197 research outputs found

    Application of Simulated Annealing to Routing Problems in City Logistics

    Get PDF
    The R & D activities to realize systems which provide road traffic information and route guidance have been conducted as core systems of Intelligent Transport Systems (ITS). However, the implementation of these systems will have less effect on freight transport unless logistics operation is rationalized in parallel to the development of ITS. On the other hand, according to the expansion of internet, information has been exchanged with extremely high speed and low cost. Nevertheless, goods must be moved in the real space. Ecommerce has caused the increase of door-to-door deliveries. The demands for high-quality delivery services such as small-amount high frequency deliveries with time windows have been made by many clients (including companies and individuals). The loading rate of trucks has decreased and the rate of freight transportation in total road traffic has increased. The rationalization in terms of increasing the loading rate and decreasing the total travel time is aimed not only for reducing operational costs in each freight carrier but also for relieving traffic congestion, saving energy and reducing the amount of CO2. Freight transportation in urban areas that is described above is called city logistics (Taniguchi et al. 2001). Many researches on routing problems have been appeared in the literature. Comprehensive and detailed explanations of theoretical models and solutions of them are given by Toth & Vigo (Toth & Vigo, 2002). On the other hand, in the context of city logistics, real routing problems should not be based under the assumption on the symmetry of the link costs of visiting customer j after customer i or customer i after customer j, pij=pji, and other related mathematical properties, as triangular property etc. This is due to the fact that in an urban environment routes using the streets have to account for one way streets, issues related to regulations at intersections. In addition, travel time might vary according to traffic conditions, that is to say, it might be time dependent. Moreover, in urban road networks, demands might be located on not only spots on streets but also streets themselves. This chapter is aimed for describing the original solution, which has been invented by the authors of this chapter, to routing problems in city logistics. At the beginning of this chapter, a variety of routing problems will be introduced and followed by the explanation of features of routing problems in city logistics. And then, a practical solution method, which is composed of a data model, transformation rules of a solution on the data model and an overall algorithm using Simulated Annealing for solving O pe n A cc es s D at ab as e w w w .ite ch on lin e. co

    Hybrid metaheuristics for solving multi-depot pickup and delivery problems

    Get PDF
    In today's logistics businesses, increasing petrol prices, fierce competition, dynamic business environments and volume volatility put pressure on logistics service providers (LSPs) or third party logistics providers (3PLs) to be efficient, differentiated, adaptive, and horizontally collaborative in order to survive and remain competitive. In this climate, efficient computerised-decision support tools play an essential role. Especially, for freight transportation, e efficiently solving a Pickup and Delivery Problem (PDP) and its variants by an optimisation engine is the core capability required in making operational planning and decisions. For PDPs, it is required to determine minimum-cost routes to serve a number of requests, each associated with paired pickup and delivery points. A robust solution method for solving PDPs is crucial to the success of implementing decision support tools, which are integrated with Geographic Information System (GIS) and Fleet Telematics so that the flexibility, agility, visibility and transparency are fulfilled. If these tools are effectively implemented, competitive advantage can be gained in the area of cost leadership and service differentiation. In this research, variants of PDPs, which multiple depots or providers are considered, are investigated. These are so called Multi-depot Pickup and Delivery Problems (MDPDPs). To increase geographical coverage, continue growth and encourage horizontal collaboration, efficiently solving the MDPDPs is vital to operational planning and its total costs. This research deals with designing optimisation algorithms for solving a variety of real-world applications. Mixed Integer Linear Programming (MILP) formulations of the MDPDPs are presented. Due to being NP-hard, the computational time for solving by exact methods becomes prohibitive. Several metaheuristics and hybrid metaheuristics are investigated in this thesis. The extensive computational experiments are carried out to demonstrate their speed, preciseness and robustness.Open Acces

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS IN AN URBAN AREA – A CASE STUDY

    Get PDF
    The vehicle routing problem with stochastic demands (VRPSD) is a combinatorial optimization problem. The VRPSD looks for vehicle routes to connect all customers with a depot, so that the total distance is minimized, each customer visited once by one vehicle, every route starts and ends at a depot, and the travelled distance and capacity of each vehicle are less than or equal to the given maximum value. Contrary to the classical VRP, in the VRPSD the demand in a node is known only after a vehicle arrives at the very node. This means that the vehicle routes are designed in uncertain conditions. This paper presents a heuristic and meta-heuristic approach for solving the VRPSD and discusses the real problem of municipal waste collection in the City of Niš

    Multi-objective vehicle routing and loading with time window constraints:a real-life application

    Get PDF
    Motivated by a real-life application, this research considers the multi-objective vehicle routing and loading problem with time window constraints which is a variant of the Capacitated Vehicle Routing Problem with Time Windows with one/two-dimensional loading constraints. The problem consists of routing a number of vehicles to serve a set of customers and determining the best way of loading the goods ordered by the customers onto the vehicles used for transportation. The three objectives pertaining to minimisation of total travel distance, number of routes to use and total number of mixed orders in the same pallet are, more often than not, conflicting. To achieve a solution with no preferential information known in advance from the decision maker, the problem is formulated as a Mixed Integer Linear Programming (MILP) model with one objective—minimising the total cost, where the three original objectives are incorporated as parts of the total cost function. A Generalised Variable Neighbourhood Search (GVNS) algorithm is designed as the search engine to relieve the computational burden inherent to the application of the MILP model. To evaluate the effectiveness of the GVNS algorithm, a real instance case study is generated and solved by both the GVNS algorithm and the software provided by our industrial partner. The results show that the suggested approach provides solutions with better overall values than those found by the software provided by our industrial partner

    Hybrid Algorithms for the Vehicle Routing Problem with Pickup and Delivery and Two-dimensional Loading Constraints

    Get PDF
    We extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and two-dimensional loading problem, called PDP with two-dimensional loading constraints (2L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. Each request consists of a given set of 2D rectangular items with a certain weight. The vehicles have a weight capacity and a rectangular two-dimensional loading area. All loading and unloading operations must be done exclusively by movements parallel to the longitudinal axis of the loading area of a vehicle and without moving items of other requests. Furthermore, each item must not be moved after loading and before unloading. The problem is of interest for the transport of rectangular-shaped items that cannot be stacked one on top of the other because of their weight, fragility or large dimensions. The 2L-PDP also generalizes the well-known Capacitated Vehicle Routing Problem with Two-dimensional Loading Constraints (2L-CVRP), in which the demand of each customer is to be transported from the depot to the customer’s unloading site.This paper proposes two hybrid algorithms for solving the 2L-PDP and each one consists of a routing and a packing procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood search for the one-dimensional PDP and the packing procedure uses six different constructive heuristics for packing the items. Computational experiments were carried out using 60 newly proposed 2L-PDP benchmark instances with up to 150 requests

    Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation

    Full text link
    [EN] The increasing use of electric vehicles in road and air transportation, especially in last-mile delivery and city mobility, raises new operational challenges due to the limited capacity of electric batteries. These limitations impose additional driving range constraints when optimizing the distribution and mobility plans. During the last years, several researchers from the Computer Science, Artificial Intelligence, and Operations Research communities have been developing optimization, simulation, and machine learning approaches that aim at generating efficient and sustainable routing plans for hybrid fleets, including both electric and internal combustion engine vehicles. After contextualizing the relevance of electric vehicles in promoting sustainable transportation practices, this paper reviews the existing work in the field of electric vehicle routing problems. In particular, we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering problems. The review is followed by numerical examples that illustrate the gains that can be obtained by employing optimization methods in the aforementioned field. Finally, several research opportunities are highlighted.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T), the SEPIE Erasmus+Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Do C. Martins, L.; Tordecilla, RD.; Castaneda, J.; Juan-Pérez, ÁA.; Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies. 14(16):1-30. https://doi.org/10.3390/en14165131130141
    corecore