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ABSTRACT 

 
ANT COLONY HEURISTICS FOR THE 

DYNAMIC FACILITY LAYOUT PROBLEM 
 

By Jin Shang 
 

As global economic competition and cooperation become more and more drastic, 

the enterprise’s facility layout needs to be more flexible to adapt to the rapidly 

changing environment. Therefore, attention should be given to the dynamical nature 

of the facility layout. In other words, the flow of materials between departments 

changes during the planning horizon (multiple periods) and should be considered. 

This problem is known as the dynamic facility layout problem (DFLP).  

This research proposes three heuristics based on the ant colony optimization 

(ACO) heuristic to solve the DFLP. The first one is a direct implementation of an 

ACO heuristic for the quadratic assignment problem to solve the DFLP (ACO I). The 

second heuristic uses the ACO I heuristic with a look-ahead and look-back strategy 

(ACO II). The third heuristic combines the ACO I heuristic with a simulated 

annealing (SA) heuristic (ACO III). The performance of the heuristics was evaluated 

using two data sets taken from the literature. Results obtained show that the proposed 

heuristics are effective for the dynamic facility layout problem. 
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CHAPTER 1  

INTRODUCTION 

1.1 Concept of the Facility Layout Problem 

The facility layout problem is encountered in a wide variety of areas. For 

example, facility layout techniques have been used in manufacturing facilities to 

reduce the total material handling cost. Also, layout techniques have been used in the 

layout of printed circuit boards to reduce the extent of the printed circuit pattern 

(Rockwell and Wilhelm, 1990). 

The general facility layout problem is concerned with finding the most efficient 

non-overlapping arrangement of departments with unequal area requirements within a 

facility (Bozer and Meller, 1997). In the manufacturing context, facility layout may be 

defined as the process of obtaining the optimal disposition of the physical facilities for 

manufacturing units (El-Rayah and Hollier, 1970).  

 

1.2 Objectives of the Facility Layout Problem 

Usually, there are several typical objectives for the facility layout problem. The 

most widely used for the facility layout is based on: distance-based or 

adjacency-based objectives. The most common objectives of the facility layout 

problem are as follows (Bozer and Meller, 1997). 

1) Minimize the financial cost in equipment and material cost. 
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2) Meet the requirement of product design and volume. 

3) Facilitate the manufacturing process. 

4) Utilize existing space most effectively. 

5) Make plant adaptive to future fluctuations. 

6) Provide employees with a convenient, safe and healthy-environment. 

Minimization of the material handling costs is a distance-based objective since it 

is based on the interdepartmental flows and distances between departments. An 

adjacency-based objective is based on departments’ closeness ratings. The closeness 

rating is a numerical value, which indicates the preference between two departments 

being adjacent. By maximizing the adjacency score between preferred departments, 

the objective is achieved.  

 

1.3 Importance of the Facility Layout 

The facility layout plays a key role in the manufacturing process. The output of 

the facility layout problem is a block layout, which specifies the relative location of 

each department (Meller and Gau, 1996a). For instance, in manufacturing systems, 

material handling cost is one of the most important factors considered. The material 

handling cost can comprise between 30 and 70% of the total manufacturing cost (Sule, 

1988). Because the material handling cost is proportional to the amount of material 

flow and the distances between the locations of the departments, the layout’s 

efficiency can be measured in terms of material handling cost.  
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In Meller and Gau (1996a), the authors discussed two kinds of surrogate material 

handling costs based on departmental adjacency relationships and interdepartmental 

distances (i.e., adjacency-based and distance-based costs). For adjacency-based costs, 

weights are used to assign departments with high interaction close or adjacent to each 

other.  In other words, material handling cost is reduced significantly when two 

departments are adjacent. For distance-based costs, the material handling costs 

between two departments increase with the distance the unit load must travel between 

departments. The authors also mentioned that the distances could be measured in a 

variety of ways. The most common approaches for measuring the distances between 

departments are:  

z Distance between input/output (I/O) points: the distance is measured between 

the specified I/O points of two departments and in some cases is measured 

along the aisles when moving between two departments. 

z Centroid to centroid (CTC): when the I/O points of the departments are not 

known, the department centroid is used to represent the department’s I/O 

point.  

For each of the approaches used for measuring distances between departments, 

there are two commonly used methods for measuring the distance between two points 

(i.e., between two departments’ locations): 

z Rectilinear distance: based on travel distance along paths parallel to a set of 

perpendicular axes. 
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z Euclidean distance: appropriate when distances are measured along a 

straight-line path connecting two points.  

Any savings in material handling cost can be achieved through a better 

arrangement of the work-centers, departments or cells. This cost is a large portion of 

the total operating cost. If we can reduce these indirect costs, the company will 

become more competitive. As a result, the facility layout is a very key part in 

manufacturing. If the facility layout is efficiently arranged, the total operation cost 

will be decreased sharply. 

 

1.4 Types of Facility Layout Problems 

According to Lacksonen (1997), analysts divide a facility into practical divisions 

called departments and calculate the quantity of material flowing between pairs of 

departments. The author classified the following types of facility layout problems: 

1) Job shop layout;  

2) Cellular manufacturing layout; 

3) Product layout;  

4) Office layout;  

5) Store layout; and  

6) Warehouse layout;  

This research focuses on the job-shop layout, where manufacturing facilities or 

departments are arranged such that material handling costs are minimized. When the 
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flow of materials between facilities is fixed, the problem is known as the static facility 

layout problem.  

 

1.4.1 Static Facility Layout Problem 

As mentioned previously, the objective of the facility layout problem is to 

maximize an adjacency measure, minimize the material handling cost or optimize 

some combination of the two. For the static facility layout problem (SFLP), it is 

assumed that the flow of materials between departments does not change during the 

planning horizon. Based on the final layout design, a particular layout is executed and 

remains unchanged for the effective lifetime of the layout (Kochhar and Heragu, 

1999). 

 

1.4.1.1 Methods Used to Solve the Static Facility Layout Problem 

A large number of procedures have been developed to solve the SFLP. These 

procedures can be classified into two main categories: construction type and 

improvement type. Basically, construction type layout methods involve developing a 

new layout from scratch. Improvement procedures generate layout alternatives based 

on an existing layout. Solution methods for both types of problems have been 

developed and these can be classified into three major groups (Yaman et al, 1993). 

z Mathematical approaches. 

z Heuristic methods. 
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z Expert system solutions. 

The mathematical approaches can be summarized under the following four 

categories: 

1) Linear integer programming. 

2) Mixed integer programming. 

3) Quadratic assignment. 

4) Quadratic set covering. 

Heragu (1991) developed both linear continuous and linear mixed integer models 

for solving the SFLP with unequal size departments. To simplify this problem, it is 

often assumed that the sizes of the departments are equal. The reason for this 

assumption is that the facility layout problem with unequal size departments is an 

extremely difficult problem to solve. However, the following approach is used to 

solve large SFLPs with unequal size departments.   

1) Solve the SFLP with equal size departments.  The solution gives the relative 

location of the departments (i.e., determines which departments should be 

adjacent or close to each other). 

2) Then by using these adjacency relationships, the unequal size departments can 

be assigned to locations within the facility such that the adjacency 

relationships and building constraints hold.  

The facility layout problem with equal size departments is formulated as a 

quadratic assignment problem (QAP). The QAP is used to find the optimal layout for 

the SFLP from the set of all possible candidate layouts or permutations such that the 
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total layout cost (material handling cost) is minimized. The QAP was first formulated 

by Koopmans and Beckman (1957). The objective of the QAP is to determine the best 

allocation of n department to n locations. Its application is popular in the real world, 

which includes layout planning of buildings on university campuses, arrangement of 

departments within hospitals, minimization of total wire length in electronic circuits, 

ordering of correlated data on magnetic tapes, as well as others (Burkard and Rendl, 

1984). For example, figure 1.1 considers the potential locations for 9 departments 

within a manufacturing facility. The numbers represent the location number. 

Therefore, each rectangle represents a location. As a result, each of the 9 departments 

can be assigned to a location, and the distances between pairs of locations can be 

determined using the rectilinear distance measure between the centroids of the 

locations. 

 

1 2 3 

4 5 6 

7 8 9 

Figure 1.1: SFLP instance with 9 departments. 

 

The QAP for the SFLP can be formally presented as follows: 

Minimize Cost = ∑∑∑∑
= = = =

N

i

N

j

N

k

N

l
klijjlik xxdf

1 1 1 1
          (1) 

   Subject to: 
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∑
=

==
N

j
ij Nix

1
,...,1,1             (2) 

Njx
N

i
ij ..., ,1,1

1
==∑

=
                      (3) 

       ijx  = {0, 1}, i, j = 1, …, N 

where 

N = Number of departments and locations. 

=ikf  Flow of materials between facilities (departments) i and k (assuming that 

0=iif  for all i). 

=jld  Distance between locations j and l (assuming that 0=jjd  for all j). 

=ijx  




otherwise 0,
location   toassigned is  department if 1, ji

 

The objective function (1) is used to minimize the total distance materials travel.  

Constraint set (2) ensures that one location is assigned to each department, and 

constraint set (3) ensures that exactly one department is assigned to each location. 

Bazaraa (1975) used the quadratic set covering problem (QSCP) to model accurately 

the SFLP with unequal size departments. The typical QSCP approach divides the 

available departments into small equal size blocks. When this approach is applied to the 

SFLP, the department is divided into equal area unit rectangular blocks.  

By modeling the SFLP mathematically, the optimal layout can be obtained. The 

QAP model can be solved optimally by the following exact methods:  

z Branch and bound techniques; and  

z Cutting Plane methods 

QAPs with more than 20 departments cannot be solved in acceptable time 
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(Burkard et al., 1997). Although computer speeds have improved drastically between 

1997 and 2002, the computational effort grows exponentially; therefore, this problem 

is computationally intractable, and large size problems cannot be solved in reasonable 

time. Since many real world problems require solving QAPs with more than 20 

departments, more recently, heuristics have been proposed which can overcome the 

limitations of exact methods. Although the solutions obtained from these heuristics 

are often not optimal, the results obtained are good and are obtained in acceptable 

computation time. The typical heuristic methods used to solve the SFLP are as 

follows:  

z Pairwise exchange 

z Tabu search 

z Ant colony 

z Simulated annealing 

z Artificial neural networks  

z Genetic algorithms 

Expert system applications to the facility layout problem began in the mid-1980s. 

These methods enable a new approach to the problem, because they have provision 

for calculation advantage and may incorporate expert knowledge to deal with 

subjective aspects of the SFLP (Yaman et al., 1993). 
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1.4.1.2 Drawback of the Static Facility Layout Problem 

For the SFLP, it is assumed that material flow between departments remains 

constant during the planning horizon. If there are changes in the material flow, these 

changes are determined during the planning stage prior to the design stage. However, 

in today’s manufacturing environment, products change frequently, and it is not 

possible to correctly predict this change for long time periods (Kochhar and Heragu, 

1999). In other words, when there are product changes, the layout of the facility may 

need to be rearranged and the length of time during which a layout is feasible and/or 

optimal cannot be determined. Furthermore, with the global market and high global 

competition, many new technologies are developed so that manufacturing plants are 

more flexible and operate more efficiently. Therefore, there are several major factors 

which may impact the layout of a facility and some of them are: applying a new 

technology to existing products, changing the volume of a product, or adding or 

deleting some new products, etc. These changes will be discussed further in the next 

section. Any of these changes usually results in redesigning the layout, since the 

current layout usually gives high material handling cost.  

In this research, arranging and rearranging the layout of facilities for multiple 

time periods during a planning horizon (i.e., when the flow between departments 

changes) is considered. This problem is known as the dynamic facility layout problem. 

If the layout planner of a facility does not consider rearranging the departments when 

there are changes as defined above, the current layout can be extremely costly. 

Therefore, the SFLP assumes that there are no changes and does not consider the 
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dynamic environment. 

 

1.4.2 Dynamic Facility Layout Problem 

Hitchings (1970) first discussed and reported on the dynamic nature of the layout 

design problem. For the constantly changing attributes in the manufacturing system, 

there is a need to consider a flexible layout, which can handle future scenarios (Shore 

and Tompkins, 1980). 

Generally, changes in the flow are the results of many factors (Kuppusamy, 2001, 

p. 41) such as:  

z The change in the design of an existing product;  

z The elimination of products from a product line;  

z The introduction of new products;  

z Replacements of existing production equipments;  

z Shorter life cycle products; and 

z Changes in the production quantities and associated production schedule. 

Rosenblatt (1986) defined and solved the dynamic facility layout problem 

(DFLP). He assumed a deterministic environment where the number of orders and 

quantities, and the production date for every product was known for a given finite 

horizon. Also, at each time period in the planning horizon, the material handling cost 

and the rearrangement costs are determined. Rearrangement costs are the cost of 

changing the locations of departments between consecutive time periods. Simply 
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stated, if the layout between consecutive periods changes (i.e., the location of two or 

more departments change), then the cost of moving departments from one location to 

another is determined; and this cost is called rearrangement cost. Of course, this 

method assumes that material flow can be predicted accurately. If the future material 

flows and department rearrangement cost can be reasonably estimated, then this 

problem is dynamic and can be solved by modeling the problem as a DFLP. Initially, 

this problem was solved as a SFLP for each time period in the planning horizon, but 

solving a series of SFLPs does not consider rearrangement cost. Hence, this approach 

produces poor solutions for the DFLP.  

 

 

  t = 1       t = 2       t = 3 

 
Figure 1.2: A DFLP instance with 4 departments and 3 time periods. 

 
 

The flow data (i.e., the flow of materials between departments) for each period is 

known with certainty, and it is assumed that the flow data remain constant throughout 

the period. A layout plan for the DFLP is a series of layouts, and each layout is 

associated with a period. Therefore, the layout for each period in the planning horizon 

can be obtained by solving the SFLP for each period. For instance, consider the DFLP 

instance in figure 1.2. In the first time period (i.e., t = 1), departments 1, 3, 2, and 4 

   1      4 

   2      3 

   1      4 

   2      3 

   1      3 

   2      4 
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are assigned to locations 1, 2, 3, and 4, respectively. The layout at this time period can 

be represented as the permutation (1, 3, 2, 4) where departments 1 and 3 are assigned 

to locations 1 and 2, respectively, and so on. Since departments 3 and 4 are assigned 

to different locations (i.e., locations 4 and 2, respectively) in time period 2, 

rearrangement costs are incurred and are the costs of moving department 3 from 

location 2 to location 4 plus the cost of moving department 4 from location 4 to 

location 2. Because the layout is the same in time periods 2 and 3, there is no 

rearrangement cost in time period 3. Also the material handling costs for each period 

is determined using the flow matrices for each time period and the distances between 

locations (i.e., distance matrix). Therefore, the DFLP is the problem of efficiently 

arranging the departments within a facility during a multi-period planning horizon 

such that the sum of material handling and rearrangement costs is minimized. 

The formulation of the DFLP with equal size departments is given below and is 

adapted from Balakrishnan et al. (1992).   

Minimize Cost = ∑ ∑ ∑∑∑∑ ∑∑ ∑
= = = = == = = =

+
N

i

N

j

N

k

N

l

T

t
kltijtijklt

N

i

N

j

N

l

T

t
ijltijlt XXCYA

1 1 1 1 11 1 1 2
       (1) 

  Subject to 

              ,1
1

=∑
=

N

j
ijtX  i = 1, …, N and t = 1, …, T                  (2) 

              ∑
=

=
N

i
ijtX

1
,1  j = 1, …, N and t = 1, …, T              (3) 

    ilttijijlt XXY *)1( −=     i, j, l = 1, …, N,  t = 2, … T       (4) 

              ijtX = {0, 1}, i, j = 1, …, N,  t = 1, … T  

ijltY  = {0, 1}, i, j, l = 1, …, N,  t = 1, … T  
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where 

N = Number of departments and locations. 

T = Number of time periods. 

=ijltA  Cost of shifting department i from location j to l in period t (Aijjt = 0). 

=ijkltC  Cost of material flow between department i located at location j and k 

located at l in period t. 

=ijtX  




otherwise 0,
 periodat  location   toassigned is  department if 1, tji

 

=ijltY  




otherwise 0,
 period of beginning at the   tolocation  from shifted is  department if 1, tlji

 

The objective function (1) is used to minimize the sum of the rearrangement and 

flow costs between the departments. Constraint set (2) ensures that each location is 

assigned only one department at each time period, and constraint set (3) ensures that 

exactly one department is assigned to each location at each time period. Constraint set 

(4) helps to add the rearrangement costs to the material flow cost if a department is 

shifted between locations in consecutive periods. This model considers the flow 

between the departments, distances between locations and rearrangement costs as 

inputs.  

 

1.4.2.1 Methods Used to Solve the Dynamic Facility Layout Problem 

Most of the formulations of the DFLP are extensions of the QAP used for the 

SFLP. The difference between the QAP for the DFLP and the SFLP is that the QAP 



 

    15 

for DFLP does not only consider material handling cost, but also consider the 

rearrangement costs between consecutive time periods.  

There are also several algorithms used to solve the DFLP. They can be classified 

as exact and heuristic methods. The typical exact method is: 

z Dynamic programming 

By using an exact method to solve the DFLP, optimal solutions can be obtained. 

However, computational time for solving the DFLP using exact methods is intractable, 

even for small-size DFLPs. Therefore, heuristic methods are used to solve realistic 

size DFLPs. Although the heuristic methods cannot guarantee optimal solutions, good 

solutions are generated very quickly. The most common heuristic methods used to 

solve the DFLP are: 

z Pairwise exchange; 

z Cutting plane; 

z Branch and bound techniques; 

z Cutting trees; 

z Genetic algorithms; 

z Tabu search; and  

z Simulated annealing. 

These methods will be discussed further in Chapter 2.  
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CHAPER 2 

LITERATURE REVIEW 

2.1 Introduction 

Currently there is a trend of shorter cycle times and greater volatility in product 

variety and design. Therefore, researchers have recently begun to focus on the DFLP. 

If the number of periods T and the number of departments N are considered, the 

maximum number of permutations (i.e., possible layout plans) for the DFLP that 

needs to be considered is TN )!( . For even very small size problems, it is 

computationally difficult to obtain the optimal layout plan. The techniques for solving 

the DFLPs are discussed below. 

 

2.2 Methods Used to Solve the DFLP 

2.2.1 Exact Algorithms 

Rosenblatt (1986) used dynamic programming to solve the DFLP. The optimal 

solutions can be obtained by starting in the last time period and finding the static 

optimal layout at each time period using a recursive relationship function. Before 

solving the problem, the deterministic environment is assumed, which means that all 

the numbers of orders and the quantities, as well as production dates for products are 

known for a given finite horizon. Although an optimal solution can be obtained from 
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the recursive relationship established by the author, by considering all possible 

layouts for each period, computational time increases exponentially as the problem 

size increases (i.e., as the number of departments and time periods increases, the 

computational time increases exponentially). Therefore, Rosenblatt provided a 

heuristic procedure, which includes two approaches. One is similar to Ballou’s (1968) 

heuristic for the warehouse location problem. This method considers using only the 

best layout for each period, which is obtained from solving the SFLP for each period. 

The number of layouts that needs to be considered is decreased greatly. The other is 

CRAFT (Armour and Buffa, 1963) or COFAD (Tompkins and Reed, 1976) for SFLP, 

which is used to generate sets of layouts for different periods. Both of these 

approaches reduce the maximum number of layouts needed to be considered, which 

makes the problem tractable. 

Lacksonen and Enscore (1993) used the QAP formulation for the DFLP and 

modified five algorithms used to solve the QAP for the SFLP so that they can be 

applied to the DFLP. Two of these algorithms, dynamic programming and branch and 

bound are exact methods. The authors used the dynamic programming algorithm 

presented by Rosenblatt (1986). Pardalos and Crouse (1989) presented a branch and 

bound algorithm for solving the QAP optimally, which uses the cutting plane 

algorithm discussed below (in section 2.2.3) to obtain a good upper bound on the total 

cost. Each node in the tree represents a partial assignment with a lower bound on cost. 

Two modifications were made to this algorithm to solve the DFLP. First, departments 

were only permitted to be assigned to the proper time period. Second, the lower bound 
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was calculated by considering the cost of all the time periods which do not have any 

assignments yet made. Since the DFLP is computationally intractable, in practical 

application (i.e., medium to large size problems), the exact algorithms are modified 

and used as heuristics. In other words, the dynamic programming algorithm does not 

consider all possible layouts (states) at each stage, and the branch and bound 

algorithm terminates after a certain number of iterations. Therefore, these exact 

methods did not produce the optimal or even the best solutions for large size 

problems.   

 

2.2.2 Drawback of the Exact Methods 

As mentioned previously, the exact methods can only solve smaller size 

problems in reasonable time. The simple QAP with more than 20 departments cannot 

be solved in acceptable time (Burkard et al., 1997). Since the DFLP is a 

generalization of the QAP, it is much more difficult to solve. Recall that solving the 

DFLP requires solving a series of QAPs. Although using exact methods can produce 

optimal solutions, it is feasible only for small size problem. That is, exact methods 

can only be used to solve extremely small problem in reasonable computational time. 

 

2.2.3 Heuristic Algorithms 

Lacksonen and Enscore (1993) modified three heuristic algorithms (CRAFT, 

cutting trees and cutting planes) used to solve the QAP for the SFLP, so that they can 



 

    19 

be applied to the DFLP. CRAFT, presented by Armour and Buffa (1963), starts with a 

random layout and exchange the locations of pairs of departments to reduce total 

material handling cost. The authors extended this heuristic to solve the DFLP. This 

heuristic, which is called the pairwise exchange heuristic, will be discussed in Chapter 

4. The cutting tree heuristic presented by Gomory and Hu (1961), is a spanning tree 

where the arc of minimum weight on the path between two nodes in the tree 

corresponds to the weight of the min-cut separating the two nodes in the original 

graph. Lacksonen and Enscore extended and used the cutting plane heuristic presented 

by Burkard and Bonniger (1983) to solve the DFLP. In this heuristic, the QAP is 

solved by combining cutting planes with an exchange routine in an iterative heuristic. 

To solve the DFLP, the cutting plane portion in this heuristic assumes that the layouts 

for all the time periods are the same. Then, it only considers rearrangements in its 

exchange routine. 

Urban (1993) developed a steepest-descent pairwise-interchange procedure to 

solve the DFLP, similar to CRAFT. The difference is that rearrangement costs and the 

concept of forecast windows are included. The main idea was to use forecast windows 

for the DFLP to allow a layout arrangement to be used for any given block of periods, 

avoiding rearrangement costs. This heuristic first analyzes the problem at each 

planning horizon period as a SFLP. The length of the forecast windows, m, vary 

between 1 and the number of time periods. When m = 1, the flow data for time period 

1 is used to generate a layout for that period, and the flow data for period 2 is used to 

obtain a layout for period 2. This process is continued until a layout is generated for 
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all the time periods with m = 1. After obtaining a layout for each period in the 

planning horizon, set m = 2.  For m = 2, the flow data for time periods 1 and 2 are 

used to generate a layout for time period 1. The flow data for time periods 2 and 3 are 

used to obtain a layout for time period 2 and so on. If the total number of time periods 

is 5 (T = 5), only the flow data for time period 5 is used to generate the layout for time 

period 5 when m = 2. Also, for m = 3 and T = 5, flow data for time periods 4 and 5 are 

used to obtain a layout for time period 4. The length of the forecast window is 

incrementally extended until it equals the entire planning horizon. As a result, m 

layout plans are given for m time windows. Furthermore, the m layout plans are 

improved by using a pairwise exchange heuristic. This heuristic decreases the 

computational complexity and usually obtains good solutions even for large size 

problems. Finally, the author compared the results obtained from the proposed 

heuristic with results obtained using dynamic programming as presented by 

Rosenblatt (1986), specifically, Ballou’s heuristic and two random methods (i.e., 

methods that randomly generated 10 and 20 layouts in each period of the dynamic 

programming model). Computational results show that Ballou’s heuristic appears to 

perform slightly better than the Urban’s heuristic for small size problems. However, 

for large size problems, Ballou’s heuristic was unable to obtain solutions in 

reasonable computational time. Also, Urban’s heuristic gave better solutions than 

Rosenblatt’s random heuristics.  

Conway and Venkataramanan (1994) utilized a genetic algorithm (GA) to solve 

the DFLP. The main idea of the authors’ GA heuristic is to first randomly generate 
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feasible solutions (layout plans), called strings, and assign a fitness value (i.e., obtain 

the cost of the layout plan). Two solutions (strings) are selected using the “roulette 

wheel” scheme. These solutions are crossbred in a predetermined way to produce two 

more solutions. To avoid getting trapped at a local optimum, some of the solutions are 

mutated (i.e., slightly changed) before crossbreeding. The authors utilized the GA to 

solve the data set given in Rosenblatt (1986) and obtained better solutions. One of the 

major drawbacks of this method is that infeasible solutions can be generated while 

crossbreeding, and additional swaps are performed to ensure feasibility.  

Balakrishnan, Cheng, and Conway (2000) proposed an improved pairwise 

exchange heuristic for the DFLP. Two improvements were proposed for the steepest 

descent pairwise exchange heuristic presented by Urban (1993). The first one involves 

working backwards from the final solutions obtained for each value of m, the length 

of forecast window. Since Urban’s heuristic is naturally a forward pass heuristic, the 

final solution depends on the preceding layouts greatly. Therefore, this is considered 

as a drawback in the proposed heuristic. The second heuristic presented by the authors 

included combining Urban’s pairwise exchange heuristic with dynamic programming. 

The modified pairwise exchange heuristics proposed by the authors out-performed 

Urban’s heuristic.  

Balakrishnan and Cheng (2000) proposed a nested loop GA, which is different 

from the GA heuristic presented by Conway and Venkataramanan (1994). The authors 

stated that their GA differs in three aspects: they employ a different crossbreeding 

method to increase the search space; mutation is used to increase population diversity; 
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and they use a generational replacement approach to increase population diversity. 

Computational results show that the authors GA out-performs the GA presented by 

Conway and Venkataramanan (1994), especially for large size problems. 

Kaku and Mazzola (1997) presented a tabu search (TS) heuristic to solve the 

DFLP. The TS heuristic is a two-stage search process that incorporates the 

diversification and intensification strategies. Three diversification strategies were 

utilized: random generation of initial layouts, generation of initial layouts using a 

construction heuristic, and the implementation of a frequency-based tabu criterion. 

The intensification strategy was implemented though the adaptive tabu list (dynamic 

tenure length). The authors used the data set presented by Lacksonen and Enscore 

(1993) to test their TS heuristic, and the results were compared with the best-known 

solutions in the literature obtained by the heuristics presented by Lacksonen and 

Enscore (1993) and Urban (1993). The results show that the TS heuristic is superior 

when the problem size increases. 

Baykasoglu and Gindy (2001) presented a simulated annealing (SA) heuristic to 

solve the DFLP. SA is a stochastic neighborhood search method developed for 

combinatorial optimization problems. The main idea of this algorithm is that it can 

avoid getting trapped at a local optimum by accepting uphill moves (non-improving 

solutions) with some probability based on the difference in the objective function 

values of the non-improving and the current solutions. This probability is also 

determined by a controlling parameter called the temperature, which decreases during 

the SA procedure. The authors tested their SA heuristic on the data set given in 
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Balakrishnan and Cheng (2000). The results show that the SA algorithm performs 

much better than the GAs presented in Conway and Venkataramanan (1994) and 

Balakrishnan and Cheng (2000) for large size DFLPs. 

Kuppusamy (2001) proposed three simulated annealing heuristics for the DFLP. 

The first is the direct implementation of the simulated annealing algorithm. The 

second heuristic uses a reheating strategy within simulated annealing. The third 

heuristic combines the simulated annealing algorithm, time windows concept, and the 

backward pairwise exchange method. The computational experiments were conducted 

on the data set provided by Lacksonen and Enscore (1993). The performance of the 

heuristics was evaluated using two measures: solution quality and computational time. 

Results obtained show that the proposed heuristics are effective for the DFLP. 

 

2.3 The Ant Colony Optimization Heuristic 

Dorigo et al. (1996) presented heuristics, which use artificial ants, to solve 

traveling salesperson problems, the QAP, and the job shop scheduling problem. They 

are called ant colony optimization (ACO) heuristics. These heuristics simulate how 

ants search for food, in order to find solutions. The authors discuss how ants are 

capable of finding the shortest path from a food source to the nest without using 

visual cues. In searching for food, the ants do not communicate directly but indirectly 

by adding a chemical trail (called pheromone trail) to the environment. Initially, ants 

explore the areas surrounding their nest in a random manner. The shortest path 
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between a food source and the nest is determined based on the pheromone trail an ant 

leaves while returning back to the nest from the food source so that other ants can find 

the food source. The amount of the pheromone trail left by an ant is based on the 

amount of food found. If the paths between the food source and the nest are far apart, 

fewer ants will travel these paths, and the trail will eventually evaporate. However, 

when the path between the food source and the nest are close, more ants will travel 

this path, which will be indicated by a strong pheromone trail. 

In ACO heuristics, the ant is defined as a simple computational agent, which 

iteratively improves or constructs a solution for a combinatorial optimization problem. 

The main traits of artificial ants are taken from real ants and their natural behavior. 

The main traits are as follows: (1) artificial ants exist in colonies of cooperating 

individuals, (2) they communicate indirectly by depositing (artificial) pheromone, (3) 

they use a sequence of local moves to find the shortest path from a starting point to a 

destination (i.e. the optimal solution), and (4) they apply a stochastic decision policy 

using local information only (i.e. they do not look ahead) to find good solutions. 

Informally, pheromone levels measure how desirable it is to insert a given 

element into a solution (e.g., inserting a city in a tour while constructing a solution for 

the traveling salesperson problem). Pheromone trails are maintained in a matrix called 

the pheromone matrix. After constructing a new solution, the pheromone trails can be 

updated as follows: 1) all the pheromone trails are decreased to simulate the 

evaporation of pheromone and 2) the pheromone trails corresponding to components 

that were in the best solution found so far are reinforced, taking into consideration the 
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quality of the solution. Dorigo and Gambardella (1997b) also presented similar 

heuristics for solving the traveling salesperson problem. 

Gambardella et al. (1999) presented an ACO heuristic called the hybrid ant colony 

system to solve the QAP (HAS-QAP). HAS-QAP is different from the traditional 

ACO heuristic, since it is an improvement heuristic instead of a construction one. 

First, a set of solutions is generated randomly such that each solution (i.e., layout plan) 

is represented by an ant. The set of solutions is improved by using a local search 

technique, and the best solution is obtained and used to initialize the pheromone trail 

matrix. The entries in the pheromone trail matrix P, ijp , measures the desirability of 

assigning department i to location j. These entries are used to determine which 

department locations should be exchanged (or swapped). These swaps are called 

pheromone trail swaps and are performed as follows: select department r, randomly 

between 1 and N (number of departments) and select a second department s ≠ r 

according to one of the policies.  

1) With a probability q, s is chosen such that 
rs sr pp ππ ,, +  is maximized ( rπ = 

location of department r). This policy consists of exploiting the pheromone trail.  

2) With a probability 1-q, s is chosen with probability 
∑
≠

+

+

uj
jr

sr

rj

rs

pp
pp

)( ,,

,,

ππ

ππ . This policy 

consists of exploring the solution space by choosing the second department s with a 

probability proportional to the values contained in the pheromone trail. 

After performing trail swaps for each ant, a local search technique is used to 

improve the solutions. If the best solution obtained thus far has improved (or at the 

start of the heuristic), an intensification scheme is activated. When intensification is 
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active, the best solution between the solution at the start of the iteration and the 

solution obtained after the local search technique is used to start the next iteration. 

Otherwise, the initial solution at the next iteration is the improved solution obtained 

using the local search technique. Intensification remains active while at least one ant 

improves its solution during an iteration. The function of the intensification scheme is 

to explore the neighborhood of good solutions more completely.  

Once the starting solution for the next iteration is obtained for each ant, the 

pheromone trail matrix is updated using the best solution obtained thus far. When 

updating the matrix, the pheromone trails are first weakened, and certain trails are 

strengthened based on the best-found solution. Also, a diversification mechanism is 

activated if a certain number of iterations is performed without improvement to the 

best found solution. When this strategy is invoked, all of the information is erased. 

That is, an initial set of solutions is randomly generated (use best ant or solution 

obtained previously), the pheromone trail matrix is re-initialized, and the technique is 

started from scratch. The diversification strategy is used to explore the solution space 

more thoroughly to obtain diverse solutions. The numerical results show that the 

HAS-QAP heuristic obtained very good results for the QAP.   

2.4 Conclusion 

The above literature review shows that there is a lot of research being performed 

on the DFLP, and that the ACO heuristic, HAS-QAP, is a good heuristic for solving 

the QAP for the SFLP. Since this new heuristic algorithm has not been applied to the 
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DFLP problem, this research will use the ACO heuristic (HAS-QAP) to solve the 

DFLP.  
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CHAPTER 3 

STATEMENT OF THE PROBLEM 

3.1 Introduction 

Within a manufacturing system, any change related to the layout of a facility will 

have great influence on the total operating cost. This means that if the layout is 

inefficient, the total cost will be increased greatly because material handling cost can 

account for 30% to 70% of the total operating costs. In addition, the material flow 

between departments will be chaotic, even circuitous.  

In the dynamic environment, the flow between departments changes with time. 

When this happens, the layout of the departments should be redesigned to meet the 

goal of minimizing material handling cost. If the layout in different time periods is 

different, then rearrangement costs should be considered. Usually, the rearrangement 

cost results from moving machines from their original locations to their new locations. 

Of course, costs related to planning, dismantling, installation and shutdowns should 

be considered when calculating the rearrangement cost. Therefore, in the DFLP, the 

total cost is the sum of the material handling and rearrangement costs for all time 

periods.  

Lacksonen and Enscore (1993) state two limiting cases for the DFLP. First, when 

the rearrangement costs are much higher than the flow costs, the flows for each time 

period can be summed up, and the problem is solved as a SFLP. Second, when the 

converse happens, the DFLP can be solved as a series of independent SFLPs, since 



 

    29 

the rearrangement costs are negligible. This research avoids these two extreme cases. 

 

3.2 Problem Statement 

This research focuses on the DFLP with equal size departments. For the DFLP, 

the solution or layout plan is a series of layouts for each time period during the 

planning horizon. This research focuses on finding the best set of permutations or 

layout plans for the DFLP such that sum of the material handling and rearrangement 

costs for all time periods is minimized.  

If tπ  is used to represent the layout for each time period t for the DFLP with N 

departments and T time periods, then the solution obtained from solving this DFLP 

can be represented as the following set of permutations:  

{ }Tππππ ...,, ,21=   

where tπ , for t = 1, 2, …, T , can be represented as a permutation of the departments 

for time period t. Then, itπ  represents the department assigned to location i at time 

period t: 

{ }Ntttt ππππ ,...,2,1= .  

For example, {23 =π , 3, 1, }4  shows that department 2 is assigned to location 1 at 

time period 3 (i.e., 2
13
=π ) and department 3 is assigned to location 2 at time period 

3 (i.e., 3
23
=π ), etc. Hence, 

}{ ),...,,(),...,,...,,(),,...,,( 212221212111 NTTTNN ππππππππππ = .  

See figure 3.1 for an example of a solution representation for a specific DFLP 

instance (i.e., a 6-department problem with 3 time periods). More importantly, see 
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figure 3.2 for a layout plan for the DFLP instance. 

 

Time period 1     { }6151413121111 ,,,,, πππππππ =  

Time period 2     { }6252423222122 ,,,,, πππππππ =  

Time period 3     { }6353433323133 ,,,,, πππππππ =  

 

Figure 3.1: Solution representation for a 6-department DFLP with 3 time periods. 

 

 

1 2 3  2 1 3 

4 5 6  4 5 6 

    t = 1                                  t = 2 

2 3 1 

4 6 5 

         t = 3 

Figure 3.2: An example of a 6-department DFLP with 3 time periods. 

 

In figure 3.2, the number in the rectangle represents the department. For instance, 

in time period 2, department 1 is assigned to location 2 and department 4 is assigned 

to location 4. According to the solution representation technique mentioned above, a 

set of permutations (i.e., a layout plan or a solution) for the DFLP instance in figure 

3.2 is shown in figure 3.3. 
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Figure 3.3: Solution representation for the DFLP instance in figure 3.2. 

 

Hence, the layout plan or set of permutations for the DFLP instance given in the 

example above (i.e., in figure 3.3) is 

{ }5) 6, 4, 1, 3, (2, 6), 5, 4, 3, 1, (2, 6), 5, 4, 3, 2, (1,=π . 

In most of the heuristic methods used to solve the DFLP, the pairwise exchange 

heuristic method is used. In this method, at a specific time period t, the locations of 

two departments u and v are selected for exchange. In other words, utπ  and vtπ  are 

exchanged in the permutation { }Ntvtutttt ππππππ ,...,,...,,...,2,1= , which results in 

the new permutation { }.,...,,...,,...,2,1
'

Ntutvtttt ππππππ =  For instance, consider 

{ }4 1, 3, ,23 =π where the locations of departments 3 and 1 are selected for exchange. 

After the exchange, the permutation 3π  becomes { }4 3, 1, ,2 . Then, the sum of the 

material handling costs and rearrangement costs are calculated as follows: 

∑ ∑ ∑ ∑∑
= = = ==

+=
N

i

N

j

N

i
it

T

t

T

t
ijt xcbaf

itjtit
1 1 1 21

,, **)( ππππ   

where 

)(πf  is the sum of the material handling and rearrangement costs; 

tjtit
a ,,ππ  is the material flow from department itπ to jtπ  at time period t; 

ijb is the distance between locations i and j; 

Time period 2 

Time period 3 

Time period 1 { }6 5, 4, 3, 2, 1,1 =π  

{ }6 5, 4, 3, 1, 2,2 =π  

{ }5 6, 4, 1, 3, 2,3 =π  



 

    32 

it
cπ  is the rearrangement cost for department itπ ; and  





=
otherwise 0

  toequalnot  is  if 1 1 )i(t-it
itx

ππ
 

In this research, three ACO heuristics are presented for the DFLP. The first 

heuristic (ACO I) is a modification of the HAS-QAP heuristic for the QAP. The 

second heuristic (ACO II) is a combination of the ACO I heuristic with a look-ahead 

and look-back mechanism. The third heuristic (ACO III) is a combination of the ACO 

I heuristic and a SA heuristic for the DFLP.  

Since the ACO heuristics require an initial set of solutions (or a colony of ants) 

as opposed to an initial single solution, the solution representation is extended to 

consider multiple solutions simultaneously. First, m initial solutions (i.e., 

mπππ ...,,, 21 ) are generated and are associated with m ants. The solution structure is 

a cubic, and an example is given in figure 3.4.  

    Figure 3.4: Solution representation for a DFLP instance with T=4 and M=2. 

 

 

Time period 1 

Time period 2 

Time period 3 

Time period 4 

Ant 1 

Ant 2 
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The m solutions obtained, ,...,,, 21 mπππ  are improved by using a local search 

heuristic, and the best solution is used to initialize the pheromone trail matrix. Then, 

by using the pheromone trail swaps for each ant, different solutions (called 

neighboring solutions) are generated. These solutions will be improved by using a 

local search heuristic. The purpose for this is to allow the technique to accept worst 

solutions (i.e., allow uphill moves) so that the heuristic does not converge to a poor 

local optimum. If the best-found solution is improved, an intensification strategy is 

invoked. After so many iterations without improvement to the best solution, a 

diversification strategy is implemented, and the heuristic is repeated until the stopping 

criterion is satisfied.  

 

3.3 Problem Assumptions 

The assumptions for the DFLP are as follow: 

1. The basic configuration of the layout is known.  

2. The distances and rearrangement costs between departments are determined a 

priori. 

3. Flow between departments is dynamic and deterministic (i.e., known with 

certainty). 

4. Departments and locations are of equal size. 

5. The initial assignment cost of a department to a location is ignored but can easily 

be considered. 
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3.4 Research Objectives 

The major objectives of this research are as follows: 

z To develop ACO heuristics to obtain good solutions for the DFLP. 

� ACO I (a modification of the HAS-QAP heuristic for the QAP). 

� ACO II (the ACO I heuristic with a look-ahead and look-back 

mechanism). 

� ACO III (a combination of the ACO I heuristic with a SA heuristic). 

z To evaluate the proposed ACO heuristics by comparing their results to 

results obtained from the best-known heuristics in the literature. 
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CHAPTER 4 

METHODOLOGIES 

4.1 Introduction 

Dorigo et al. (1996) initiated the idea of imitating the behavior of ants when they 

forage for food to solve combinatorial optimization problems. The HAS-QAP 

heuristic used to solve the QAP for the SFLP was presented by Gambardella et al. 

(1999). However, until now, this heuristic was never applied to the DFLP. In this 

research, three ACO heuristics are used to solve the DFLP by modifying the 

HAS-QAP heuristic. The first heuristic (ACO I) is a modification of the HAS-QAP 

heuristic for the QAP. The second heuristic (ACO II) is a combination of the ACO I 

heuristic with a look-ahead and look-back strategy. The third heuristic (ACO III) is a 

combination of the ACO I heuristic and a SA heuristic for the DFLP.  

 

4.2 General Nomenclature 

The following nomenclature is used for all the proposed heuristics. 

N = Number of departments. 

T = Number of periods. 

M = Number of ants used in the heuristics. 

πk = ( k
T

kk πππ ,...,, 21 ), set of permutations, solution or layout plan for ant k (k = 1,  

2, . . ., M). 

),...,,( 11
k
Nt

k
t

k
t

k
t ππππ = , layout for ant k at time period t. 
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π* = Best layout plan or solution (i.e., its objective function value is the minimum of 

all solutions). 

W = Flow matrix which stores the flow of materials between departments. 

D = Distance matrix which stores the distances between the locations. 

P = Pheromone trail matrix which has N*N*T elements. 

jtit
pπ = Entries of matrix P which measures the desirability of assigning department πit 

to location j at time period t.  

Ma = Total material handling cost. 

Re = Total rearrangement cost. 

Imax = Total number of iterations for the ACO heuristics. 

R = Number of pheromone trail swaps.  

S = Consecutive number of iterations without improvement before diversification. 

q = Parameter used to select the pheromone trail swap policy. 

1α  = Parameter used to control the evaporation of the pheromone trail. A value of 

1α  close to 0 implies that the pheromone trails remain active a long time. 

Otherwise, a value close to 1 implies a high degree of evaporation and a shorter 

memory of the system.  

2α = Parameter used to enforce certain pheromone trails based on the best- found 

solution.  

),,(1 tjtit ππ∆  = Change in material handling costs after exchanging the location of 

departments itπ  and jtπ  in time period t. 

),,(2 tjtit ππ∆  = Change in rearrangement costs after exchanging the location of 
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departments itπ  and jtπ  in time period t. 

),,( tjtit ππ∆  = ),,(1 tjtit ππ∆ + ),,,(2 tjtit ππ∆ change in the objective function 

value after exchanging the locations of departments itπ  and jtπ  in time 

period t. 

f(πk) = objective function value (or total cost) of ant k. 

f(π*) = Best objective function value found previously. 

 

4.3 ACO I Heuristic 

ACO I heuristic is a modification of the HAS-QAP heuristic for the DFLP. The 

heuristic simulates the way ants search for food and find their way back to the nest 

using the shortest path. The layout plan is a series of layouts for each period in the 

planning horizon. Each period has its own flow data. Therefore, the input data for this 

heuristic consist of a series of flow data associated with each period, distance matrix 

(distances between locations), and rearrangement costs. 

 

4.3.1 Pairwise Exchange Heuristic  

4.3.1.1 Concept 

The pairwise exchange heuristic is an important component of the proposed ACO 

heuristics. For the DFLP, the pairwise exchange heuristic is implemented in three 

sequential steps: 

1. Randomly select a time period t. 
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2. Randomly select two departments ( utπ  and vtπ ) for exchange, in period t. 

3.  Consider exchanging the locations of departments utπ  and vtπ  in time 

period t by calculating ),,( tvtut ππ∆ . If ),,( tvtut ππ∆ is less than zero, accept 

the exchange. Else, reject the exchange.  

The pairwise exchange heuristic presented above is a random descent heuristic, 

which is repeated for a certain number of iterations. In step 3, the change in total cost, 

),,( tvtut ππ∆ is calculated by summing the change in material handling cost, 

),,(1 tvtut ππ∆ with the change in rearrangement cost, ),,(2 tvtut ππ∆ . Rearrangement 

costs are incurred when the locations of at least two departments in consecutive time 

periods are changed. Calculating the change in total cost is further discussed below.  

 

4.3.2.2 Heuristic Description 

Generally, the material handling (or flow) cost of a layout plan for ant k is 

calculated by using the following formula: 

Total flow cost for ant k = ∑ ∑ ∑
= = =

N

i

N

j

T

t
ij k

jt
k
it

wd
1 1 1

* ππ        (1) 

However, when the distance matrix and flow matrix are symmetric, the above formula 

can be stated as: 

Total flow cost for ant k = 2* ∑ ∑ ∑
= += =

N

i

N

ij

T

t
ij k

jt
k
it

wd
1 1 1

* ππ       (2) 

This modification will reduce computational time, especially for large size problems. 

Also, The rearrangement cost is calculated by considering the changes in the locations 
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of departments in consecutive time periods. The total cost for ant k is the sum of the 

total flow cost and rearrangement cost. 

For the DFLP, the change in the objective function value, ),,,( tk
jt

k
it ππ∆ consists 

of two parts: the change in material handling cost, ),,(1 tk
jt

k
it ππ∆ and the change in 

rearrangement cost, ),,(2 tk
jt

k
it ππ∆ . Therefore, the change in total cost for ant k is  

),,( tk
jt

k
it ππ∆ = ),,(1 tk

jt
k
it ππ∆ + ),,(2 tk

jt
k
it ππ∆ .        (3)  

The change in material handling cost is calculated using the following formula: 
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wwdd jsis ππππ −−+             (4) 

Change in rearrangement cost, ),,(2 tk
jt

k
it ππ∆ , is determined by considering the 

locations of the pairs of departments which are exchanged in time period t and the 

locations of these departments in time periods t – 1 and t + 1. If the locations of the 

departments selected for exchange is different in time periods t and t + 1, then 

rearrangement costs are incurred. This is illustrated in the example below. 

 

4.3.2.3 Illustration of Calculating the change in Total Cost  

Consider an initial layout plan for a DFLP instance with 6 departments and 4 time 

periods (i.e., N = 6 and T = 4) in figure 4.1 below. The layout plan assigns 

departments 6, 5, 4, 3, 2, and 1 to locations 1, 2, 3, 4, 5, and 6, respectively, in time 

periods 1, 2, 3, and 4. Rearrangement cost is zero since all the layouts are the same at 

each time period. In other words, the locations of the departments do not change 
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during the planning horizon. Hence, the total cost of the layout plan is the sum of the 

material handling and rearrangement costs.  

 
              

6  5  4  3  2  1       t = 1 
6  5  4  3  2  1  t = 2 
6  5  4  3  2  1  t = 3 
6  5  4  3  2  1  t = 4 

                  
Figure 4.1: Layout plan for a DFLP instance with N =6 and T =4. 

 

 

The next step is to improve the initial layout plan by using the pairwise exchange 

procedure presented above. If time period 2 is randomly selected and departments 2 

and 5 are randomly selected for exchange, see figure 4.2, department 5 is assigned to 

location 2 and department 2 is assigned to location 5. The change in total costs, 

),,( tvtut ππ∆ is calculated using formula (3) where utπ  = 5, vtπ  = 2, and t = 2 (i.e., 

calculate )2 2, 5,(∆ ). First the change in material handling cost, ),2 2, 5,(1∆  is 

calculated using formula (4). Next, the change in rearrangement cost, ),2 2, 5,(2∆  is 

calculated since the layout at time period 2 is different from the layouts in time 

periods 1 and 3. See figure 4.3 for the layout after one iteration of the pairwise 

exchange procedure.  

 

6  5  4  3  2  1   t = 2 

 

Figure 4.2: Time period and departments selected for exchange. 
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6  5  4  3  2  1       t = 1 
6  2  4  3  5  1  t = 2 
6  5  4  3  2  1  t = 3 
6  5  4  3  2  1  t = 4 

 
Figure 4.3: The layout plan after pairwise exchange. 

 
 

When calculating the rearrangement cost, ),2,2,5(2∆  the locations of the pair of 

departments which were exchanged in time period 2 (i.e., utπ  = 5 and vtπ  = 2) and 

the locations of these departments in time periods t – 1 = 1 and t + 1 = 3 are 

considered. Since the locations of departments 2 and 5 is different in time periods 1 

and 3, and the cost of moving a department is 1,000, then the change in rearrangement 

costs is 4,000.  

 

4.3.2 ACO I Heuristic Description 

Step 1: Generate initial solution for each ant. 

 In this step, the initial solutions (i.e., mπππ ,...,, 21 ) are generated. First, for 

each ant, a permutation (or layout) for the first time period is generated. 

Then this layout is used for all the remaining layouts for time periods 2, 

3, …, T. Thus, the layouts for all time periods are the same for each ant. 

Therefore, the rearrangement cost is zero. In the proposed heuristics, the 

initial layout is generated as follows. For ant k, the initial layout is generated 

by assigning departments k, k+1, …, N, 1, 2, …, k-1 to locations 1, 2,…, N, 

respectively. Then, this layout is used for subsequent periods.  

For instance, for ant 1, the solution is generated such that departments 1, 
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2, …, N  are assigned to locations 1, 2, …, N, respectively, as defined 

below. 

 

1  2  3  4  5  6       t = 1 
1  2  3  4  5  6  t = 2 
1  2  3  4  5  6  t = 3 
1  2  3  4  5  6  t = 4 

 

For ant 2, the solution is generated such that departments 2, 3, …, N, 1 are 

assigned to locations 1, 2, …, N, respectively, as defined below. 

 
2  3  4  5  6  1      t = 1 
2  3  4  5  6  1      t = 2 
2  3  4  5  6  1      t = 3 
2  3  4  5  6  1      t = 4 

 

Step 2: Use pairwise exchange heuristic to improve the solution or layout plan for 

each ant and let π* represent the best solution. 

 The purpose of this step is to improve the initial solutions and use the best 

solution π* to initialize the pheromone trail matrix in step 3. This step is 

repeated for N*N*T iterations.  

Step 3: Pheromone trail matrix initialization. 

The pheromone trail is the most important component in the ACO heuristics. 

The pheromone trail matrix, P, allows the heuristic to accept uphill moves 

(i.e., non-improving solutions) so that the heuristic does not converge to a 

poor local optimum. Entries of matrix P, jtit
pπ , measures the desirability of 

assigning department πit to location j at time period t.  Initially, all the 
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entries of P are set to 1/Qf(π*) where Q is a heuristic parameter.  

Step 4: Start main loop. 

Initialize and define additional heuristic parameters. Define Imax, which 

represents the total number of iterations performed and initialize all other 

parameters (i.e., R, S, q, 1α  and 2α ). Therefore, the stopping criterion is to 

terminate the heuristic after Imax iterations have been performed. 

Step 5: Perform R pheromone trail swaps. 

In this step, a new solution mπππ ˆ,...,ˆ,ˆ 21  is generated for each ant by 

considering R pheromone trail swaps. First, a time period is selected 

randomly. In this time period, two department locations are selected for 

exchange. First, department k
utπ  is selected randomly between 1 and N. 

Then, a location v ≠ u is selected using one of the two policies presented 

below. The first policy is selected with a probability q. 

1) Select v such that tutv k
vt

k
ut

pp ,,,, ππ
+  is maximized. This policy exploits the 

pheromone trail. 

2) Select v with probability: 

  
∑
≠

+

+

uj
tutj

tutv

k
jt

k
ut

k
vt

k
ut

pp

pp

)( ,,,,

,,,,

ππ

ππ . This policy explores the solution space.  

However, at the first iteration (also after implementing the diversification 

strategy), departments u and v are randomly selected, since all the entries in 

the pheromone trail matrix are the same. 

Step 6: Use the pairwise exchange heuristic to improve the solutions. 
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The solutions mπππ ˆ,,ˆ,ˆ 21 Κ are improved using the pairwise exchange 

heuristic.  The improved solutions are denoted as mπππ `,,`,` 21 Κ . This 

step is repeated for N*N*T iterations. 

Step 7: Perform intensification strategy. 

This step is used to explore the neighborhood of good solutions more 

thoroughly. At the start of the heuristic and if the best solution has improved, 

the intensification process will be activated. When intensification is active, 

each ant k starts its next iteration with the best set of permutations between 

the solutions kπ  and .` kπ  In contrast, if the best solution has not 

improved, the intensification strategy will not be activated and each ant 

starts its next iteration with the solutions .` kπ  The intensification strategy 

remains active while at least one ant improves its solution during an 

iteration.  

Step 8: Update pheromone trail matrix. 

To speed-up the convergence of the heuristic, the pheromone trail matrix is 

updated using only the best solution obtained thus far, as in Dorigo (1999). 

First, all the pheromone trails are weakened (evaporated) by setting:  

jtit
pπ  = (1 – α1)* jtit

pπ  where 0 < 1α < 1 is a parameter that controls the 

evaporation of pheromone trails. A value of 1α  close to 0 implies that the 

pheromone trails remain active a long time, while a value close to 1 implies 

a high degree of evaporation and a shorter memory of the system. Then, the 

pheromone trails contained in the best solution π* are reinforced by setting: 
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*)(/2,,,, ** πα
ππ

fpp titi itit
+= , where 2α  is a parameter that controls the 

reinforcement of the pheromone trails.  

Step 9: Perform diversification strategy. 

The diversification mechanism is activated after S consecutive iterations 

without improvement to the best solution obtained. Once this mechanism is 

activated, all of the information (e.g., solutions, trail matrix) is erased and 

the heuristic is started from the beginning where only the best solution 

obtained from an ant is used in the next iteration. The other M – 1 initial 

solutions are generated randomly. The only other information that is used is 

the iteration number. Therefore, the heuristic is repeated for Imax – iteration 

number. Go to step 5. 

 

4.3.3 Illustration of the ACO I Heuristic 

Consider a DFLP instance with 6 departments and 2 time periods (i.e., N = 6, T = 

2) where rearrangement cost for each department is 1000. The material flow matrix 

(W) is given in figure 4.4, and the layout configuration is a 2x3 layout which is shown 

in figure 4.5. In figure 4.6, the distance matrix (D) is given. 
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0 90 689 194 165 494 t=1 
668 0 1324 811 241 206  
631 387 0 125 281 375  
80 495 615 0 222 221  

276 204 1127 490 0 676  
109 409 1780 394 200 0  

0 257 1632 330 117 285 t=2 
159 0 1309 297 803 404  
98 82 0 271 222 383  

110 404 1174 0 750 386  
73 507 1679 190 0 107  

152 487 355 646 315 0  

 

Figure 4.4: Material flow matrix for the DFLP instance. 

 

 

1 2 3 

4 5 6 

 

Figure 4.5: Layout configuration for the DFLP instance. 

 

0 1 2 1 2 3 
1 0 1 2 1 2 
2 1 0 3 2 1 
1 2 3 0 1 2 
2 1 2 1 0 1 
3 2 1 2 1 0 

 

Figure 4.6: Distance matrix for the DFLP instance. 
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Parameters setting for the DFLP instance: 

9 Number of ants, M = 2; 

9 Number of Iterations, Imax = 2; 

9 Pheromone trail initialization parameter, Q = 10-8; 

9 Parameter to decide which swap policy to use, q = 0.9; 

9 Number of pheromone trail swaps, R = 1; 

9 Pheromone trail evaporation parameter, α1 = 0.1; 

9 Pheromone trail intensification parameter, α2 = 107. 

Step 1: Generate initial solutions 21  and ππ .  

For ant 1, π1 =                For ant 2, π2 =             

1 2 3 4 5 6                 2 3 4 5 6 1 

1 2 3 4 5 6                 2 3 4 5 6 1 

f(π1) = 46,563              f(π2) = 45,765 

Note layouts for each time period are the same for both ants. Therefore, 

rearrangement costs are zero for both ants. However, ant 2 gives the best solution. 

Step 2: Use pairwise exchange heuristic to improve initial solutions. After 72 

iterations (N*N*T = (6)(6)(2) = 72), the following solutions were obtained where f(π*) 

= 44,302. 

For ant 1, π1 =                     For ant 2: π2 = 

2 3 1 4 5 6                 2 3 4 5 6 1 

1 3 2 4 5 6                 2 3 4 5 6 1 

f(π1) = 44,302              f(π2) = 45,765   
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Step 3: Initialize the pheromone trail matrix P. By using the formula jtit
pπ = 1/Qf(π*), 

all the entries are equal to 2,257. 

Step 4: Begin main loop. 

Initialize parameters: Imax = 2, q = 0.9, R = 1, α1 =0.1, and α2 = 107. 

1st Iteration: 

Step 5: Perform pheromone trail swap. 

At the first iteration, step 5 performs a random swap instead of using the trail 

matrix to perform a pheromone tail swap, since the values of the entries in the 

pheromone trail matrix are all equal. Using the solution for ant 1 in Step 1, randomly 

generate a number t (either 1 or 2), say for instance t = 1. Next, a department 1
1uπ  is 

randomly selected, say 1
1uπ  = 4 (u = 4). Then, randomly generate another department 

1
1vπ  = 5 (v = 5). The locations of these departments are exchanged. The same 

procedure is applied to ant 2, and the following layout plans are obtained.  

For ant 1, 1π̂ =                For ant 2, 2π̂ = 

1 2 3 5 4 6                 1 3 4 5 6 2 

1 2 3 4 5 6                 2 3 4 5 6 1 

f( 1π̂ ) = 48,464             f( 2π̂ ) = 47,116 

Step 6: Use the pairwise exchange heuristic to improve the solutions .ˆ,ˆ 21 ππ  The 

following solutions are produced. 

For ant 1, 1π̀ =                For ant 2, 2π̀ = 

1 2 4 6 3 5                 1 3 2 5 6 4 

1 2 3 6 4 5                 1 3 2 5 6 4 
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f( 1π̀ ) = 44,439             f( 2π̀ ) = 43,767 

Therefore, the best solution found is improved (i.e., f(π*) = 43,767). 

Step 7: Perform intensification strategy. 

Since the intensification strategy is active at the start of the heuristic, the best 

solution between πk and kπ̀ is used as the starting solution for the next iteration.  

According to the objective function values for ant 1, f(π1) = 46,563 and f( 1π̀ ) = 

44,439, 1π̀  is the best solution. According to the objective function values for ant 2, 

f(π2) = 45,765 and f( 2π̀ ) = 43,767, 2π̀  is the best solution. Therefore, solutions 

1π̀  and 2π̀  are the starting solutions for ants 1 and 2, respectively, at the next 

iteration. 

Step 8: Update the pheromone trail matrix. 

Use the formula jtit
pπ  = (1 – α1)* jtit

pπ  (i.e., .9(2257)≈2031) to weaken all 

pheromone trials (i.e., all entries in matrix P). Use the best solution found thus far (i.e., 

f(π*) = 43,767), and the formula )(/ *
2,,,, ** παππ fpp titi itit

+= (i.e., 2031 + 107 /43,767 

≈  2259) to intensify pheromone trials which appear in the best solution π*. The 

updated pheromone trail matrix P is given below. 
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2259 2031 2031 2031 2031 2031 t=1 
2031 2031 2259 2031 2031 2031  
2031 2259 2031 2031 2031 2031  
2031 2031 2031 2031 2031 2259  
2031 2031 2031 2259 2031 2031  
2031 2031 2031 2031 2259 2031  
2259 2031 2031 2031 2031 2031 t=2 
2031 2031 2259 2031 2031 2031  
2031 2259 2031 2031 2031 2031  
2031 2031 2031 2031 2031 2259  
2031 2031 2031 2259 2031 2031  
2031 2031 2031 2031 2259 2031  

 

2st Iteration: 

Step 5: Perform pheromone trail swaps. 

For ant 1, randomly generate a number t (either 1 or 2), say for instance t = 1. 

Next, a department 1
1uπ  is randomly selected, say 1

1uπ  = 4 (u = 3). Then, randomly 

generate a number, say 0.3. Since 0.3 < q = 0.9, use the first swap policy to select 

location v. Therefore, v = 6 is selected since 1,3,51,6,4
pp +  = 2259 + 2031 is the 

maximum. The same procedure is applied to ant 2, and the following layouts are 

obtained.  

For ant 1, 1π̂ =                For ant 2, 2π̂ = 

1 2 5 6 3 4                 1 3 2 5 6 4 

1 2 3 6 4 5                 1 3 6 5 2 4 

f( 1π̂ ) = 47,062             f( 2π̂ ) = 43,991 

Step 6: Use the pairwise exchange heuristic to improve the solutions .ˆ,ˆ 21 ππ  The 

following solutions are produced. 
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For ant 1, 1π̀ =                For ant 2, 2π̀ = 

1 5 4 6 3 2                 1 3 2 5 6 4 

1 3 5 6 4 2                 1 3 2 5 6 4 

f( 1π̀ ) = 44,245             f( 2π̀ ) = 43,767 

Therefore, the best solution found is still f(π*) = 43,767. 

Step 7: Perform intensification strategy. 

According to the objective function values for ant 1, f(π1) = 44,439 and f( 1π̀ ) 

= 44,245, 1π̀  is the best solution. According to the objective function values for ant 

2, f(π2) = 43,767 and f( 2π̀ ) = 43,767, 2π̀  is the best solution. Therefore, 1π̀  and 

2π̀  are the starting solutions for ants 1 and 2, respectively, at 3rd iteration. 

Step 8: Update the pheromone trail matrix. 

Use the formula jtit
pπ  = (1 – α1)* jtit

pπ  to weaken all pheromone trials (i.e., 

all entries in matrix P). Use the best solution found thus far (i.e., f(π*) = 43,767), and 

the formula )(/ *
2,,,, ** παππ fpp titi itit

+=  to intensify pheromone trials which appear 

in the best solution π*. The updated pheromone trail matrix P is given below.  

 

2261 1828 1828 1828 1828 1828 t=1 
1828 1828 2261 1828 1828 1828  
1828 2261 1828 1828 1828 1828  
1828 1828 1828 1828 1828 2261  
1828 1828 1828 2261 1828 1828  
1828 1828 1828 1828 2261 1828  
2261 1828 1828 1828 1828 1828 t=2 
1828 1828 2261 1828 1828 1828  
1828 2261 1828 1828 1828 1828  
1828 1828 1828 1828 1828 2261  
1828 1828 1828 2261 1828 1828  
1828 1828 1828 1828 2261 1828  



 

    52 

4.4 ACO II Heuristic 

The difference between the ACO I and ACO II heuristics is that the pairwise 

exchange heuristic in ACO II has a look-ahead and look-back mechanism. In the 

ACO I heuristic, after a time period is selected and the locations of two departments 

are exchanged, the change in total cost, ),,( tvtut ππ∆  is used to determine whether to 

accept or reject this exchange. This exchange only affects the layout of the time 

period selected for the exchange. However, in the ACO II heuristic, an exchange in 

the selected time period affects the layout in that period and may affect the layouts of 

other time periods. This will be illustrated using the DFLP instance in figure 4.7. The 

look-ahead/look-back pairwise exchange heuristic for the ACO II heuristic is given in 

figure 4.8. The heuristic is repeated N*N*T times and is performed for each ant.  

 

6  5  4  3  2  1 t = 1 
6  5  4  3  2  1 t = 2 
6  5  4  3  2  1 t = 3 
6  5  4  3  2  1 t = 4 

 
Figure 4.7: The layout plan for the DFLP instance. 

 

Step 1:  First, the pairwise exchange heuristic for the ACO I heuristic is performed. 

If time period 3, location 2, and location 5 (department 5 and department 2, 

respectively) are randomly selected, then )3 2, 5,(∆  is calculated. If this value is 

greater than zero, then exchanging the locations of departments 2 and 5 will increase 

total cost. Therefore, the exchange is rejected. However, if this value is less than zero, 

go to step 2. 
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      <0 ?
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      <0 ?

       Calculate
for exchanging
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locations i & j in time
period tF +1

      <0 ?
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Exchange
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locations i and j in
time period tF +1

Yes

No

No

Yes Yes

Yes

Initialize
iteration number

k=0

NoNo

k = k+1;

Yes

k < N*N*T ?

Yes

Terminate the
heuristic

No

∆

∆

∆ ∆

∆ ∆

tB = tB -1; tF = tF +1;

tB = t;
tF = t;

tB =1? tF =T?
No No YesYes No

 

 

Figure 4.8: Diagram of the look-ahead/look-back exchange procedure. 
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Step 2: If exchanging the locations of departments 2 and 5 at time period 3 is 

accepted in step 1, then the heuristic will look-ahead and look-back (t = 2 and 4) to 

determine if the departments 2 and 5 should be exchanged in the preceding or 

following periods (see figure 4.9). The departments are exchanged if and only if the 

exchanges reduce the change in total cost (i.e., exchange the locations of departments 

2 and 5 in period 2 if )2 2, ,5(∆ is less than zero and exchange the locations of 

departments 2 and 5 in period 4 if )4 2, 5,(∆ is less than zero). If the exchange in 

period 2 is accepted, then exchanging departments 2 and 5 in period 1 is considered. 

When an exchange is not accepted in both a preceding or following period, then start 

the next iteration.  

 

6  5  4  3  2  1   t = 1 
6  5  4  3  2  1  t = 2 
6  2  4  3  5  1  t = 3 
6  5  4  3  2  1  t = 4 

 
Figure 4.9: The layout plan after the first exchange. 

 

  

4.5 ACO III Heuristic 

The ACO III heuristic combines the ACO I heuristic with a SA heuristic. This 

heuristic is different from the ACO I heuristic since a SA heuristic is used in place of 

the pairwise exchange heuristic. See figure 4.10 for the SA heuristic. In this heuristic, 

the SA parameter H=a*S, where S is a heuristic parameter such that a>0 and integer. 

The formula rand(0,1))/exp( >∆− H is used to allow “uphill moves” (non-improving 
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solutions) so that the heuristic does not converge to a poor local optimum. At the 

beginning H is a relatively large number, which allows for accepting non-improving 

exchanges. As H decreases, the probability of accepting non-improving moves 

decreases. The heuristic is repeated N*N*T times for each ant.  

 

Calculate
p = exp(-     /H)

p > n ?

Generate a random
number n

between 0 and 1

Exchange
department

locations i and j in
time period t

No

Yes

No

     <0 ?

Randomly select
time period t, and

locations i & j

      Calculate
for exchanging
locations i & j

Yes

Initialize iteration
number Set k=0

k = k+1;

k < N*N*T ?

Yes

Terminate the
heuristic

No

∆

∆

∆

 

Figure 4.10: Diagram of the SA heuristic. 
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CHAPTER 5 

COMPUTATIONAL EXPERIMENTS AND RESULTS 

5.1 Data Sets 

In this research, two data sets were used to test the proposed ACO heuristics. The 

first data set was provided by Lacksonen and Enscore (1993). This data set was 

constructed based on several factors: percentage of new departments/period, number 

of departments, number of time periods, ratio of rearrangement cost to flow cost 

(rearrangement/flow cost), percentage of positive flow, and maximum value of flow 

changes per period. In this data set, the rearrangement cost is the same for all 

departments and is constant across all periods. Additionally, when new departments 

replace old departments, the replacement costs are considered, and the cost of 

replacing a department is equal to the rearrangement cost. This data set includes 

DFLP instances involving 6, 12, 20, and 30 departments (i.e., N = 6, 12, 20, and 30), 

with 3 and 5 periods (i.e., T = 3 and 5). Each problem with department size N has four 

3-period problem instances and four 5-period problem instances. Thus, 32 problem 

instances are available in this data set.  

The second data set was obtained from Balakrishnan and Cheng (2000). 

Balakrishnan and Cheng recently used this data set to test their GA. Baykasoglu and 

Gindy (2001) also used this data set to test their SA heuristic. The data set contains 

problems for 6, 15, and 30 departments (i.e., N = 6, 15, and 30), with 5 and 10 periods, 

(i.e., T = 5 and 10). Each problem has 8 instances. Hence, 48 problems are included in 
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this data set.  

 

5.2 ACO Heuristics  

The proposed heuristics ACO I, ACO II and ACO III were applied to these two 

data sets. All the proposed heuristics have the same initial solutions and the same 

stopping criterion (i.e., maximum number of iterations is Imax). All the heuristics were 

coded in C++ programming language. However, since the proposed ACO heuristics 

need to store a lot of information during computation, these C++ codes were run on 

the C++ Builder (6.0) platform to overcome the size limitation of the complier based 

on the DOS environment. All the programs were solved on a Pentium III 750Mhz PC 

with 512M of memory. 

 

5.3 Parameter Settings  

The main parameters are Imax (maximum number of iterations), R=N*T (number of 

pheromone trail swaps), 1α  (the parameter controlling the evaporation of the 

pheromone trails), 2α  (the parameter used to enforce certain pheromone trails), Q 

(the parameter used to initialize the pheromone trail matrix), q (percent use for 

determining the pheromone trail swap policy), S=R/2 (maximum number of 

consecutive iterations without improvement before diversification), and M (number of 

ants used in heuristic). The parameter settings for data set 1 and data set 2 are given in 

tables 5.1 and 5.2, respectively. 
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For data set 1 
No. of 

departments 
 

No. of 
time 

periods 

 
Parameters  

 
ACO I 

 
ACO II 

 
ACO III 

   M  Imax     10      1000 10      1000 10      1000 
   α1     α2   0.2      107  0.2      107  0.2      107 

 
3 

   q    Q   8       10-8   8       10-8  8       10-8 

   M  Imax     15      1500 15      1500 15      1500 
   α1     α2    0.2      2x107    0.2      2x107   0.2      2x107 

 
 
 
6  

5 

   q    Q   8       10-8   8       10-8  8       10-8 

   M   max     20      2000 20      2000 20      2000 
   α1     α2   0.2      2x107    0.2      2x107   0.2      2x107 

 
3 

   q    Q  8       10-8   8       10-8  8       10-8 

   M  Imax     25      2500 20      2500 20      2500 
   α1     α2   0.2      2x107    0.2      2x107   0.2      2x107 

 
 
 

12  
5 

   q    Q  8       10-8   8       10-8  8       10-8 

   M   max     30      3000 30      3000 30      3000 
   α1     α2   0.3      3.5x106   0.3     3.5x106   0.3     3.5x106 

 
3 

   q    Q  7       10-8   7       10-8  7      10-8 

   M   max     35      3500 35      3500 35      3500 
   α1     α2   0.3      3.5x106    0.3      3.5x106  0.3      3.5x106 

 
 
 

20  
5 

   q    Q  7       10-8   7       10-8 7       10-8 

   M  Imax     40      4000 40      4000 40      4000 
   α1     α2   0.3      3x106    0.3      3x106  0.3      3x106 

 
3 

   q    Q  7       10-8   7       10-8  7       10-8 

   M  Imax     45      5000 45     5000 45    5000 
   α1     α2   0.3      3x106   0.3      3x106  0.3      3x106 

 
 
 

30  
5 

   q    Q  7       10-8  7       10-8 7       10-8 

Table 5.1: Parameter settings for data set 1. 
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For data set 2 
No. of 

departments 
No. of time 

periods 

 
Parameters  

 
ACO I 

 
ACO II 

 
ACO III 

   M  Imax     15      1500 15      1500 15      1500 
   α1     α2    0.2      2x107   0.2      2x107  0.2      2x107 

 
5 

   q    Q   8       10-8   8       10-8  8       10-8 

   M  Imax     20      2000 20      2000 20      2000 
   α1     α2   0.2      2x107   0.2      2x107  0.2      2x107 

 
 
 
6  

10 
   q    Q  8       10-8   8       10-8  8       10-8 

   M  Imax     25      2500 20      2500 20      2500 
   α1     α2   0.2      2x107   0.2      2x107  0.2      2x107 

 
5 

   q    Q  8       10-8   8       10-8  8       10-8 

   M  Imax     30      3000 30      3000 30      3000 
   α1     α2   0.3      3.5x106  0.3     3.5x106  0.3     3.5x106 

 
 
 

15  
10 

   q    Q  7       10-8   7       10-8  7      10-8 

   M  Imax     35      3500 35      3500 35      3500 
   α1     α2   0.3      3.5x106   0.3      3.5x106 0.3      3.5x106 

 
5 

   q    Q  7       10-8   7       10-8 7       10-8 

   M  Imax     45      3500 45      3500 45      3500 
   α1     α2   0.3      3.5x106   0.3      3.5x106 0.3      3.5x106 

 
 
 

30  
10 

   q    Q  7       10-8   7       10-8 7       10-8 

Table 5.2: Parameter settings for data set 2.
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5.4 Experimental Results 

All the settings for the proposed heuristics were implemented four times for each 

problem instance, and the best solution was reported. Tables 5.3 and 5.4 summarize 

the results obtained for data set 1 and data set 2, respectively, for each heuristic. For 

data set 1, the results are compared with the results obtained by using the TS heuristic 

(Kaku and Mazzola, 1997), SA heuristic (Kuppusamy, 2001), cutting planes (CP) 

algorithm (Lacksonen and Enscore, 1993), and Urban’s pairwise exchange heuristic 

solutions (UB) presented by Kaku and Mazzola (1997). For data set 2, the results are 

compared with the results from the GA presented by Balakrishnan and Cheng (2000) 

and the results from the SA heuristic presented by Baykasouglu and Gindy (2001). 

In the tables, the bold numbers, before the ‘ACO Best’ column, gives the best 

solutions found by one of the ACO heuristics. If the best solution found by using 

ACO heuristic is worse than the solution previously found, the latter is bold and the 

best solution only within ACO is italic.   

For data set 1, most of the best solutions could be obtained by using the TS and 

CP heuristics. For the 32 test problems, TS found the best solution for 27 problems 

(i.e., did not find the best for only problems 19, 20, 21, 27 and 31). However, the CP 

heuristic found the best solution for only 20 problems. The SA heuristic found the 

best solution 18 times. For the ACO heuristics (ACO I, ACO II and ACO III), the 

best-found solution was found for 19 problems (59.4%). The numbers of solutions 

obtained within 1% and within 1-2% of the best-found solutions are 11 (34.3%) and 2 
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(6.3%), respectively. The CP and ACO heuristics performed pretty much the same. 

However, for this data set, the TS heuristic performs better than all of the heuristics.  

The ACO I, II, and III heuristics obtained the same solutions for 18 of the 32 test 

problems in data set 1. For the remaining 13 test problems, the ACO I heuristic 

produced the best solution for only 1 of the test problems (test problem 21). The ACO 

II heuristic found the best solutions for 9 of the remaining test problems, and ACO III 

obtained the best solution for 4 of the remaining test problems. Therefore, ACO II 

out-performed ACO I and III for data set 1. See table 5.5 for computational times for 

data set 1 ACO heuristics.  
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Problem Size (data set1) 
No. of 
departments 

No. of  
time period 

 
P No 

 
ACOI 

 
ACO II 

 
ACO III 

ACO 
Best 

 
SA 

 
UB 

 
CP 

 
TS 

 
Best Found 

% within best 
found solution 

P01 267 267 267 267 267 291 267 267 267 0 
P02 260 260 260 260 260 281 260 260 260 0 
P03 363 363 363 363 363 385 363 363 363 0 

 
 
3 

P04 299 299 299 299 299 312 299 299 299 0 
P05 442 442 442 442 442 472 442 442 442 0 
P06 596 596 596 596 596 617 589 586 586 1.706 
P07 424 424 424 424 424 500 424 424 424 0 

 
 
 
 
6  

 
5 

P08 428 428 428 428 428 452 428 428 428 0 
P09 1624 1624 1624 1624 1624 1676 1624 1624 1624 0 
P10 1973 1973 1973 1973 1973 2000 1973 1973 1973 0 
P11 1661 1661 1661 1661 1661 1779 1661 1661 1661 0 

 
 
3 

P12 2105 2105 2105 2105 2105 2298 2097 2097 2097 0.381 
P13 2966 2976 2955 2955 2966 3050 2930 2930 2930 0.853 
P14 3725 3725 3712 3712 3715 3886 3726 3701 3701 0.297 
P15 2756 2756 2756 2756 2756 3125 2756 2756 2756 0 

 
 
 
 

12  
 
5 

P16 3364 3364 3364 3364 3364 3730 3364 3364 3364 0 
P17 2758 2758 2758 2758 2758 2925 2763 2758 2758 0 
P18 5318 5318 5318 5318 5318 5363 5318 5318 5318 0 
P19 3080 3064 3100 3064 3064 3924 3048 3056 3048 0.525 

 
 
3 

P20 5965 5949 5968 5949 5947 7147 5873 5903 5873 1.294 
P21 4615 4677 4660 4615 4663 4964 4581 4605 4581 0.742 
P22 9963 9837 9845 9837 9897 10530 9825 9746 9746 0.934 
P23 4654 4654 4654 4654 4654 6512 4654 4654 4654 0 

 
 
 
 

20  
 
5 

P24 8989 8979 8985 8979 8979 10816 8985 8979 8979 0 
  P25 7154 7351 7130 7130 7131 7516 7163 7130 7130 0 
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P26 14481 14528 14478 14478 14519 14729 14583 14478 14478 0 
P27 8141 8093 8103 8093 8093 10465 8066 8115 8066 0.335 

 
3 

P28 15033 15025 15080 15025 15074 15285 14940 14925 14925 0.670 
P29 14255 13647 13719 13647 13753 14103 13719 13606 13606 0.301 
P30 25828 25787 25825 25787 25721 26223 26027 25583 25583 0.797 
P31 12264 12242 12320 12242 12148 15738 12351 12163 12148 0.649 

 
 
 

30  
 
5 

P32 24300 24200 24200 24200 24200 27680 24409 24200 24200 0 
 
 

Table 5.3: Solution results for data set 1. 
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Problem Size (data set 2) 
No. of 
department 

No. of 
time period 

 
No. 

 
ACO I 

 
ACO II 

 
ACO III 

 

 
ACO 
Best 

 
SA 

 
NLGA 

 
CONGA 

 
Best 

Found 

% within 
best found 

solution 
P01 106419 106419 106419 106419 107249 106419 108976 106419 0 
P02 104834 104834 104834 104834 105710 104834 105170 104834 0 
P03 104320 104320 104320 104320 104800 104320 104520 104320 0 
P04 106399 106399 106399 106399 106515 106515 106719 106515 -0.1091 
P05 105737 105628 105628 105628 106282 105628 105628 105628 0 
P06 103985 103985 103985 103985 103985 104053 105605 103985 0 
P07 106439 106439 106439 106439 106447 106978 106439 106439 0 

 
 
 
 
5 

P08 103771 103771 103771 103771 103771 103771 104485 103771 0 
P09 214313 214313 214313 214313 215200 214397 218407 214397 -0.0392 
P10 212134 212134 212134 212134 214713 212138 215623 212138 -0.0019 
P11 208060 207987 207987 207987 208351 208453 211028 208351 -0.1747 
P12 212530 212530 212741 212530 213331 212953 217493 212953 -0.1986 
P13 210906 210906 210906 210906 213812 211575 215363 211575 -0.3162 
P14 209962 209932 209932 209932 211213 210801 215564 210801 -0.4122 
P15 214252 214252 214252 214252 215630 215685 220529 215630 -0.6391 

 
 
 
 
 
 
 
 

6 
 
 
 
 
 
 
 

 
 
 
 

10 

P16 213767 212588 212719 212588 214513 214657 216291 214513 -0.8974 
P17 481511 481395 481697 481395 484695 511854 504759 484695 -0.6808 
P18 485594 484761 484879 484761 486141 507694 514718 486141 -0.2839 
P19 490899 488748 490398 488748 496617 518461 516063 496617 -1.5845 
P20 485561 485658 485995 485561 490869 514242 508532 490869 -1.0813 
P21 489012 488364 489206 488364 491501 512834 515599 491501 -0.6382 
P22 488954 486685 486965 486685 491098 513763 509384 491098 -0.8986 
P23 487315 486853 487315 486853 491350 512722 512508 491350 -0.9152 

 
 
 
 
5 

P24 493963 492074 491466 491466 496465 521116 514839 496465 -1.0069 

 
 
 
 
 
 
 
 

15  P25 982208 980351 982112 980351 950910 1047596 1055539 950910 3.0960 
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P26 981802 980680 980662 980662 947673 1037580 1061940 947673 3.4810 
P27 978027 986039 984065 978027 968027 1056185 1073603 968027 1.0330 
P28 978987 977708 975854 975854 950701 1026789 1060034 950701 2.6457 
P29 980611 980548 980134 980134 948470 1033591 1064692 948470 3.3384 
P30 973690 971827 971548 971548 948630 1028606 1066370 948630 2.4159 
P31 985659 982708 980752 980752 965844 1043823 1066617 965844 1.5435 

  
 
 

10 

P32 987986 987430 985707 985707 956170 1048853 1068216 956170 3.0890 
P33 579414 579503 580240 579414 562405 611794 632737 562405 3.0243 
P34 572204 571528 574531 571528 569251 611873 647585 569251 0.4000 
P35 578152 576053 578150 576053 564464 611664 642295 564464 2.0531 
P36 569694 572005 570924 569694 552684 611766 634626 552684 3.0777 
P37 558353 558353 558353 558353 559596 604564 639693 559596 -0.2221 
P38 569725 570567 572811 569725 592515 606010 637620 592515 -3.8463 
P39 570899 572484 570691 570691 582409 607134 640482 582409 -2.0120 

 
 
 
 
5 

P40 576396 575998 576280 575998 578549 620183 635776 578549 -0.4409 
P41 1172034 1179688 1181500 1172034 1122154 1228411 1362513 1122154 4.4450 
P42 1203538 1177398 1176513 1176513 1120182 1231987 1379640 1120182 5.0287 
P43 1164078 1125204 1140320 1125204 1125346 1231829 1365024 1125346 -0.0126 
P44 1190140 1160501 1159514 1159514 1120217 1227413 1367130 1120217 3.5080 
P45 1128855 1142776 1142776 1128855 1158323 1215256 1356860 1158323 -2.5440 
P46 1153982 1111344 1139040 1111344 1111344 1221356 1372513 1111344 0 
P47 1122805 1121735 1155220 1121735 1128744 1212273 1382799 1128744 -0.6210 

 
 
 
 
 
 
 
 

30  
 
 
 

10 

P48 1136157 1136157 1180450 1136157 1136157 1245423 1383610 1136157 0 
 
 

Table 5.4: Solution results for data set 2. 
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For data set 2, the ACO heuristics found the best solutions for 33 of the 48 test 

problems (test problems 1 – 24, 37 – 40, 43, 45 – 48). For 24 of the test problems, 

(50%), the ACO heuristics obtained better solutions than the best solutions obtained 

using the other heuristics. The best-found solutions were obtained for 9 (18.8%) test 

problems. The numbers of solutions obtained within 1%, 1-2%, 2-3%, 3-4%, 4-5%, 

and 5-6% of the best-found solutions are 1 (2.1%), 2 (4.2%), 3 (6.3%), 7 (14.6%), 1 

(2.1%), and 1 (2.1%), respectively. For test problems 1 to 24, all the solutions 

obtained by the ACO heuristics are better than or equal to the other heuristics. For test 

problems 25 to problem 48, SA produced the best solution for 15 of the test problems, 

and the ACO heuristics found the best solution for 9 of the test problems. Hence, the 

ACO heuristics out-performed the other heuristics for small-size problems. However, 

the SA heuristic performs slightly better than the ACO heuristics for large size 

problems. ACO II out-performed ACO I and III for data set 2. See table 5.6 for 

computational time for data set 2 ACO heuristics.  
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Problem Size 
Size Time Period 

 
P No 

 
ACO I 

 
ACO II 

 
ACO III 

P01 0.170 0.175 0.172 
P02 0.160 0.165 0.160 
P03 0.190 0.200 0.191 

 
 
3 

P04 0.192 0.200 0.192 
P05 0.220 0.242 0.234 
P06 0.189 0.197 0.188 
P07 0.200 0.227 0.212 

 
 
 
 

6  
 
5 

P08 0.186 0.196 0.190 
P09 0.320 0.420 0.355 
P10 0.370 0.437 0.380 
P11 0.289 0.411 0.300 

 
 
3 

P12 0.315 0.401 0.343 
P13 0.530 0.749 0.540 
P14 0.510 0.712 0.547 
P15 0.521 0.732 0.549 

 
 
 
 

12  
 
5 

P16 0.503 0.688 0.502 
P17 3.120 4.083 3.390 
P18 3.230 4.883 3.433 
P19 3.108 4.233 3.283 

 
 
3 

P20 3.149 4.440 3.343 
P21 5.150 7.417 6.010 
P22 5.130 7.417 5.956 
P23 5.410 7.435 6.240 

 
 
 
 

20  
 
5 

P24 4.982 7.028 6.000 
P25 10.417 14.980 11.020 
P26 11.027 14.820 11.689 
P27 10.538 14.270 11.233 

 
 
3 

P28 10.467 14.599 11.433 
P29 17.285 24.375 19.289 
P30 17.460 24.500 19.463 
P31 17.189 23.876 18.673 

 
 
 
 

30  
 
5 

P32 18.060 24.673 20.050 

 

Table 5.5: Computational times for data set 1 (times are given in minutes). 
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Problem Size 
Size Time Period 

 
P No 

 
ACO I 

 
ACO II 

 
ACO III 

P01 0.187 0.282 0.280 
P02 0.167 0.280 0.280 
P03 0.186 0.299 0.282 
P04 0.180 0.285 0.260 
P05 0.176 0.260 0.255 
P06 0.185 0.279 0.278 
P07 0.184 0.270 0.266 

 
 
 
 
5 

P08 0.179 0.265 0.265 
P09 1.400 1.410 1.410 
P10 1.411 1.411 1.407 
P11 1.406 1.407 1.406 
P12 1.406 1.407 1.406 
P13 1.401 1.407 1.405 
P14 1.421 1.420 1.420 
P15 1.440 1.441 1.440 

 
 
 
 
 
 
 
 
6 
 
 
 
 
 
 
 

 
 
 
 

10 

P16 1.410 1.420 1411 
P17 3.122 3.250 3.122 
P18 3.125 3.255 3.155 
P19 3.140 3.320 3.148 
P20 3.140 3.330 3.140 
P21 3.141 3.320 3.161 
P22 3.145 3.324 3.189 
P23 3.120 3.420 3.170 

 
 
 
 
5 

P24 3.128 3.440 3.174 
P25 9.580 11.120 10.500 
P26 9.650 12.120 10.890 
P27 9.780 11.359 10.700 
P28 9.290 11.489 10.600 
P29 9.440 12.020 11.014 
P30 10.120 12.040 11.140 
P31 10.220 12.142 11.248 

 
 
 
 
 
 
 
 

15  
 
 
 

10 

P32 9.990 11.780 10.560 
P33 15.250 17.250 16.230 
P34 15.350 17.000 16.480 
P35 14.780 16.250 16.116 
P36 15.230 17.120 17.012 
P37 14.480 16.480 15.786 
P38 14.387 17.010 16.016 

 
 
 
 
 
 
 

 
 
 
 
5 

P39 14.460 16.569 15.688 
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 P40 14.623 17.000 16.342 
P41 32.540 41.120 32.150 
P42 32.670 40.080 32.260 
P43 31.256 39.170 31.540 
P44 31.670 40.147 32.265 
P45 32.060 39.622 33.065 
P46 34.020 42.120 36.017 
P47 33.226 41.246 36.268 

 
30  

 
 
 

10 

P48 31.250 40.100 38.120 

 

Table 5.6: Computational time for data set 2 (times are given in minutes). 
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CHAPTER 6 

CONCLUSION  

6.1 Summary of Research 

This research develops heuristics utilizing the ACO heuristic for the QAP 

(HAS-QAP) to obtain good solutions for the DFLP. Because the ACO heuristic was 

never used to solve the DFLP, the HAS-QAP heuristic was modified to consider 

rearrangement cost and to efficiently solve the DFLP. Three ACO heuristics (ACO I, 

ACO II and ACO III) were proposed to solve the DFLP. The ACO I heuristic is a 

direct modification of the HAS-QAP heuristic to solve the DFLP. The ACO II 

heuristic is similar to the ACO I heuristic but with a look-ahead and look-back 

mechanism, and ACO III combines a SA heuristic with the ACO I heuristic.  

The proposed heuristics were tested on two data sets with 80 test problem 

instances taken from the literature, and the results were presented. The proposed 

heuristics obtained the best-found solutions for 26 problem instances and obtained the 

best solutions ever published for 24 problem instances. Moreover, the solutions for 14 

problem instances were within 1% of the best-found solutions. From these results, it is 

concluded that the ACO heuristics are very good heuristics for solving the DFLP. 

Furthermore, good solutions can be obtained in reasonable time. 

 

6.2 Recommendations for Future Research 

The following recommendations may be considered for future research: 
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1. Use another method for calculating rearrangement costs since these costs are 

not usually fixed in real-world problems (e.g., cost can depend on time periods 

and/or travel distances for moving machines and equipment). 

2. Consider the DFLP with unequal size departments. 

3. Consider stochastic flow data for the DFLP.  

4. Combine other existing heuristics (e.g., TS and ACO) to obtain better 

solutions for the DFLP. 

5. Consider both the block layout and the detailed layout (i.e., layout of the 

machines within the departments), simultaneously, for the DFLP.  
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