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ABSTRACT 
 
 

HEURISTICS FOR THE DYNAMIC FACILITY LAYOUT PROBLEM WITH 

UNEQUAL AREA DEPARTMENTS 

 

Artak Hakobyan 

 
 

The facility layout problem (FLP) is a well researched problem of finding positions 
of departments on a plant floor such that departments do not overlap and some 
objective(s) is (are) optimized.  In this dissertation, the FLP with unequal area rectangular 
shaped departments is considered, when material flows between departments change 
during the planning horizon. This problem is known as the dynamic FLP. The change in 
material flows between pairs of departments in consecutive periods may require 
rearrangements of departments during the planning horizon in order to keep material 
handling costs low. The objective of our problem is to minimize the sum of the material 
handling and rearrangement costs. Because of the combinatorial structure of the problem, 
only small sized problems can be solved in reasonable time using exact techniques. As a 
result, construction and improvement heuristics are developed for the proposed problem. 
The construction algorithms are boundary search heuristics as well as a dual simplex 
method, and the improvement heuristics are tabu search and memetic heuristics with 
boundary search and dual simplex (linear programming model) techniques. The heuristics 
were tested on a generated data set as well as some instances from the literature. In 
summary, the memetic heuristic with the boundary search technique out-performed the 
other techniques with respect to solution quality. 
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CHAPTER 1 

INTRODUCTION 

 

The facility layout problem (FLP) is a well researched problem of finding positions 

of departments such that departments do not overlap and some objective(s) is (are) 

optimized. Among the objectives which are considered in the literature are one or 

combinations of the following: minimizing costs to transport materials between 

departments (material handling costs), maximizing some adjacency measure (see 

Houshyar and White, 1993 as well as Wascher and Merker, 1997), minimizing the 

time materials travel between departments, minimizing the area of the smallest rectangle 

enclosing all the departments, maximizing worker safety, and minimizing the costs of 

assigning departments to locations (assignment cost). According to Tompkins et al. 

(1996) material handling costs account for 15-70% of the overall operating expenses 

within manufacturing system, thus a good layout contributes to substantial reduction in 

costs. In this research, minimizing the sum of material handling costs is considered. 

The FLP is related to other problems such as the rectangle packing problem (see 

Ahmad et al., 2006 as well as Liu and Teng, 1999) and the problem of generating very 

large scale integrated (VLSI) macro-cell layouts (see Lengauer, 1990, Cohoon et al., 

1991, Sherwani, 1993, as well as  Schnecke and Vornberger, 1997). In the rectangle 

packing problem (RPP), the task is to assign rectangles to positions (without overlapping) 

in a rectangular packing space such that space utilization is maximized (i.e., minimizing 

the area of the rectangle enclosing all the rectangles). The major difference between the 

RPP and FLP is that RPP does not consider flows between pairs of rectangles. However, 
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flows between pairs of departments are used to determine material handling cost in the 

FLP.  

The designing of the VLSI macro-cell layouts is a process of laying out the macro-

cells on a circuit board. The cells have terminals (pins) which are connected to wire nets 

on the circuit board through which the electric signals travel between the cells. The 

objectives considered in the literature are: minimizing the area occupied by the cells, 

minimizing the total length of the wire used on the circuit, minimizing the total distance 

the electronic signal travels between the cells. The problem of the VLSI layout generation 

is very closely related to the FLP since the electrical signal that travels between the 

macro-cells may be thought of as material flow between departments as in the FLP. 

Although some authors considered the FLP in which some departments are required 

to have pre-specified non-rectangular shapes (see McKendall et al., 1999), the most 

common approach is to assume that the departments have rectangular shapes. In this 

dissertation, departments are assumed to have rectangular shapes. The following sections 

review different models of the FLP. In Section 1.1, the FLP with equal area departments 

is presented, and the FLP with unequal area departments is presented in Section 1.2. The 

problem in which material flows between departments change during a multi-period 

planning horizon (dynamic FLP) is presented in Section 1.3. 

 

1.1 Static Facility Layout Problem with Equal Area Departments 

The simplest case of the FLP is a FLP with equal size departments where the 

amounts of materials flowing between pairs of departments do not change during the 

planning horizon. This problem is called the static FLP with equal size departments, and 
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it was modeled by Koopmans and Beckmann (1957) as a quadratic assignment problem 

(QAP). In this model, the plant floor is divided into grids of equal size rectangles 

(locations). Then the FLP becomes the assignment of departments to locations such that 

no two departments are assigned to the same locations, and the sum of the material 

handling and assignment costs is minimized.  

 

1.2 Static Facility Layout Problem with Unequal Area Departments 

1.2.1 Objective Function 

For the static FLP with unequal area departments, departments should be laid out 

within the boundaries of the plant floor in such a manner that they do not overlap. The 

most commonly used objective is minimizing material handling cost which is the sum of 

the product of the flows, distances, and transportation cost per unit per distance unit for 

each pair of departments. 

The Euclidean, rectilinear, or actual path distance metric is used to determine the 

distances materials flow from the output (pickup) station (O) of a department to the input 

(delivery) stations (I) of other departments. If a Euclidean distance metric is used, then 

the materials are assumed to flow along a straight line connecting the input and output 

stations of departments. If a rectilinear metric is used, then the materials are assumed to 

flow along two perpendicular line segments connecting the input and output stations of 

the departments. Some authors argue that this metric is more practical then the Euclidean 

distance metric, since it more closely estimates the real distance that materials flow 

between departments. When the actual path distance metric is used, it is assumed that the 

materials flow along the perimeters of departments. The rectilinear distance metric is the 

 3



easiest of the three distance metrics to model mathematically. However, in practice the 

flow of materials between any two departments usually does not occur through other 

departments, which are between them; therefore, the actual path distance metric is 

obviously the most practical, though hardest to model mathematically. In Figure 1.1, the 

flow of materials from the output station of department 5 (D5) to the input station of 

department 6 (D6) uses the Euclidean distance metric. The rectilinear distance metric is 

used to obtain the distance from department 1 (D1) to department 5 (D5), and the actual 

path distance metric is used to obtain the distance from department 6 (D6) to department 

2 (D2). In this example, we used three different types of distance metrics for illustrative 

purposes only, and usually only one of the three distance metrics is used. 

 

 
Figure 1.1: Euclidean, rectilinear, and actual 

path distance metrics 
 

1.2.2 Discrete versus Continuous Approach 

Earlier it was stated that the FLP with equal area departments can be modeled as a 

QAP, where the plant floor is divided into grids of equal size locations. Recall, the QAP 
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assigns departments to locations. The layout or solution of the QAP is often given as a 

block layout which is a graphical representation of the plant floor illustrating the relative 

locations of the departments. In this case, the block layout uses the discrete representation 

to specify the solution or layout. When considering unequal area departments and the 

discrete representation, the layout is divided into equal size grids, and the FLP is to 

assign departments to sets of grids (or locations) on the plant floor (see Armour and 

Buffa, 1963, Bazaraa, 1975, as well as Bozer et al., 1994). In other words, departments 

are divided into sub-departments that are assigned to grids (or locations) on the plant 

floor such that some objective(s) is (are) optimized.  

The deficiencies of the majority of the methods presented in the literature 

considering the discrete representation of the FLP with unequal area departments are that 

they produce solutions with irregular shape departments (Bozer et. al., 1994), and the 

computational time may increase considerably when using smaller grid sizes. However, 

with larger grid sizes, the areas of departments in the layout may differ significantly from 

the specified areas. In Figure 1.2, examples of two block layouts are shown when the 

discrete representation of the FLP with unequal area departments is used. The 

departments, to which the sub-departments belong are shown in parentheses (e.g., 

department 1 is divided into 6 equal size sub-departments denoted 1 through 6). Notice 

department 2 in the layout given in Figure 1.2(a) has a rectangular shape. However, 

department 2 in Figure 1.2(b) has a nonrectangular or irregular shape (L-shaped 

department).     
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Figure 1.2: Graphical representation of two solutions using the discrete 

representation of the FLP with unequal-area departments: (a) with 
regular shape departments; and (b) with irregular shape departments  

 

Bazaraa (1975) presented a discrete formulation of the FLP with unequal area 

departments as a quadratic set covering problem such that the objective function is of 

quadratic type and the constraints are of set partitioning and set covering types. In his 

model, the set of departments should be covered by the set of locations. Also, Bazaraa 

(1975) presented the generalized quadratic assignment problem formulation for the FLP 

with unequal area departments such that each department is assigned to a specified 

number of grids, and at most one department should be assigned to each location.  

Some techniques which solve the FLP with unequal area departments consider the 

continuous representation of the block layout. Using this representation, departments may 

be placed anywhere on the continuous plane (see Montreuil and Ratliff, 1989, Tam and 

Li, 1991, as well as Imam and Mir, 1993). In this dissertation, the continuous 

representation of the block layout is used and is illustrated below. 

 

1.2.3 Fixed/Variable Shape Departments 

In the FLP with unequal area departments, the departments may have either fixed or 

variable shapes. The dimensions of a fixed shape department are defined by specifying 

the values for the length and width, or longer and shorter side lengths for the department. 

The dimensions of a variable shape department are usually defined by specifying the area 
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of the department and the lower and upper bounds on allowed ratios of the department’s 

length to its width, or the ratio of the department’s longer side length to its shorter side 

length. This ratio is called the aspect ratio. Furthermore, the departments may be 

restricted to vertical or horizontal orientation, or may have any orientation. For example, 

consider the case when the dimensions of the departments are given by specifying the 

areas and lower and upper bounds on aspect ratios where the aspect ratio of a department 

is defined as the ratio of the department’s longer side length to its shorter side length. The 

areas, minimum (min) and maximum (max) aspect ratios, and orientations of the 

departments are specified in Table 1.1.  

 
Table 1.1: Areas, aspect ratios, and orientations of 

departments 
 

In Tables 1.2(a) and 1.2(b), actual lengths and widths of departments are given such 

that the areas of the departments are as given in Table 1.1, and the aspect ratios are within 

the ranges defined in the table. In Figures 1.3(a) and 1.3(b) the continuous representations 

of two solutions are presented such that the departments have lengths and widths 

specified in Tables 1.2(a) and 1.2(b), respectively. Notice the orientations of the 

departments correspond to the orientations given in Table 1.1. Recall, the continuous 

representations of the two solutions given in Figure 1.3 are called block layouts.   
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Table 1.2: Two sets of lengths and widths corresponding to data in Table 1.1 

 

 
  Figure 1.3: Two solutions to the unequal area FLP corresponding to the 

data given in Tables 1.1 and 1.2 
 

The main purpose of using lower and upper bounds on the aspect ratio of a 

department is to ensure that the lengths of longer and shorter sides of a department are 

greater than or are equal to specific values, and the area of a department is equal to the 

area specified. For example, the shapes department 6 in Table 1.1 can have, according to 

vertical and horizontal orientations, are shown in Figures 1.4(a) and 1.4(b), respectively. 

As it can be seen in Figures 1.4(a) and 1.4(b), the dimensions of department 6 could have 

been alternatively defined by restricting department 6 to have an area of 205 and by 

specifying the minimum lengths of the departments shorter and longer sides to be 8.27 
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and 17.54, respectively. The minimum values of shorter and longer sides may be derived 

from the bounds on aspect ratios as follows: 

Shorter side minimum length  =
ratioaspect  maximum*area

area  

Longer side minimum length = ratioaspect  minimum*area  

 

 
Figure 1.4: Shapes of department 6 corresponding to extreme values of aspect 

ratios: (a) for vertical orientation; (b) for horizontal orientation 
 
 

1.3 The Dynamic Facility Layout Problem 

The FLPs discussed in Sections 1.1 and 1.2 consider the static case in which the 

amounts of materials that flow between pairs of departments are fixed during the 

planning horizon. This type of FLP is called the static FLP. In contrast, in the dynamic 

environment, the material flows between pairs of departments change during the planning 

horizon. Also, the sizes of departments may change to accommodate these changes. In 

McKendall and Shang (2006), the authors list some of the causes for changes in 

material flow as follows. 

• Termination of production of some products  
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• Introduction of new products  

• Change in demands of products 

• Change in designs of products 

In addition, companies which produce products with shorter life cycles (e.g., computer 

manufacturing companies), are more likely to have higher frequency of changes in 

material flows. Also, Nicol and Hollier (1983) point out that if the effective lifetime of a 

layout is defined as the elapsed time from installation until at least one-third of all key 

manufacturing operations are replaced, then it was found that nearly half of the 

companies surveyed had an average layout stability of two years or less.  

If the material flows change during the planning horizon, the planning horizon can 

be divided into time periods (e.g., months, years, etc.), during which the material flows 

between departments do not change. Data for material flows between pairs of 

departments for each period can be forecasted. In this dissertation, the dynamic FLP 

(DFLP) is considered, which is the problem of finding positions of departments in each 

period, such that departments do not overlap, and the sum of material handling costs and 

costs of rearranging departments between consecutive periods is minimized.  

The department rearrangement costs may be divided into two categories: fixed and 

variable costs (Balakrishnan and Cheng, 1998). Fixed costs are defined as costs which 

do not depend on how much departments have been rearranged. In contrast, variable 

costs are based on the distance the departments are transported and the increase or 

decrease in department sizes. In most of the papers available in the DFLP literature, they 

use fixed rearrangement costs. Nevertheless, examples of rearrangement costs are as 

follows. 
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1) Setup costs associated with preparing the department(s) for rearrangement  

2) Cost of leasing the equipment for rearranging departments  

3) Costs associated with the loss of production during rearrangement of 

departments 

4) Distance based costs associated with transporting centers of departments 

(D’Souza and Mohanty, 1986, as well as Montreuil and Laforge, 1992) 

5) Distance based costs associated with a unit-distance displacement of the west, 

east, south, and north sides of departments (Montreuil and Laforge, 1992) 

6) Labor costs associated with hourly wages paid to personnel responsible for 

rearranging departments 

A DFLP instance with 2 periods and 6 departments is shown below. Department 

data for periods 1 and 2 are defined in Table 1.3. The material handling costs per distance 

unit and department rearrangement costs are given in Table 1.4 and Table 1.5, 

respectively. Two solutions for the DFLP instance were obtained and are shown in 

Figures 1.5 and 1.6. The block layouts shown in Figure 1.5 were obtained by solving the 

DFLP, when the objective is to minimize the sum of material handling and rearrangement 

costs. In contrast, the layouts shown in Figure 1.6 were obtained by solving two static 

FLPs separately for each of the two periods, without considering rearrangement costs as 

shown in Table 1.5. In Figures 1.5 and 1.6, the input and output stations of departments 

are denoted by triangles pointing down and up, respectively. Notice that only three 

departments are rearranged (i.e., departments 1, 4, and 6) in solution 1 (Figure 1.5). Both 

shapes and positions of centroids of departments 1 and 4 changed in period 2, whereas 

only the shape of department 6 changed. However, all departments except department 3 
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are rearranged in period 2 in solution 2 (Figure 1.6), since rearrangement costs are not 

considered. In Table 1.6, the evaluations of solutions are given with respect to material 

handling and rearrangement costs. As it can be seen, the material handling cost for 

solution 2 (layouts in Figure 1.6) is lower, but the rearrangement cost is much higher than 

for solution 1 (layouts in Figure 1.5), since rearrangement cost was ignored when solving 

the two static FLPs for each period. Thus, the sum of material handling and 

rearrangement costs corresponding to solution 1 (i.e., total cost = 1035.44) is lower than 

the total cost corresponding to solution 2 (i.e., total cost = 1482.27) by over 43%. The 

reason  for such a large difference in total cost is due to relatively high rearrangement 

cost (see Table 1.5). Hence, the DFLP should not be solved by solving a series of static 

FLPs for each period such that rearrangement costs are ignored. In this dissertation, the 

DFLP is solved such that the sum of the material handling and rearrangement costs is 

minimized. 

 
Table 1.3: Department dimensions for the DFLP instance  
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Table 1.4: Costs to transport materials per distance unit between departments 

in periods 1 and 2 
 

 
Table 1.5: Rearrangement costs for the DFLP instance for 

period 2  
 

 
Figure 1.5: Block layout of the DFLP instance obtained by considering both 

material handling and rearrangement costs 
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Figure 1.6: Block layout of the DFLP instance obtained by considering only 

material handling costs 
 

 
Table 1.6: Costs of solutions in Figures 1.5 and 1.6  
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CHAPTER 2 

PROBLEM STATEMENT 

 

2.1 Statement of the Problem 

In this dissertation, the DFLP with unequal area departments is considered. The 

problem is to find the layouts of N rectangular shape departments on the plant floor for 

each period in the planning horizon such that the sum of the material handling and 

rearrangement costs is minimized. Most, if not all of the models in the literature consider 

this objective.   

 

2.2 Problem Assumptions 

In this dissertation, the following assumptions are made for the DFLP. 

1. Plant floor and departments have rectangular shapes. The shape of each 

department is defined by specifying department orientation (i.e., vertical, 

horizontal, or any), and lengths of shorter and longer sides of the department. 

More specifically, departments have fixed shapes. 

2. The continuous representation of the DFLP is considered.  

3. In each period, the departments should be laid out on the plant floor such that they 

are within the boundaries and no two departments overlap. 

4. Each department in each period has one input (I) station to which materials flow 

in from other departments and one output (O) station from which the materials 

flow out to other departments. Without lost of generality, I/O stations are at 
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centroids of departments. The amount of flow from output stations to input 

stations of all departments are known for each period. 

5. Departments are rearranged at the beginning of a period if necessary, and 

rearrangement costs are considered.    

6. The rectilinear distance metric is used to measure the distances between input and 

output (I/O) stations of departments. 

 In assumption 5, a department is rearranged in consecutive periods, if either its shape, 

centroid or locations of I/O stations change.  This assumption was made in Dunker et al. 

(2005).   

 

2.3 Research Objectives 

The main objectives of this research are: 

1. To develop construction algorithms, based on a boundary search technique and 

the dual simplex method with an LP formulation, for the DFLP.   

2. To develop a tabu search (TS) and a memetic heuristic, improvement heuristics, 

based on the boundary search and dual simplex method for the DFLP. 

3. To evaluate the effectiveness of the proposed heuristics by comparing their results 

to the results obtained from the “best” techniques in the literature for the DFLP. 

4. To generate a new set of test problems to thoroughly evaluate the effectiveness of 

the proposed heuristics.  
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CHAPTER 3 

LITERATURE REVIEW 

 

The QAP is shown to be NP-hard (see Sahni and Gonzalez, 1976), and there exists 

no algorithm which solves the problem in polynomial time. Frances and White (1974) 

noted, that except for relatively small-sized problems, an exact solution to the QAP 

cannot be obtained at a reasonable computational cost. Therefore, heuristic solution 

procedures are generally used to obtain “good” solutions.  

Exact algorithms, which guarantee optimal solution, are able to solve unequal area 

static FLPs with up to 13 departments in reasonable time (see Meller et al., 1999, 

Castillo and Westerlund, 2005, as well as Castillo et al., 2005). A number of 

suboptimal heuristics that solve the FLP, have been developed in the last several decades. 

These heuristics do not guarantee optimal solutions to problems, but usually find good 

solutions in reasonable time. Most of the heuristics in the literature are either construction 

or improvement type heuristics. In construction type heuristics, a layout or solution is 

generated from scratch. Improvement type heuristics require an initial solution(s) as 

input, generated by some construction type heuristic. The initial solution is improved 

iteratively. Wilhelm and Ward (1987) state that construction type heuristics do not in 

general yield solutions that are near optimal, and improvement type heuristics have been 

found to yield superior solutions. In the sections that follow, the review of the FLP 

literature is presented. Review of the literature can also be found in Singh and Sharma 

(2006), Liggett (2000), Meller and Gau (1996), Welgama and Gibson (1995), and 
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Kusiak and Heragu (1987). For a review of the DFLP, specifically, see Balakrishnan 

and Cheng (1998). 

 

3.1 Discrete Representation of the FLP  

3.1.1 Static Facility Layout Problem  

Koopmans and Beckmann (1957) were the first to model the FLP with equal size 

departments, as a QAP. They consider profit associated with each department to location 

assignment. Also, there is a flow of commodity between pairs of departments. The 

mathematical formulation maximizes the profit from assignment of departments to 

locations minus the material handling costs between facilities, subject to the condition 

that each department is assigned to exactly one location, and exactly one department is 

assigned to each location. The commonly used QAP formulation, modified from 

Koopmans and Beckmann (1957) is the following: 

Minimize ∑∑∑∑∑∑ +
i k j l

jlikkjli
i k

kiik xxCxA                 (3.1a) 

s.t.   for i = 1, …, N     (3.1b) 1=∑
k

kix

 1 for k = 1, …, N     (3.1c) =∑
i

kix

     xik = 0 or 1 for i, k = 1, …, N     (3.1d)  

Where the parameters used in this model are: 

• N is the number of departments. 

• fi j is the flow of materials from department i to department j where i, j = 1,…, N. 

• dkl = distance from location k to location l where k, l = 1,…, N. 
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• cikjl = cost per unit flow of materials from department i to department j per 

distance unit from location k to location l. 

• Cikjl is material handling cost from department i located at location k to j located at 

location l such that Cikjl = cikjl fijdkl. 

• Aik is the cost of assigning department i to location k where i, k = 1,..., N. 

The decision variables are: 

• xik is a binary variable which is 1 if department i is assigned to location k and zero 

otherwise. 

Gilmore (1962) and Lawler (1963) were the first to develop optimal procedures for 

the QAP problem defined by Koopmans and Beckmann (1957) based on branch and 

bound techniques. Gilmore (1962) also developed two heuristics which are modified 

versions of the branch and bound algorithm. The heuristics consider only certain 

promising branches. However the solution is not guaranteed to be optimal. Although the 

techniques by Gilmore (1962) and Lawler (1963) are computationally more effective 

than complete enumeration of all possible assignments, according to Gilmore (1962), his 

algorithm is probably not computationally feasible for N much larger than 15. 

Hillier (1963) developed a pairwise exchange heuristic for solving the QAP. At 

each iteration, the heuristic considers the pairs of neighbor work centers (departments), as 

candidates for interchanging their locations. The heuristic chooses the pair, which will 

result in greatest positive improvement in the objective function value. The heuristic 

stops, when there is no exchange, which results in improvement in objective function 

value. Also Hillier (1963) describes a procedure which considers non neighbor work 

centers for exchanges. In this article, Hillier points out how the heuristic can be modified 
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to solve FLP with unequal area work centers. One of the proposed methods is to divide 

the work centers into several work centers (sub-work centers) where the dimensions of 

each is equal to the dimensions of smallest work center, and to divide the flow of the 

work center to and from other work centers between those sub-work centers. To avoid 

splitting of the divided work-centers, he suggests assigning large artificial flows between 

sub-work centers of the same work centers.  

Armour and Buffa (1963) developed a pairwise exchange improvement type 

heuristic for solving the FLP with unequal area departments. At each iteration the 

algorithm exchanges the locations of two departments. Two departments are eligible for 

exchange if they are either adjacent in current layout, or have equal areas. Two 

departments are picked at current iteration for exchange, if the improvement in the 

objective function value associated with the exchange of centers of the departments is 

positive and is greatest among all the eligible pairs of departments. The heuristic moves 

to a new solution, by exchanging the locations of subdepartments of exchanged 

departments. The algorithm stops when no pair of departments is identified for exchange. 

However, the algorithm may produce irregular (nonrectangular) shaped departments. 

Buffa et al. (1964) developed an improvement type heuristic called CRAFT 

(Computerized Relative Allocation of Facilities Technique), for solving the FLP with 

unequal area departments. The algorithm is similar to that described by Armour and 

Buffa (1963), except that it also considers exchanges of locations of three departments.  

Bazaraa (1975) formulated the unequal area FLP using the discrete representation 

as a quadratic set covering problem and developed a branch and bound algorithm for 

solving the problem. The plant area is divided into blocks. The shapes and areas of 
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objects (departments) in terms of basic blocks are determined by the analyst. For each 

department the analyst must specify the sets of candidate locations to which the sub-

departments of departments may be assigned. He also formulated the problem as a 

generalized quadratic assignment problem such that each department is assigned to a 

specified number of grids, and at most one department should be assigned to each 

location. 

Burkard and Rendl (1984) as well as Wilhelm and Ward (1987) applied 

simulated annealing (SA) heuristic to solve the QAP. The simulated annealing heuristic 

was developed by Kirkpatrick et al. (1983) for solving combinatorial optimization 

problems, and it is based on natural phenomena of bringing the melt metal to its lowest 

energy state by slowly lowering the temperature of the metal. If the metal is cooled too 

quickly, imperfections can occur. The simulated annealing heuristic is a random pairwise 

exchange heuristic, which avoids getting trapped at the local optimum by considering 

non-improving exchanges.  

Hassan et al. (1986) developed a construction heuristic, called SHAPE, for solving 

the discrete representation of the unequal area FLP. The areas of departments are given. 

The heuristic orders the departments in such a way, that the departments with higher 

interactions with all other departments are earlier in the list, and the pairs of departments 

with relatively high interactions between them are as close as possible in the list. The 

heuristic picks one department at a time from the list of departments and assigns to it 

neighboring squares on the layout in such a way, that the department have maximally 

regular (rectangular) shape. The first department is placed at the center of the plant floor, 

and the rest of the departments are placed around it. In this dissertation, this type of 
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heuristic is referred to as a boundary search heuristic. The procedure for determining the 

department placement order is an improvement of methods by Apple and Deisenroth 

(1972) and Lee and Moore (1967). The drawback of the heuristic is that some 

irregularity in shapes of departments is still possible. In addition, smaller size square 

grids increase computational time.  

Li and Mashford (1990) applied a genetic search algorithm to solve the QAP. The 

genetic algorithm (GA)  is an improvement type heuristic developed by  Holland (1975), 

for solving combinatorial optimization problems, and it resembles the natural phenomena 

of the survival of the fittest (i.e., when most fit in the population survive and reproduce).  

Skorin-Kapov (1990) were the first to apply a tabu search (TS) improvement type 

heuristic to the QAP. Tabu search heuristic was introduced by Glover (1986) and was 

improved by Glover (1989) and Glover (1990). The heuristic by Skorin-Kapov (1990) 

is a pairwise exchange heuristic which uses memory (tabu list) to store the list of a 

number of recent exchanges. The number of iterations a move is declared tabu is called 

the tabu duration (tenure length). Therefore, non-improving moves (or solutions) are 

selected using the tabu list such that the heuristic may escape from “poor” local optimum.  

Bozer et al. (1994) developed a pairwise exchange heuristic, called MULTIPLE, 

for solving the discrete representation of a single and multi-floor FLP with unequal area 

departments. The heuristic uses the space filling curve (SFC) to construct the layouts, in 

which the departments are not split. The SFC is a continuous line passing through all the 

grids of each floor. The solution is represented as a sequence of department numbers. The 

layout corresponding to specific sequence of department numbers is uniquely constructed 

by consecutively assigning the required number of grids across SFC to departments. The 

 22



use of SFCs allows the heuristic not to restrict the exchanges to equal size or adjacent 

departments, as CRAFT by Armour and Buffa (1963) does. Figure 3.1 is an example 

from  Bozer et al. (1994) of two different layouts corresponding to solutions (1, 2, 3, 4, 5, 

6) and (1, 5, 3, 4, 2, 6) respectively. The layout in Figure 3.1(b) is obtained from layout in 

Figure 3.1(a) by exchanging departments 2 and 5. To force the shapes of departments to 

be maximally regular, they use a shape measure. The exchange of departments is 

rejected, if it results in a layout with department(s) which violate the shape measure.  

 
Figure 3.1: The layouts corresponding to sequences of departments (1, 2, 3, 4, 

5, 6) and (1, 5, 3, 4, 2, 6) 
 

Chiang and Chiang (1998) applied simulated annealing, tabu search, probabilistic 

tabu search (PTS) and a hybrid of tabu search and simulated annealing heuristics to solve 

the QAP. Also, Drezner (2008) used a memetic algorithm (MA) to solve the QAP. The 

MA was developed by Norman and Moscato (1989) and is a hybrid of GA and TS.    
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3.1.2 Dynamic Facility Layout Problem  

Rosenblatt (1986) was the first to introduce the DFLP with equal area departments, 

which minimizes the sum of material handling and rearrangement costs. Rosenblatt 

(1986) considers rearrangement costs Ckm, associated with rearranging from some layout 

Ak to some other layout Am. The author developed dynamic programming method for 

solving the problem.  

Lacksonen and Enscore (1993) modified and analyzed five methods for solving 

the DFLP with equal area departments. Four of them originally were heuristics for 

solving the static FLP with equal area departments modified by the authors to solve the 

DFLP with equal areas. The original algorithms are: pairwise exchange routine; cutting 

planes algorithm for solving the QAP by Burkard and Bonniger (1983); branch and 

bound algorithm by Pardalos and Crouse (1989), modified to store only the 25 most 

promising nodes and to stop the algorithm after 50000 nodes are analyzed; cut tree 

algorithm by Gomory and Hu (1961). The fifth heuristic is Rosenblatt’s (1986) 

dynamic programming method for solving the DFLP with equal areas. Authors mention 

that the modified cutting planes algorithm by Burkard and Bonniger (1983) in a series 

of tests outperformed the four other heuristics. 

Conway and Venkataramanan (1994) used a GA to solve the DFLP with equal 

area departments. On the other hand, Kaku and Mazzola (1997) developed a TS 

heuristic for the DFLP.  

Corry and Kozan (2004) developed an ant colony optimization (ACO) algorithm 

to solve the DFLP with unequal area fixed shape departments. ACO heuristics first were 

presented by Dorigo et al. (1996) for solving the traveling salesman problem. These 
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types of heuristics simulate how the ants search for food by leaving a chemical trail 

called pheromone trail. The amount of pheromone trail left by an ant depends on the 

amount of food found. If the food source is far from the ant colony nest, fewer ants will 

be able to follow the trail in a given amount of time, and the pheromone will eventually 

evaporate. Corry and Kozan (2004) use a graph representation that has a node for each 

department and each grid on the plant floor. Unlike most of the techniques which use 

discrete representation of the problem, the heuristic constructs rectangular shape 

departments. However, as the authors mention, the level of grid resolution dictates the 

size of the graph, which should be kept as small as possible. In addition, according to the 

authors, it is desirable to keep grid resolution low for faster computation times. This 

makes the technique impractical for solving problems with large degree of variability in 

department sizes.   

McKendall and Shang (2006) developed hybrid ant systems (HASs) for solving 

the DFLP with equal area departments. The first technique (HAS I) is a modification of 

the hybrid ant system (HAS) by Gambardella et al. (1999) for solving the QAP. The 

second technique (HAS II) is a modification of HAS I, which uses SA instead of a 

pairwise exchange heuristic. Finally, the third technique (HAS III) is a modification of 

HAS I with a look-ahead/look-back strategy added to the pairwise exchange heuristic. 

Similarly, McKendall et al. (2006) developed two simulated annealing heuristics for the 

DFLP. The first heuristic is a direct adaptation of SA to solve the DFLP. The second SA 

heuristic is a modification of the first SA, with added look-ahead/look-back strategy.  
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3.2. Continuous Representation of the FLP 

3.2.1 Static Facility Layout Problem  

Heragu (1989) developed a mixed integer linear programming (MILP) formulation 

for the continuous representation of the FLP with unequal area fixed shape departments. 

The author used two binary variables per pair of departments in the department non-

overlap constraints.  

Montreuil (1990) presented MILP formulations for the static FLP with unequal 

area variable shape departments. Four binary variables are used for each pair of 

departments, which represent relative positions of the departments. Also the author 

linearized the nonlinear area constraints of the form ai = wihi, and iii wh α≤/ , where ai is 

the given area of department i, wi and hi are the length and width of the department, and 

αi is the upper bound on the aspect ratio of the department. According to Meller et al. 

(1999), the departments in the solutions to the MILP by Montreuil (1990)  tend to have 

smaller areas than required. Montreuil et al. (1993) used design skeletons from 

Montreuil and Ratliff (1989) to preset the values of binary variables representing the 

relative positions of departments in the  MILP formulation in Montreuil (1990). 

Tam (1992-a) developed a GA to solve the FLP with unequal area variable shape 

departments. The binary slicing tree structure, such as the one shown in Figure 3.2, is 

used to represent the layout. The leaves of the slicing tree are department numbers, and 

the internal nodes are the branching operators. Four types of branching operators (left cut, 

right cut, upper cut, and bottom cut) define the relative positions of the departments under 

the internal nodes. The slicing tree is generated once at the beginning of the heuristic, and 

stays unchanged throughout the execution of the heuristic. New solutions are generated 
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by changing only the operators in internal nodes. A numeric value is assigned to each 

node, which is equal to the cumulative area of the departments, the corresponding leaves 

of which branch from the node. These values are used to determine the point where the 

block should be cut by horizontal or vertical line. The algorithm also considers the dead 

spaces, which are areas that cannot be occupied by departments.  

 
Table 3.1: Geometric constraints for departments from Tam (1992-a) 
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Figure 3.2: Slicing tree from Tam (1992-a) 
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Figure 3.3: Layout constructed from the slicing tree in Figure 3.2 

 
 

The objective function contains terms for penalizing the solutions, which have 

departments violating the aspect ratio constraints, or have departments which intersect 

dead spaces. Department data for a FLP problem instance is shown in table 3.1. In 

Figures 3.2 and 3.3 the slicing tree and the layout constructed from the slicing tree are 

shown. This example is taken from Tam (1992-a). The first cut is a vertical cut which 

partitions the plant floor into two rectangles with dimensions  12.78 by 18 and 12.22 by 

18. Since the values, assigned to nodes, branching from the root node are 230 and 220, 

the cut is done in such a way, that left and right rectangles  resulted from the cut have 

areas 230 and 220, respectively (i.e., cumulative areas of departments below the left and 

right nodes, branching from the root node). The process of constructing the layout from 

the slicing tree is continued in this way, until space is allocated to all departments. 

Tam (1992-b) developed a SA heuristic to solve the FLP with unequal area variable 

shape departments. The considered model and the solution representation are similar to 

that in Tam (1992-a). Garces-Perez et al. (1996) developed a GA which utilizes slicing 

tree structure to construct the layouts. They ensure that the aspect ratio constraints are 
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satisfied for all departments by expanding the blocks, after the layout is constructed. The 

algorithm also has operators for obtaining new tree structures. Among other authors that 

use slicing tree structures to solve the unequal area FLP are Schnecke and Vornberger 

(1997), Tam and Chan (1998), Shayan and Al-Hakim (1999), Al-Hakim (2000), 

Valenzuela and Wang (2001), and Shayan and Chittilappilly (2004). 

Tate and Smith (1995) developed a GA for solving the FLP with unequal area 

variable shape departments. The authors use the flexbay structure, developed by Tong 

(1991), to construct the layout. The plant floor area is divided in one direction into bays 

of varying widths. Next, rectangular areas are allocated to departments within bays. The 

solution is represented as two chromosomes. The first chromosome is a permutation of 

department numbers, which represents the order in which areas are allocated to 

departments within bays. The second chromosome contains information about the 

number of bays, and information on where in the sequence in chromosome 1 the breaks 

between bays occur. The heuristic uses mutation operators to merge and split adjacent 

bays. The objective function includes a penalty term for penalizing the layouts with 

departments, violating the aspect ratio constraints. In Figure 3.4, a layout taken from 

Tate and Smith (1995) is shown, which corresponds to the permutation of departments 

(12, 4, 9, 20, 11, 13, 2, 18, 16, 19, 13, 8, 14, 6, 1, 5, 17, 7, 10, 15) and bay break points 

(4, 7, 9, 14, 16) (i.e., chromosomes 1 and 2, respectively). To construct this layout, the 

heuristic allocates required areas to departments 12, 4, 9, and 20 in bay 1. Next, the 

required areas are allocated to departments 11, 13, and 2 in bay 2, and the heuristic 

proceeds in this manner, until areas are allocated to all the departments.  
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Figure 3.4: The layout corresponding to the permutation (12, 4, 9, 20, 11, 

13, 2, 18, 16, 19, 13, 8, 14, 6, 1, 5, 17, 7, 10, 15) and bay break points 
(4, 7, 9, 14, 16) 

 

Imam and Mir (1998) developed a construction type algorithm for solving the FLP 

with unequal area fixed shape departments. The order of placing the departments is the 

same as in Welgama and Gibson (1993), except that the first department to be placed is 

the department which has the greatest flow with all other departments. Each time a 

department is placed, the linked list of boundary segments is created, and the department 

is moved along the segments in a stepwise manners, as demonstrated in Figure 3.5 taken 

from Imam and Mir (1998). At each step, the material handling cost of the department 

with already placed departments is calculated, and it is checked if the department 

overlaps with other departments. The best position found along the boundary of the 

placed departments is chosen for placing the department. The deficiency of the technique 

is that the execution time of the heuristic increases when using smaller step size. In 

contrast, large step size may result in a poor solution.    
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Figure 3.5: Path of movement of a department along the 

cluster boundary   
 
 

Meller et al. (1999) modified the mathematical formulation by Montreuil (1990) 

for the FLP with unequal area variable shape departments. To decrease the number of 

nodes considered by branch and bound algorithm, the authors introduced a number of 

valid constraints (cutting planes), which are satisfied in any valid solution. These 

constraints are used to obtain better lower bounds, when solving the relaxed problem, 

obtained by a allowing some of the department separation binary variables to be 

continuous.  Also the authors reduce the problem symmetry by forcing the center of some 

department with high interaction with other departments to be in one of the four quarters 

of the plant floor. This reduces the solution space without affecting the value of the 

objective function the optimal solution. In addition, Meller et al. (1999) used more 

accurate area constraints, than the constraints used in Montreuil (1990). The largest 

problem solved to optimality is a 7 department problem. Sherali et al. (2003) improved 

the model by Meller et al. (1999) by further improving the linearized area constraints, 

decreasing the problem symmetry and modifying the valid constraints. Sherali et al. 

(2003) linearized the area constraints by using a number of tangential supports per 
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department (cutting planes). The accuracy of the linearized area constraints in the 

solution depends on the number of tangential supports used. Castillo and Westerlund 

(2005) used a technique for linearizing area constraints, similar to the one presented in 

Sherali et al. (2003). The main difference in their technique is that the technique ensures 

that the actual area of each department in the solution is within ε% error of the required 

area, for any ε ∈ (0,1).   

Gau and Meller (1999) developed an iterative approach to solve the FLP with 

unequal area variable shape departments. A GA solves the problem using a slicing tree 

structure by Tam (1992-a, b). The relative locations of departments in the solution 

generated by the GA are used to set the subset of the binary variables (in the range of 

50%-100%) in the MILP formulation of Meller et al. (1999). The solution obtained by 

solving the MILP is used to generate an initial population of solutions for the GA, and the 

iterative loop is closed. In contrast to Tam (1992-a, b), which uses a fixed tree structure, 

the technique by Gau and Meller (1999) uses dummy departments, to allow changes to 

the structure of the slicing tree.  

Kim and Kim (2000) presented a MILP formulation and developed a two phase 

heuristic for solving the FLP with unequal area fixed shape departments. Four different 

configurations are considered for each department, obtained by rotating the department 

three times clockwise 90° from its basic orientation. Figure 3.6 is taken from Kim and 

Kim (2000) and is an example of the four possible configurations of the department. In 

addition to binary variables used in non-overlap constraints, four binary variables per 

department are used, for different department configurations.   
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Figure 3.6: Possible department configurations 

 

The first phase of the heuristic is a construction type heuristic, which places the 

departments on the plant floor, one at a time. To place the current department, a MILP is 

solved, in which the binary variables for configurations and relative positions of 

previously selected departments are fixed. Therefore, at each iteration only binary 

variables corresponding to the department, being placed, are unknown. The department 

ordering procedure is stochastic, and it favors the departments with higher flows with 

previously selected departments. Therefore, different solutions are obtained by running 

the algorithm several times. The best solution obtained in the first phase is an input to the 

second phase. The improvement heuristic of the second phase considers four 

improvement types: exchange of positions of two departments, department configuration 

and position exchange, department configuration adjustment, and sub-area optimization. 

When performing each of the improvement types, most of the binary variables are fixed, 

and the MILP is solved with only a small number of binary variables unknown. This 

allows solving relatively large problems. The heuristic stops when the solution cannot be 

improved any farther. 

Dunker et al. (2003) used a GA to solve the  FLP with unequal area fixed shape 

departments. The shapes of the departments are fixed and the heuristic considers pick-

up/drop-off points. They decompose the problem, by forming groups of departments with 
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relatively high flows between them. The layout for each group of departments is obtained 

by a GA. After layouts for groups are obtained, rectangles are drawn around departments 

in each group, and the arrangement of these rectangles is found. The chromosomes store 

information on the relative locations of departments in each group, which is used to fix 

corresponding binary variables in the MILP formulation and to solve the resulting relaxed 

MILP problems.  

 

3.2.2 Dynamic Facility Layout Problem  

Montreuil and Venkatadri (1991) developed a linear programming (LP) 

formulation for the DFLP with unequal area variable shape departments. In their model, 

positions of departments in the final layout are known. Also the areas of departments 

increase in consecutive periods (departments grow), and the boundaries of each 

department in each period should be within the boundaries of the same department in the 

next period. The mathematical formulation does not require binary variables, since the 

relative positions of pairs of departments are known. Therefore, large problems can be 

solved to optimality. Montreuil and Laforge (1992) improved the model by Montreuil 

and Venkatadri (1991) by relaxing the assumptions that the department areas increase in 

consecutive periods and that the boundaries of each department in each period should be 

within the boundaries of the same department in the next period. Similar to Montreuil 

and Venkatadri (1991), the mathematical formulation is linear, since the relative 

positions of departments in each probable future are specified by the designer and fixed 

rearrangement costs are not considered.  
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Lacksonen (1994) developed a two stage heuristic for solving  the DFLP with 

unequal area variable shape departments. In Stage 1, all departments are assumed to have 

equal sizes, and the DFLP with equal area departments is solved by the cutting plane 

heuristic presented in Lacksonen and Enscore (1993). The rearrangement costs are 

determined at the end of Stage 1. In Stage 2, for every time period, a static unequal area 

FLP is solved as a modification of the MILP by Montreuil (1990). Stage 2 includes 

constraints, which ensure that the departments and time periods, which are not rearranged 

in Stage 1, are not rearranged in Stage 2 as well. In addition, the information about 

relative positions of departments in Stage 1 solution is used to preset some of the binary 

variables, used in department separation (non-overlap) constraints. Also, Lacksonen 

(1994) used piecewise linearization of area constraints. The linearization constraints 

ensure that the areas of departments are within 0% and +3% of required areas, for 

maximum aspect ratio of 2. Lacksonen (1997) developed a heuristic which fixes 80% of 

the binary variables in the model by Lacksonen (1994), and solved the MILP with the 

remaining 20% of binary variables using a revised branch and bound method. 

Yang and Peters (1998) considered time windows when solving the DFLP with 

unequal area fixed shape departments. Each time window consists of a number of time 

periods, such that the material flows between departments are aggregated over these 

periods. The authors solve a series of static FLPs, one for each time window, using the 

MILP formulation. The structured hexagonal adjacency graph from Goetschalckx (1992) 

is used to fix the binary variables corresponding to relative positions of departments in 

each time window.    

 35



Dunker et al. (2005) extended the GA presented in Dunker et al. (2003) to solve 

the DFLP with unequal area fixed shape departments. The authors store generation of 

solutions for each period. Each gene stores information about the relative positions of 

departments in a layout for a period. The solution (layout plan) corresponding to a gene is 

obtained by solving the relaxed MILP formulation for the static FLP in which the only 

unknown binary variables are variables representing the orientations of departments and 

configurations of I/O stations. Dynamic programming is used to evaluate the fitness of 

each gene γ in period t*, which takes into account the rearrangement costs. The dynamic 

programming technique finds the best sequence of genes in periods preceding and 

succeeding period t*. Thus  layouts are evaluated, where N(t) is the number of 

genes in the population corresponding to period t*. 

∏
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CHAPTER 4 

METHODOLOGY 

 

4.1 Introduction 

The DFLP is a combinatorial optimization problem, which is a generalization of the 

QAP, and the QAP is an NP-hard problem (Sahni and Gonzalez, 1976). There exists no 

exact technique, which solves the problem in polynomial time. In this chapter, a MILP 

formulation of the problem is presented, followed by construction and improvement 

heuristics. The MILP formulation can be used to solve only small instances of the 

problem, but the heuristics presented in this dissertation can be used to find good 

solutions in reasonable time for larger problem instances.  

 

4.2 Exact Method  

In this section, a MILP formulation is presented for the DFLP with unequal area 

departments. Similar formulations can be found in Montreuil (1990), Lacksonen (1994), 

and Dunker et al. (2005); however, the formulation presented in Dunker et al. (2005) is 

the closest to this formulation. The other authors considered variable shape departments, 

which is not considered here.  

First, we give the notation used in the mathematical formulation. Note, the variables 

and indexes always start with small letters, and parameters start with capital letters. 

Indexes: 

i, j  = 1,..., N: N is the number of departments; 

t  = 1,..., T: T is the number of periods; 
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Parameters: 

Ftij  = Cost to transport materials a unit distance from department i to department j in 

period t; 

F’tij = Ftij + Ftji = total flow between departments i and j in period t (upper triangular 

matrix); 

Rti = Rearrangement cost of shifting department i at the beginning of period t; 

Shti = Shorter side length of department i in period t; 

Lngti = Longer side length of department i in period t; 

⎪
⎩

⎪
⎨

⎧
=

    n;orientatio  vertical torestricted is   periodin    department if,2
n;orientatio horizontal  torestricted is   periodin    department if,1

                 n;orientatioany  havecan    periodin    department if,0

ti
ti
ti

DeptOrientti  

L = Length of the plant floor; 

W = Width of the plant floor; 

M = A large number; 

Variables: 

(xti, yti) = The location of department i in period t; 

lti, wti = The length and width of department i in period t;  

x_ptij, y_ptij = Horizontal and vertical distances between the centers of departments i and j  

in period t; 

⎩
⎨
⎧

=
Otherwise;,0

 ; periodin n orientatio horizontal has  department If,1 ti
hti  
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The MILP formulation for the DFLP with unequal area departments is as follows. 

Minimize total cost = 
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Subject to: 

( ) ( ) ( )tijtjtijtiti leftMlxlx −≤−−+ 15.05.0    jit ,,∀                                                          (4.2) 

( ) ( ) ( )tijtjijtiti belowMwywy −≤−−+ 15.05.0    jit ,,∀                                                   (4.3) 

1=+++ tjitijtjitij belowbelowleftleft    jit ,,∀                                                                 (4.4) 

Llx titi ≤+ 5.0                                                                                                         (4.5) it,∀

05.0 ≥− titi lx                                                                                                          (4.6) it,∀

Wwy titi ≤+ 5.0                                                                                                      (4.7) it,∀

05.0 ≥− titi wy                                                                                                        (4.8) it,∀

tjtitij xxpx −≥_                                                                                             (4.9) ijit >∀ ,,

titjtij xxpx −≥_                                                                                           (4.10) ijit >∀ ,,

tjtitij yypy −≥_                                                                                          (4.11) ijit >∀ ,,

titjtij yypy −≥_                                                                                          (4.12)  ijit >∀ ,,

)1( tititititi hShhLngl −+=                                                                                     (4.13) it,∀

tititititi hShhLngw +−= )1(                                                                                   (4.14) it,∀
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1=tih                                                                                         (4.15) 1,, =∀ tiDeptOrientit

0=tih                                                                                        (4.16) 2,, =∀ tiDeptOrientit

tiitti Mrxx ≤− − ,1                                                                                               (4.17) 1, >∀ ti

tiitti Mrxx ≤+− − ,1                                                                                            (4.18) 1, >∀ ti

tiitti Mryy ≤− − ,1                                                                                               (4.19) 1, >∀ ti

tiitti Mryy ≤+− − ,1                                                                                            (4.20) 1, >∀ ti

tiitti Mrww ≤− − ,1    1, >∀ ti                                                                                           (4.21) 

tiitti Mrww ≤+− − ,1                                                                                           (4.22) 1, >∀ ti

xti, yti, lti, wti, x_ptij, y_ptij ≥ 0 ∀t, i, j         (4.23) 

hti = 0 or 1, rti = 0 or 1, lefttij = 0 or 1, belowtij = 0 or 1 ∀t, i, j 

The first term in the objective function (4.1) is used to obtain material handling 

costs, and the second term is for rearrangement costs. Constraints (4.2)-(4.8) are very 

similar to those presented in Sherali et al. (2003). These constraints ensure that the 

departments do not overlap and are within the boundaries of the plant floor. Constraints 

(4.9)-(4.12) are used to obtain the rectilinear distances between departments. Similar 

constraints are used by Sherali et al. (2003). Constraints (4.13)-(4.16) are used to control 

the orientations of the departments. Similar constraints are used in Dunker et al. (2005). 

Constraints (4.17)-(4.22) are slightly modified constraints from Dunker et al. (2005). 

These constraints ensure that the department has the same values of length, width, and 

center coordinates in any two consecutive periods in which the department is not 

rearranged. Last, the restrictions on the variables are given in constraints (4.23).  
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4.3 Construction Algorithms  

As mentioned earlier, the mathematical formulation can solve only small instances 

of the DFLP. In this section, two construction heuristics are presented, which find 

solutions in reasonable computation time.  The first heuristic, boundary search heuristic 

(BSH), constructs the layout by consecutively placing the departments along the 

boundary of already placed departments. The second heuristic uses an LP formulation 

and a dual simplex algorithm to construct the layout plans (i.e., solutions). 

The heuristics developed in this dissertation obtain layouts, which fit within the 

plant floor boundaries. However, if the plant dimensions are too small, some of the 

layouts obtained by the heuristics may span outside the plant floor boundaries. Such 

solutions (layouts plans) are called plant floor infeasible solutions (layouts plans), and the 

solutions (layouts plans) in which all the departments in all periods fit within the plant 

floor boundaries are called plant floor feasible solutions (layout plans). By not discarding 

the plant floor infeasible solutions, the heuristics have a chance of exploring larger 

solution spaces and eventually may arrive at better solutions, which fit within plant floor 

boundaries. Nevertheless, the plant floor feasible solutions are always better than the 

plant floor infeasible solutions. If there are layout plans, which are either all plant floor 

feasible or all plant floor infeasible, then the layout plan with the lower OFV is better.  
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4.3.1 Boundary Search Heuristic (BSH) 

4.3.1.1 Solution Representation 

The BSH described in this dissertation constructs the layout by consecutively 

selecting some department i in some period t and placing the department at the most 

favorable position found along the boundary of already placed departments. The solution 

is represented as a vector of department period pairs as follows.  

π = {(i1, t1), (i2, t2),…, (iN*T, tN*T)}  

If department pair (ik, tk) precedes (ir, tr) in this vector, then the BSH will place the 

department ik in period tk before it places the department  ir in period tr, where k, r ∈{1, 

2,…, NT}.  

 

4.3.1.2 BSH Parameters 

In addition to the notation defined above (including section 4.2), the following 

notation is used for the BSH heuristic. 

f(π) = OFV of solution π;   

π_pert = Ordered list of department numbers already placed in period t such that 

department i precedes j, if and only if (i, t) precedes (j, t) in π; 

|π_pert| = Number of departments which have already been placed on the plant floor in 

period t (cardinality of the vector π_pert); 

(i_curr, t_curr) = Department i_curr being placed in period t_curr by the BSH;  

πpartial = Partial solution constructed by the BSH with respect to π_pert for all t; 

TCi_curr, t_curr = Cost of locating department i_curr in period t_curr; 

feas_st = 1 if the solution found by the heuristic is plant floor feasible, and 0 otherwise; 
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flow(x_cand, y_cand) = The flow cost between department i_curr and all placed 

departments in period t_curr (i.e., departments in π_pert_curr) if the center of 

department i_curr in period t_curr is at candidate location (x_cand, y_cand); 

(cg_x, cg_y) = The most favorable location on the plant floor for department i_curr in 

period t_curr; 

hor_segms_dt, hor_segms_ut = Vectors, the elements of which are vectors themselves, 

storing the coordinates of horizontal boundary segments in period t facing downward 

and upward, respectively (details will be explained later);  

vert_segms_lt, vert_segms_rt = Vectors, the elements of which are vectors themselves, 

storing the coordinates of vertical boundary segments in period t facing leftward and 

rightward, respectively (details will be explained later); 

 

4.3.1.3 Construct Layout Plan Using π 

4.3.1.3.1 The Construction of π 

The solution vector π is initialized in such a way, that the following two conditions 

are satisfied: 

1) If , then (i, t∑∑∑∑
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In other words, the departments, which have higher cumulative flow with other 

departments over all periods, are placed in vector π first, in condition (1). In other word, 

in condition (1), each department i is placed in all periods in vector π and only then some 
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other department j is placed in all periods. In condition 2, the order of periods in which 

department i is placed in vector π is determined by the flow of department i with all other 

departments in each of these periods.  For example, the solution π  constructed for the 

problem instance given in Appendix A is shown in Table 4.1 below. 

 
Table 4.1: The department period pairs in the vector π  generated by the BSH for 

the problem instance in Appendix A 
 

In this example, first department 8 will be placed in period 1, since the total flow between 

department 8 and all other departments is the highest (i.e., ∑∑ = 366) and the 

highest flow between department 8 and all other departments is in period 1 (i.e., 

= 147). The next highest flow between department 8 and all other departments is 

in period 3 (i.e.,  = 132). Hence, department 8 will be placed next in period 3, 

and then department 8 in period 2. Department 9 is not placed, until department 8 is 

placed in all periods, since the total flow between department 9 and all other departments 

is the next highest (i.e.,  = 326). After department 9 is placed in periods 1, 2, 

and 3, then department 12 will be placed in each period, and so on. 
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4.3.1.3.2 Finding Candidate Locations for  i_curr in period t_curr  

Given a solution vector π, the BSH uses four vectors to determine the location of 

the current department being placed. These vectors are ordered special structures of four 

types of boundary segments: downward (hor_segms_dt), upward (hor_segms_ut), 

leftward (vert_segms_lt), and rightward (vert_segms_rt). The binary search algorithm is 

used to efficiently search for segments to find feasible regions in which the department 

may be placed. Each horizontal or vertical segment used in these vectors has the form 

segment = <c, c1, c2>. If the segment is horizontal then c is the Y coordinate of the 

segment endpoints, and c1 and c2 are the X coordinates of the segment endpoints. In a 

similar manner, if the segment is vertical then c is the X coordinate of the segment 

endpoints, and c1 and c2 are the Y coordinates of the segment endpoints. Every time some 

department i is placed in the layout in period t, the BSH ensures that the vectors 

hor_segms_dt, hor_segms_ut, vert_segms_lt, and vert_segms_rt are modified in such a 

way that two conditions are satisfied. These conditions are demonstrated below 

considering only vert_segms_rt. The conditions for vectors hor_segms_dt, hor_segms_ut, 

vert_segms_lt are exactly the same.  

• All the segments <c, c1, c2> in vert_segms_rts  have the same value of c components, 

and are ordered in ascending order based on the value of the c1 component, where s = 

1,…, |vert_segms_rt|. For example, if the partially constructed layout in period 2 is as 

defined in Figure 4.1, then s = 1, …, 6 and  

vert_segms_r2 = {vert_segms_r21, vert_segms_r22, …, vert_segms_r26}. 
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vert_segms_r2 = {[(i,h), (e,d)], [(c,b)], [(g,f)], [(v,u)], [(r,q), (n,m)], [(t,s), (p,o)]}. 

vert_segms_r2 = {[<2.5, 3.5, 6>, <2.5, 7, 9.5>], [<3, 9.5, 11.5>], …, [<8.5, 1.5, 3.5>, 

<8.5, 6.5, 8.5>]} 

• The segments <c, c1, c2> in vert_segms_rts have smaller value of c component than 

segments in vert_segms_rts+1, for s = 1,…, |vert_segms_rt| – 1.   

For example, the value of the c component of segments in vert_segms_r21 is 2.5, and 

the value of the c component of segments in vert_segms_r22 is 3. Note, the partial 

layout plan in Figure 4.1 was obtained using a different solution π and was 

constructed for illustrative purposes only. Also, when placing departments, the 

coordinates of departments can be negative. 

 
Figure 4.1: Example of boundary segments in a partially constructed layout plan 

 

At each iteration, the BSH selects a department-period pair (i_curr, t_curr) from π 

and places the department i_curr in period t_curr. Before placing the department, the 
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coordinates of the center of gravity (i.e., the most favorable location) for the department 

are calculated as follows. 
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The center of gravity will be closer to the departments already placed in period 

t_curr, which have higher flow with department i_curr. To find the best position for 

placing the department i_curr in period t_curr, the BSH for each of the orientations of the 

department (i.e., horizontal and vertical) tries to find rectangular region(s) (i.e., feasible 

regions) along each boundary segment, within which the department being placed may be 

moved along the segment without overlapping with other departments. The binary search 

algorithm searches the vectors hor_segms_dt, hor_segms_ut, vert_segms_lt, or 

vert_segms_rt, as well as the vectors contained in these vectors to quickly identify the 

feasible regions. Within each identified feasible region, the heuristic considers candidate 

location (x_cand, y_cand) for placing the department, closest to the center of gravity 

(cg_x, cg_y). The value flow(x_cand, y_cand) is calculated using the formula below: 
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If all candidate locations result in plant floor infeasible layout plans, then the candidate 

location with the lowest value of flow(x_cand, y_cand) is selected. Otherwise, the 

location with the lowest value of flow(x_cand, y_cand) among the locations, resulting in 
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a plant floor feasible layout plan, is selected. In addition, the best position, (x_cand, 

y_cand), is compared to the location of the department i_curr in period t_curr - 1 (if the 

position is not occupied, and the department i_curr has already been placed in period 

t_curr - 1) and the position of the department i_curr in period t_curr + 1 (if the position 

is not occupied, and the department i_curr has already been placed in period t_curr + 1). 

When comparing any two locations from the resulting candidate locations, the preference 

is given to the location, which will result in a plant floor feasible layout plan. If both 

locations result in a plant floor feasible layout plan or both locations result in a plant 

floor infeasible layout plan, then the combined material flow cost between the department 

i_curr and all placed departments in period t_curr, and the rearrangement cost of 

department  i_curr in periods t_curr (if t_curr > 1) and t_curr + 1 (if t_curr < T) is used 

as a comparison criteria. If the department has not been placed in previous (next) period, 

then the rearrangement cost of department i_curr in period t_curr (t_curr + 1) is zero. If 

the vector π_pert_curr is empty (i.e., no departments have been placed in period t_curr), 

and the department i_curr has not been placed neither in previous nor in next period, then 

the department is centered on the rectangle, enclosing all the placed departments in all 

periods.  

In Figure 4.2, the example of finding the best location of department 11 in period 2 

along the segment (y, l) = <5.5, 3, 10.5> (see Figure 4.1) is presented. Recall, the 

problem data for this example are given in Appendix A. The current layout corresponding 

to period 3 is shown in Figure 4.1, and no departments have been placed in period 1. As it 

was mentioned above, the partial layout plan in Figure 4.1 was obtained using a different 

solution π and was constructed for illustrative purposes only. In this example, the BSH 
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searches for feasible rectangular regions within which department 11 can move parallel to 

segment (y, l), without overlapping with other departments (i.e., dark gray regions). The 

BSH tries both horizontal and vertical orientations of the department (demonstrated in 

Figures 4.2(a) and in Figure 4.2(b), respectively) and searches for feasible rectangular 

regions within the rectangle with corner points A, B, C, and D. Within each feasible 

region, the BSH considers candidate locations for department 11 (e.g., rectangles outlined 

by dashed lines in Figure 4.2), which is closest to the center of gravity for department 11 

(e.g., point (3.61, 6.14)). For each candidate location (cand_x, cand_y), the BSH 

calculates the value flow(cand_x, cand_y). The BSH evaluates all the candidate locations 

along all the boundary segments and compares the best location found with the location 

of department 11 in period 3. Note, the rearrangement cost in period 2 is 0, since the 

department has not been placed in period 1.  

 
Figure 4.2: Finding the best position for placing department 11 in period 2 along the 

vertical segment (y, l): (a) when the department has horizontal orientation; 
(b) when the department has vertical orientation 
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The candidate locations for placing department 11 in period 2 along segment (y, l) as well 

as their flow cost, rearrangement costs, and total cost are shown in Table 4.2. The first 

two candidate positions are illustrated in Figure 4.2(a), and candidate positions 3 and 4 

are illustrated in Figure 4.2(b). See Figure 4.1 for the location of department 11 in period 

3. From the total cost of the candidate locations as well as the total cost of the assignment 

as in period 3, it is best to locate department 11 at the same location of the department in 

period 3 (i.e., TC11,2 = 183). 

    
X Y flow(X,Y) Rearr. Cost 

In Period 2 
Rearr. Cost 
In Period 3 TCi_curr, t_curr 

Candidate Position 1 4 5 157 0 50 207 
Candidate Position 2 4 8 158 0 50 208 
Candidate Position 3 4.5 4.5 175 0 50 225 
Candidate Position 4 4.5 8.5 180 0 50 230 
Position in Period 3 4 4 183 0 0 183 

Table 4.2: Evaluating the position of department 11 in period 3, and the 
positions identified along vertical segment (l, y) in Figure 4.2 

 

4.3.1.4 BSH Heuristic 

The BSH is a modification of the Cluster Boundary Algorithm (CBA) presented by 

Imam and Mir (1998) for solving the static FLP. The main differences between the 

CBA and the BSH is that the CBA does not use an efficient technique for searching for 

feasible rectangular regions for placing the departments and is used for solving only static 

FLPs. The CBA heuristic moves the department being placed along the linked list of 

boundary segments in a stepwise manner to determine the feasible positions for placing 

the department. At each step, the OFV should be evaluated. If the step size is too small, 

then the computational time will be extremely high. On the other hand, using a larger step 

size will decrease the solution space and may result in poor layouts.  

The steps of the BSH are as follows: 
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Step  1: Initialize π as described in Section 4.3.1.3.1;  

Set f(πpartial) = 0 

 Set k = 1 where k = position of i_curr in vector π; 

Step  2: Set feas_st = 0;   

Initialize the values of i_curr and t_curr as the k-th department period pair in π; 

If |π_pert|  = 0 

Place the department i_curr at the center of the plant floor in period t_curr 

and initialize the values of  lt_curr,i_curr , wt_curr,i_curr, xt_curr,i_curr , and yt_curr,i_curr 

from the position of the department; 

Else 

Calculate the coordinates of the center of gravity (cg_x, cg_y) for department 

i_curr in period t_curr; 

Find the best candidate location along all segments in vert_segms_lt_curr, 
vert_segms_rt_curr, hor_segms_dt_curr, hor_segms_ut_curr, considering both 

horizontal and vertical orientation of department i_curr as described in section 

4.3.1.3.2. 

Compare the best candidate position with the position of department i_curr in 

period t_curr - 1 (if department i_curr has been placed in previous period) and 

the position of department i_curr in period t_curr + 1 (if department i_curr 

has been placed in next period) as described in section 4.3.1.3.2.  

Select the best position among these positions and initialize the values of 

xt_curr,i_curr, yt_curr,i_curr lt_curr,i_curr, and wt_curr,i_curr from  the best position found. 

That is, πpartial is updated.  

Set TCi_curr, t_curr  = cost, if the department is placed at the found position. In 

other words,  TCi_curr, t_curr  is a cumulative flow cost of department i_curr with 

placed departments in period t_curr and rearrangement cost of the department 

in periods t_curr (if t_curr > 1 and department i_curr has been placed in 

period t_curr - 1) and t_curr + 1 (if t_curr < T and department i_curr has been 

placed in period t_curr + 1). 

Step 3: Modify the vectors hor_segms_dt, hor_segms_ut, vert_segms_lt, and 

vert_segms_rt according to the position of the department found; 
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Set f(πpartial) = f(πpartial)  + TCi_curr, t_curr;  

Set feas_st = 1, if placing the department i_curr at the location found will result in 

plant floor feasible layout plan, and 0 otherwise. 

Add i_curr to vector π_pert_curr  

 

If k < NT, then set k = k + 1 and go to Step 2; 

Otherwise  

Set f(π) = f(πpartial) and output the values of xti, yti, lti, wti, for all t = 1, …, T 

and i = 1, …, N, and exit the heuristic; 

 

4.3.2 Dual Simplex Technique 

The construction heuristic presented in this section sets the values of the variables 

below using the layout plan (solution) generated by the BSH given earlier, generates an 

LP formulation of the problem, and solves the LP problem using a dual simplex 

algorithm. The data from the BSH used to construct the LP formulation are the locations 

of the departments as well as their lengths and widths for each period (xti, yti, lti, wti), the 

orientation of each department in each period (hti), and department rearrangements (rti). 

The data need for the LP formulation are defined as follows.  
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The LP formulation generated based on these values is shown in Appendix C. 

Setting the values of hti and rti using the layout plan generated by the BSH is 
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straightforward. However, the values of r_ptij, where j > i, are set using the following 

rules: 

If max((xti – 0.5lti) – (xtj + 0.5ltj), (xtj – 0.5ltj) – (xti + 0.5lti)) ≥   
    max((yti – 0.5wti) – (ytj + 0.5wtj), (ytj – 0.5wtj) – (yti + 0.5wti)) 

⎩
⎨
⎧

=
;Otherwise2,

;planlayout current in  department ofleft   the tois  department If,1
_

ji
pr tij  

Else 

⎩
⎨
⎧

=
;Otherwise4,

;planlayout current in  department below is  department If,3
_

ji
pr tij  

These rules are used for setting the values of r_ptij, when there are both vertical and 

horizontal separation between departments i and j in period t. For example, in Figure 4.3 

below, in period 1 departments 1 and 3 are separated both vertically and horizontally. In 

this case, the rules above will ensure that vertical separation is used, since the 

departments are further apart vertically. 

Once the above values are obtained and the LP formulation is constructed, the dual 

simplex method is used to generate the solution. It is important to note, that the dual 

simplex method is used so that after an initial layout plan is generated optimally for the 

above values, the optimal layout plan for different values can be obtained more quickly. 

More specifically, the optimal tableau is updated (i.e., right hand sides are updated) for 

the new values, and the dual simplex method quickly determines the optimal solution for 

the new values (i.e., different DFLP formulation). Consider the small example given in 

Appendix B. The layout plan generated by the BSH for the example is shown in Figure 

4.3. The values of hti, rti, and r_ptij are generated as discussed above and given in Table 

4.3. The solution generated by the dual simplex method, using the values of r_ptij, hti, rti 

in Table 4.3 and the LP formulation in Appendix C, is shown in Figure 4.4. The OFV of 

the solution generated by the dual simplex algorithm (i.e., f(π) = 745) is always the same 
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or better than the OFV of the solution generated by the BSH (i.e., f(π) = 754.75), since 

the BSH is an approximation technique and the dual simplex algorithm is an exact 

method.  

 

 
Figure 4.3: Layout generated by the BSH 

 

 
Table 4.3: The values of r_ptij, hti, rti variables set using the layout 

plan in Figure 4.3 
 
 

 
Figure 4.4: Layout generated by the dual simplex method 
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4.4 Improvement Algorithms 

The BSH presented in Section 4.3.1 is a construction heuristic. However, 

improvement heuristics are commonly used to improve solutions generated from 

construction heuristics. In this section, two improvement heuristics (TS and memetic 

heuristic) are presented for the DFLP with unequal area departments. Memetic heuristics 

were first presented by Norman and Moscato (1989). These heuristics use the strengths 

of both genetic algorithm (GA) and TS heuristics (this will be explained later). Tabu 

search was introduced by Glover (1986), and it is a steepest descent-type heuristic, which 

uses memory to avoid getting trapped at poor local optima. GA was developed by 

Holland (1975), which resembles the natural phenomena of survival of the fittest (i.e., 

most fit in the population survive and reproduce offsprings which are fit). 

 

4.4.1 TS Heuristics  

In this section, two TS heuristics are presented. One of the heuristics (TS/BSH) uses 

the BSH to construct layout plans, and the other TS heuristic (TS/DUAL) uses the LP 

formulation and the dual simplex algorithm, as discussed earlier, to construct layout 

plans. Since both heuristics have similarities, first the basic idea of TS and some of its 

components common to both TS/BSH and TS/DUAL are presented and discussed, and 

later the notation, components, and pseudo-code specific to each of the heuristics are 

presented and/or discussed. 

Both TS/BSH and TS/DUAL heuristics start with an initial solution obtained from 

the BSH. This solution is defined as the current solution. Both TS heuristics explore the 

entire neighborhood of the current solution. In other words, an operation or move is 
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performed on the current solution such that a new layout plan is generated. There are two 

possible moves, which are defined as follows.  

1) Exchange the positions of some departments i and j in some period t. 

2) Move some department i in some period t to a better location (i.e., non-occupied 

position on the boundary of department(s)) in period t. 

TS/BSH uses move (1), and TS/DUAL uses moves (1) and (2). However, move (2) is 

considered first. Move (1) is considered only if an improved move (2) does not exist. The 

details of how both heuristics perform these moves are explained later. Nevertheless, all 

possible moves are considered, and the best admissible move (i.e., either a tabu move that 

gives the best layout plan ever found or the best move that is not classified as tabu). A 

move recently performed is defined as tabu, but the tabu restriction may be overridden if 

the move gives the best solution found thus far (this is called the aspiration criterion). As 

a result, the best admissible move gives the new current solution. Then the tabu list and 

best found solution (if necessary) is updated, and the neighborhood of the current solution 

is explored. This process is repeated until a stopping criterion is satisfied. 

 

4.4.1.1 TS/BSH  

As stated previously, the TS/BSH generates new layout plans, by performing move 

(1). More specifically, move (1) exchanges the positions of department period pairs (i, t) 

and (j, t) in the solution π to produce a new solution π , and a modification of the BSH is 

run to obtain a new layout plan and its cost (OFV). More generally, the TS/BSH explores 

the entire neighborhood of the current solution, and estimates the improvement in the 

OFV corresponding to each move (1). The total number of moves is the combination of N 

 56



pick 2, which is N(N – 1)/2. To estimate an improvement in the OFV, which will result 

from move (1), it is assumed that the center points of exchanged departments will be 

swapped in the resulting layout plan (ignoring the lengths and widths of the exchanged 

departments). The improvement in the OFV calculated this way may not be equivalent to 

the actual improvement in the OFV, since the actual positions of the exchanged 

departments as well as some other departments may be different when the move is 

performed; thus, giving a different improvement in the OFV. After estimating the 

improvement in the OFV for each move, the best N_Moves moves are ranked in 

descending order with respect to the estimated improvement in the OFV. Next, the first 

move is performed to obtain the candidate solution π  such that the layout plan (xti, yti, lti, 

wti for all i and t) is generated using a modification of the BSH, and f(π ) is obtained. 

Note: the BSH is modified such that the displacement of not exchanged departments is 

minimized. This will be explained in detail below. If the candidate solution π  is better 

than the current solution π (e.g., f(π ) < f(π) and feas_st = 1 for π ), then the candidate 

solution π  becomes the current solution (i.e., set π = π  and update xti, yti, lti, wti). If the 

candidate solution π  is worse than the current solution π, the second move is performed 

to obtain the candidate solution π , and the process is repeated until either π  is better 

than the current solution π or the best N_Moves moves are tried and the best among them 

is selected and becomes the current solution π (update xti, yti, lti, wti).       

As discussed previously, the BSH is modified such that the displacement of not 

exchanged departments is minimized. More specifically, not exchanged departments 

before the first exchange in the solution π  have the same locations as well as lengths and 

widths in the layout plan obtained for solution π. However, for the exchanged 
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departments, the heuristic tries to force the center of the first exchanged department to be 

as close as possible to the center of the second exchanged department before generating 

the new layout plan and vice versa. That is, the center points (xti, yti) of the exchanged 

departments as well as all other departments for solution π , after the first exchange in 

solution π, are used to determine their corresponding centers of gravity (cg_x, cg_y) and 

flow(x_cand, y_cand). As mentioned previously, the heuristic tries to force the new 

center point (xti, yti) of the first exchanged department to be as close as possible to the 

center of the other exchanged department and vice versa by creating high flow between 

the exchanged departments. 

For example, if the current solution π is as shown in Table 4.4(a), and the layout 

plan obtained for π is as in Figure 4.5(a), then move (1) corresponding to exchanging 

departments 1 and 6 in period 2, results in π  and the layout plan, which are shown in 

Table 4.4(b) and Figure 4.5(b), respectively. When placing any department period pair (i, 

t), which precedes both department period pairs (1, 2) and (6, 2), the modified BSH 

places department i in period t at the same position as in the layout plan constructed for π 

(i.e., same xti, yti, lti, wti). This improves computational time, since the positions of such 

departments are known, and are not calculated. When placing department period pairs 21 

through 36 that are not exchanged, they are in the vicinity of their center points in the 

layout plan for solution π (i.e., the layout plan in Figure 4.5(a)). In a similar manner, the 

modification of the BSH ensures that the exchanged department 1 (6) is in the vicinity of 

the center of department 6 (1) in period 2 in layout plan for solution π.  
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Table 4.4: Solutions: (a) before move (1) is performed; (b) after move (1) is 

performed 

 
Figure 4.5: Layout plans: (a) before move (1) is performed; (b) after move (1) is 

performed 
 

Once the best move is selected and performed, the TS/BSH heuristic uses a fixed-

size array, called tabu_listtij, to keep track of the most recent moves (i.e., the tabu moves). 

If move (1) is performed, which exchanges the locations of some departments i and j in 

period t, then the entry tabu_listtij, is set to the current iteration (curr_ts_iter). When this 

exchange is considered at a latter iteration, whether the move is tabu or not depends on 

one of the following conditions. 
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• If the move is estimated to produce a layout that is not better than the best 

layout plan found thus far (i.e., f(π ) > ofv*), then the duration the move is 

defined as tabu is Ten_Len, and curr_ts_iter - tabu_listtij > Ten_Len is used 

to determine if the move is tabu restricted. 

• If the move is estimated to produce a layout that is better than the best 

layout plan found thus far (i.e., f(π ) < ofv*), then the duration the move is 

defined as tabu is 0.5Ten_Len, and curr_ts_iter - tabu_listtij > 0.5Ten_Len is 

used to determine if the move is tabu restricted. 

The heuristic parameters common to both TS/BSH and TS/DUAL are as follows. 

curr_ts_iter = Current TS iteration;  

tabu_listtij = Tabu list, which keeps track of the last iteration when each pair of 

departments i and j in each period t was exchanged; 

Ten_Len = The number of TS iterations a move is declared tabu; 

N_Moves = Maximum number of best predicted moves to store during each TS iteration 

where the moves are ranked based on descending order of their estimated improvements;  

Max_Duration = Maximum amount of time to run the TS heuristic;  

x*
ti, y*

ti, l*
ti, w*

ti = The location, length, and width of each department i in each period t in 

best solution found;    

ofv* = The OFV of the best solution found;   

feas_st* = 1 if the best solution found by the heuristic is plant floor feasible, and 0 

otherwise; 
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i_1z, j_1 z, and t_1z = Vectors, storing the exchanged department pairs i and j and periods 

t of best N_Moves moves of type 1, ranked in descending order with respect to the 

estimated improvement in the OFV; 

est_imprz = Vector, storing the estimated improvements of best N_Moves moves of type 1 

stored in vectors i_1z, j_1z, and t_1z; 

The steps of the TS/BSH heuristic are as follows. 

Step  1: Find the initial solution using the BSH and initialize parameters. 

Set curr_ts_iter = 0;         

Set π, ofv*, x*
ti, y*

ti, l*
ti, w*

ti, and feas_st*, from solution constructed by the BSH; 

For  t = 1,…, T; 

For i = 1,…, N - 1;  j = i + 1,…, N; 

Initialize tabu list: Set tabu_listtij = -Ten_Len; 

Step 2: Update current solution OFV and feasibility status as well as best solution found 

for curr_ts_iter > 0. 

Set ofv_curr = The OFV of the layout plan for solution π (i.e., xti, yti, lti, wti). 

Set feas_st_curr = 1, if the departments in the current layout plan fit within plant 

floor borders, and 0 otherwise; 

If feas_st_curr > feas_st* or feas_st_curr = feas_st* and ofv_curr < ofv* then 

initialize  ofv*
,  feas_st*, x*

ti, y*
ti, l*

ti, and w*
ti from the values ofv_curr, 

feas_st_curr, xti, yti, lti, and wti respectively; 

Step  3:  Check stopping criterion and update current iteration. 

If the TS has been running for more than Max_Duration minutes, then 

  terminate the TS heuristic; 

Else set curr_ts_iter = curr_ts_iter + 1 

Step  4:  Determine best N_Moves moves based on estimated OFV.  

Set Z = 0; (current number of best moves of type (1) stored)   

For each period t, and each department pair i and j  (j > i) 

Estimate the improvement impr_1 in the OFV, which will result if 

departments i and j are exchanged in period t; 
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If (Z < N_Moves or impr_1 > est_imprZ ) and  

(curr_ts_iter - tabu_listtij > Ten_Len or  

(ofv_curr - impr_1 < ofv*  and  curr_ts_iter - tabu_listtij > 0.5Ten_Len)) 

then store the values of impr_1, t, i, j in vectors est_impr z, t_1 z, i_1 z, 

j_1 z, respectively; 

If Z ≥ N_Moves 

Then remove the worst move from these vectors;  

Else set Z =  Z + 1; 

Step  5: Determine best admissible move from constructing layout plan. 

For z = 1,…, Z 

Perform the move (1) corresponding to exchanging departments i_1z and  

j_1z  in period t_1z ; 

Set ofv_new = OFV of the solution, resulting from the move;  

Set feas_st_new = 1, if the solution, resulting from the move is plant floor 

feasible, and 0 otherwise. 

If feas_st_new  > feas_st_curr or (feas_st_new  = feas_st_curr and ofv_new < 

ofv_curr) 

Then go to step 6; 

Else continue; 

Step  6: Update new solution to current solution. 

Set π, ofv, xti, yti, lti, wti, and feas_st from the best solution found in step 5; 

Step  7: Set  tabu_listtij = curr_ts_iter;              

Go to Step 2; 

 

4.4.1.2 TS/DUAL 

The TS/DUAL is similar to the TS/BSH in Section 4.4.1.1, except that TS/DUAL 

uses both move (1) and (2), and the moves are performed using the dual simplex 

technique in Section 4.3.2, instead of the BSH. Besides the most recent moves defined as 

tabu, a move that rearranges all the departments in some period is also defined as tabu, 
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since this avoids high rearrangement cost between periods. As discussed earlier, the 

TS/DUAL starts with an initial layout plan, obtained from the BSH. However, the 

TS/DUAL initializes the values r_ptij, hti, and rti, using the initial layout plan, constructed 

by the BSH, and runs the dual simplex method using these values, to obtain the optimal 

tableau (optimal layout plan for the values r_ptij, hti, and rti). Next, the TS/DUAL 

evaluates all moves of type (2) (recall, that move (2) moves some department i in some 

period t to an available (not occupied) location on the boundary). If there is at least one 

move (2) and at least one move (1), which is estimated to improve the current layout 

plan, the TS/DUAL performs the best estimated move (2), and the next iteration of 

TS/DUAL is perfomed. Otherwise, the best N_Moves moves of type 1 are performed, as 

in TS/BSH. However, the dual simplex method is used, as opposed to the BSH, to 

perform and evaluate the moves.  

The TS/DUAL performs move (1) and (2) by modifying the right hand sides in the 

current optimal simplex tableau, and quickly re-optimizes the simplex tableau using the 

dual simplex method. More specifically, the right hand sides are modified in such a way 

that the new optimal simplex tableau corresponds to new values of r_ptij, hti, rti (i.e., 

different DFLP formulation).  

When performing move (1), involving departments i, j and period t, where j > i, the 

right hand sides in the optimal simplex tableau are modified in such a way that relative 

positions of departments i and j in period t are swapped. In other words, if r_ptij = 1 (or 2) 

in current optimal simplex tableau, then r_ptij = 2 (or 1) after the move is performed. In a 

similar manner, if r_ptij = 3 (or 4) in current optimal simplex tableau, then r_ptij = 4 (or 3) 

after the move is performed. In addition, the orientation of department i becomes the 
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same as the orientation of department j before the move, and vise versa. The values of rti, 

rt+1,i, rt,j, and rt+1,j (i.e., rearrangement statuses), corresponding to new optimal simplex 

tableau may change as well. More specifically, if department i (or j) is not rearranged in 

period t (and/or t + 1), before the move, then department i (or j) becomes rearranged in 

period t (and/or t + 1) after performing the move. In addition to rearranging not 

rearranged exchanged department(s), move (1) may also force the exchanged 

department(s) to become not rearranged in period(s) t and/or t + 1. That is, if the area 

occupied by department j (or i) in period t in the current layout plan intersects with the 

area of department i (or j) in period t - 1 (and/or t + 1), then department i (or j) becomes 

not rearranged in period t (and/or t + 1) after the move is performed.  

In addition to modifying the values of r_ptij, hti, rti, for the exchanged departments i 

and j in period t, move (1) may change the values of r_ptij for some of the not exchanged 

departments. More specifically, if the relative position of a not exchanged department d 

and an exchanged department i (r_ptid) is different from the relative position of 

department d and exchanged department j (r_ptdj) in period t in the current layout (i.e., 

current optimal simplex tableau), then the new relative position of department d and 

department i becomes the same, as the  relative position of department d with department 

j, before the move is performed (i.e., in the current layout), and vise versa. This is 

explained in the example below.  

For example, if current values of r_ptij, hti, and rti are as in Table 4.5(a), and the 

layout corresponding to the current optimal layout plan is as in Figure 4.6(a), then 

performing move (1), exchanging departments 2 and 3 in period 1, results in a layout 

shown in Figure 4.6(b). The new values of r_ptij, hti, and rti are shown in Table 4.5(b). 
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Note that r_p123 = 2 before the move, and r_p123 = 1 after the move, for the exchanged 

departments (see tables 4.5(a) and 4.5(b)). Also, the relative position of a not exchanged 

department 4 and exchanged department 2 after the move, is the same as the relative 

position of department 4 with exchanged department 3 before the move is performed 

(e.g., r_p124 = 4 and  r_p134 = 1 before the move, and r_p124 = 1 and  r_p134 = 4 after the 

move). Note, the orientations of exchanged departments are changed after the move is 

performed. Only the values in grayed cells in Table 4.5(a) may change values, and only 

the bold values are actually changed by performing the move. Hence, only a few right 

hand side values change in the LP formulation, when a move is performed. 

 
Table 4.5: The values r_ptij, hti, and rti: (a) corresponding to current layout plan; (b) 

after moving to a new solution by exchanging departments 2 and 3 in period 1  
 

 
Figure 4.6: Layouts plans: (a) before move (1); (b) after performing move (1), 

exchanging departments 2 and 3 in period 1 
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The move (2) is equivalent to moving some department i in some period t to a 

better, non-occupied position on the boundary of department(s), as stated above. For each 

orientation (i.e., horizontal or vertical) of department i, along each side of each 

department d, d = 1,…, N and d ≠ i, the heuristic identifies feasible rectangular regions 

within which the department may move parallel to the side of department d, without 

overlapping with other departments (e.g., the grayed region in Figure 4.7 below) and 

within boundary of plant, if current layout is feasible. Similar to the BSH, the TS/DUAL 

uses the center gravity for department i to find the estimated best position of the 

department within the rectangular feasible region. Move (2) is considered for every 

department i in each period t, and the department i_2* in period t_2* corresponding to the 

best move (as defined previously, which is based on estimated improvement (impr_2*) 

and feasibility status) is selected. As mentioned earlier, if there are no improving moves 

of move (2), move (1) is considered. Also, it should be noted that the tabu list is not used 

when evaluating type (2) moves. In other words, an improving move (2) is never 

considered to be a tabu move. The new orientation of department i_2* in period t_2* as 

well as whether the moved department is rearranged or not in periods t_2* and t_2* + 1 

in the new solution are stored in orient_2* as well as rearr_2* and rearr_next_2*, 

respectively. The leftmost x, right most x, lower most y, and upper most y coordinates of 

the feasible region identified for department i_2* are stored in l_x_2*, r_x_2*, l_y_2*, 

and u_y_2*, respectively. The TS/DUAL performs move (2) by modifying the right hand 

sides in the current optimal simplex tableau in such a way, that after re-optimizing the 

tableau, the department i_2* is at the best position within the rectangle given by values 

l_x_2*, r_x_2*, l_y_2*, and u_y_2*. To achieve this, the changes to the right hand sides 
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ensure that the relative position of any not changed department d with an exchanged 

department i_2* in period t_2* is the same, as the relative position of department d with 

rectangle, given by the values of l_x_2*, r_x_2*, l_y_2*, and u_y_2*. Figure 4.7 is an 

example of a move (2), exchanging department 1 in period 3 (i.e., i_2* = 1 and t_2* = 3). 

The feasible rectangular region, within which the estimated best position for department 

1 in period 3 was found using the center of gravity, is the grayed region (i.e., l_x_2* = 5, 

r_x_2* = 15, l_y_2* = 7, and u_y_2* = 11), and the layout obtained by performing move 

(2) is shown in Figure 4.7(b). Note, departments 2 and 3 are below the grayed region, and 

they are below department 1, after the move is performed (see Figure 4.7(b)). In a similar 

manner, department 4 is to the left of the grayed region, and department 4 is to the left of 

department 1, after the move is performed.   

 

 
Figure 4.7: Layouts plans: (a) before performing move (2); (b) after 

performing move (2), relocating department 1 in period 3  
  

In addition to modifying the relative positions of departments, the changes to right 

hand sides ensure that the orientation of department i_2* in period t_2* as well as the 

rearranged statuses of the exchanged department i_2* in periods t_2* and t_2* + 1 
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correspond to the values of orient_2* as well as rearr_2* and rearr_next_2*, 

respectively. Also, it should be noted, that the real improvement, resulted from move (2) 

is always greater or equal to the estimated improvement. The reason for this is that the 

center of gravity point is used to find the estimated best position within the feasible 

region, which is not guaranteed to give the optimal position. Dual simplex, on the other 

hand, finds the best position for the department within this region. 

The steps for the TS/DUAL are the same as the steps for the TS/BSH in Section 

4.4.1.1, except that Step 3 should be modified as follows.  

Step  3:  Check stopping criterion,  update current iteration, and perform move (2), if 

there is an improving move (2). 

If the TS has been running for more than Max_Duration minutes, then 

  terminate the TS heuristic; 

Else set curr_ts_iter = curr_ts_iter + 1; 

Set impr_2* = -1;   

Set feas_st_2* = 0; (plant floor feasibility status corresponding to best 

move (2)) 

For t = 1,…, T  

For i = 1,…, N  

Calculate estimated improvement impr_2 corresponding to move 

(2) involving department i and period t.  

Set feas_st_2 to 1, if move (2) involving department i and period t 

is estimated to result in plant floor feasible layout plan, and 0 

otherwise.  

If feas_st_2 > feas_st_2* or  

feas_st_2 = feas_st_2* and impr_2 > impr_2* 

Store the coordinates of rectangle, within which the dept i 

should be placed in l_x_2*,  r_x_2*, l_y_2*, and u_y_2*; 

Set i_2* = i; t_2* = t; 
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Set impr_2* = impr_2; feas_st_2* = feas_st_2; 

Set the following: 

⎩
⎨
⎧

=
otherwise; ,0

 ; periodinorientedly horizontal be should  department if,1
*2_

ti
orient

⎩
⎨
⎧

=
;otherwise ,0

 ; periodin rearrangemay    department if,1
*2_

ti
rearr  

⎩
⎨
⎧ +

=
;otherwise ,0

 ;1 periodin rearrangemay    department if,1
*2__

ti
nextrearr

 

If feas_st_2* > feas_st_curr or  

(feas_st_2* = feas_st_curr and impr_2* > 0) then  

Perform the best move (2) found, and go to Step 2; 

 

4.4.2 Memetic Heuristic 

In this section, a memetic heuristic is presented for the DFLP with unequal areas, 

which is comprised of GA and TS. The GA generates a number of solutions 

(chromosomes) and adds them to the new generation of solutions Pg, where g is the 

current iteration of the GA.  The GA uses one of two types of solutions. The first solution 

type is a vector of department period pairs π, as used in the BSH, and the second solution 

type is a special structure from which the solution, similar to solution π, used by the BSH 

may be obtained.  The memetic heuristic starts by randomly generating the initial 

population of solutions in P1. More specifically, each solution in P1 is generated 

randomly, and the OFV and plant floor feasibility status is evaluated by constructing the 

layout plan using the BSH. On the other hand, each solution in Pg, g > 1, is either 

randomly generated (i.e., mutation operation is used), or it is generated from two 

solutions, randomly selected from population Pg-1 (i.e., crossover operation is used). The 

chromosomes, obtained by applying crossover operation, inherit features from both 
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parent chromosomes. At each generation g of the GA, Max_Num_Cross chromosomes 

are generated using crossover operation, but only Gen_Size (Gen_Size < 

Max_Num_Cross) best chromosomes are kept in the new generation Pg. The generated 

chromosome is added to Pg, only if it is better then the worst chromosome in Pg and a 

chromosome similar to π has not already been added to Pg. After the new population Pg, g 

> 1, is generated, Num_Rand_Chrom (Num_Rand_Chrom  < Gen_Size) chromosomes 

are randomly generated (mutation operation), and replace the worst chromosomes in Pg. 

The chromosomes in each generation Pg are stored in such a way, that higher quality 

chromosomes precede lower quality chromosomes.  

The technique used here was used by Drezner (2003). That is, the number of 

generated chromosomes is greater than the population size, and only the best Gen_Size 

unique chromosomes are kept in the generation. However, Drezner (2003) used this 

technique to solve the QAP. Since only the best solutions are kept in the population, and 

the crossover operation is used, good features of parent solutions are passed to next 

generations. In addition, the mutation operation diversifies the search space. However, 

unlike heuristics which use steepest descent, the GA may obtain solutions in the vicinity 

of the local optima, without ever converging to local optima. Therefore, either the 

TS/BSH or TS/DUAL is run on some solutions, generated by the GA (i.e. solutions, 

which are considered to be good, and satisfy some criteria), only to obtain an improved 

best solutions, stored in x*ti, y*ti, l*ti, w*ti. Therefore, the GA is combined with either 

TS/BSH or TS/DUAL, and the resulting heuristic is called a memetic heuristic. The 

memetic heuristic in this dissertation is called MEM/BSH if it uses TS/BSH, and it is 

called MEM/DUAL, otherwise.  
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One of two sets of criteria is used, to determine if the TS (i.e., TS/BSH or 

TS/DUAL) is run on the solution, generated by the GA. The TS is run on the solution 

generated by the GA based on the following criteria. 

• g ≥ TS_Start_Generation, where TS_Start_Generation is the generation number 

starting from which the TS heuristic can begin;  

• f(π) ≤ ofv* or ( ) BSHfofvf βππ ≤− )(*)( , where π is the solution used by the 

BSH to obtain the corresponding layout, and βBSH ∈ (0, 1); 

Note: the criteria above are used for the MEM/BSH heuristic. 

The TS is run on the solution generated by the GA based on the following criteria.  

• g ≥ TS_Start_Generation 

• f(π) ≤ ofvGA or ( ) DUAL
GA fofvf βππ ≤− )()( , where ofvGA  is the OFV of the best 

solution generated either by mutation or by crossover operations, and βDUAL ∈ (0, 

1); 

Note: these criteria are used for the MEM/DUAL heuristic. The greater values of βBSH or 

βDUAL will result in TS being run on poor solutions, generated by the mutation or 

crossover operations; this may result in a waste of computational time. The reason that 

different criteria was applied for the MEM/DUAL is that it is computationally more 

expensive to perform moves in the TS/DUAL than in the TS/BSH. The second criteria 

assures that the TS is run only on relatively good initial solutions when βDUAL is small 

enough. Alternatively, the first criteria may be used in MEM/DUAL with a small value of 

βBSH. The disadvantage of this approach, however, is that most of the solutions will not 

satisfy the criteria, if at some iteration the TS/DUAL generates new best solution, and the 
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value of ofv* becomes much lower than the OFVs of solutions (f(π)s) generated 

randomly or by crossover. 

The stopping criterion for both the TS/BSH and TS/DUAL heuristics, when used in 

memetic heuristic, is the maximum number of Max_Num_TS_Iter consecutive iterations 

without improvement over the best solution found by the TS heuristic. The stopping 

criterion for both the MEM/BSH and MEM/TSH heuristics is the maximum amount of 

time Max_Duration, to run the heuristics. 

  

4.4.2.1 The Chromosomes Used by the Memetic Heuristic 

The memetic heuristic uses one of two types of chromosomes. The type 1 

chromosome is used for problems with relatively low rearrangement costs. On the other 

hand, the type 2 chromosomes are used for problems, with relatively high rearrangement 

costs. It is important to note that the memetic heuristic in this dissertation uses either type 

1 chromosomes or type 2 chromosomes, but not both. 

 

4.4.2.1.1 Type 1 Chromosomes 

 The type 1 chromosome π, used by the GA is similar to the solution defined for the 

BSH. The type 1 chromosomes are generated either randomly (by mutation) or by 

applying the crossover operation on two parent chromosomes. Two different techniques 

are used, for mutation. Technique 1 randomly generates departments, and then randomly 

generates periods for each department. An example of a chromosome generated this way 

is demonstrated in Table 4.6(a). When the layout plan is constructed for solution π in 

Table 4.6(a), the BSH will place department 6 in periods 1, 2, and 3, before department 7 
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is placed in any period. Next department 7 will be placed in periods 1, 3, and 2, and so 

on.  

 
Table 4.6: Two type 1 chromosomes for the problem instance in Appendix A:  

(a) generated using technique 1; (b) generated using technique (2)  
 

Technique 2 randomly generates department period pairs. An example of a chromosome 

generated this way is shown in Table 4.6(b). When constructing the layout plan for the 

solution π in Table 4.6(b), department 8 will be placed in period 1, then department 3 will 

be placed in period 1 and so on. Chromosomes generated using technique 1, tend to 

produce better layouts for problem instances, in which a large number of departments 

have relatively high rearrangement costs, since layout plans with less rearrangements are 

generated. On the other hand, the chromosomes generated by technique 2, add variety to 

the population. As a result, layout plans with more rearrangements are generated. The 

layout plans, generated from the chromosomes in Table 4.6(a) and 4.6(b) are shown in 

Figure 4.8(a) and 4.8(b), respectively. As it can be seen, there are less rearranged 

departments in the layout plan shown in Figure 4.8(a). The probability of generating 

random solutions using technique 1 is γ, and the probability of generating  random 

solutions using technique 2 is (1-γ), where γ ∈ (0,1). Before the mutation operation is 

performed, the crossover operation is performed, which is discussed next. 
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Figure 4.8: Layout plans: (a) generated using chromosome in Table 4.6(a); (b) 

generated using chromosome in Table 4.6(b)  
 

As in most permutation problems such as the proposed problem, the crossover 

operation may produce infeasible chromosomes, if a technique is not used to generate 

feasible chromosomes. The following technique is used to generate feasible chromosome 

π, when performing the crossover operation to parents π1 and π2:  

Step  0:  Set k1 = 0.2NT; k2 = 0.5NT; cross_point = 1; num_cross_points = 0; 

Step  1: Set num_cross_points = num_cross_points + 1;  

Add crossover point cross_point to vector cross_points; 

Set cross_point = cross_point + Random number between k1 and k2; 

If cross_point ≥ NT  then go to Step 2; 

Else   go to Step 1; 

Step  2:  Set cross_point = NT; num_cross_points = num_cross_points + 1; 

Add crossover point cross_point to vector cross_points; 

Set r = 1; 
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Step  3:  Copy the genes (department period pairs) cross_pointsr through cross_pointsr+1 

from chromosome π1 to the same positions in chromosome π; 

Set r = r + 2; 

If r < num_cross_points go to Step 3 

Else go to Step 4 

Step  4:  Copy all the department period pairs in chromosome π2 which have not been 

copied from π1 into positions in π which have not been filled, while preserving 

the precedence order of department period pairs in π2;  

 

An example of generating child 1 chromosome π, from parent chromosomes π1 and  

π2 is shown in Figure 4.9. In this example, the vector of crossover points, cross_points is 

{1, 11, 28, 36}. The heuristic copies the department period pairs 1 through 11 and 28 

through 36 from chromosome π1 into chromosome π. Then the department period pairs in 

chromosome π2, which have not been already copied to chromosome π from π1 are 

copied at positions 12 through 27 in π. Note that the precedence relationship of 

department period pair (1, 1) and (7, 3) is the same in both chromosomes π  and π2. Note, 

to generate child 2, we change the order of parents. Hence, each parent pair produces two 

offsprings. 

 
Figure 4.9: Applying crossover operation to parent chromosomes π1 and π2
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4.4.2.1.2 Type 2 Chromosomes 

 The Type 2 chromosome (solution) μ has the following representation: 

},{ periodsdepts=μ  

where depts = (depts1, depts2, …, deptsN), periods = (periods1, periods2, …, periodN), 

deptsk = department in position k, and  = vector of periods for department 

depts

kdeptsperiods

k. To construct the layout plan for solution μ, the memetic heuristic first generates 

solution π from μ, and then the BSH constructs the layout plan for the solution π. For 

example, the department period pairs, generated from type 2 chromosome μ in Table 4.7 

are similar to the department period pairs π in Table 4.6(a). For instance, first department 

6 (depts1 = 6) is placed in period 1, 2, and 3 ( = periods
1deptsperiods 6 = {1, 2, 3}) in that 

order, in the layout plan. Next, department 7 (depts2 = 7) is placed and so on. As it can be 

seen, type 2 chromosomes are equivalent to type 1 chromosomes, generated using 

technique 1 in Section 4.4.2.1.1. It should be noted, however, that the crossover operation 

described above is not guaranteed to produce solutions, which are similar to type 2 

chromosomes.  

 
Table 4.7: Type 2 chromosome (μ) 
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Similar to type 1 chromosomes, type 2 chromosomes are generated either randomly 

(mutation operation) or by applying the crossover operation to a pair of type 2 

chromosomes. To generate a random solution, the memetic heuristic randomly generates 

the vector of department numbers  depts. Next, for each department deptsk, the vector 

 is generated randomly. The crossover operation is applied to ordered list of 

departments depts in parent chromosomes μ

kdeptsperiods

1 and μ2 to generate ordered list of 

departments vector depts in child chromosome μ. The array periods in new chromosome 

μ is the same as the array periods in chromosome μ1. Although the crossover operation 

applies to only the array depts, not periods, in type 2 chromosomes, it is similar to the 

crossover operation in Section  4.4.2.1.1. However, the values used for k1 and k2 are 

0.2N and 0.5N, respectively.  

 

4.4.2.2 The Pseudo-code for the Memetic Heuristic  

The steps of the memetic heuristics are given below, but first some additional 

notation is defined. 

π_worst = worse solution in current population g (Pg). Recall, in Pg, solutions are ordered 

in ascending order based on OFV. 

feas_st(π) = feasibility status of layout plan obtained for solution π; 

feas_st(π_worst) = feasibility status of layout plan obtained for solution π_worst; 

 

Step 1: Initialize parameters. 

Initialize parameters Gen_Size, Max_Num_Cross > Gen_Size, 

Num_Rand_Chrom, Max_Num_TS_Iter, Max_Duration, γ, β, 

TS_Start_Generation; 
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Determine if type 1 or type 2 chromosomes should be used (i.e., π  or μ). Is 

discussed in Chapter 5;. 

Set g = 1;  

Set curr_parents_offspr_count = 0; (number of chromosomes generated from 

current pair of chromosomes using the crossover operator)  

Set ofv* = Big Number; 

Set feas_st* = 0; 

Step  2: Start new population. 

Set chromosome_count = 0; (number of chromosomes generated at iteration g) 

Step  3: Generate chromosome. 

If chromosome_count ≥ Max_Num_Cross then go to step 5; 

Else 

If g = 1 then 

Randomly generate chromosome π (or μ); 

Else 

If curr_parents_offspr_count  = 0 then 

Randomly pick two chromosomes π’ (μ’) and π’’ (μ’’)  from the 

generation Pg-1 and set π1 = π’ (μ1 = μ’) and π2 = π’’ (μ2 = μ’’); 

Set curr_parents_offspr_count = curr_parents_offspr_count + 1; 

Else 

Set π1
 = π’’ (μ1

 = μ’’), and π2 = π’ (μ2
 = μ’); 

Set curr_parents_offspr_count = 0; 

 

Generate chromosome π (μ) from π1
 (μ1) and π2 (μ2) by applying 

crossover operation; 

 

Generate the layout plan corresponding to chromosome π (μ) using the BSH; 

 Step  4:  Add chromosome π (or μ) to new population, and possibly run TS/BSH or 

TS/DUAL with π (or μ)  as a starting solution. 

Set π_worst = Pg,Gen_Size; 
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If chromosome_count < Gen_Size or (feas_st(π) > feas_st(π_worst) or  

                                                   (feas_st(π) = feas_st(π_worst) and  

                                                            f(π) < f(π_worst) ) 

If  feas_st(π) > feas_st*   or (feas_st(π) = feas_st*  and  

                                                            f(π) < ofv*) 

Initialize  ofv*
,  feas_st*, x*

ti, y*
ti, l*

ti, and w*
ti from the values f(π), 

feas_st(π), xti, yti, lti, and wti respectively; 

 

Add chromosome π  to new generation Pg. When adding the chromosome to 

the generation, make sure that the higher quality solutions precede lower 

quality solutions. Also, if chromosome_count ≥ Gen_Size, then drop the 

worst (Gen_Size-th)  chromosome from Pg;  

 

If the solution, generated satisfies the criteria, described in Section 4.4.2, then 

Run the TS heuristic (TS/BSH or TS/DUAL), with π (or μ)  as a starting 

solution. The TS heuristic will modify the values of ofv*,  feas_st*, x*ti, y*ti, 

l*ti, and w*ti, if it finds a better solution, than the best solution found thus 

far. 

Set chromosome_count = chromosome_count + 1, and go to Step 3; 

Step  5:  Check stopping criterion and add random solutions to the new population. 

If the heuristic has been running for more than Max_Duration minutes, then 

go to Step 6; 

Else 

Remove the last Num_Rand_Chrom (worst) chromosomes from Pg, and add 

Num_Rand_Genes randomly generated chromosomes to the generation; 

While adding new chromosomes to the generation, make sure that higher 

quality solutions precede lower quality solutions;  

 Set g = g +1, and go to Step 2; 

Step 6: Output the best solution (i.e., x*ti, y*ti, l*ti, w*ti for all i = 1, …, N and t = 1, …, 

T), and terminate the heuristic;  
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CHAPTER 5 

COMPUTATIONAL RESULTS 

 

5.1 Datasets 

The only data set found in the literature for the DFLP with unequal area 

departments with fixed shapes is the dataset presented in Yang and Peters (1998). The 

first problem, P6, is a 6-department problem with 6 periods, and the second problem, 

P12, is a 12-department problem with 4 periods. Yang and Peters (1998) consider low 

and high rearrangement cost of 50 and 200, respectively, for each department. Dunker et 

al. (2005) solved the problems in Yang and Peters (1998), but used the rearrangement 

cost of 19 and 50 for problems P6 and P12, respectively, to allow for more department 

rearrangements in the solution. In addition, the problems in this dataset use an initial 

layout in period 0 (i.e., the relative positions as well as lengths and widths of departments 

in initial layout prior to period 1 are specified); therefore, the rearrangement costs in 

period 1 should be considered. As a result, two datasets are used in this dissertation. 

Dataset 1 consists of problems P6 and P12 from Dunker et al. (2005), and dataset 2 was 

generated from the dataset for the DFLP with equal area departments in Balakrishnan et 

al. (2000). See the characteristics (i.e., number of departments and periods) of dataset 1 

and 2 in Tables 5.1(a) and 5.1(b), respectively.   

The dataset in Balakrishnan et al. (2000) contains 24 5-period problems and 24 

10-period problems. Only 5-period problems from Balakrishnan et al. (2000) dataset 

were used to generate problem instances for dataset 2. The problem instances in dataset 2 

were generated by randomly selecting 4 problems from the 5-period problems with 6 
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departments, 15 departments, and 30 departments in Balakrishnan et al. (2000). Thus, 

12 problem instances were generated where the department dimensions were generated 

randomly as follows. Since departments in Balakrishnan et al. (2000) have unit sizes, 

the lengths and width of departments were randomly generated in the range between [0.5, 

1.5], to minimize the change in the relationship between the flow and rearrangement 

costs in the original problems. In addition, the rearrangement costs of six problems (i.e., 

two 6 department problems, two 15 department problems, and two 30 department 

problems) were multiplied by 1.5. The problems selected to be modified are the 

problems, with the largest values of the ∑∑∑∑∑
= = +== =
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Problem# 
Num. of 
Periods  

(T) 

Num. of 
Depts.  

(N) 

Plant 
Floor 

Length 

Plant 
Floor 
Width 

P6 6 6 30 30 
P12 4 12 50 50 

(a)         

Problem# 
Num. of 
Periods  

(T) 

Num. of 
Depts.  

(N) 

Plant 
Floor 

Length 

Plant 
Floor 
Width 

P01 5 6 5 5 
P02 5 6 5 5 
P03 5 6 5 5 
P04 5 6 5 5 
P05 5 15 9 9 
P06 5 15 9 9 
P07 5 15 9 9 
P08 5 15 9 9 
P09 5 30 12 12 
P10 5 30 12 12 
P11 5 30 12 12 
P12 5 30 12 12 

(b)         
Table 5.1: Datasets: (a) from Dunker et al. (2005); (b) generated from 

data set in Balakrishnan et al. (2000) 
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5.2 Parameter Settings 

5.2.1 Parameter Settings for the TS Heuristics 

The parameters that need to be set for TS/BSH and TS/DUAL are the 

Max_Duration, Ten_Len and N_Moves. The values used to set these parameters are 

shown in Table 5.2. The value Max_Duration is the same for all heuristics (TS/BSH, 

TS/DUAL, MEM/BSH, and MEM/DUAL) for each problem to make sure that 

comparisons between the heuristics are done fairly.  

Good values for the values of the N_Moves parameter were found by 

experimentation. The larger values of this parameter result in better solutions at each 

iteration, since the heuristics perform a number of type 1 moves, and pick the move, 

resulting in the best improvement (remember that the TS heuristics use only estimated 

improvement in OFV, and the real improvement is found only after performing the 

move). However, using too large values for this parameter will result in smaller number 

of iterations.  

Finally the value of Ten_Len parameter is determined by multiplying the number of 

department pairs in all periods (i.e, the size of neighborhood) by 0.15  or  0.30. Smaller 

values of Ten_Len tend to result in poor solutions, since the TS heuristics spend to much 

time repeating the same moves, or the heuristic may get trapped in local optima (i.e., 

cycling). On the other hand, using too large values for the Ten_Len parameter results in 

restricted solution space, and too many good moves may be overlooked.  
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Table 5.2: Parameter settings for TS heuristics; (a) for problems in 

dataset 1; (b) for problems in dataset 2 
 

 

5.2.2 Parameter Settings for the Memetic Heuristics 

In addition to parameters used in TS heuristics, the parameters 

TS_Start_Generation, βBSH (or βDUAL), Gen_Size, Max_Num_Cross, Num_Rand_Chrom, 

Max_Num_TS_Iter should be set for the memetic heuristics. The values used for the 

parameters Max_Duration, Ten_Len, and N_Moves, are similar to the ones used by TS 

heuristics. The value used for the parameter TS_Start_Generation was 60. This means 

that the TS heuristic (TS/BSH or TS/DUAL) is not applied to the solutions generated 

during the first 60 generations. The memetic heuristic generates 60 generations in a very 

 83



short time, even for larger problems, if the TS is not used. Starting from the 

TS_Start_Generation generation, the TS heuristic is applied on some promising solutions. 

Since the TS heuristic depends on initial solutions, the memetic heuristics obtain better 

solutions using this technique, than by applying the TS heuristic starting from the first 

generation, using large amounts of computation time on poor solutions.  

As it was discussed in Section 4.4.2.1, two types of chromosomes can be used in the 

memetic heuristics (i.e., type 1 and type 2 chromosomes). Type 1 chromosomes were 

used for solving problems P6 and P12 from dataset 1 and problems P01, P02, P03, and 

P04 from dataset 2. Type 2 chromosomes were used, when solving 15- and 30-

department problems in dataset 2. An easy way to find out which type of chromosome to 

use, is to run the memetic heuristic two times, for some number of generations each time, 

without applying the TS. First run can be performed using type 1 chromosomes, and the 

second run can be performed using type 2 chromosomes. The type 1 or type 2 

chromosomes can be selected, based on which run resulted in a better solution. This 

technique was used to determine which type of chromosome to use.  

 If type 1 chromosome is used, than the parameter γ , discussed in Section 4.4.2.1.1 

should be set. The value of 0.1 was used for this parameter in all cases, whenever 

applicable. The number of random solutions, Num_Rand_Chrom, generated at each 

generation was set to 0.1Gen_Size. The values used for parameters Gen_Size, 

Max_Num_Cross, Max_Num_TS_Iter , and βBSH and βDUAL are shown in Table 5.3. 
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Table 5.3: Parameter settings for memetic heuristics: (a) for problems 

in dataset 1; (b) for problems in dataset 2 
 

5.3 Test Environment 

All metaheuristics were coded using C++Builder 6, and the problems were solved 

on a set of Dell Optiplex GX620 computers. The computers had Pentium IV, 3.6GHz 

processors, 2GB of memory, and Windows XP operating system.  

 

5.4 Experimental Results 

Each problem in data sets 1 and 2 were solved by all four metaheuristics. Since the 

memetic heuristics (i.e., MEM/BSH and MEM/DUAL) are stochastic, and the outcome 

can be different for different runs, every problem was solved 5 times by each of the two 

memetic heuristics. The OFVs and the runtimes (i.e., the times in which the heuristics 

found the best solution) of the TS/BSH and MEM/BSH heuristics are shown in Tables 

5.4 and 5.5, respectively, and the OFVs and the runtimes of the TS/DUAL and 

MEM/DUAL heuristics are shown in Tables 5.6 and 5.7, respectively. The summary of 

the results of all metaheuristics is shown in Table 5.8.  As it can be seen, the MEM/BSH 
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obtained better results than TS/BSH on all problems (average percent improvement of 

2.307) except on problem P06 from dataset 2. The MEM/DUAL obtained better results 

than TS/DUAL on all problem instances (average percent improvement of 2.439). 

Therefore for the current values of parameters, the memetic heuristics are superior to the 

TS heuristics.  

The MEM/DUAL heuristic obtained best results on 5 problem instances out of 14 

problem instances (i.e., problem instance P6 in dataset 1, and problem instances P01 - 

P04  in dataset 2). Therefore, the MEM/DUAL performed better on smaller problems (6 

department problems), and the MEM/BSH performed better on larger problems (i.e., 12-

department problem instance in dataset 1, and 15- and 30-department problem instances 

in dataset 2). In addition, MEM/DUAL performed better than TS/BSH on 12 problem 

instances. The reason, that the MEM/DUAL does not perform as well as the MEM/BSH, 

is that it is computationally more expensive to perform moves using DUAL simplex 

technique (remember, TS/DUAL uses DUAL technique to perform the moves), than to 

perform moves using the BSH. Therefore, the TS/BSH is able to perform more iterations 

during the execution of the heuristic. On the other hand, the dual based heuristics (i.e., 

TS/DUAL and MEM/DUAL) has a better chance to obtain a global optimal solution, 

given that it generates sufficient number of diverse solutions, since each generated 

solution corresponds to a solution to a MILP formulation of the problem, with the values 

of integer variables preset. The MEM/BSH, on the other hand, may never obtain the 

global optimal solution (i.e., best layout plan), since the solutions are generated using 

construction type heuristic (i.e., the modified BSH). In addition, the position of each 

department being placed depends on the positions of already placed departments, and not 
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so much by the departments placed later. Hence, this is may be a drawback of the BSH 

heuristics.  

The summary of the results of the proposed techniques and the results of the 

dynamic genetic algorithm from Dunker et al. (2005), on the problem instances in 

dataset 1, is shown in Table 5.9. Since Dunker et al. (2005), perform the analysis of their 

technique, considering the case, when the position of the initial layout is centered inside 

the plant floor area, similar approach was used in this dissertation. The BSH handles 

initial layout by assuming that the initial layout is an additional period in which all of the 

department positions are fixed. To solve the problems in dataset 1 by the proposed 

techniques, based on the DUAL simplex technique (i.e., TS/DUAL and MEM/DUAL), 

the initial layout is ignored, and the cost of rearranging all of the departments in period 1 

is added to the final OFV. The initial layout was not considered in DUAL simplex 

technique, since it would result in too many infeasible layouts during the execution of the 

heuristics. Dunker et al. (2005) obtained better results on the 6-department problem 

instance with 6 periods than any of the proposed techniques (percent improvement of 

1.46). However, all four proposed techniques outperformed the technique by Dunker et 

al. (2005) on a larger problem instance, 12-department problem instance with 4 periods 

(percent improvement of 1.72). The worst solutions obtained by any of the four proposed 

techniques were better than the best solution obtained by Dunker et al. (2005). The 

execution times, during which the proposed heuristics obtained better solutions, than the 

technique by Dunker et al. (2005), are shown in Table 5.10. As it can be seen, the 

longest time it took to outperform the technique by Dunker et al. (2005) is 260 seconds. 

However, it should be noted, that Dunker et al. (2005) used Pentium IV, 1.5 GHz 
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computer.  The reason that Dunker et al. (2005) outperformed the proposed techniques 

on a smaller problem instance may be contributed to the fact that they use a relaxed 

MILP formulation, in which the only binary variables are the variables used for 

orientations and rearrangement statuses of departments (i.e., ht,i and rt,i). The proposed 

heuristics on the other hand do not use binary variables, and the orientations and 

rearrangement statuses of departments are determined by the heuristics (i.e., BSH or 

TS/BSH). As Dunker et al. (2005) mention, the number of binary variables in the 

reduced mixed integer problems increases linearly, which could theoretically result in an 

exponential increase in computational time. 
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      MEM/BSH Solution OFVs         

Problem# 
Initial 

Sol. 
(BSH) 

TS/BSH Run1 Run2 Run3 Run4 Run5 

Aver. 
OFV 

(MEM/ 
BSH) 

Worst. 
OFV 

(MEM/ 
BSH) 

Best 
OFV 

(MEM/ 
BSH) 

Improvement 
of Best 

MEM/BSH Sol. 
Over TS/BSH 
Solution (%) 

P6 6,967.9 6,648.3 6,615.6 6,628.9 6,637.3 6,619.5 6,619.5 6,624.2 6,637.3 6,615.6 0.49 
P12 29,779.6 26,845.5 26,826.3 26,774.9 26,938.1 26,789.1 26,640.4 26,793.7 26,938.1 26,640.4 0.77 

(a)                       
      MEM/BSH Solution OFVs         

Problem# 
Initial 

Sol. 
(BSH) 

TS/BSH Run1 Run2 Run3 Run4 Run5 

Aver. 
OFV 

(MEM/ 
BSH) 

Worst. 
OFV 

(MEM/ 
BSH) 

Best 
OFV 

(MEM/ 
BSH) 

Improvement 
of Best 

MEM/BSH Sol. 
Over TS/BSH 
Solution (%) 

P01 97,795.0 96,013.0 95,239.3 94,813.5 95,421.4 94,849.9 95,070.2 95,078.9 95,421.4 94,813.5 1.27 
P02 104,277.0 99,371.9 97,333.7 96,905.7 96,747.4 96,897.5 97,367.6 97,050.4 97,367.6 96,747.4 2.71 
P03 87,282.1 85,185.2 83,893.4 83,821.3 83,821.3 83,893.4 83,821.3 83,850.1 83,893.4 83,821.3 1.63 
P04 111,295.6 106,611.9 104,031.6 104,776.7 104,838.7 103,837.1 104,614.1 104,419.6 104,838.7 103,837.1 2.67 

P05 508,806.6 468,186.9 464,249.9 465,468.1 465,121.7 465,707.5 461,718.8 464,453.2 465,707.5 461,718.8 1.40 
P06 465,412.5 437,095.4 445,516.9 440,195.7 443,542.4 445,797.6 442,666.7 443,543.9 445,797.6 440,195.7 -0.70 
P07 502,905.7 481,511.8 475,397.5 473,665.0 470,239.3 476,377.3 475,676.7 474,271.2 476,377.3 470,239.3 2.40 
P08 575,306.4 540,766.0 529,286.8 524,136.6 528,043.6 525,868.5 533,259.4 528,119.0 533,259.4 524,136.6 3.17 

P09 617,073.2 576,867.3 567,922.5 580,857.5 558,896.3 564,291.3 570,478.9 568,489.3 580,857.5 558,896.3 3.22 
P10 652,395.2 595,500.0 560,992.2 564,863.4 560,934.4 563,137.9 557,420.1 561,469.6 564,863.4 557,420.1 6.83 
P11 607,983.2 557,695.5 555,914.0 555,036.6 553,652.6 550,638.6 555,455.8 554,139.5 555,914.0 550,638.6 1.28 
P12 582,723.8 543,113.4 543,064.3 545,130.8 540,057.3 542,301.0 531,703.7 540,451.4 545,130.8 531,703.7 2.15 

(b)                       
Table 5.4: Summary of TS/BSH and MEM/BSH heuristic results: (a) for problems in dataset 1; (b) for problems 

in dataset 2 
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    MEM/BSH Solutions   

Problem# TS/BSH  Run1 Run2 Run3 Run4 Run5 Average 
Runtime 

Shortest 
Runtime 

Longest 
Runtime 

Total 
Runtime 

P6 27.77 11.17 0.03 49.38 0.14 0.05 12.15 0.03 49.38 60 
P12 82.05 100.06 146.24 107.34 174.61 23.75 110.40 23.75 174.61 300 

(a)                     
    MEM/BSH Solutions   

Problem# TS/BSH Run1 Run2 Run3 Run4 Run5 Average 
Runtime 

Shortest 
Runtime 

Longest 
Runtime 

Total 
Runtime 

P01 99.87 58.48 26.06 65.56 18.90 49.04 43.61 18.90 65.56 120 
P02 83.35 3.97 15.99 11.59 1.63 25.14 11.67 1.63 25.14 120 
P03 117.09 45.56 5.35 0.65 15.23 3.63 14.09 0.65 45.56 120 
P04 0.00 3.32 15.80 4.25 1.90 26.48 10.35 1.90 26.48 120 

P05 61.46 157.78 13.72 31.67 51.02 153.84 81.61 13.72 157.78 240 
P06 71.31 14.76 106.97 238.94 102.28 100.49 112.69 14.76 238.94 240 
P07 40.32 29.26 20.50 200.21 27.65 209.86 97.50 20.50 209.86 240 
P08 120.48 101.45 19.22 199.73 23.05 13.80 71.45 13.80 199.73 240 

P09 216.06 442.34 319.84 116.43 139.47 110.51 225.72 110.51 442.34 480 
P10 33.75 309.69 22.83 220.25 99.47 156.79 161.81 22.83 309.69 480 
P11 234.03 212.52 241.98 410.28 469.96 141.95 295.34 141.95 469.96 480 
P12 403.19 539.06 240.13 11.45 576.87 445.48 362.60 11.45 576.87 480 

(b)                     
Table 5.5: Summary of TS/BSH and MEM/BSH heuristic execution times in minutes: (a) for problems in 

dataset 1; (b) for problems in dataset 2 
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      MEM/DUAL Solution OFVs         

Problem# 
Initial 

Sol. 
(BSH) 

TS/DUAL Run1 Run2 Run3 Run4 Run5 

Aver. 
OFV 

(MEM/ 
DUAL) 

Worst. 
OFV 

(MEM/ 
DUAL) 

Best 
OFV 

(MEM/ 
DUAL) 

Improvement 
of Best 

MEM/DUAL 
Sol. Over 
TS/DUAL 

Solution (%) 
P6 6,986.9 6,680.0 6,602.5 6,608.5 6,620.0 6,605.5 6,606.0 6,608.5 6,620.0 6,602.5 1.17 

P12 29,582.8 27,059.5 26,817.0 26,888.0 26,959.5 26,978.5 26,907.0 26,910.0 26,978.5 26,817.0 0.90 
(a)                       

      MEM/DUAL Solution OFVs         

Problem# 
Initial 

Sol. 
(BSH) 

TS/DUAL Run1 Run2 Run3 Run4 Run5 

Aver. 
OFV 

(MEM/ 
DUAL) 

Worst. 
OFV 

(MEM/ 
DUAL) 

Best 
OFV 

(MEM/  
DUAL) 

Improvement 
of Best 

MEM/DUAL 
Sol. Over 
TS/DUAL 

Solution (%) 
P01 97,795.0 97,059.3 94,776.5 94,776.5 94,776.5 94,776.5 94,776.5 94,776.5 94,776.5 94,776.5 2.41 
P02 104,277.0 99,383.3 96,182.4 96,182.4 96,182.4 96,182.4 96,182.4 96,182.4 96,182.4 96,182.4 3.33 
P03 87,282.1 86,469.6 83,785.2 84,457.2 83,785.2 84,457.2 84,011.3 84,099.2 84,457.2 83,785.2 3.20 
P04 111,295.6 106,241.2 103,797.5 103,406.4 103,797.5 103,406.4 103,406.4 103,562.8 103,797.5 103,406.4 2.74 
P05 508,806.6 472,801.3 461,929.7 461,895.0 467,155.6 464,541.3 466,545.3 464,413.4 467,155.6 461,895.0 2.36 
P06 465,412.5 445,292.3 447,364.3 449,973.4 449,869.0 445,346.8 444,394.8 447,389.6 449,973.4 444,394.8 0.20 
P07 502,905.7 481,750.3 476,414.8 481,163.5 476,258.9 479,385.3 476,984.0 478,041.3 481,163.5 476,258.9 1.15 
P08 575,306.4 542,660.3 535,274.9 536,324.0 530,531.6 537,490.0 530,865.0 534,097.1 537,490.0 530,531.6 2.29 
P09 617,073.2 583,568.2 579,177.7 580,601.2 583,380.7 583,631.7 578,406.2 581,039.5 583,631.7 578,406.2 0.89 
P10 652,395.2 615,757.9 573,907.8 590,776.7 592,421.7 596,668.7 587,038.2 588,162.6 596,668.7 573,907.8 7.29 
P11 607,983.2 574,625.2 567,177.6 574,649.0 567,533.5 561,262.3 557,497.7 565,624.0 574,649.0 557,497.7 3.07 
P12 582,723.8 558,066.0 546,362.6 553,271.8 541,129.2 549,650.9 553,965.4 548,876.0 553,965.4 541,129.2 3.13 

(b)                       
Table 5.6: Summary of TS/DUAL and MEM/DUAL heuristic results: (a) for problems in dataset 1; (b) for 

problems in dataset 2 
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    MEM/DUAL Solutions   

Problem# TS/DUAL Run1 Run2 Run3 Run4 Run5 Average 
Runtime 

Shortest 
Runtime 

Longest 
Runtime 

Total 
Runtime 

P6 0.21 58.41 9.89 1.90 34.85 4.93 21.99 1.90 58.41 60 
P12 1.40 28.12 20.62 65.07 1.65 26.53 28.40 1.65 65.07 300 

(a)                     
    MEM/DUAL Solutions   

Problem# TS/DUAL Run1 Run2 Run3 Run4 Run5 Average 
Runtime 

Shortest 
Runtime 

Longest 
Runtime 

Total 
Runtime 

P01 1.36 0.05 0.05 0.73 0.06 0.05 0.19 0.05 0.73 120 
P02 1.12 26.03 52.72 46.96 72.30 32.18 46.04 26.03 72.30 120 
P03 0.00 105.42 2.03 28.27 0.32 58.97 39.00 0.32 105.42 120 
P04 0.11 8.88 45.32 37.05 27.22 1.03 23.90 1.03 45.32 120 

P05 19.84 212.68 79.41 65.41 136.76 229.04 144.66 65.41 229.04 240 
P06 23.90 49.91 238.46 175.63 18.55 191.39 134.79 18.55 238.46 240 
P07 30.53 150.16 201.00 88.06 10.66 93.68 108.71 10.66 201.00 240 
P08 39.16 59.52 50.92 90.26 1.08 185.49 77.45 1.08 185.49 240 

P09 417.57 46.19 453.85 54.73 135.43 238.53 185.74 46.19 453.85 480 
P10 129.99 46.60 69.92 7.73 108.21 102.32 66.95 7.73 108.21 480 
P11 226.58 434.85 118.52 39.43 151.70 135.61 176.02 39.43 434.85 480 
P12 271.20 380.04 86.84 82.20 122.13 357.94 205.83 82.20 380.04 480 

(b)                     
Table 5.7: Summary of TS/DUAL and MEM/DUAL heuristic execution times in minutes: (a) for problems in 

dataset 1; (b) for problems in dataset 2 
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Problem# TS/BSH MEM/BSH TS/DUAL MEM/DUAL 

P6 6,648.3 6,615.6 6,680.0 6,602.5 
P12 26,845.5 26,640.4 27,059.5 26,817.0 

(a)         

Problem# TS/BSH MEM/BSH TS/DUAL MEM/DUAL 

P01 96,013.0 94,813.5 97,059.3 94,776.5 
P02 99,371.9 96,747.4 99,383.3 96,182.4 
P03 85,185.2 83,821.3 86,469.6 83,785.2 
P04 106,611.9 103,837.1 106,241.2 103,406.4 

P05 468,186.9 461,718.8 472,801.3 461,895.0 
P06 437,095.4 440,195.7 445,292.3 444,394.8 
P07 481,511.8 470,239.3 481,750.3 476,258.9 
P08 540,766.0 524,136.6 542,660.3 530,531.6 

P09 576,867.3 558,896.3 583,568.2 578,406.2 
P10 595,500.0 557,420.1 615,757.9 573,907.8 
P11 557,695.5 550,638.6 574,625.2 557,497.7 
P12 543,113.4 531,703.7 558,066.0 541,129.2 

(b)         
Table 5.8: Summary of the results of metaheuristics: (a) for 

problems in dataset 1; (b) for problems in dataset 2 
 
 
 
 

 93



 
 

 
Table 5.9: Results of the proposed heuristics, and the dynamic genetic algorithm 

by Dunker et al. (2005): (a) on problem instance P6 in dataset 1; (b) on 
problem instance P12 in dataset 1 

 

 
Table 5.10: Execution times in seconds, during which the proposed techniques found better solutions 

than the best solution obtained by Dunker et al. (2005) on problem instance P12 in dataset 1 
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CHAPTER 6 

CONCLUSIONS 

 

6.1 Summary of Research 

The DFLP with unequal area and fixed department shapes is a combinatorial 

optimization problem, and there exists no exact technique, which optimally solves the 

problem in polynomial time. Therefore, two construction type heuristics and four 

improvement type heuristics were developed to solve the problem in reasonable 

computational time. The heuristics are BSH, dual simplex method, TS/BSH, TS/DUAL, 

MEM/BSH, MEM/DUAL. The BSH is a construction type heuristic, which constructs the 

layout by placing departments on the boundary of placed departments. An LP 

formulation with a dual simplex method constructs layout plans for the proposed 

problem. The TS/BSH and TS/DUAL are tabu search heuristics, which use the BSH and 

dual simplex method, respectively, to generate layout plans. Finally, MEM/BSH and 

MEM/DUAL are memetic heuristics, which use the TS/BSH and TS/DUAL, 

respectively. The memetic heuristics (i.e., MEM/BSH and MEM/TS) were found to 

obtain better solutions than the tabu search heuristics (i.e., TS/BSH and TS/TS). In 

addition, MEM/DUAL generated better solutions, than BSH based improvement 

heuristics on small problem instances. On the other hand, BSH based improvement 

heuristics were found to be superior on larger problem instances. All improvement type 

heuristics found better solutions for the larger problem instance than the technique by 

Dunker et al. (2005).  
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6.2 Future Research 

The following issues may be considered in future research: 

• Modify the heuristics, to consider variable shape departments, and I/O 

stations not at the center points of departments. 

•  Improve the BSH based heuristics, to perform better on smaller problem 

instances. 

 96



REFERENCES 

 
Ahmad, A. R., O. A. Basir, M. H. Imam, and K. Hassanein. 2006. An efficient, effective, 
and robust decoding heuristic for metaheuristics-based layout optimization. International 
Journal of Production Research 44: 1545-1567. 
 
Al-Hakim, L. 2000. On solving facility layout problems using genetic algorithms. 
International Journal of Production Research 38: 2573-2582. 
 
Apple, J. M. and M. P. Deisenroth. 1972. A computerized plant layout analysis and 
evaluation technique (PLANET), A.I.I.E Technical Papers, Twenty-third Conference. 
Anaheim, California, USA. 
 
Armour, G. C. and E. S. Buffa. 1963. A heuristic algorithm and simulation approach to 
relative location of facilities. Management Science 9: 294-309. 
 
Balakrishnan, J. and C. H. Cheng. 1998. Dynamic layout algorithms: a state-of-the-art 
survey. Omega 26: 507-521. 
 
Balakrishnan, J., C. H. Cheng, and D.G. Conway. 2000. An improved pair-wise exchange 
heuristic for the dynamic plant layout problem. International Journal of Production 
Research 38: 3067-3077. 
 
Bazaraa, M. S. 1975. Computerized layout design: a branch and bound approach.  AIIE 
Transactions 7: 432-438. 
 
Bozer, Y. A., R. D. Meller, and S. J. Erlebacher. 1994. An improvement-type layout 
algorithm for single and multiple-floor facilities. Management Science 40: 918-932. 
 
Buffa, E. S., G. C. Armour, and T. E. Vollman. 1964. Allocating facilities with CRAFT.  
Harvard Business Review 42: 136-158. 
 
Burkard, R. E. and T. A. Bonniger. 1983. A heuristic for quadratic boolean programs 
with applications to quadratic assignment problems. European Journal of Operational 
Research 13: 374-386. 
 
Burkard, R. E. and F. Rendl. 1984. A thermodynamically motivated simulation procedure 
for combinatorial optimization problems. European Journal of Operational Research 17: 
169-174. 
 
Castillo, I. and T. Westerlund. 2005. An ε-accurate model for optimal unequal-area block 
layout design. Computers and Operations Research 32: 429-447. 
 
Castillo, I., J. Westerlund, S. Emet, and T. Westerlund. 2005. Optimization of block 
layout design problems with unequal areas: A comparison of MILP and MINLP 
optimization methods. Computers and Chemical Engineering 30: 54-69. 

 97



Chiang, W-C. and C. Chiang. 1998. Intelligent local search strategies for solving facility 
layout problems with the quadratic assignment problem formulation. European Journal 
of Operational Research 106: 457-488. 
 
Cohoon, J. P., S. U. Hegde, W. N. Martin, and D. S. Richards. 1991. Distributed genetic 
algorithms for the floorplan design problem. IEEE Transactions on Computer-Aided 
Design of Integrated Circuits and Systems 10: 483-492. 
 
Conway, D. G. and M. A. Venkataramanan. 1994. Genetic search and the dynamic 
facility layout problem. Computers & Operations Research 21: 955-960. 
 
Corry, P. and E. Kozan. 2004. Ant colony optimisation for machine layout problems. 
Computational Optimization and Applications 28: 287-310. 
 
Dorigo, M., V. Maniezzo, and A. Colorni. 1996. Ant system: optimization by a colony of 
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B 26: 29-
41. 
 
D’Souza, G. and B. B. Mohanty. 1986. Interactive multilevel, multicriteria dynamic 
approach facility layout analysis. Fall Industrial Engineering Conference, p. 152-161. 
 
Dunker, T., G. Radons, and E. Westkamper. 2003. A coevolutionary algorithm for a 
facility layout problem. International Journal of Production Research 41: 3479–3500. 
 
Dunker, T., G. Radons, and E. Westkamper. 2005. Combining evolutionary computation 
and dynamic programming for solving a dynamic facility layout problem. European 
Journal of Operational Research 165: 55-69. 
 
Drezner, Z. 2003. A new genetic algorithm for the quadratic assignment problem. 
INFORMS Journal on Computing 15: 320-330. 
 
Drezner, Z. 2008. Extensive experiments with hybrid genetic algorithms for the solution 
of the quadratic assignment problem. Computers and Operations Research 35: 717-736. 
 
Frances, R. L. and J. A. White. 1974. Facility layout and location: an analytical approach. 
Englewood Cliff, N.J.: Prentice-Hall. 
 
Gambardella, L. M., E. D. Taillard, and M. Dorigo. 1999. Ant colonies for the quadratic 
assignment problem. Journal of Operational Research Society 50: 167–176. 
 
Garces-Perez, J., D. A. Schoenefeld, and R. L. Wainwright. 1996. Solving facility layout 
problems using genetic programming. Genetic Programming. Proceedings of the First 
Annual Conference, p 182-190. 
 
Gau, K. Y. and R. D. Meller. 1999. An iterative facility layout algorithm. International 
Journal of Production Research 37: 3739-3758. 

 98



Gilmore, P. C. 1962. Optimal and suboptimal algorithms for the quadratic assignment 
problem. Journal of the Society for Industrial and Applied Mathematics 10: 305-313. 
 
Glover, F. 1986. Future paths for integer programming and links to artificial intelligence. 
Computers & Operations Research 13: 533-549.  
 
Glover, F. 1989. Tabu Search-Part I. ORSA Journal on Computing 1: 190-206. 
 
Glover, F. 1990. Tabu Search-Part II. ORSA Journal on Computing 2: 4-32. 
 
Goetschalckx, M. 1992. An interactive layout heuristic based on hexagonal adjacency 
graphs. European Journal of Operational Research 63: 304-321. 
 
Gomory, R. E. and T. C. Hu. 1961. Multi-terminal network flows. Journal of the Society 
for Industrial and Applied Mathematics 9: 551-570. 
 
Hassan, M. M. D., G. L. Hogg, and D. R. Smith. 1986. SHAPE: a construction algorithm 
for area placement evaluation. International Journal of Production Research 24: 1283-
1295. 
 
Heragu, S. S. 1989. Knowledge based approach to machine cell layout. Computers & 
Industrial Engineering 17: 37-42. 
 
Hillier, F. S. 1963.  Quantitative tools for plant layout analysis. The Journal of Industrial 
Engineering 14: 33-40. 
 
Holland, J. H. 1975. Adaptation in natural and artificial systems. Ann Arbor: University 
of Michigan Press. 
 
Houshyar, A. and B. White. 1993. Exact optimal solution for facility layout: deciding 
which pairs of locations should be adjacent. Computers & Industrial Engineering 24: 
177-187. 
 
Imam, M. H. and M. Mir. 1993. Automated layout of facilities of unequal areas.  
Computers & Industrial Engineering 24: 355-366. 
 
Imam, M. H. and M. Mir. 1998. Cluster boundary search algorithm for building-block 
layout optimization. Advances in Engineering Software 29: 165-173. 
 
Kaku, B. K. and J. B. Mazzola. 1997. A tabu-search heuristic for the dynamic plant 
layout problem. INFORMS Journal on Computing 9: 374-384. 
 
Kim, J. G. and Y. D. Kim. 2000. Layout planning for facilities with fixed shapes and 
input and output points. International Journal of Production Research 38: 4635-4653. 
 

 99



Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated 
annealing. Science 220: 671-680. 
 
Koopmans, T. C. and M. J. Beckmann. 1957. Assignment problems and the location of 
economic activities. Econometrica 25: 53-76. 
 
Kusiak, A. and S. S. Heragu. 1987. The facility layout problem. European Journal of 
Operational Research 29: 229-251.  
 
Lacksonen, T. A. and E. E. Enscore. 1993. Quadratic assignment algorithms for the 
dynamic layout problems. International Journal of Production Research 31: 503-517. 
 
Lacksonen, T. A. 1994. Static and dynamic layout problems with varying areas. Journal 
of the Operational Research Society 45: 59-69. 
 
Lacksonen, T.A. 1997. Preprocessing for static and dynamic facility layout problems.  
International Journal of Production Research 35: 1095-1106. 
 
Lawler, E. L. 1963. The quadratic assignment problem. Management Science 9: 586-599. 
 
Lee, R. C. and J. M. Moore. 1967. CORELAP-computerized relationship layout 
planning, Industrial Engineering 18: 195-200. 
 
Lengauer, T. 1990. Combinatorial algorithms for integrated circuit layout. John Wiley & 
Sons, New York. 
 
Li, T. and J. Mashford. 1990. A parallel genetic algorithm for quadratic assignment, 
Proceedings of the ISMM International Conference. Parallel and Distributed Computing, 
and Systems, p 391-394. 
 
Liggett, R. S. 2000. Automated facilities layout: past, present and future. Automation in 
Construction 9: 197-215. 
 
Liu, D. and H. Teng. 1999. An improved BL-algorithm for genetic algorithm of the 
orthogonal packing of rectangles. European Journal of Operational Research 112: 413–
420. 
 
McKendall, A. R., J. S. Noble, and C. M. Klein. 1999. Facility layout of irregular-shaped 
departments using a nested approach. International Journal of Production Research 37: 
2895-2914. 
 
McKendall, A. R. and J. Shang. 2006. Hybrid ant systems for the dynamic facility layout 
problem. Computers & Operations Research 33: 790-803. 
 

 100



McKendall, A. R.,  J. Shang, and S. Kuppusamy. 2006. Simulated annealing heuristics 
for the dynamic facility layout problem. Computers & Operations Research 33: 2431-
2444. 
 
Meller, R. D. and K. Y. Gau. 1996. The facility layout problem: recent and emerging 
trends and perspectives. Journal of Manufacturing Systems 15: 351-366. 
 
Meller, R. D., V. Narayanan, and P. H. Vance. 1999. Optimal facility layout design. 
Operations Research Letters 23: 117-127. 
 
Montreuil, B. and H. D. Ratliff. 1989. Utilizing cut trees as design skeletons for facility 
layout. IIE Transactions 21: 136-143. 
 
Montreuil, B. 1990. A modelling framework for integrating layout design and flow 
network design. Progress in Material Handling and Logystics 2: 95-115 
 
Montreuil, B. and U. Venkatadri. 1991. Strategic interpolative design of dynamic 
manufacturing systems layouts. Management Science 37: 682-694. 
 
Montreuil, B. and A. Laforge. 1992. Dynamic layout design given a scenario tree of 
probable futures. European Journal of Operational Research 63: 271-286. 
 
Montreuil, B., U. Venkatadri, and H. D. Ratliff. 1993. Generating a layout from a design 
skeleton. IIE Transactions 25: 3-15. 
 
Nicol, L. M. and R. H. Hollier. 1983. Plant Layout in Practice. Material Flow 3: 177-188. 
 
Norman, M.G. and P. Moscato. 1989, A competitive and cooperative approach to 
complex combinatorial search. Caltech Concurrent Computation Program, Report 826.  
 
Pardalos, P. M. and J. V. Crouse. 1989. A parallel algorithm for the quadratic assignment 
problem. Proceedings of Supercomputing, p 351-360. 
 
Rosenblatt, M. J. 1986. The dynamics of plant layout. Management Science 32: 76-86. 
 
Sahni, S. and T. Gonzalez. 1976. P-complete approximation problems. Journal of the 
Association for Computing Machinery 23: 555-565. 
 
Schnecke, V. and O. Vornberger. 1997. Hybrid genetic algorithms for constrained 
placement problems. IEEE Transactions on Evolutionary Computation 1: 266-277. 
 
Shayan, E. and L. Al-Hakim. 1999. Improved methods in solution of unequal-sized 
facilities layout problems by genetic algorithms. Advanced Manufacturing Processes, 
Systems, and Technologies, p 133-141. 
 

 101



Shayan, E. and A. Chittilappilly. 2004. Genetic algorithm for facilities layout problems 
based on slicing tree structure. International Journal of Production Research 42: 4055–
4067. 
 
Sherali, H. D., B. M. P. Fraticelli, and R. D. Meller. 2003. Enhanced model formulations 
for optimal facility layout. Operations Research 51: 629-644. 
 
Sherwani, N. 1993. Algorithms for VLSI physical design automation. Kluwer, Norwell. 
 
Singh, S. P. and R. R. K. Sharma. 2006. A review of different approaches to the facility 
layout problems. International Journal of Advanced Manufacturing Technology 30: 425-
433. 
 
Skorin-Kapov, J. 1990. Tabu search applied to the quadratic assignment problem. ORSA 
Journal on Computing 2: 33-45. 
 
Tam, K. Y. and S. G. Li. 1991. A hierarchical approach to the facility layout problem.  
International Journal of Production Research 29: 165-184. 
 
Tam, K. Y. 1992. Genetic algorithms, function optimization, and facility layout design.  
European Journal of Operational Research 63: 322-346. 
 
Tam, K. Y. 1992. A simulated annealing algorithm for allocating space to manufacturing 
cells. International Journal of Production Research 30: 63-87. 
 
Tam, K. Y. and S. K. Chan. 1998. Solving facility layout problems with geometric 
constraints using parallel genetic algorithms: experimentation and findings. International 
Journal of Production Research 36: 3253-3272. 
 
Tate, D. M. and A. E., Smith. 1995. Unequal-area facility layout by genetic search. IIE 
Transactions 27: 465-472. 
 
Tompkins, J. A., J. A. White, Y. A. Bozer, E. H. Frazelle, J. M. A. Tanchoco, and J. 
Trevino. 1996. Facilities Planning. New York, N.Y.: John Wiley.  
 
Tong, X. 1991. SECOT: a sequential construction technique for facility design, 
Unpublished Doctoral Dissertation, Department of Industrial Engineering, University of 
Pittsburgh, Pittsburgh, PA, USA.  
 
Valenzuela, C. L. and P. Y. Wang. 2001. Breeding Normalized Postfix Expressions for 
the Facility Layout Problem. MIC’2001-4th Metaheuristics International Conference, p 
261-265. 
 
Wascher, G. and J. Merker. 1997. A comparative evaluation of heuristics for the 
adjacency problem in facility layout planning. International Journal of Production 
Research 35: 447-466. 

 102



 
Welgama, P. S. and P. R. Gibson. 1993. A construction algorithm for the machine layout 
with fixed pick-up and drop-off points. International Journal of Production Research 31: 
2575-2590. 
 
Welgama, P. S. and P. R. Gibson. 1995. Computer-aided facility layout-a status report.  
International Journal of Advanced Manufacturing Technology 10: 66-77. 
 
Wilhelm, M. R. and T. L. Ward. 1987. Solving quadratic assignment problems by 
“Simulated Annealing”. IIE Transactions 19: 107-119. 
 
Yang, T. and B. A. Peters. 1998. Flexible machine layout design for dynamic and 
uncertain production environments. European Journal of Operational Research 108: 49-
64. 

 103



Appendix A. Problem Instance Used to Demonstrate the BSHs 
 

Number of periods is 3 (i.e., T = 3); 

Number of departments is 12 (i.e., N = 12); 

Departments are not restricted to horizontal or vertical orientations (i.e.,  DeptOrientti = 0,    

for t = 1,…, T and i, j = 1,…, N); 

Rearrangement cost is 50 for all departments in all periods (i.e.,  Rti = 50,  for t = 1,…, 3 

and i, j = 1,…, 12); 

 

 
Table A.1: Shorter and longer side lengths of departments 
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Table A.2: Cost to transport materials a unit distance between 

departments (i.e., the values of F’tij) 
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Appendix B. Problem Instance Used to Demonstrate the Dual Simplex Based 
Heuristics 

 

Number of periods is 3 (i.e., T = 3); 

Number of departments is 12 (i.e., N = 4); 

Departments are not restricted to horizontal or vertical orientations (i.e., DeptOrientti = 0,   

t = 1,…, N, i, j = 1,…, T); 

Rearrangement cost is 50 is all departments and periods (i.e.,  Rti = 50,  i = 1,…, 3, i, 

j=1,…, 12); 

 
Table B.1: Shorter and longer side lengths of departments 
 

 
Table B.2: Cost to transport materials a unit distance between 

departments (i.e., the values of F’tij) 
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 Appendix C. LP Formulation Used by the Dual Simplex Based Heuristics  
 

In addition to the indexes, parameters, and variables defined in section 4.2 the 

following parameters and variables are used by the LP formulation used in the dual 

simplex method and TS/DUAL. 

P = Penalty incurred if departments span outside of boundaries of plant floor. The value 

of P is set to the value of the OFV of solution obtained by solving the problem using the 

BSH when the plant floor length and width are 3L and 3W correspondingly; 

M = 3max(L, W); 

r_ptij, hti, and rti are variables used by dual simplex based heuristic, defined in section 

4.3.2;  

sp_h = The span of departments in horizontal direction in all periods in excess of plant 

floor length (i.e., sp_h = max(0, max(lti) - L)); 

sp_v = The span of departments in verticall direction in all periods in excess of plant floor 

length (i.e., sp_v = max(0, max(wti) - W)); 

The LP formulation of the problem is as follows. 

Minimize total cost = 
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