11-27. doi:10.1007/s00170-011-3614-xTebaldi, L., Bigliardi, B., & Bottani, E. (2018). Sustainable Supply Chain and Innovation: A Review of the Recent Literature. Sustainability, 10(11), 3946. doi:10.3390/su10113946Tseng, M.-L., Islam, M. S., Karia, N., Fauzi, F. A., & Afrin, S. (2019). A literature review on green supply chain management: Trends and future challenges. Resources, Conservation and Recycling, 141, 145-162. doi:10.1016/j.resconrec.2018.10.009Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869. doi:10.1016/j.jclepro.2019.119869Boar, A., Bastida, R., & Marimon, F. (2020). A Systematic Literature Review. Relationships between the Sharing Economy, Sustainability and Sustainable Development Goals. Sustainability, 12(17), 6744. doi:10.3390/su12176744Novais, L., Maqueira, J. M., & Ortiz-Bas, Á. (2019). A systematic literature review of cloud computing use in supply chain integration. Computers & Industrial Engineering, 129, 296-314. doi:10.1016/j.cie.2019.01.056Masi, D., Day, S., & Godsell, J. (2017). Supply Chain Configurations in the Circular Economy: A Systematic Literature Review. Sustainability, 9(9), 1602. doi:10.3390/su9091602Zavala-AlcĂ­var, A., Verdecho, M.-J., & Alfaro-Saiz, J.-J. (2020). A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain. Sustainability, 12(16), 6300. doi:10.3390/su12166300Li, K., Rollins, J., & Yan, E. (2017). Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1), 1-20. doi:10.1007/s11192-017-2622-5Kulturel-Konak, S., & Konak, A. (2014). A large-scale hybrid simulated annealing algorithm for cyclic facility layout problems. Engineering Optimization, 47(7), 963-978. doi:10.1080/0305215x.2014.933825Madhusudanan Pillai, V., Hunagund, I. B., & Krishnan, K. K. (2011). Design of robust layout for Dynamic Plant Layout Problems. Computers & Industrial Engineering, 61(3), 813-823. doi:10.1016/j.cie.2011.05.014Peng, Y., Zeng, T., Fan, L., Han, Y., & Xia, B. (2018). An Improved Genetic Algorithm Based Robust Approach for Stochastic Dynamic Facility Layout Problem. Discrete Dynamics in Nature and Society, 2018, 1-8. doi:10.1155/2018/1529058McKendall, A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171-182. doi:10.1016/j.ejor.2009.02.028Yang, C.-L., Chuang, S.-P., & Hsu, T.-S. (2010). A genetic algorithm for dynamic facility planning in job shop manufacturing. The International Journal of Advanced Manufacturing Technology, 52(1-4), 303-309. doi:10.1007/s00170-010-2733-0Abedzadeh, M., Mazinani, M., Moradinasab, N., & Roghanian, E. (2012). Parallel variable neighborhood search for solving fuzzy multi-objective dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 65(1-4), 197-211. doi:10.1007/s00170-012-4160-xGuan, X., Dai, X., Qiu, B., & Li, J. (2012). A revised electromagnetism-like mechanism for layout design of reconfigurable manufacturing system. Computers & Industrial Engineering, 63(1), 98-108. doi:10.1016/j.cie.2012.01.016Jolai, F., Tavakkoli-Moghaddam, R., & Taghipour, M. (2012). A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations. International Journal of Production Research, 50(15), 4279-4293. doi:10.1080/00207543.2011.613863Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., & Khorrami, J. (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers & Operations Research, 39(11), 2642-2658. doi:10.1016/j.cor.2012.01.012McKendall, A. R., & Liu, W.-H. (2012). New Tabu search heuristics for the dynamic facility layout problem. International Journal of Production Research, 50(3), 867-878. doi:10.1080/00207543.2010.545446Hosseini-Nasab, H., & Emami, L. (2013). A hybrid particle swarm optimisation for dynamic facility layout problem. International Journal of Production Research, 51(14), 4325-4335. doi:10.1080/00207543.2013.774486Kaveh, M., Dalfard, V. M., & Amiri, S. (2013). A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints. Neural Computing and Applications, 24(5), 1179-1190. doi:10.1007/s00521-013-1339-5KIA, R., JAVADIAN, N., PAYDAR, M. M., & SAIDI-MEHRABAD, M. (2013). A SIMULATED ANNEALING FOR INTRA-CELL LAYOUT DESIGN OF DYNAMIC CELLULAR MANUFACTURING SYSTEMS WITH ROUTE SELECTION, PURCHASING MACHINES AND CELL RECONFIGURATION. Asia-Pacific Journal of Operational Research, 30(04), 1350004. doi:10.1142/s0217595913500048Mazinani, M., Abedzadeh, M., & Mohebali, N. (2012). Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. The International Journal of Advanced Manufacturing Technology, 65(5-8), 929-943. doi:10.1007/s00170-012-4229-6Samarghandi, H., Taabayan, P., & Behroozi, M. (2013). Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2701-2715. doi:10.1007/s00170-012-4685-zYu-Hsin Chen, G. (2013). A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems. International Journal of Production Economics, 142(2), 362-371. doi:10.1016/j.ijpe.2012.12.012Bozorgi, N., Abedzadeh, M., & Zeinali, M. (2014). Tabu search heuristic for efficiency of dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 77(1-4), 689-703. doi:10.1007/s00170-014-6460-9CHEN, G. Y.-H., & LO, J.-C. (2014). DYNAMIC FACILITY LAYOUT WITH MULTI-OBJECTIVES. Asia-Pacific Journal of Operational Research, 31(04), 1450027. doi:10.1142/s0217595914500274Hosseini, S., Khaled, A. A., & Vadlamani, S. (2014). Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Computing and Applications, 25(7-8), 1871-1885. doi:10.1007/s00521-014-1678-xKia, R., Khaksar-Haghani, F., Javadian, N., & Tavakkoli-Moghaddam, R. (2014). Solving a multi-floor layout design model of a dynamic cellular manufacturing system by an efficient genetic algorithm. Journal of Manufacturing Systems, 33(1), 218-232. doi:10.1016/j.jmsy.2013.12.005Nematian, J. (2014). A robust single row facility layout problem with fuzzy random variables. The International Journal of Advanced Manufacturing Technology, 72(1-4), 255-267. doi:10.1007/s00170-013-5564-yPourvaziri, H., & Naderi, B. (2014). A hybrid multi-population genetic algorithm for the dynamic facility layout problem. Applied Soft Computing, 24, 457-469. doi:10.1016/j.asoc.2014.06.051Derakhshan Asl, A., & Wong, K. Y. (2015). Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization. Journal of Intelligent Manufacturing, 28(6), 1317-1336. doi:10.1007/s10845-015-1053-5Li, L., Li, C., Ma, H., & Tang, Y. (2015). An Optimization Method for the Remanufacturing Dynamic Facility Layout Problem with Uncertainties. Discrete Dynamics in Nature and Society, 2015, 1-11. doi:10.1155/2015/685408Ulutas, B., & Islier, A. A. (2015). Dynamic facility layout problem in footwear industry. Journal of Manufacturing Systems, 36, 55-61. doi:10.1016/j.jmsy.2015.03.004Zarea Fazlelahi, F., Pournader, M., Gharakhani, M., & Sadjadi, S. J. (2016). A robust approach to design a single facility layout plan in dynamic manufacturing environments using a permutation-based genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2264-2274. doi:10.1177/0954405415615728Hosseini, S. S., & Seifbarghy, M. (2016). A novel meta-heuristic algorithm for multi-objective dynamic facility layout problem. RAIRO - Operations Research, 50(4-5), 869-890. doi:10.1051/ro/2016057Pourvaziri, H., & Pierreval, H. (2017). Dynamic facility layout problem based on open queuing network theory. European Journal of Operational Research, 259(2), 538-553. doi:10.1016/j.ejor.2016.11.011Tayal, A., & Singh, S. P. (2016). Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem. Annals of Operations Research, 270(1-2), 489-514. doi:10.1007/s10479-016-2237-xKumar, R., & Singh, S. P. (2017). A similarity score-based two-phase heuristic approach to solve the dynamic cellular facility layout for manufacturing systems. Engineering Optimization, 49(11), 1848-1867. doi:10.1080/0305215x.2016.1274205Liu, J., Wang, D., He, K., & Xue, Y. (2017). Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem. European Journal of Operational Research, 262(3), 1052-1063. doi:10.1016/j.ejor.2017.04.002Vitayasak, S., Pongcharoen, P., & Hicks, C. (2017). A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. International Journal of Production Economics, 190, 146-157. doi:10.1016/j.ijpe.2016.03.019Xiao, Y., Xie, Y., Kulturel-Konak, S., & Konak, A. (2017). A problem evolution algorithm with linear programming for the dynamic facility layout problem—A general layout formulation. Computers & Operations Research, 88, 187-207. doi:10.1016/j.cor.2017.06.025Li, J., Tan, X., & Li, J. (2018). Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors. Mathematical Problems in Engineering, 2018, 1-13. doi:10.1155/2018/6040561Vitayasak, S., & Pongcharoen, P. (2018). Performance improvement of Teaching-Learning-Based Optimisation for robust machine layout design. Expert Systems with Applications, 98, 129-152. doi:10.1016/j.eswa.2018.01.005Wei, X., Yuan, S., & Ye, Y. (2019). Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm. Production & Manufacturing Research, 7(1), 109-124. doi:10.1080/21693277.2019.1602486Kulturel-Konak, S. (2007). Approaches to uncertainties in facility layout problems: Perspectives at the beginning of the 21st Century. Journal of Intelligent Manufacturing, 18(2), 273-284. doi:10.1007/s10845-007-0020-1Sharma, P., & Singhal, S. (2016). Implementation of fuzzy TOPSIS methodology in selection of procedural approach for facility layout planning. The International Journal of Advanced Manufacturing Technology, 88(5-8), 1485-1493. doi:10.1007/s00170-016-8878-8Bukchin, Y., & Tzur, M. (2014). A new MILP approach for the facility process-layout design problem with rectangular and L/T shape departments. International Journal of Production Research, 52(24), 7339-7359. doi:10.1080/00207543.2014.930534Meller, R. D., Kirkizoglu, Z., & Chen, W. (2010). A new optimization model to support a bottom-up approach to facility design. Computers & Operations Research, 37(1), 42-49. doi:10.1016/j.cor.2009.03.018Feng, J., & Che, A. (2018). Novel integer linear programming models for the facility layout problem with fixed-size rectangular departments. Computers & Operations Research, 95, 163-171. doi:10.1016/j.cor.2018.03.013Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46-62. doi:10.1016/j.eswa.2017.07.049Ahmadi, A., Pishvaee, M. S., & Akbari Jokar, M. R. (2017). A survey on multi-floor facility layout problems. Computers & Industrial Engineering, 107, 158-170. doi:10.1016/j.cie.2017.03.015Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255-267. doi:10.1016/j.arcontrol.2007.04.001Grobelny, J., & Michalski, R. (2017). A novel version of simulated annealing based on linguistic patterns for solving facility layout problems. Knowledge-Based Systems, 124, 55-69. doi:10.1016/j.knosys.2017.03.001Hathhorn, J., Sisikoglu, E., & Sir, M. Y. (2013). A multi-objective mixed-integer programming model for a multi-floor facility layout. International Journal of Production Research, 51(14), 4223-4239. doi:10.1080/00207543.2012.75348

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Metaheuristics for the Generalized Quadratic Assignment Problem

    Get PDF
    The generalized quadratic assignment problem (GQAP) is the task of assigning a set of facilities to a set of locations such that the sum of the assignment and transportation costs is minimized. The facilities may have different space requirements, and the locations may have varying space capacities. Also, multiple facilities may be assigned to each location such that space capacity is not exceeded. In this research, an application of the GQAP is presented for assigning a set of machines to a set of locations on the plant floor. Two meta-heuristics are proposed for solving the GQAP: tabu search (TS) and simulated annealing (SA). In addition, two types of neighborhood structures are considered for each meta-heuristic. A set of 21 test problems, available in the literature, is used to evaluate the performances of the meta-heuristics using one or two neighborhood structures. Computational experiments show that the proposed SA heuristics performed better than the proposed TS heuristics. The SA heuristics obtained results better than those presented in the literature for three of the test problems. On the other hand, the TS heuristics did not perform well for the problems with high space capacity utilization

    Ant colony heuristics for the dynamic facility layout problem

    Get PDF
    As global economic competition and cooperation become more and more drastic, the enterprise\u27s facility layout needs to be more flexible to adapt to the rapidly changing environment. Therefore, attention should be given to the dynamical nature of the facility layout. In other words, the flow of materials between departments changes during the planning horizon (multiple periods) and should be considered. This problem is known as the dynamic facility layout problem (DFLP).;This research proposes three heuristics based on the ant colony optimization (ACO) heuristic to solve the DFLP. The performance of the heuristics was evaluated using two data sets taken from the literature. Results obtained show that the proposed heuristics are effective for the dynamic facility layout problem

    Heuristics and Metaheuristics Approaches for Facility Layout Problems: A Survey

    Get PDF
    Facility Layout Problem (FLP) is a NP-hard problem concerned with the arrangement of facilities as to minimize the distance travelled between all pairs of facilities. Many exact and approximate approaches have been proposed with an extensive applicability to deal with this problem. This paper studies the fundamentals of some well-known heuristics and metaheuristics used in solving the FLPs. It is hoped that this paper will trigger researchers for in-depth studies in FLPs looking into more specific interest such as equal or unequal FLPs

    ARCH: a Robust Construction Heuristic for the Layout Design of Food Processing Facilities.

    Get PDF
    A Robust Construction Heuristic (ARCH) represents the first attempt to develop a facilities layout design algorithm tailored to the particular solution of the food processing facility layout problem where a fluctuating product mix due to seasonality or changes in consumer demand is typical. The foundation literature for this research comes predominantly from the industrial engineering, management science, and food science fields. Construction heuristics built layouts from scratch and provided poor quality results. Robustness algorithms had no simplifying heuristics but were reported to yield potentially higher quality layouts than traditional algorithms for layout problems with fluctuating product mixes. ARCH was developed as an alternative layout design algorithm based on the parallel philosophies that a robustness consideration would improve the relatively low quality solutions reported for construction heuristics and that a construction approach would allow the robust algorithm to be realistically implemented. ARCH was found to provide layout solutions comparable to or better than improvement heuristics for benchmark problems from the literature. A case study of an existing ham processing line was performed and a layout design for the plant generated by ARCH. In-plant surveys were conducted to develop pertinent input data for ARCH. Three products, whole smoked ham, chunked-and-formed ham, and pork sausage were produced by the plant. Historical seasonal demands were used for the expected fluctuation in levels of demand for each product. Certain assumptions had to be made to allow ARCH to consider layouts with certain flow patterns (U-shaped). The resulting layout designs were rather unorthodox in shape but could be used by the human designer to determine adjacency requirements for the final design

    New Mixed Integer Programming for Facility Layout Design without Loss of Department Area

    Get PDF
    This paper proposes a New Mixed Integer Programming (NMIP) for solving facility layout problem (FLP). The formulation is extensively tested on problems from literature to minimize material handling cost when addresses on the shop floor. Every department and shop floor in tested problem were fixed dimension of length and width. Classic Mixed Integer Programming (MIP) solves FLP with fixed layout area and preset each department’s lower-upper limit of length and width. As a result, there might be some departments with 5-10% area less than initial layout design requirements which leads to problem in design and construction process. It is infeasible to address the department on the actual shop floor thus adjustment of result from MIP is required. The main purpose of NMIP is to eliminate such infeasibility and show the efficiency of this model. Keywords: mixed integer programing, facility layout design, facility layout problem, heuristic
    • 

    corecore