69 research outputs found

    The distributed assembly permutation flowshop scheduling problem

    Full text link
    Nowadays, improving the management of complex supply chains is a key to become competitive in the twenty-first century global market. Supply chains are composed of multi-plant facilities that must be coordinated and synchronised to cut waste and lead times. This paper proposes a Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP) with two stages to model and study complex supply chains. This problem is a generalisation of the Distributed Permutation Flowshop Scheduling Problem (DPFSP). The first stage of the DAPFSP is composed of f identical production factories. Each one is a flowshop that produces jobs to be assembled into final products in a second assembly stage. The objective is to minimise the makespan. We present first a Mixed Integer Linear Programming model (MILP). Three constructive algorithms are proposed. Finally, a Variable Neighbourhood Descent (VND) algorithm has been designed and tested by a comprehensive ANOVA statistical analysis. The results show that the VND algorithm offers good performance to solve this scheduling problem.Ruben Ruiz is partially supported by the Spanish Ministry of Science and Innovation, under the project 'RESULT - Realistic Extended Scheduling Using Light Techniques' with reference DPI2012-36243-C02-01. Carlos Andres-Romano is partially supported by the Spanish Ministry of Science and Innovation, under the project 'INSAMBLE' - Scheduling at assembly/disassembly synchronised supply chains with reference DPI2011-27633.Hatami, S.; Ruiz García, R.; Andrés Romano, C. (2013). The distributed assembly permutation flowshop scheduling problem. International Journal of Production Research. 51(17):5292-5308. https://doi.org/10.1080/00207543.2013.807955S529253085117Basso, D., Chiarandini, M., & Salmaso, L. (2007). Synchronized permutation tests in replicated designs. Journal of Statistical Planning and Inference, 137(8), 2564-2578. doi:10.1016/j.jspi.2006.04.016Biggs, D., De Ville, B., & Suen, E. (1991). A method of choosing multiway partitions for classification and decision trees. Journal of Applied Statistics, 18(1), 49-62. doi:10.1080/02664769100000005Chan, F. T. S., Chung, S. H., Chan, L. Y., Finke, G., & Tiwari, M. K. (2006). Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach. Robotics and Computer-Integrated Manufacturing, 22(5-6), 493-504. doi:10.1016/j.rcim.2005.11.005Chan, F. T. S., Chung, S. H., & Chan, P. L. Y. (2006). Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems. International Journal of Production Research, 44(3), 523-543. doi:10.1080/00207540500319229Liao, C.-J., & Liao, L.-M. (2008). Improved MILP models for two-machine flowshop with batch processing machines. Mathematical and Computer Modelling, 48(7-8), 1254-1264. doi:10.1016/j.mcm.2008.01.001Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 31(4), 311-317. doi:10.1016/s0305-0483(03)00047-1Gao, J., & Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. International Journal of Computational Intelligence Systems, 4(4), 497-508. doi:10.1080/18756891.2011.9727808Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3), 449-467. doi:10.1016/s0377-2217(00)00100-4Hariri, A. M. A., & Potts, C. N. (1997). A branch and bound algorithm for the two-stage assembly scheduling problem. European Journal of Operational Research, 103(3), 547-556. doi:10.1016/s0377-2217(96)00312-8Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2002). Web-based Multi-functional Scheduling System for a Distributed Manufacturing Environment. Concurrent Engineering, 10(1), 27-39. doi:10.1177/1063293x02010001054Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., & Zhang, Y. F. (2003). Journal of Intelligent Manufacturing, 14(3/4), 351-362. doi:10.1023/a:1024653810491Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2007). Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems. Computers & Industrial Engineering, 53(2), 313-320. doi:10.1016/j.cie.2007.06.024Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29(2), 119. doi:10.2307/2986296Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5), 616-625. doi:10.1287/mnsc.39.5.616Morgan, J. N., & Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a Proposal. Journal of the American Statistical Association, 58(302), 415-434. doi:10.1080/01621459.1963.10500855Pan, Q.-K., & Ruiz, R. (2012). Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research, 222(1), 31-43. doi:10.1016/j.ejor.2012.04.034Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., & Zwaneveld, C. M. (1995). The Two-Stage Assembly Scheduling Problem: Complexity and Approximation. Operations Research, 43(2), 346-355. doi:10.1287/opre.43.2.346Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. doi:10.1016/j.cor.2006.07.014Ruiz, R., & Andrés-Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 57(5-8), 777-794. doi:10.1007/s00170-011-3318-2Stafford, E. F., Tseng, F. T., & Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models. Journal of the Operational Research Society, 56(1), 88-101. doi:10.1057/palgrave.jors.2601805Tozkapan, A., Kırca, Ö., & Chung, C.-S. (2003). A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Computers & Operations Research, 30(2), 309-320. doi:10.1016/s0305-0548(01)00098-3Tseng, F. T., & Stafford, E. F. (2008). New MILP models for the permutation flowshop problem. Journal of the Operational Research Society, 59(10), 1373-1386. doi:10.1057/palgrave.jors.260245

    The Distributed and Assembly Scheduling Problem

    Full text link
    Tesis por compendio[EN] Nowadays, manufacturing systems meet different new global challenges and the existence of a collaborative manufacturing environment is essential to face with. Distributed manufacturing and assembly systems are two manufacturing systems which allow industries to deal with some of these challenges. This thesis studies a production problem in which both distributed manufacturing and assembly systems are considered. Although distributed manufacturing systems and assembly systems are well-known problems and have been extensively studied in the literature, to the best of our knowledge, considering these two systems together as in this thesis is the first effort in the literature. Due to the importance of scheduling optimization on production performance, some different ways to optimize the scheduling of the considered problem are discussed in this thesis. The studied scheduling setting consists of two stages: A production and an assembly stage. Various production centers make the first stage. Each of these centers consists of several machines which are dedicated to manufacture jobs. A single assembly machine is considered for the second stage. The produced jobs are assembled on the assembly machine to form final products through a defined assembly program. In this thesis, two different problems regarding two different production configurations for the production centers of the first stage are considered. The first configuration is a flowshop that results in what we refer to as the Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP). The second problem is referred to as the Distributed Parallel Machine and Assembly Scheduling Problem (DPMASP), where unrelated parallel machines configure the production centers. Makespan minimization of the product on the assembly machine located in the assembly stage is considered as the objective function for all considered problems. In this thesis some extensions are considered for the studied problems so as to bring them as close as possible to the reality of production shops. In the DAPFSP, sequence dependent setup times are added for machines in both production and assembly stages. Similarly, in the DPMASP, due to technological constraints, some defined jobs can be processed only in certain factories. Mathematical models are presented as an exact solution for some of the presented problems and two state-of-art solvers, CPLEX and GUROBI are used to solve them. Since these solvers are not able to solve large sized problems, we design and develop heuristic methods to solve the problems. In addition to heuristics, some metaheuristics are also designed and proposed to improve the solutions obtained by heuristics. Finally, for each proposed problem, the performance of the proposed solution methods is compared through extensive computational and comprehensive ANOVA statistical analysis.[ES] Los sistemas de producción se enfrentan a retos globales en los que el concepto de fabricación colaborativa es crucial para poder tener éxito en el entorno cambiante y complejo en el que nos encontramos. Una característica de los sistemas productivos que puede ayudar a lograr este objetivo consiste en disponer de una red de fabricación distribuida en la que los productos se fabriquen en localizaciones diferentes y se vayan ensamblando para obtener el producto final. En estos casos, disponer de modelos y herramientas para mejorar el rendimiento de sistemas de producción distribuidos con ensamblajes es una manera de asegurar la eficiencia de los mismos. En esta tesis doctoral se estudian los sistemas de fabricación distribuidos con operaciones de ensamblaje. Los sistemas distribuidos y los sistemas con operaciones de ensamblaje han sido estudiados por separado en la literatura. De hecho, no se han encontrado estudios de sistemas con ambas características consideradas de forma conjunta. Dada la complejidad de considerar conjuntamente ambos tipos de sistemas a la hora de realizar la programación de la producción en los mismos, se ha abordado su estudio considerando un modelo bietápico en la que en la primera etapa se consideran las operaciones de producción y en la segunda se plantean las operaciones de ensamblaje. Dependiendo de la configuración de la primera etapa se han estudiado dos variantes. En la primera variante se asume que la etapa de producción está compuesta por sendos sistemas tipo flowshop en los que se fabrican los componentes que se ensamblan en la segunda etapa (Distributed Assembly Permutation Flowshop Scheduling Problem o DAPFSP). En la segunda variante se considera un sistema de máquinas en paralelo no relacionadas (Distributed Parallel Machine and Assembly Scheduling Problem o DPMASP). En ambas variantes se optimiza la fecha de finalización del último trabajo secuenciado (Cmax) y se contempla la posibilidad que existan tiempos de cambio (setup) dependientes de la secuencia de trabajos fabricada. También, en el caso DPMASP se estudia la posibilidad de prohibir o no el uso de determinadas máquinas de la etapa de producción. Se han desarrollado modelos matemáticos para resolver algunas de las variantes anteriores. Estos modelos se han resuelto mediante los programas CPLEX y GUROBI en aquellos casos que ha sido posible. Para las instancias en los que el modelo matemático no ofrecía una solución al problema se han desarrollado heurísticas y metaheurísticas para ello. Todos los procedimientos anteriores han sido estudiados para determinar el rendimiento de los diferentes algoritmos planteados. Para ello se ha realizado un exhaustivo estudio computacional en el que se han aplicado técnicas ANOVA. Los resultados obtenidos en la tesis permiten avanzar en la comprensión del comportamiento de los sistemas productivos distribuidos con ensamblajes, definiendo algoritmos que permiten obtener buenas soluciones a este tipo de problemas tan complejos que aparecen tantas veces en la realidad industrial.[CA] Els sistemes de producció s'enfronten a reptes globals en què el concepte de fabricació col.laborativa és crucial per a poder tindre èxit en l'entorn canviant i complex en què ens trobem. Una característica dels sistemes productius que pot ajudar a aconseguir este objectiu consistix a disposar d'una xarxa de fabricació distribuïda en la que els productes es fabriquen en localitzacions diferents i es vagen acoblant per a obtindre el producte final. En estos casos, disposar de models i ferramentes per a millorar el rendiment de sistemes de producció distribuïts amb acoblaments és una manera d'assegurar l'eficiència dels mateixos. En esta tesi doctoral s'estudien els sistemes de fabricació distribuïts amb operacions d'acoblament. Els sistemes distribuïts i els sistemes amb operacions d'acoblament han sigut estudiats per separat en la literatura però, en allò que es coneix, no s'han trobat estudis de sistemes amb ambdós característiques conjuntament. Donada la complexitat de considerar conjuntament ambdós tipus de sistemes a l'hora de realitzar la programació de la producció en els mateixos, s'ha abordat el seu estudi considerant un model bietàpic en la que en la primera etapa es consideren les operacions de producció i en la segona es plantegen les operacions d'acoblament. Depenent de la configuració de la primera etapa s'han estudiat dos variants. En la primera variant s'assumix que l'etapa de producció està composta per sengles sistemes tipus flowshop en els que es fabriquen els components que s'acoblen en la segona etapa (Distributed Assembly Permutation Flowshop Scheduling Problem o DAPFSP). En la segona variant es considera un sistema de màquines en paral.lel no relacionades (Distributed Parallel Machine and Assembly Scheduling Problem o DPMASP). En ambdós variants s'optimitza la data de finalització de l'últim treball seqüenciat (Cmax) i es contempla la possibilitat que existisquen temps de canvi (setup) dependents de la seqüència de treballs fabricada. També, en el cas DPMASP s'estudia la possibilitat de prohibir o no l'ús de determinades màquines de l'etapa de producció. S'han desenvolupat models matemàtics per a resoldre algunes de les variants anteriors. Estos models s'han resolt per mitjà dels programes CPLEX i GUROBI en aquells casos que ha sigut possible. Per a les instàncies en què el model matemàtic no oferia una solució al problema s'han desenrotllat heurístiques i metaheurísticas per a això. Tots els procediments anteriors han sigut estudiats per a determinar el rendiment dels diferents algoritmes plantejats. Per a això s'ha realitzat un exhaustiu estudi computacional en què s'han aplicat tècniques ANOVA. Els resultats obtinguts en la tesi permeten avançar en la comprensió del comportament dels sistemes productius distribuïts amb acoblaments, definint algoritmes que permeten obtindre bones solucions a este tipus de problemes tan complexos que apareixen tantes vegades en la realitat industrial.Hatami, S. (2016). The Distributed and Assembly Scheduling Problem [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64072TESISCompendi

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    Flow shop rescheduling under different types of disruption

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research on 2013, available online:http://www.tandfonline.com/10.1080/00207543.2012.666856Almost all manufacturing facilities need to use production planning and scheduling systems to increase productivity and to reduce production costs. Real-life production operations are subject to a large number of unexpected disruptions that may invalidate the original schedules. In these cases, rescheduling is essential to minimise the impact on the performance of the system. In this work we consider flow shop layouts that have seldom been studied in the rescheduling literature. We generate and employ three types of disruption that interrupt the original schedules simultaneously. We develop rescheduling algorithms to finally accomplish the twofold objective of establishing a standard framework on the one hand, and proposing rescheduling methods that seek a good trade-off between schedule quality and stability on the other.The authors would like to thank the anonymous referees for their careful and detailed comments that helped to improve the paper considerably. This work is partially financed by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R + D program "Ayudas dirigidas a Institutos tecnologicos de la Red IMPIVA" during the year 2011, with project number IMDEEA/2011/142.Katragjini Prifti, K.; Vallada Regalado, E.; Ruiz García, R. (2013). Flow shop rescheduling under different types of disruption. International Journal of Production Research. 51(3):780-797. https://doi.org/10.1080/00207543.2012.666856S780797513Abumaizar, R. J., & Svestka, J. A. (1997). Rescheduling job shops under random disruptions. International Journal of Production Research, 35(7), 2065-2082. doi:10.1080/002075497195074Adiri, I., Frostig, E., & Kan, A. H. G. R. (1991). Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs. Naval Research Logistics, 38(2), 261-271. doi:10.1002/1520-6750(199104)38:23.0.co;2-iAkturk, M. S., & Gorgulu, E. (1999). Match-up scheduling under a machine breakdown. European Journal of Operational Research, 112(1), 81-97. doi:10.1016/s0377-2217(97)00396-2Allahverdi, A. (1996). Two-machine proportionate flowshop scheduling with breakdowns to minimize maximum lateness. Computers & Operations Research, 23(10), 909-916. doi:10.1016/0305-0548(96)00012-3Arnaout, J. P., & Rabadi, G. (2008). Rescheduling of unrelated parallel machines under machine breakdowns. International Journal of Applied Management Science, 1(1), 75. doi:10.1504/ijams.2008.020040Artigues, C., Billaut, J.-C., & Esswein, C. (2005). Maximization of solution flexibility for robust shop scheduling. European Journal of Operational Research, 165(2), 314-328. doi:10.1016/j.ejor.2004.04.004Azizoglu, M., & Alagöz, O. (2005). Parallel-machine rescheduling with machine disruptions. IIE Transactions, 37(12), 1113-1118. doi:10.1080/07408170500288133Bean, J. C., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Matchup Scheduling with Multiple Resources, Release Dates and Disruptions. Operations Research, 39(3), 470-483. doi:10.1287/opre.39.3.470Caricato, P., & Grieco, A. (2008). An online approach to dynamic rescheduling for production planning applications. International Journal of Production Research, 46(16), 4597-4617. doi:10.1080/00207540601136225CHURCH, L. K., & UZSOY, R. (1992). Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153-163. doi:10.1080/09511929208944524Cowling, P., & Johansson, M. (2002). Using real time information for effective dynamic scheduling. European Journal of Operational Research, 139(2), 230-244. doi:10.1016/s0377-2217(01)00355-1Curry, J., & Peters *, B. (2005). Rescheduling parallel machines with stepwise increasing tardiness and machine assignment stability objectives. International Journal of Production Research, 43(15), 3231-3246. doi:10.1080/00207540500103953DUTTA, A. (1990). Reacting to Scheduling Exceptions in FMS Environments. IIE Transactions, 22(4), 300-314. doi:10.1080/07408179008964185Ghezail, F., Pierreval, H., & Hajri-Gabouj, S. (2010). Analysis of robustness in proactive scheduling: A graphical approach. Computers & Industrial Engineering, 58(2), 193-198. doi:10.1016/j.cie.2009.03.004Goren, S., & Sabuncuoglu, I. (2008). Robustness and stability measures for scheduling: single-machine environment. IIE Transactions, 40(1), 66-83. doi:10.1080/07408170701283198Hall, N. G., & Potts, C. N. (2004). Rescheduling for New Orders. Operations Research, 52(3), 440-453. doi:10.1287/opre.1030.0101Herrmann, J. W., Lee, C.-Y., & Snowdon, J. L. (1993). A Classification of Static Scheduling Problems. Complexity in Numerical Optimization, 203-253. doi:10.1142/9789814354363_0011Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289-306. doi:10.1016/j.ejor.2004.04.002Hozak, K., & Hill, J. A. (2009). Issues and opportunities regarding replanning and rescheduling frequencies. International Journal of Production Research, 47(18), 4955-4970. doi:10.1080/00207540802047106Huaccho Huatuco, L., Efstathiou, J., Calinescu, A., Sivadasan, S., & Kariuki, S. (2009). Comparing the impact of different rescheduling strategies on the entropic-related complexity of manufacturing systems. International Journal of Production Research, 47(15), 4305-4325. doi:10.1080/00207540701871036Jensen, M. T. (2003). Generating robust and flexible job shop schedules using genetic algorithms. IEEE Transactions on Evolutionary Computation, 7(3), 275-288. doi:10.1109/tevc.2003.810067King, J. R. (1976). The theory-practice gap in job-shop scheduling. Production Engineer, 55(3), 137. doi:10.1049/tpe.1976.0044Kopanos, G. M., Capón-García, E., Espuña,, A., & Puigjaner, L. (2008). Costs for Rescheduling Actions: A Critical Issue for Reducing the Gap between Scheduling Theory and Practice. Industrial & Engineering Chemistry Research, 47(22), 8785-8795. doi:10.1021/ie8005676Lee, C.-Y., Leung, J. Y.-T., & Yu, G. (2006). Two Machine Scheduling under Disruptions with Transportation Considerations. Journal of Scheduling, 9(1), 35-48. doi:10.1007/s10951-006-5592-7Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers & Chemical Engineering, 32(4-5), 715-727. doi:10.1016/j.compchemeng.2007.03.001Liao, C. J., & Chen, W. J. (2004). Scheduling under machine breakdown in a continuous process industry. Computers & Operations Research, 31(3), 415-428. doi:10.1016/s0305-0548(02)00224-1Mehta, S. V. (1999). Predictable scheduling of a single machine subject to breakdowns. International Journal of Computer Integrated Manufacturing, 12(1), 15-38. doi:10.1080/095119299130443MUHLEMANN, A. P., LOCKETT, A. G., & FARN, C.-K. (1982). Job shop scheduling heuristics and frequency of scheduling. International Journal of Production Research, 20(2), 227-241. doi:10.1080/00207548208947763Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. doi:10.1016/0305-0483(83)90088-9O’Donovan, R., Uzsoy, R., & McKay, K. N. (1999). Predictable scheduling of a single machine with breakdowns and sensitive jobs. International Journal of Production Research, 37(18), 4217-4233. doi:10.1080/002075499189745Özlen, M., & Azizoğlu, M. (2009). Generating all efficient solutions of a rescheduling problem on unrelated parallel machines. International Journal of Production Research, 47(19), 5245-5270. doi:10.1080/00207540802043998Pfeiffer, A., Kádár, B., & Monostori, L. (2007). Stability-oriented evaluation of rescheduling strategies, by using simulation. Computers in Industry, 58(7), 630-643. doi:10.1016/j.compind.2007.05.009Pierreval, H., & Durieux-Paris, S. (2007). Robust simulation with a base environmental scenario. European Journal of Operational Research, 182(2), 783-793. doi:10.1016/j.ejor.2006.07.045Damodaran, P., Hirani, N. S., & Gallego, M. C. V. (2009). Scheduling identical parallel batch processing machines to minimise makespan using genetic algorithms. European J. of Industrial Engineering, 3(2), 187. doi:10.1504/ejie.2009.023605Qi, X., Bard, J. F., & Yu, G. (2006). Disruption management for machine scheduling: The case of SPT schedules. International Journal of Production Economics, 103(1), 166-184. doi:10.1016/j.ijpe.2005.05.021Rangsaritratsamee, R., Ferrell, W. G., & Kurz, M. B. (2004). Dynamic rescheduling that simultaneously considers efficiency and stability. Computers & Industrial Engineering, 46(1), 1-15. doi:10.1016/j.cie.2003.09.007Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Sabuncuoglu, I., & Goren, S. (2009). Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research. International Journal of Computer Integrated Manufacturing, 22(2), 138-157. doi:10.1080/09511920802209033Sabuncuoglu, I., & Kizilisik, O. B. (2003). Reactive scheduling in a dynamic and stochastic FMS environment. International Journal of Production Research, 41(17), 4211-4231. doi:10.1080/0020754031000149202Salveson, M. E. (1952). On a Quantitative Method in Production Planning and Scheduling. Econometrica, 20(4), 554. doi:10.2307/1907643Samarghandi, H., & ElMekkawy, T. Y. (2011). An efficient hybrid algorithm for the two-machine no-wait flow shop problem with separable setup times and single server. European J. of Industrial Engineering, 5(2), 111. doi:10.1504/ejie.2011.039869Subramaniam *, V., Raheja, A. S., & Rama Bhupal Reddy, K. (2005). Reactive repair tool for job shop schedules. International Journal of Production Research, 43(1), 1-23. doi:10.1080/0020754042000270412Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of Operational Research, 47(1), 65-74. doi:10.1016/0377-2217(90)90090-xTaillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research, 64(2), 278-285. doi:10.1016/0377-2217(93)90182-mValente, J. M. S., & Schaller, J. E. (2010). Improved heuristics for the single machine scheduling problem with linear early and quadratic tardy penalties. European J. of Industrial Engineering, 4(1), 99. doi:10.1504/ejie.2010.029572Vallada, E., & Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem☆. Omega, 38(1-2), 57-67. doi:10.1016/j.omega.2009.04.002Vieira, G. E., Herrmann, J. W., & Lin, E. (2000). Predicting the performance of rescheduling strategies for parallel machine systems. Journal of Manufacturing Systems, 19(4), 256-266. doi:10.1016/s0278-6125(01)80005-4Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Journal of Scheduling, 6(1), 39-62. doi:10.1023/a:1022235519958Yang, J., & Yu, G. (2002). Journal of Combinatorial Optimization, 6(1), 17-33. doi:10.1023/a:1013333232691Zandieh, M., & Gholami, M. (2009). An immune algorithm for scheduling a hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. International Journal of Production Research, 47(24), 6999-7027. doi:10.1080/0020754080240063

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Production Scheduling in Integrated Steel Manufacturing

    Get PDF
    Steel manufacturing is both energy and capital intensive, and it includes multiple production stages, such as iron-making, steelmaking, and rolling. This dissertation investigates the order schedule coordination problem in a multi-stage manufacturing context. A mixed-integer linear programming model is proposed to generate operational (up to the minute) schedules for the steelmaking and rolling stages simultaneously. The proposed multi-stage scheduling model in integrated steel manufacturing can provide a broader view of the cost impact on the individual stages. It also extends the current order scheduling literature in steel manufacturing from a single-stage focus to the coordinated multi-stage focus. Experiments are introduced to study the impact of problem size (number of order batches), order due time and demand pattern on solution performance. Preliminary results from small data instances are reported. A novel heuristic algorithm, Wind Driven Algorithm (WDO), is explained in detail, and numerical parameter study is presented. Another well-known and effective heuristic approach based on Particle Swarm Optimization (PSO) is used as a benchmark for performance comparison. Both algorithms are implemented to solve the scheduling model. Results show that WDO outperforms PSO for the proposed model on solving large sample data instances. Novel contributions and future research areas are highlighted in the conclusion

    Optimization Models and Approximate Algorithms for the Aerial Refueling Scheduling and Rescheduling Problems

    Get PDF
    The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for fighter aircrafts (jobs) on multiple tankers (machines) to minimize the total weighted tardiness. ARSP can be modeled as a parallel machine scheduling with release times and due date-to-deadline window. ARSP assumes that the jobs have different release times, due dates, and due date-to-deadline windows between the refueling due date and a deadline to return without refueling. The Aerial Refueling Rescheduling Problem (ARRP), on the other hand, can be defined as updating the existing AR schedule after being disrupted by job related events including the arrival of new aircrafts, departure of an existing aircrafts, and changes in aircraft priorities. ARRP is formulated as a multiobjective optimization problem by minimizing the total weighted tardiness (schedule quality) and schedule instability. Both ARSP and ARRP are formulated as mixed integer programming models. The objective function in ARSP is a piecewise tardiness cost that takes into account due date-to-deadline windows and job priorities. Since ARSP is NP-hard, four approximate algorithms are proposed to obtain solutions in reasonable computational times, namely (1) apparent piecewise tardiness cost with release time rule (APTCR), (2) simulated annealing starting from random solution (SArandom ), (3) SA improving the initial solution constructed by APTCR (SAAPTCR), and (4) Metaheuristic for Randomized Priority Search (MetaRaPS). Additionally, five regeneration and partial repair algorithms (MetaRE, BestINSERT, SEPRE, LSHIFT, and SHUFFLE) were developed for ARRP to update instantly the current schedule at the disruption time. The proposed heuristic algorithms are tested in terms of solution quality and CPU time through computational experiments with randomly generated data to represent AR operations and disruptions. Effectiveness of the scheduling and rescheduling algorithms are compared to optimal solutions for problems with up to 12 jobs and to each other for larger problems with up to 60 jobs. The results show that, APTCR is more likely to outperform SArandom especially when the problem size increases, although it has significantly worse performance than SA in terms of deviation from optimal solution for small size problems. Moreover CPU time performance of APTCR is significantly better than SA in both cases. MetaRaPS is more likely to outperform SAAPTCR in terms of average error from optimal solutions for both small and large size problems. Results for small size problems show that MetaRaPS algorithm is more robust compared to SAAPTCR. However, CPU time performance of SA is significantly better than MetaRaPS in both cases. ARRP experiments were conducted with various values of objective weighting factor for extended analysis. In the job arrival case, MetaRE and BestINSERT have significantly performed better than SEPRE in terms of average relative error for small size problems. In the case of job priority disruption, there is no significant difference between MetaRE, BestINSERT, and SHUFFLE algorithms. MetaRE has significantly performed better than LSHIFT to repair job departure disruptions and significantly superior to the BestINSERT algorithm in terms of both relative error and computational time for large size problems

    Approximate Algorithms for the Combined arrival-Departure Aircraft Sequencing and Reactive Scheduling Problems on Multiple Runways

    Get PDF
    The problem addressed in this dissertation is the Aircraft Sequencing Problem (ASP) in which a schedule must be developed to determine the assignment of each aircraft to a runway, the appropriate sequence of aircraft on each runway, and their departing or landing times. The dissertation examines the ASP over multiple runways, under mixed mode operations with the objective of minimizing the total weighted tardiness of aircraft landings and departures simultaneously. To prevent the dangers associated with wake-vortex effects, separation times enforced by Aviation Administrations (e.g., FAA) are considered, adding another level of complexity given that such times are sequence-dependent. Due to the problem being NP-hard, it is computationally difficult to solve large scale instances in a reasonable amount of time. Therefore, three greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index (FPI) are proposed. Moreover, metaheuristics including Simulated Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) are introduced to improve solutions initially constructed by the proposed greedy algorithms. The performance (solution quality and computational time) of the various algorithms is compared to the optimal solutions and to each other. The dissertation also addresses the Aircraft Reactive Scheduling Problem (ARSP) as air traffic systems frequently encounter various disruptions due to unexpected events such as inclement weather, aircraft failures or personnel shortages rendering the initial plan suboptimal or even obsolete in some cases. This research considers disruptions including the arrival of new aircraft, flight cancellations and aircraft delays. ARSP is formulated as a multi-objective optimization problem in which both the schedule\u27s quality and stability are of interest. The objectives consist of the total weighted start times (solution quality), total weighted start time deviation, and total weighted runway deviation (instability measures). Repair and complete regeneration approximate algorithms are developed for each type of disruptive events. The algorithms are tested against difficult benchmark problems and the solutions are compared to optimal solutions in terms of solution quality, schedule stability and computational time

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Intelligent Scheduling of Medical Procedures

    Get PDF
    In the Canadian universal healthcare system, public access to care is not limited by monetary or social economic factors. Rather, waiting time is the dominant factor limiting public access to healthcare. Excessive waiting lowers quality of life while waiting, and worsening of condition during the delay, which could lower the effectiveness of the planned operation. Excessive waiting has also been shown to carry economic cost. At the core of the wait time problem is a resource scheduling and management issue. The scheduling of medical procedures is a complex and difficult task. The goal of research in this thesis is to develop the foundation models and algorithms for a resource optimization system. Such a system will help healthcare administrators intelligently schedule procedures to optimize resource utilization, identify bottlenecks and reduce patient wait times. This thesis develops a novel framework, the MPSP model, to model medical procedures. The MPSP model is designed to be general and versatile to model a variety of different procedures. The specific procedure modeled in detail in this thesis is the haemodialysis procedure. Solving the MPSP model exactly to obtain guaranteed optimal solutions is computationally expensive and not practical for real-time scheduling. A fast, high quality evolutionary heuristic, gMASH, is developed to quickly solve large problems. The MPSP model and the gMASH heuristic form a foundation for an intelligent medical procedures scheduling and optimization system
    corecore