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This paper introduces two-dimensional loading time-dependent vehicle routing problem and proposes a bi-
objective mathematical model. This problem assesses the process of distributing the rectangular-shaped
demanded items over an urban environment; it does not, however, allow items to be loaded on top of each other.
In addition to the above assumptions, the presented model also satisfies the first-in-first-out property in the time-
dependent vehicle routing problem. Given the NP-hard nature of the problem, a method called elitist non-
dominated sorting local search is developed to obtain its solutions. To evaluate the performance of the proposed
algorithm, the solutions of this algorithm for small-scale problem instances are compared with the results of an
exact method. For the medium-scale problem instances, results of NSGA-II and SPEA2 are used as the basis of
comparison. The computational results demonstrate the good performance of the proposed method.
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1. Introduction

Vehicle routing problem (VRP) addresses one of the most

important issues of distribution operations, i.e., how to use a

limited number of vehicles to supply the demand of customers

from a depot. Over the years, researchers have developed

multiple versions of this problem to deal with different

distribution specifications. The most common constraints of

VRP include maximum vehicles’ capacity, maximum travel

distance and serving time windows defined for customers. In

some VRP applications, the size of items to be distributed

decides whether it is possible to load them into loading space.

A typical example of this issue is the delivery of industrial

machinery. In this type of problems, expressing the demand by

weight is not enough and size of the items must also be taken

into consideration.

Such problems can be solved through solving a variety of

two- or three-dimensional bin packing problems (2BPP-3BPP)

and by using separate processes to solve VRP and loading

problem. This approach, however, severely reduces the

likelihood of obtaining optimal, desirable or even feasible

solutions. Therefore, incorporation of the features and con-

straints of loading problem into VRP has led to the develop-

ment of new problems that simultaneously assess both issues.

Two-dimensional loading capacitated vehicle routing problem

(2L-CVRP) and three-dimensional loading capacitated vehicle

routing problem (3L-CVRP) are among the most applicable

approaches in this regard. The difference between these two is

in the nature of demanded items; the basic assumption of 2L-

CVRP is that items cannot be loaded on top of each other,

while 3L-CVRP has no such assumption. It should be noted

that this paper is based on 2L-CVRP assumptions regarding

loading constraints.

The typical 2L-CVRP assumes that each arc has a constant

travel time throughout the planning horizon. But in most large

cities, traffic congestion at different times of a day (especially

in rush hours) can significantly alter the time required to pass a

given arc. Traffic congestion also affects the labor and fleet

cost structure (Figliozzi, 2010). Incorporating these concepts

in the model of a distribution service operating in an urban

environment can prevent the model from obtaining sub-

optimal and inefficient solutions.

In this paper, travel time is modeled as a function of the time

at which vehicle set out from the origin node. This study uses a

piecewise linear function to inject the concept of time

dependency into the travel time. The proposed model also

satisfies first-in-first-out (FIFO) property, which is an impor-

tant feature of time-dependent vehicle routing problem

(TDVRP).

In addition, balancing the loads to be distributed by the

vehicles not only prevents employees’ dissatisfaction, but also

reduces the abnormal depreciation of vehicles. So load balance

can increase the model efficiency by providing the mentioned
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benefits. In this paper, load balance requirement is satisfied

regarding the weight of items assigned to vehicles.

This paper presents an extended version of 2L-CVRP model

called two-dimensional loading time-dependent vehicle rout-

ing problem (2L-TDVRP), which integrates the concepts of

two-dimensional loading constraints and time dependency

with the load balancing requirements. Given the NP-hard

nature of this problem, a meta-heuristic algorithm called elitist

non-dominated sorting local search (ENSLS) is proposed to

solve the problem. The results obtained from solving small-

scale problem instances by the proposed algorithm are

compared with the results of an exact solution method, and

the results obtained from solving medium-scale problem

instances are compared with the results of NSGA-II and

SPEA2 meta-heuristic methods.

The rest of this paper is structured as follows: Section 2

reviews the literature on this topic, Section 3 describes the

problem and presents its mathematical model, Section 4

describes the proposed solution approach, Section 5 presents

the computational results, and Section 6 presents the conclu-

sions and recommendations for future research.

2. Review of the literature

The first paper of VRP literature is the work of Dantzig et al

(1954), where authors studied a large-scale traveling salesman

problem (TSP) and proposed a solution method. Clarke and

Wright (1964) were the first researchers who assessed this

problem for more than one vehicle. However, Golden et al

(1977) used the term ‘‘vehicle routing’’ in the title of their paper

for the first time. More information on this subject can be found

in Toth and Vigo (2002) and Kumar and Panneerselvam (2012).

Time-dependent vehicle routing problem is one of the most

widely known versions of the VRP. Malandraki (1989) was the

first researcher who introduced the mathematical model of

TDVRP. Also Malandraki and Daskin (1992) later proposed a

mixed integer mathematical model for TDVRP, which used a

step function to calculate the travel time between two

customers. To solve this model, they used a number of simple

heuristics.

In real world, speed variations are not in the form of instant

jumps, so dislike mentioned studies, Hill and Benton (1992)

used a speed function to avoid these jumps and provided a

compact mathematical model, a number of methods to

estimate its parameters, and a solution method. Donati et al

(2008) considered two hierarchical objective functions, which

optimized the number of tours and the total travel time on

selected routes. They used a meta-heuristic method based on

ant colony optimization (ACO) algorithm to solve this

TDVRP. Soler et al (2009) first used a multistage approach

to convert the TDVRP to an asymmetric VRP and then solved

that problem using methods available in the literature of

VRP. Figliozzi (2012) presented a route construction and

improvement method to solve the mentioned problem. Zhang

et al (2014) assessed the time-dependent vehicle routing

problem with simultaneous pickup and delivery. They pro-

posed an integer programming model for that problem and

solved this problem using a hybrid method composed of ACO

and tabu search algorithms.

FIFO property is among the most realistic features of TDVRP

and is defined as follows: when a vehicle departs the node

i(origin node) at the time ti, its arrival time at the destination

node is always less than the case where it departs the node i at the

time t0i [ ti. Most of the previous studies that have introduced a

comprehensive mathematical model for TDVRP or its real-

world applications have neglected the FIFO property. Here, a

piecewise linear function with linear slope restricted to values

greater than -1 is used to model the travel time.

The piecewise linear function used in this paper follows an

approach rather different than other studies in the literature. In

previous studies, to uphold the FIFO property, travel time

needs to be obtained from a speed function, and this

dependence imposes extra computation; but in this paper

travel time function is independent from speed function. In the

paper of Ichoua et al (2003), it was stated that if the slope of

travel time function is greater than -1, the FIFO property is

respected. However, they did not develop any mathematical

model based on this property, as their focus was on the use of

heuristic methods to solve the problem. The mathematical

model developed by Jabali et al (2012) for time-dependent

vehicle routing problem relied on FIFO property. But the

disadvantage of that model is the presence of instant jumps in

the speeds of different time periods, which is not realistic.

Also, the aforementioned model assumes only one daily

change in speed function, and injecting a greater number of

daily speed changes in their model will need complex

modifications. In contrast, the present paper uses a piecewise

linear travel time function, which provides the assumption of

continuous daily changes in travel time. The use of this

function also allows us to easily incorporate a large number of

daily travel time variations into the model.

Review of the literature on simultaneous routing and

loading problems shows that most of the studies in this area

are focused on incorporating the loading constraints in

capacitated vehicle routing problem (CVRP). This problem

was first introduced by Iori et al (2007). They used an exact

solution approach to solve the problem in small scale.

Gendreau et al (2008) were the first researches who proposed

a meta-heuristic algorithm (a method based on tabu search

algorithm) to solve the large-scale instances of the mentioned

problem. In their algorithm, lower bounds, heuristic and exact

methods were used to check the loading constraints. Zachari-

adis et al (2009) implemented guided tabu search to solve the

problem and also used a set of heuristic methods to check the

loading constraints. Fuellerer et al (2009) proposed an ACO-

based meta-heuristic method to solve problem. In this paper,

heuristic methods were used to check loading constraints,
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which the most important feature of these heuristic methods is

their ability to consider variable orientation. Strodl et al (2010)

used a variable neighborhood search (VNS) method to solve

the problem and used exact and heuristic methods to check the

loading constraints. Leung et al (2011) presented a developed

version of guided tabu search and to check loading constraints,

used some heuristic methods.

Duhamel et al (2011) presented a method to solve the 2L-

CVRP which first converts the loading constraints to the

constraints of a resource-constrained project scheduling prob-

lem, then uses GRASP 9 ELS algorithm to solve the

converted problem and finally converts the solutions back to

the 2L-CVRP form. Zachariadis et al (2013) presented a meta-

heuristic method, whose most important feature is its compact

structure. Their solution approach uses a local search to solve

the problem and uses diversification strategies to avoid getting

trapped in local optimums. It also uses heuristic methods to

check the loading constraints. In a study by Hamdi-Dhaoui

et al (2014), authors assessed the problem where there is a

conflict between customers’ items and provided a bi-objective

model for this problem. Their first objective function opti-

mizes the total service cost, while the second objective

function balances the items assigned to vehicles regarding

their area. To solve the problem and check loading constraints,

they used a meta-heuristic algorithm and heuristic methods,

respectively. Dominguez et al (2014) examined the problem

for the instances where item rotation is allowed, and then used

a routing algorithm to solve the problem. Their method uses

improved heuristics to check the loading constraints.

The literature on this topic contains similar problems that are

extended versions of classical routing and loading problems.

Malapert et al (2008) proposed an extended version of 2L-

CVRP with simultaneous pickup and delivery constraints. They

converted loading constraints to scheduling constraints and used

a constraint programming model to solve the problem. Leung

et al (2013) assessed the VRP with heterogeneous fleet,

combined the simulated annealing algorithm with local search

heuristic to solve the routing problem and used a variety of

heuristic methods to address the loading constraints. Kheb-

bache-Hadji et al (2013) proposed the 2L-CVRP with time

windows and then presented a meta-heuristic solution approach

for this problem which is a combination of memetic algorithm

and some loading heuristics. Dominguez et al (2016) also

assessed the VRP with heterogeneous fleet and proposed a

heuristic approach to solve it in the scenarios where item

rotation is/is not allowed. Also, they used two heuristic methods

to check the loading constraints. More information on VRP with

two-dimensional loading constraints can be found in Iori and

Martello (2010) and Iori and Martello (2013).

3. Problem statement

Assume the directed graph G ¼ V;Að Þ where V is the set of

nodes 0; 1; . . .; n. In the set V, node 0 represents the depot and

nodes 1; . . .; n represent the customers. A denotes the set of arcs

i; jð Þ; i; j 2 V . The first objective of the problem is to determine

the routes which can minimize the serving time. The secondary

objective of the problem is to balance the distribution of items

assigned to vehicles regarding to the weight of items. The

customers are located in an urban area, so the travel time

between each two nodes depends on the departure time from

the origin node. As said before, in the present paper, a

piecewise linear function with linear slope restricted to values

greater than -1 is used to model the travel time. The use of this

function also forces the changes in travel time to be smooth

rather than stepwise behavior and thereby improves the reality

of the model. Figure 1 can help to clarify that how this function

can guarantee the FIFO property. Suppose that at time tA
vehicle (A) starts to traverse an arc, and at time tB another

vehicle (B) starts to traverse the same arc. According to time

function, duration time of travel for vehicles A and B will be

DA and DB. Vehicle A will reach the destination at the time

tA þ DA. Since slope is greater than -1, tB - tA is greater than

DA - DB and therefore tA ? DA (arrival time of vehicle A)

will be less than tB ? DB (arrival time of vehicle B).

3.1. Assumptions

This modeling process is also based on several other

assumptions:

• The travel time between two nodes also depends on the

direction of travel.

• The fleet is homogenous (in terms of operation cost,

capacity and speed).

• All available vehicles must be used.

• Customers’ demanded items are rectangular shaped.

• Customers should be allocated to the vehicles with respect

to weight and loading constraints.

It should be noted that loading constraints considered for the

presented model are based on the assumptions of ‘‘two-

dimensional unrestricted oriented loading.’’ Further informa-

tion in this regard can be found in Fuellerer et al (2009).

3.2. Mathematical model

This section describes the proposed mathematical model.

Before presenting the model, its parameters and variables need

to be introduced. The model parameters are as follows:

The set of nodes i = 0, …, n where 0 denotes the depot;

i; j; p are the indices associated with this set.

The set of vehicles k = 1, …, K; k is the index associated

with this set.

The set of time intervals m = 1, …, M; m is the index

associated with this set.
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The set of items it = 1, …, A; it and jt are the indices

associated with this set.

Tij
0 The starting time horizon

Tij
m Upper bound of m-th time interval

Cij
m The travel time from node i to node j when travel

happens at time Tij
m

sti The service time of customer i

t0 Departure time from the depot

Di The demand of customer i

wit The width of it-th item

hit The height of it-th item

W The width of vehicles’ loading space

H The height of vehicles’ loading space

S Area of vehicles’ loading space (S ¼ W � H)

Q Capacity of vehicles

Beliit is one if item it belongs to customer i, and is zero

otherwise

B A big number

The model variables are as follows:

xij
km A binary variable which equals one when at time period

m vehicle k moves from node i to node j, and is zero

otherwise

hij The travel time from node i to node j

ti The departure time from customer i

zi
k A binary variable which equals one when vehicle

k transports the items of customer i, and is zero

otherwise

uit
k A binary variable which equals one when vehicle

k transports item it, and is zero otherwise

xwit The X-coordinate (width) of bottom-left corner of item

it

yhit The Y-coordinate (length) of bottom-left corner of item

it

lit,jt A binary variable which equals one when item it is

placed on the left side of the item jt, and is zero

otherwise

bit,jt A binary variable which equals one when item it is

placed on the down side of item jt, and is zero otherwise

ui
k Auxiliary variable (sub-tour elimination)

Bl The maximum weight load on vehicles

The mathematical model is explained in the following:

minO1 ¼
Xn

i¼0

Xn

j¼0

hij

minO2 ¼ Bl

ð1Þ

hij ¼
XK

k¼1

XM

m¼1

Cm�1
ij þ

Cm
ij � Cm�1

ij

Tm
ij � Tm�1

ij

 !
ti � Tm�1

ij

� � !
xkmij ;

i ¼ 0; . . .; n; j ¼ 0; . . .; n; ð2Þ

t0 ¼ 0 ð3Þ

tj ¼
Xn

i¼0

ti
XK

k¼1

XM

m¼1

xkmij þ
Xn

i¼0

hij þ stj; j ¼ 1; . . .; n; ð4Þ

ti þ B �
XK

k¼1

xkmij �Tm
ij þ B;

i ¼ 0; . . .; n; j ¼ 0; . . .; n; m ¼ 1; . . .;M;

ð5Þ

ti � Tm�1
ij �

XK

k¼1

xkmij � 0;

i ¼ 0; . . .; n; j ¼ 0; . . .; n; m ¼ 1; . . .;M;

ð6Þ

Xn

i¼0

XK

k¼1

XM

m¼1

xkmij ¼ 1; j ¼ 1; . . .; n; ð7Þ

Time of day

Tr
av

el
 ti

m
e

tBtA

DA

DB

Time of day

Tr
av

el
 ti

m
e

tBtA

DA

DB

(A) (B)

Figure 1 Guarantee of FIFO property by piecewise linear function with linear slope restricted to values greater than -1.
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Xn

j¼1

XM

m¼1

xkm0j ¼ 1; k ¼ 1; . . .;K; ð8Þ

Xn

i¼0

XM

m¼1

xkmip �
Xn

j¼0

XM

m¼1

xkmpj ¼ 0; p ¼ 0; . . .; n; k ¼ 1; . . .;K;

ð9Þ

uki � ukj þ n
XM

m¼1

xkmij � n� 1;

i ¼ 0; . . .n; j ¼ 1; . . .n; k ¼ 1; . . .;K;

ð10Þ

Xn

j¼0

XM

m¼1

xkmij ¼ zki ; i ¼ 0; . . .; n; k ¼ 1; . . .;K; ð11Þ

uk
it ¼ Beliit � zki ; i ¼ 1; . . .; n; k ¼ 1; . . .;K; it ¼ 1; . . .;A;

ð12Þ

Xn

i¼1

zki � Di �Q; k ¼ 1; . . .;K; ð13Þ

xwit þ wit �W ; it ¼ 1; . . .;A; ð14Þ

yhit þ hit �H; it ¼ 1; . . .;A; ð15Þ

lit;jt þ ljt;it þ bit;jt þ bjt;it þ 1 � uk
it

� �
þ 1 � uk

jt

� �
� 1;

it; jt ¼ 1; . . .;A; it 6¼ jt; k ¼ 1; . . .; k;
ð16Þ

xwit þ wit þW :lit;jt � xwjt þW ; it; jt ¼ 1; . . .;A; it 6¼ jt;

ð17Þ

yhit þ hit þ H:bit;jt � yhjt þ H; it; jt ¼ 1; . . .;A; it 6¼ jt;

ð18Þ

Xn

i¼0

zki Di �Bl 8k ¼ 1; . . .;K; ð19Þ

xkmij ; z
k
i ;u

k
it; lit;jt; bit;jt 2 0; 1f g;

hij; ti; u
k
i ; xwit; yhit 2 Rþ:

ð20Þ

Equation (1) expresses the objective functions, which

minimizes the service time and minimizes the maximum

weight load on vehicles. Constraint (2) calculates the travel

time for the arc i - j. Constraints (3) and (4) determine the

vehicles’ departure time from the depot and the node j,

respectively. Constraints (5) and (6) ensure that at the time

period m the vehicle k can pass through the arc i - j only

when its departure time from node i is at the same time

interval. Constraint (7) ensures that each customer gets served

exactly once. Constraint (8) ensures that vehicles start their

tours from the depot. Constraint (9) states that each vehicle

that enters a node must eventually leave it. Constraint (10)

eliminates the sub-tours. Constraints (11) and (12) are related

to the allocation of customers and items to vehicles, respec-

tively. Constraint (13) is related to capacity constraint of

vehicles. Constraints (14) and (15) ensure that the item

demanded by customer i is placed in the loading space.

Constraints (16) to (18) prevent the items from overlapping in

the loading space. Constraint (19) is related to the maximum

weight load on vehicles, and finally constraint (20) determines

the type and domain of variables.

3.3. Linearization of the second and fourth constraints

After replacing bij
km = ti�xijkm, the second and fourth constraints

change to the following form:

hij ¼
XK

k¼1

XM

m¼1

Cm�1
ij �xkmij þ

Cm
ij �Cm�1

ij

Tm
ij �Tm�1

ij

 !
bkmij �Tm�1

ij :xkmij

� � !
;

i; j¼ 0; . . .;n;

ð21Þ

tj ¼
Xn

i ¼ 0

i 6¼ j

XK

k¼1

XM

m¼1

bkmij þ
Xn

i ¼ 0

i 6¼ j

hij þ stj; j ¼ 1; . . .; n: ð22Þ

This linearization also requires adding the following four

constraints to the model:

bkmij � ti; i; j ¼ 0; . . .; n; k ¼ 1; . . .;K; m ¼ 1; . . .;M; ð23Þ

bkmij � ti � B 1 � xkmij

� �
;

i; j ¼ 0; . . .; n; k ¼ 1; . . .;K; m ¼ 1; . . .;M;
ð24Þ

bkmij �Bxkmij ; i; j ¼ 0; . . .; n; k ¼ 1; . . .;K;m ¼ 1; . . .;M;

ð25Þ

bkmij � 0; i; j ¼ 0; . . .; n; k ¼ 1; . . .;K;m ¼ 1; . . .;M: ð26Þ

By adding the above constraints to the model and using the

mentioned linearized objective function and constraints,

computational time for solving the problem is reduced which

is the advantage of linear models over nonlinear ones.

4. Solution approach

This section discusses the solution method used for the

described problem. It first presents a brief introduction to

multi-objective optimization and then explains some notions

about the heuristic algorithms used for checking the feasibility

of solutions in terms of loading constraints. In the end, it
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presents the proposed algorithm and discusses the general

concepts of NSGA-II and SPEA2.

4.1. Multi-objective optimization

Many real-world problems can be described via several

conflicting objectives. This perspective has led to the intro-

duction and application of multi-objective optimization mod-

els and methods. Multi-objective problems express the

superiority via the concept of dominance. The concept of

dominance is defined as follows: suppose without loss of

generality a minimization problem and suppose that x and y

are the solution vectors with the j-th objective function values

fj(x) and fj(y), respectively, then dominance is defined

according to Equation (27):

x dominates y , 8 j ¼ 1; . . .;m : fj xð Þ� fj yð Þ
&9 j0 ¼ 1; . . .;m : fj0 xð Þ\fj0 yð Þ; ð27Þ

where m is the number of objective functions. Unlike the

mono-objective problems where the goal is to find an optimal

solution, in multi-objective problems the goal is to find a set of

solutions that any other solutions in the solution space cannot

dominate them. Each of these solutions is called a Pareto

optimal solution, and their set is called the Pareto optimal set.

Also, the values of objective functions of Pareto optimal set is

called Pareto front.

4.2. Loading heuristics

This paper uses several heuristic methods to check the

feasibility of loading items into the loading space. The used

heuristic methods include: bottom-left fill (Y-axis) (Chazelle,

1983), bottom-left fill (X-axis) (Chazelle, 1983), maximum

touching perimeter (Lodi et al, 1999), maximum touching

perimeter no walls (Lodi et al, 1999) and minimum area

(Zachariadis et al, 2009). When the routing constraints and the

weight requirements of a solution are satisfied, these methods

will be used (in the mentioned order) to check the loading

feasibility of that solution. These methods load items based on

a pre-determined sequence. This paper uses two such

sequences; when an algorithm fails to obtain a feasible

solution via the first sequence, it proceeds to the second

sequence. It should be noted that the first sequence is obtained

by sorting all items assigned to a vehicle in a non-ascending

order based on their area. The second sequence is based on the

order of visits; in this sequence, items whose customers are

going to be visited first will be loaded last, and all items of the

same customer will be sorted in a non-ascending order based

on the area. All these methods will place a given item in a

location that will be on the list of accessible coordinates. After

registering an item to a location in the loading space,

coordinates of that location will be removed from the list

and a maximum of four new coordinates will be added to that

list. Each heuristic method uses its own criterion to select the

coordinates from the list of accessible coordinates; these

criteria are shown in Table 1. More detailed information can

be found in Zachariadis et al (2009).

It should be noted that if none of the heuristic methods can

obtain a feasible loading for an assessed route, the route will

be reported as infeasible and its objective function will be

penalized.

4.3. ENSLS

The proposed algorithm called ENSLS is an extended version

of NSGA-II (Deb et al, 2002). Like NSGA-II, this algorithm

ranks the solutions in the order of number of times they have

been dominated by other members of population. This method

(like NSGA-II) uses a non-dominated sorting algorithm for

ranking the solutions and forming a number of fronts. Non-

dominated sorting algorithm uses the following procedure to

classify the solutions into several fronts: Algorithm first

assigns all non-dominated solutions to the first front and then

discards them from the solution set. In the second step,

algorithm finds the non-dominated solutions in the new

solution set, assigns them to the second front and again

discards them from the solution set; algorithm repeats this loop

unit all solutions are assigned to a class. Full and detailed

information regarding this algorithm can be found in Deb et al

(2002). Diversity preservation is an important issue in multi-

objective optimizations, so (like NSGA-II) this method uses a

parameter called the crowding distance to estimate the density

of the neighborhood of a solution. This parameter which is

defined within a front shows the distance of a member with the

previous and next members. The first step for calculating this

parameter is to determine the distance of each individual

member i from the j-th objective function by Equation (28);

this equation uses the sorted values of objective functions.

DI
j
i ¼

fj xiþ1ð Þ � fj xi�1ð Þ
�� ��

fmax
j � fmin

j

; j ¼ 1; . . .;m; ð28Þ

in which fj(xi+1) and fj(xi-1) are values of the j-th objective

function of next and previous members and fj
max, fj

min are the

best and worst values of the j-th objective in the front.

Crowding distance of members on corners of the front is

considered to be a large number. Ultimately, crowding

distance of the i-th member of population can be obtained

by using Equation (29).

Cdi ¼
Xm

i¼1
DI

j
i ð29Þ

According to Equation (29), the higher crowding distance of

a member indicates that it has a higher fitness, since it is

located in a less dense area.

ENSLS first generates an initial population, but unlike

NSGA-II which uses the typical GA operators such as

Journal of the Operational Research Society



crossover and mutation to generate a new population, this

method uses the concept of neighborhood for this purpose.

Before running the algorithm, the probability of selection of

each member for moving to its neighborhood is determined.

Based on this probability, method determines the number of

members to be selected in each iteration. Note that this method

uses binary tournament for the selection of members. This

method then merges the population of neighbors with the

previous generation and uses the non-dominated sorting

algorithm to classify them in several fronts. It then sorts the

members of each front in the order of their crowding distance

which the best solutions will be those with the highest

crowding distance. This method then selects a number of

solutions from the merged population (equal to the population

size) and transfers them to the next generation (Figure 3). The

process of generating new population, merging, sorting and

transferring will be repeated until the termination condition is

satisfied. After the last iteration, members of the first front will

be reported as Pareto front approximates.

4.3.1. Initial population Half of the initial solutions are

generated by a random method, and the other half are

generated by a modified nearest neighbor random method. In

the random method, customers are randomly assigned to

vehicles. The modified nearest neighbor random method

generates the solutions via following steps:

1. It first sorts the customers in the ascending order of their

distance from the depot and then assigns the K top

customers to K vehicles, where K is the number of

vehicles.

2. It starts from the first vehicle, as long as the weight and

loading constraints allow, randomly selects one of the two

customers nearest to the last customer assigned to the

vehicle and assigns it to that vehicle.

3. Once weight or loading constraints get violated, it

proceeds to the next vehicle and repeats the process until

all customers are allocated to vehicles.

4.3.2. Neighborhood Neighborhood is defined by three

operators of swap (Waters, 1987), 2-opt (Croes, 1958; Lin,

1965) and or-opt (Waters, 1987). The swap operator switches

the positions of two customers assigned to one or two different

vehicles. Figure 4 shows its method of work.

This figure shows how this operator swaps the customers of

a single route (left) or those from two different routes (right).

In this figure, customers are marked with circles, and bolded

circles represent the customers selected for the swap operation.

The top and bottom sections of this figure show the status of

route(s) before and after the swap. The second operator is a

variant of 2-opt; Figure 5 shows how this operator processes

two customers of same vehicle or those from two different

vehicles.

As this figure shows, when both customers are from the

same route (left), this operator reverses the sequence between

the two, and when customers are from different routes (right),

it replaces the sequences located after the two (including the

selected customers).

The third operator is a variant of or-opt. This operator

changes the location of a single customer. Figure 6 shows its

method of function on a single route (left) or two different

routes (right).

4.3.3. Flowchart of ENSLS Figure 7 shows different steps of

the proposed method.

Table 1 Coordinate selection criteria used by heuristic methods

Heuristic Criteria

Bottom-left fill (Y-axis) Minimum Y-axis coordinate, breaking ties by minimum X-axis coordinate
Bottom-left fill (X-axis) Minimum X-axis coordinate, breaking ties by minimum Y-axis coordinate
Maximum touching perimeter Maximum total touching perimeter (sum of the common arcs with the other items

and the walls of loading space)
Maximum touching perimeter

no walls
Maximum total touching perimeter (sum of the common arcs with the other items)

Minimum area Minimum area of corresponding rectangular surface (Figure 2)

A

B
(xwB,yhA)

W
Front

Rear
Door

H

Figure 2 Corresponding rectangular surface (for coordinate
(xwB, yhA)).
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4.4. An introduction to NSGA-II

NSGA-II is an extended version of genetic algorithm (Holland,

1975) focused on multi-objective optimization. The previous

sections described those parts of NSGA-II that are utilized by

the proposed algorithm; so this section only discusses the

different part, i.e., the children generation.

4.4.1. Crossover and mutation operators in NSGA-II After

selecting the parents which is done via a binary tournament in

this paper, four operators including two-point, three-point, OX

(Oliver et al, 1987) and AEX (Grefenstette et al, 1985) (all

with equal probabilities of being used) are employed to

generate the children. More information regarding OX and

AEX operators can be found in (Puljić and Manger, 2013).

Also the swap operator is used for mutation.

4.5. An introduction to SPEA2

SPEA2 first introduced by Zitzler et al (2001). Unlike NSGA-

II and ENSLS that store the elite population within the main

one, SPEA2 stores this population in another set called

‘‘archive.’’ At the start of algorithm, archive is empty.

Algorithm then generates an initial population and, at each

iteration, merges the members of the main and archived

population; it then assigns a fitness value to each member of

merged population. This value is based on the number of times

this member has dominated by other members, as well as the

density of the region where it is located. This fitness value is

Current population Generated neighbors

Front 1 Front 2 Front 3 Front 5 ...

New population

Non-dominated sorting

Crowding 
distance sorting

Sorted Front 5

Figure 3 Method of updating the population in ENSLS.
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Using operator

Figure 4 Swap operator.
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obtained via following steps: Algorithm first calculates the

number of members that are dominated by member i, and

names it Si. It then obtains the primary fitness of member i by

summing the S values of those members that dominate

i. Finally, it calculates the secondary fitness of each member

(a value less than one) based on the density of the region

where this member is located. In the end, it calculates the final

fitness by summing the primary and secondary fitness values.

The algorithm must then generate a new archive; if the size

of non-dominated members of merged population is less than

or equal to the size of archive, algorithm sorts the members of

merged population in the order of their fitness value and

moves them to the archive; otherwise, it uses a truncation

operator to select the best non-dominated members as much as

the size of archive allows. Truncation operator calculates the

distance of each member from the rest and then sorts these

distances for each member. It then starts to remove the

members with lowest distances; when two or more members

have the same distance, operator moves to the next shortest

distance and when necessary continues this process down to

D

1 2

5 4

3

D

4 3

5 1

2

D

1 2

5 4

3 D

6 7

10 9

8

D

1
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2

Using operator

8

3

Figure 5 2-opt operator.
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Figure 6 Or-opt operator.
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(k - 1)th member (where k is the number of non-dominated

members).

Finally, algorithm uses mutation and crossover operators to

generate a new population. It should be noted that the new

population will replace the current one. This process of

merging, calculating the fitness value, creating the new archive

and generating the new population will be repeated until

termination condition is satisfied. After the last iteration, non-

dominated members of the archive will be reported as the

Pareto front approximates.

Start

Set parameters of problem and 
algorithm

Generate initial solutions using random and modified 
nearest neighbor methods. Check feasibility of 

solutions using heuristics. Sort population using non-
dominated sorting, calculate crowding distance of 

each solution. Save members of first front.

Termination 
condition is 

satisfied?
Report members of first front

Select from population in predetermined number 
for neighborhood move.

Check feasibility of new generation (neighbors) 
and calculate their objective functions.

Merge current and new generations, sort merged 
population using non-dominated sorting and 
calculate crowding distance of each solution.

Update population and sort it using non-
dominated sorting. Then calculate crowding 

distance of each solution and save members of 
first front.

endYes

No

Figure 7 Flowchart of ENSLS.
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This algorithm generates the initial solutions by the same

procedure explained in Section 4.3.1. It performs crossover

and mutation through the same operators described in

Section 4.4.1. Further information in this regard can be found

in Zitzler et al (2001).

5. Computational results

This section presents and analyzes the computational results.

To achieve this aim, first the method of generating problem

instances will be described; then the method of tuning the

parameters of the proposed algorithms will be explained;

afterward the performance evaluation criteria will be

defined; and finally the performance of the proposed

algorithms by solving small- and medium-scale problem

instances will be evaluated. It is worth noting that NSGA-II,

SPEA2 and the proposed algorithm were coded in MATLAB

and executed on a Core i5 2.5 GHz with 6 GB RAM PC

under windows 8.1.

5.1. Problem instances

Since this is the first paper that studies this particular

problem, we had no access to readily available problem

instances, and the needed instances were generated. Two

groups of instances were generated for this problem. The first

group includes 12 instances with 5–10 customers and 2–3

vehicles. These instances are based on E016-03m, E022-04g

and E033-03n instances available in 2L-CVRP literature

(these instances can be found in http://www.or.deis.unibo.it/

research.html). Coordinates and demands of customers in our

instances are in accordance with these problem instances.

Since our problems have 5–10 customers, coordinates and

demands of this number of customers are used. Dimensions

of items are changed from those in original instances, and

only one item is attributed to each customer, because

otherwise these problems could not be solved by the exact

method. The vehicles capacity of the original instances is

also changed to obtain more challenging problems. In the

rest of this paper, these problems will be referred to as small-

scale instance problems. The number of customers and the

number of vehicles for these instances can be seen in

Table 2:

The second group of problems, which are named medium-

scale instances problems, includes 25 problems with 15–100

customers and 4–22 vehicles. In these instances, coordinates,

demands and dimensions of items and vehicles are similar to

selected 2L-CVRP problems. Five instances were selected

from each class of mentioned problems, which included E016-

05m, E036-11h, E051-05e, E072-04f and E101-14s. The

number of customers and the number of vehicles for these

instances can be seen in Table 3:

To add the concept of time dependency to the problems, a

traffic pattern was designed and attached to each arcs. This

traffic pattern consists of five time intervals and starts

with the start of workday. The time required to travel the

arc within the first time interval is considered as the

distance of that arc, and then T4 is defined in the form of

Equation (30):

T4 ¼ n

K
þ 1

� �
� �T ð30Þ

In the above equation, n is the number of customers, K is the

number of vehicles, and �T is the average distance between

customers. The procedures shown in Table 4 are used to

calculate the length of other time intervals (ti denotes the end

of i-th time interval).

In Table 4, Tmax is the size of longest arc in the problem. It

is obvious that the travel time on each arc depends on

the time interval, the slope of the line in that interval and

the length of the arc. Figure 8 shows an instance of the

piecewise linear function with five time intervals described in

Table 4.

Table 3 Number of customers and vehicles for medium-scale instances

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of customers 15 35 50 71 100 15 35 50 71 100 15 35 50
Number of vehicles 5 11 5 4 14 5 11 11 14 19 5 11 11
Sample 14 15 16 17 18 19 20 21 22 23 24 25
Number of customers 71 100 15 35 50 71 100 15 35 50 71 100
Number of vehicles 15 22 5 11 12 16 22 5 11 12 16 22

Table 2 Number of customers and vehicles for small-scale instances

Sample 1 2 3 4 5 6 7 8 9 10 11 12

Number of customers 5 5 5 7 7 7 9 9 9 10 10 10
Number of vehicles 2 2 2 2 2 2 3 3 3 3 3 3

Mahdi Alinaghian et al—A bi-objective mathematical model
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5.2. Parameter setting

Performance of meta-heuristic methods largely depends on the

values of their parameters, so the proper setting of parameters

can have a significant impact on the performance of any

approach that employs these methods. This paper uses the

Taguchi method to set the parameters. Taguchi method for the

design of experiments, introduced in 1960 by Taguchi, is

among the most reliable methods used for adjusting the

parameters; this method can provide the good conditions via

the smallest possible number of experiment (Roy, 2010).

Using this method instead of classic full factorial approach

significantly reduces the time and cost of tests required to set

the parameters. Based on the number of selected parameters

and the factor levels, Taguchi method uses several orthogonal

arrays as experiment matrices. Parameters of ENSIS include:

the probability of selecting a solution for moving to its

neighborhood (Pnb), the size of population in each iteration

(npopualtion) and the number of iterations without any

improvement (non-improve). Parameters of NSGA-II are: the

probability of using crossover and mutation operators (Pc and

Pm, respectively), the size of population in each iteration

(npopualtion) and the number of iterations without any

improvement (non-improve). SPEA2 also has the same

parameters plus another parameter called the size of archive

(narchive). It can be seen that ENSLS has a lower number of

parameters, which can be considered as an advantage. Values

of all the above parameters were determined by the use of

Taguchi method. These values are presented in Table 5.

5.3. Performance metrics

In mono-objective optimization, the goal is to find a single

optimal solution, so the solution methods proposed for these

problems can be compared by comparing their reported

objective function values. Runtime or computation time is

another common metric for such comparison. In multi-

objective optimization, however, solutions should not only

have a good quality in terms of objective function values, but

also have a good diversity and spread to cover more points of

the Pareto front. In this paper, the following parameters are

used to evaluate the performance of the proposed algorithms.

5.3.1. Quality metric (QM) To check the quality of the

solutions, all solutions obtained from all methods are compared

with each other. A new merged set of non-dominated solutions

is obtained, and eventually the contribution of each algorithm to

this set is determined. The higher contribution of an algorithm

points out its better performance.

5.3.2. Spacing metric (SM) The spacing metric measures the

uniformity of distribution of solutions. Literature has provided

several measures for this metric, but this paper uses the

measures introduced by (Deb et al, 2002). This metric can be

calculated via Equation (31):

SM ¼
Pn�1

i¼1 di � �d
�� ��

n� 1ð Þ�d
ð31Þ

where n denotes the number of obtained solutions, di is the

distance between two adjacent solutions in the objective space,

and �d is the average of all di s. Lower values of this metric

point to better performance of the algorithm.

Table 4 Specifications of defined time interval

i ti slopei

1 T4/2 0
2 t1 ? T4/8 0.9
3 t2 ? T4/4 0
4 t3 ? T4/8 -0.9
5 nTmax 0

Time of day

Tr
av

el
 ti

m
e

ijd

0t 1t 2t 3t 4t 5t

Figure 8 Piecewise linear function used in problem instances.
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5.3.3. Diversity metric (DM) The metric, introduced by Zitzler

(1999), demonstrates the extent of non-dominated solutions of

an algorithm and can be calculated by Equation (32).

DM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

i
f1i � min

i
f1i

fmax
1total � fmin

1total

 !2

þ
max

i
f2i � min

i
f2i

fmax
2total � fmin

2total

 !2
vuut ð32Þ

In the above equation, fmax
itotal and fmin

itotal are the maximum and

minimum values of i-th objective function in the solutions of

all of the compared algorithms, respectively. The higher the

value of DM, the better the performance of the algorithm.

5.3.4. Objective functions value In this paper, one of the

criteria used for the comparison of algorithms is the best value

for each objective function obtained by each algorithm.

5.3.5. Computational time Another criterion used for

performance evaluation is the computation time. Time to

find best solutions (OPT) and time to completion (TOT) are

reported for all assessed algorithms.

5.4. Performance of the proposed algorithm in solving

the small-scale problem instances

To evaluate the performance of the proposed method, its

results have been compared with the results of two other

algorithms and also with the results of an exact method. In this

stage, metrics of comparison were the best value obtained for

each objective function and the computational time. To find

the optimal values of objective functions using exact method,

the exact method was used to solve the model for one

objective function regardless to the other one, and then the

same process was followed for the other function. This gave

the best possible value of each objective function. It should be

mentioned that the time reported for the exact method is the

sum of times it takes to obtain the optimal solutions for the two

objectives functions. Then, ENSLS, NSGA-II and SPEA2

were run three times and the best values of objective functions

obtained by each algorithm, time to find best solutions and

time to completion were determined. In the end, the averages

of above mentioned values obtained by each algorithm were

calculated. The results are presented in Tables 6 and 7. Note

that ‘‘gap%’’ in Table 6 shows the deviation of solutions from

the solution of exact method. All three methods showed

similar performances in terms of second objective function, so

the deviations of this objective function were not calculated.

As the table shows, the proposed algorithm outperformed

the other tested algorithms and generated solutions closest to

the solutions of exact method. The average error of ENSLS,

NSGA-II and SPEA2 for the first objective function is 0.28,

0.34 and 0.48%, respectively, and this demonstrates the good

performance of ENSLS in this respect. In the small-scale

problem instances, all algorithms have yielded almost identical

Table 5 Values set for parameters

Parameter/algorithm ENSLS NSGA-II SPEA2

npopulation 15 15 15
non-improved 10�n 10�n 10�n
Pnb 0.8 – –
Pc – 0.6 0.8
Pm – 0.4 0.2
narchive – – 15

Table 6 Computational results obtained for small-scale problem instances (part 1)

Sample GAMS ENSLS NSGA-II SPEA2

Obj. 1 Obj. 2 Obj. 1 %gap Obj. 2 Obj. 1 %gap Obj. 2 Obj. 1 %gap Obj. 2

1 248.29 3200 248.29 0.00 3200 248.29 0.00 3200 248.29 0.00 3200
2 138.69 44 138.69 0.00 44 138.69 0.00 44 138.69 0.00 44
3 1475.37 25705 1475.37 0.00 25705 1475.37 0.00 25705 1475.37 0.00 25705
4 256.94 3700 256.94 0.00 3700 256.94 0.00 3700 256.94 0.00 3700
5 201.36 59 201.36 0.00 59 201.36 0.00 59 201.36 0.00 59
6 1609.93 25705 1609.93 0.00 25705 1610.49 0.03 25705 1610.49 0.03 25705
7 293.70 2700 293.70 0.00 2700 295.51 0.62 2700 293.70 0.00 2700
8 253.33 51 253.33 0.00 51 253.33 0.00 51 253.33 0.00 51
9 1773.71 25705 1776.66 0.17 25705 1776.66 0.17 25705 1779.61 0.33 25705
10 328.07 2900 328.07 0.00 2900 328.07 0.00 2900 328.65 0.18 2900
11 273.51 53 273.51 0.00 53 273.51 0.00 53 274.36 0.31 53
12 1643.32 25705 1696.71 3.25 25705 1696.71 3.25 25705 1723.32 4.87 25705
Ave. 708.02 9627.25 712.71 0.28 9627.25 712.91 0.34 9627.25 715.34 0.48 9627.25
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values for the second objective function, and this is because of

small size of the problems. In the small-scale problems, there

are only a handful of states regarding the amount of load to be

allocated to each vehicle, so all algorithms can achieve

optimal solutions. The computational time obtained for small-

scale problem instances is shown in Table 7.

In terms of OPT Time, on average, ENSLS is about 41 and

30% faster than the NSGA-II and SPEA2 algorithms, respec-

tively. Average values for OPT Time for ENSLS, NSGA-II

and SPEA2 are 1.30, 2.22 and 1.86, respectively, that

demonstrate the good performance of proposed algorithm.

Also all algorithms showed approximately the similar perfor-

mance in terms of the difference between OPT Time and TOT

Time.

5.5. Performance of the proposed algorithm in solving

the medium-scale problem instances

To gauge the performance of the proposed algorithms, like

before, each of these three algorithms was run three times. The

best run performed by each of these algorithms was used to

compare them in terms of quality. However, the average

values of diversity and spacing metrics, best values of

objective functions as well as computational time through

three runs were used as the basis of comparison in these terms.

The results are presented in Tables 8 and 9.

The results presented in Table 8 indicate that in terms of

quality metric (QM), the proposed algorithm is completely

superior to the other two methods, as more than half of the best

non-dominated solutions have been obtained by this algorithm.

In terms of SM and DM metrics, the difference between the

methods is negligible. The graph of Figure 9 provides a more

clear understanding about the quality of solutions obtained by

each algorithm for each instance. Note that higher values of

the quality metric show the better performance of the

algorithm.

Figure 9 shows that in most problem instances, the proposed

algorithm provided higher quality solutions, and this quality

difference increases with the increase in the number of

customers. This difference in performance is reflected in the

fact that in 64% of the problem instances, half or more than

half of the final non-dominated solutions were the contribu-

tions of this algorithm; also, in 28% of the problem instances,

all final non-dominated solutions were the contributions of this

algorithm, which demonstrates the absolute superiority of

ENSLS in terms of quality metric.

The SM values obtained by each algorithm for each problem

instance are plotted in Figure 10. Note that lower values of the

spacing metric represent the better performance of the

algorithm.

Figure 10 shows the minor advantage of SPEA2. The results

show that SPEA2, ENSLS and NSGA-II have had the best

performance in 48, 32 and 20% of instances. In terms of

average value of all SM values, the performances of all tested

algorithms were somewhat similar.

The next stage of comparison is the diversity metric.

Figure 11 shows the DM values for the tested algorithms for

each problem instance. Note that higher values of the DM

demonstrate the better performance of the algorithm.

Figure 11 shows the minor advantage of the proposed

algorithm. The proposed method has had the best performance

in 40% of the problems, while NSGA-II and SPEA2 have been

the best algorithms in 32 and 28% of the instances. In terms of

average value of all DM values, there is no significant

difference between the performances of the algorithms. The

objective functions values and computation time criteria

obtained for medium-scale problem instances are presented

in Table 9.

The results presented in Table 9 demonstrate the good

performance of the proposed method in terms of best objective

function value. The average errors of ENSLS, NSGA-II and

SPEA2 for the first objective function are, 0.26, 4.22 and

Table 7 Computational results obtained for small-scale problem instances (part 2)

Sample GAMS ENSLS NSGA-II SPEA2

Time OPT TOT OPT TOT OPT TOT

1 3.09 0.02 2.81 0.08 2.87 0.12 3.59
2 3.81 0.27 2.53 0.26 3.15 0.47 4.06
3 8.01 0.30 2.57 0.21 2.98 0.07 2.66
4 48.35 1.33 4.63 0.24 4.13 1.09 4.62
5 86.97 1.10 4.40 0.55 4.74 1.26 4.88
6 42.36 1.49 4.84 1.18 5.27 0.84 4.54
7 1612.67 2.26 6.55 7.06 12.70 6.27 11.46
8 628.90 1.83 6.17 2.53 7.99 2.52 7.58
9 1895.83 1.00 5.56 1.70 6.92 1.59 8.28
10 393.12 2.96 8.02 4.93 10.89 4.40 11.40
11 2604.95 1.24 6.18 2.37 8.65 1.80 7.30
12 7023.98 1.86 7.44 5.54 12.46 1.90 8.68
Ave. 1196.00 1.30 5.14 2.22 6.90 1.86 6.59
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6.04%, respectively, and for the second objective function,

these average errors are 0.40, 1.42 and 1.21%.

In terms of OPT Time, on average, SPEA2 is about 15 and

4% faster than the ENSLS and NSGA-II algorithms, respec-

tively. Also, in terms of TOT Time, on average, SPEA2 is

about 16 and 4% faster than the ENSLS and NSGA-II

algorithms, respectively. Figures 12 and 13 show the graphs of

time to find best solutions and time to completion for every

proposed algorithm, respectively, and every individual prob-

lem instance.

Examining these graphs shows that SPEA2, ENSLS and

NSGA-II have had the best OPT time in 44, 28 and 28% of

problem instances, respectively, and the best TOT time in 44,

32 and 24% of problem instances, respectively. Also, as

mentioned, SPEA2 has shown the best average performance in

terms of both OPT time and TOT time.

Overall, these comparisons show that the proposed algo-

rithm completely outperformed the two other algorithms in

terms of solution quality and also has an advantage in terms of

solution diversity. In terms of spacing metric, however,

SPEA2 showed a better performance. Given the simultaneous

importance of solution quality and computational time, we can

conclude that the proposed algorithm (ENSLS) performed

better than NSGA-II and SPEA2. The graph of non-dominated

solutions obtained by the tested algorithms for the instance #23

is presented in Figure 14.

Figure 14 demonstrates the superiority of the proposed

method over NSGA-II and SPEA2 in exploring the Pareto

front. To evaluate the solution improvement process, the graph

of non-dominated solutions of instance #18 after 500, 1000,

2000 and 3000 iterations is plotted in Figure 15.

Figure 15 shows the good performance of the proposed

algorithm in solving the problem and the significant improve-

ment of the solutions after 3000 iterations.

6. Conclusions and recommendations for future studies

This paper studied the two-dimensional loading time-depen-

dent vehicle routing problem. As previously mentioned,

despite the possible applications of this problem in distribution

networks, the literature on simultaneous routing and loading

problems lacks proper investigations related to this problem.

This paper first introduced this problem and then presented it

as a bi-objective mathematical model that incorporates FIFO

property for TDVRP. Given the NP-hard nature of this

problem, an approach called ENSLS was developed to obtain

its solutions. To evaluate the performance of the proposed

algorithm in small- and medium-scale problem instances, its

results were compared with the results of two other algorithms

(SPEA2, NSGA-II). While all algorithms exhibited good

performance in solving the small-scale problem instances, the

Table 8 Computational results obtained for medium-scale problem instances (part 1)

Sample ENSLS NSGA-II SPEA2

QM SM DM QM SM DM QM SM DM

1 0.40 0.24 0.89 0.20 0.51 1.37 0.40 0.07 1.08
2 0.33 0.27 1.10 0.67 0.24 1.01 0.00 0.31 1.23
3 1.00 0.30 0.66 0.00 0.30 0.52 0.00 0.31 1.19
4 1.00 0.94 1.26 0.00 0.74 1.21 0.00 0.67 0.85
5 1.00 0.54 1.04 0.00 0.28 0.74 0.00 0.40 1.13
6 0.25 0.00 1.30 0.25 0.31 1.30 0.50 0.22 1.11
7 0.00 0.00 0.71 0.50 0.09 0.88 0.50 0.31 1.10
8 0.71 0.74 0.98 0.29 0.90 0.99 0.00 0.68 0.83
9 1.00 1.02 1.08 0.00 1.06 1.15 0.00 0.35 0.34
10 0.83 0.70 1.05 0.00 0.77 0.97 0.17 0.85 1.01
11 0.25 0.00 0.59 0.25 0.28 0.76 0.50 0.21 1.27
12 0.33 0.00 0.62 0.33 0.04 1.11 0.33 0.12 1.07
13 0.86 0.59 0.87 0.14 0.69 0.92 0.00 0.53 0.94
14 1.00 0.52 0.57 0.00 0.80 0.93 0.00 0.73 1.05
15 1.00 0.70 1.12 0.00 0.57 0.55 0.00 0.33 0.74
16 0.40 0.44 1.23 0.40 0.35 1.14 0.20 0.33 0.95
17 0.67 0.10 0.84 0.33 0.49 1.23 0.00 0.00 0.72
18 0.60 0.41 1.05 0.30 0.51 1.17 0.10 0.39 1.01
19 0.50 1.27 1.24 0.50 1.09 0.83 0.00 0.77 0.77
20 0.60 0.62 1.15 0.40 0.90 0.99 0.00 0.45 0.74
21 0.25 0.53 1.30 0.50 0.32 1.04 0.25 0.45 0.98
22 0.25 0.14 0.77 0.75 0.64 1.29 0.00 0.13 0.88
23 0.60 0.81 1.26 0.00 0.31 0.92 0.40 0.76 0.95
24 1.00 0.97 0.64 0.00 0.89 1.04 0.00 0.93 1.02
25 0.82 0.54 1.07 0.18 0.60 0.88 0.00 0.55 0.83
Average 0.63 0.50 0.98 0.24 0.55 1.00 0.13 0.43 0.95
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Figure 9 QM values obtained for each medium-scale problem instances.
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Figure 11 DM values obtained for each medium-scale problem instance.
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Figure 12 Time to find best solutions elapsed for each medium-scale problem instance.

Mahdi Alinaghian et al—A bi-objective mathematical model



proposed algorithm showed the best performance, since it only

had 0.28% error in the first objective function, while errors

were 0.34 and 0.48% for NSGA-II and SPEA2, respectively.

Also, average time to find best solutions and average time to

run to completion for ENSLS were 1.30 and 5.14, respectively.

These values were 2.22 and 6.90 for NSGA-II, respectively,

and 1.86 and 6.59 for SPEA2, respectively. In the medium-

scale problems, the average values of QM, SM, DM, best

value of objective 1, best value of objective 2, time to find best

solutions and time to run to completion were 0.63, 0.50, 0.98,

1099.75, 4665.41, 1117.10 and 1234.28 for the proposed

algorithm, 0.24, 0.55, 1.00, 1156.90, 4667.15, 981.61 and

1088.85 for NSGA-II and 0.13, 0.43, 0.95, 1185.22, 4676.76,

940.30 and 1040.93 for SPEA2. These results show the good

performance of the proposed algorithm in solving small-,

medium-scale problems instances and therefore its applicabil-

ity in solving the assessed problem.

The future researches could consider this problem in the

scenarios where items demanded by the customers have a non-

rectangular cross section. Integrating the features of time-

dependent vehicle routing problem with pickup and delivery into

loading constraints could also be an interesting field of research.

Researchers could also explore other approaches to solve the

presented problem with a higher performance and accuracy.
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Figure 13 Time to run to completion elapsed for each medium-scale problem instance.
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Figure 14 Graph of non-dominated solutions obtained by the tested meta-heuristic algorithms for the instance #23.
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