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Abstract:

This paper discusses the Two-dimensional Loading Vehicle Routing Problem with Heterogeneous Fleet,
Sequential Loading, and Items Rotation (2L-HFVRP-SR). Despite the fact that the 2L-HFVRP-SR can be found
in many real-life situations related to the transportation of voluminous items where heterogeneity of fleets, two-
dimensional packing restrictions, sequential loading, and items rotation have to be considered, this rich version
of vehicle routing-and-packing problem has been rarely analyzed in the literature. Accordingly, this paper
contributes to fill this gap by presenting a relatively simple-to-implement algorithm which is able to provide
state-of-the-art solutions for such a complex problem in short computation times. The proposed algorithm
integrates, inside an Iterated Local Search framework, biased-randomized versions of both vehicle routing and
packing heuristics. The efficiency of the proposed algorithm is validated throughout an extensive set of
computational tests.
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1 Introduction

This paper considers a rich variant of the Vehicle Routing Problem (Toth and Vigo 2002; Golden et al. 2008;
Caceres et al. 2015) that combines the vehicle routing and loading (packing) decisions. In particular, the paper
deals with a quite realistic and new variant of the VRP, known as the Two-dimensional Loading Heterogeneous
Feet Vehicle Routing Problem (2L-HFVRP). This new VRP variant is a generalization of the Two-dimensional
Capacitated Vehicle Routing Problem (2L-CVRP), since it relaxes the homogeneous fleet assumption. In the 2L-
CVRP, the customers’ demands consist of lots of rectangular weighted items which cannot be stacked because of
their fragility, weight or shape. Note that the way these items are assigned to vehicles and loaded (packed) into
them can have a major influence on the distribution costs. Thus, in addition to the routing issue, decision-
makers might also face a Two-Dimensional Packing Problem (Riff et al. 2009). Our work was originally
motivated by a real-world case at Opein (www.opein.com), a medium-size enterprise which provides industrial
equipment to its customers, mostly in the building-construction field. Opein has to periodically deliver a large

variety of industrial equipment, including: aerial-work platforms, energy-generation sets, compressors, dumpers,
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forklifts, professional cleaning equipment, etc. Similar issues arise in other enterprises which also deliver large-
size items to their clients, e.g.: kitchen appliances, furniture, etc. Note that these items, which are assumed for
the purposes of this paper to have a rectangular shape, must be efficiently packed on the truck surface in order to
attain high levels of vehicle utilization. Therefore, the distribution of such equipment has to be done considering
not only their weight but also their specific dimensions in width and length. Usually, such equipment cannot be
piled one on top of the other, and cannot overlap either, making this a two-dimensional loading routing problem.
From the point of view of the loading problem, there are different possible scenarios: (i) oriented loading, where
rotation of items is not allowed —i.e., it is assumed that all items have a fixed orientation given as an input of the
problem; (ii) non-oriented loading, where it is allowed to rotate items by 90° during the packing process; (iii)
sequential loading, where items are always loaded in reverse order to the order in which customers are visited
but re-arrangements of items inside the vehicle are not allowed once the route has started; and (iv) unrestricted
loading, where items are allowed to be re-arranged during the distribution process.

In this paper we consider a realistic scenario characterized by the existence of a heterogeneous fleet,
sequential loading requirements, and the possibility of rotating the rectangular items by 90° (non-oriented case)
during the loading stage. To the best of our knowledge, the 2L-HFVRP has only been analyzed in Leung et al.
(2013), and Dominguez et al. (2014a). However, neither of these works considers the more realistic scenario
combining the following three characteristics: heterogeneous fleet, allowance of items rotation, and requirement
of sequential loading. In our opinion, heterogeneous fleets and items rotation during the packing process are
realistic assumptions which have not received enough attention in the literature. Likewise, sequential loading
might be a frequent requirement in real-life distribution practices, since unloading and re-loading heavy
machinery could represent a significant cost both in terms of time as well as required human resources. Figure 1
provides an example of sequential loading for a small 3-vehicle case. Notice that the items have been loaded in
the truck following an inverse order to the one in which the customers are visited (represented by a number
inside a star).
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Figure 1: Example of a sequential loading for a small 3-vehicle case.

Therefore, this work proposes an algorithm for solving the Two-dimensional Loading Vehicle Routing Problem

with Heterogeneous Fleet, Sequential Loading, and Items Rotation (2L-HFVRP-SR). Our algorithm integrates,
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inside an lIterated Local Search (ILS) framework (Lourenco et al. 2003), biased-randomized versions of
classical routing and packing heuristics. Biased-randomization of heuristics refers to the use of skewed
probability distributions to induce ‘biased’ (non-symmetric) random behavior in a heuristic. As described in
Juan et al. (2013a), this technique allows transforming a deterministic heuristic into a multi-start probabilistic
algorithm. On the one hand, for the routing part we use a biased-randomized version of the savings heuristic
(Clarke and Wright, 1964). This version is also enriched with memory-based and splitting local search
strategies, as described in Juan et al. (2011). On the other hand, for the packing part we use biased-randomized
versions of the Best-Fit packing heuristic (Burke et al. 2004) and the Touching Perimeter algorithm (Lodi et al.
1999). The packing process is then integrated inside the savings-based routing process.

This paper is structured as follows: Section 2 describes the 2L-HFVRP-SR model in detail. Section 3
reviews some related work. Section 4 gives an overview of our approach, including an explanation on our
biased-randomized technique. Section 5 provides low-level details about our approach. Section 6 describes
some numerical experiments that contribute to illustrate and validate our approach. Finally, the Conclusions

section summarizes the main contributions and results of this work.

2 Problem formulation

The 2L-HFVRP model is based on a complete undirected graph G = (N, E), where N = {0, /,..., n} is a set of
n+1 nodes, representing the central depot (node 0) and the n customers to be supplied (nodes 1 to n), and E = {(i,
J)/i,] € Nwithi#;} is an edge set. For any pair of nodes (i, j), with i # j, there exists an edge e;; with an
associated traveling distance d;>0. Transportation of goods is performed by using a fleet of P different types of
vehicles, initially located at the depot. The number of available vehicles of each type is assumed to be
unbounded. Each type of vehicle t (t = 1, 2,..., P) has the following properties: fixed cost F:, variable cost per
unit of distance traveled Vi, maximum weight-loading capacity Q: and a loading area A: = W; % L. Furthermore,
it is assumed that vehicles with higher weight-loading capacity show higher fixed and variable costs too.

Therefore, the fixed cost associated with a route R using a vehicle of type t will be F;, while its variable cost is

k=RE
calculated as VC, =V, - Z dg. , Where RE is the number of edges in the route. For each customer i (i € N -
k=1

{0}), m; > 0 is the number of items requested, and D; is the total weight of these items. It is assumed that the
depot has no demand, i.e. mg = 0. For each customer’s item liy ({ <7 <m; ), its length and width dimensions are
denoted by hi and wi, respectively. Depending on whether or not items can be rotated by 90° during the
packing process, and whether or not items are allowed to be re-arranged during the distribution process,
Fuellerer et al. (2009) proposed a classification of four different loading configurations: (a) two-dimensional
sequential oriented loading (2|SOJL); (b) two-dimensional unrestricted oriented loading (2|UO|L); (c) two-
dimensional sequential non-oriented (rotated) loading (2|SR|L); and (d) two-dimensional unrestricted non-
oriented (rotated) loading (2|UR|L). This paper deals with the 2L-HFVRP with sequential oriented (2|SOJ|L) and
non-oriented (2|SR|L) loading. In summary, the following routing and packing constraints assumed in this paper
are as follows:
e Each route starts and ends at a central depot (closed-routes assumption).

e Each customer cannot be served by more than one vehicle.
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e The total load transported by each vehicle cannot surpass the vehicle's maximum weight-loading
capacity, Q.

e Every item must be loaded with its edges parallel to the edges of the vehicles (orthogonal loading).

e The rectangular items have to be contained within the vehicle loading surface area and without
overlapping.

e All items associated to any given customer must be loaded and unloaded from the rear side, employing
only straight movements (one per item), so rearrangements of the items in the vehicle at the customers’
sites are not allowed (sequential loading constraint).

e Items are allowed to be rotated 90° (non-oriented loading).

Under these assumptions, the goal of the 2L-HFVRP is to find a set of routes satisfying all customers’ demands

at a minimum cost while not violating any of the aforementioned constraints.

3 Literature review

During the last decade, real-life constraints have enriched the classical Vehicle Routing Problem (VRP). This has
led to the emergence of new variants, such as for example the Two-dimensional Loading Heterogeneous Fleet
Vehicle Routing Problem (2L-HFVRP). Leung et al. (2013) proposed a Simulated Annealing with heuristic
local search (SA_HLS) to solve this VRP variant. They also give a set of benchmarks which we will use later to
test the efficiency of our approach. However, their paper limits its study to the two-dimensional sequential and
unrestricted oriented loading cases, i.e. without allowing rotation of items. Dominguez et al. (2014a) used a
multi-start biased randomized (MS-BR) algorithm for solving unrestricted two-dimensional loading
configurations of the 2L-HFVRP, including the oriented and non-oriented versions. As far as we know, these are
the only two papers that have analyzed the 2L-HFVRP.

The 2L-HFVRP integrates two combinatorial optimization problems: the Two-dimensional Capacitated
Vehicle Routing Problem (2L-CVRP) and the Heterogeneous Fleet Vehicle Routing Problem (HVRP). For this
reason, we will now provide a brief literature review on the 2L-CVRP and the HVRP. The 2L-CVRP was
originally introduced by lori et al. (2007). They proposed an exact branch-and-cut algorithm for the routing
aspects, whereas the loading requirements of the problem are addressed through the use of lower bounds,
effective heuristics and a specialized branch-and-bound algorithm. However, from the point of view of the
loading configuration, they only address the two-dimensional sequential oriented loading case (2|SO|L).
Although their approach is able to solve instances with up to 35 customers and more than 100 items, there are
smaller instances which remain unsolved. To deal with larger-size 2L-CVRP instances with up to 255 customers
and 786 items, Gendreau et al. (2008) proposed a Tabu Search algorithm designed to solve both the sequential
(2ISO|L) and the unrestricted oriented (2|UOIL) loading configurations. However, the non-oriented (rotated)
loading configuration has rarely been addressed. As far as we know, only Fuellerer et al. (2009) have solved all
four loading configurations. To address this problem, they propose an Ant Colony Optimization (ACO)
algorithm. Also, Dominguez et al. (2014b) proposed a MultiStart-BiasedRand (MS-BR) algorithm to solve both

the two-dimensional unrestricted oriented and the non-oriented loading variants. Nevertheless, the oriented
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versions have received much more attention in the 2L-CVRP literature. Zachariadis et al. (2009) used a hybrid
algorithm combining Tabu Search with a guided local search and five packing heuristics —with different selection
criteria— to develop feasible item loadings. Leung et al. (2011) proposed an Extended Guided Tabu Search
(EGTYS) for the main routing problem and add a new heuristic for the load configuration checking. Additionally,
Leung et al. (2010) employed a Simulated Annealing algorithm to tackle the oriented versions of 2L-CVRP.
Duhamel et al. (2009; 2011) proposed a GRASPXELS (Greedy Randomized Adaptive Search Procedure
hybridized with Evolutionary Local Search) (Prins, 2009). Their approach includes an innovative methodology
to address the 2|UOIL version of the 2L-CVRP based on transformation of the 2L problem into a Resource
Constrained Project Scheduling Problem. More recently, Zachariadis et al. (2013) presented an effective
approach named PRMP (Promise Routing-Memory Packing), with a compact structure. Their approach
combines a local-search method with an effective diversification based on regional aspiration criteria, which
allows them to deal with the routing aspects. The loading feasibility of routes is investigated by a packing
heuristic and an innovative simple-structured memory mechanism. They also introduced several memory-based
components to reduce the computational effort required to examine the loading feasibility constraint. Another
realistic extension of the 2L-CVRP, the two-dimensional loading capacitated vehicle routing problem with time
windows (2L-CVRPTW), was introduced by Khebbache-Hadji et al. (2013). Additionally, Malapert et al.
(2008) proposed a framework to handle the pick-up and delivery extension of the 2L-CVRP. A survey on
Vehicle Routing Problem with Loading Constraints can be found in Wang et al. (2009) and lori and Martello
(2010).

Unlike the 2L-CVRP, the Heterogeneous Fleet Vehicle Routing Problem (HVRP) has been studied
extensively in the VRP literature. According to the number of available vehicles Baldacci el al. (2008) proposed
a classification of these problems in HFVRP with unlimited fleet —also known as the Fleet Size and Mix (FSM)-,
and the limited (HVRP). Furthermore, they consider different costs per type of vehicle, distinguishing between:
fixed (F), variable (D), or both (FD). The HFVRP with unlimited fleet (FSM) consists in determining its optimal
routing scheme with the best fleet composition. The HFVRP with limited fleet consists in optimizing the use of
the available fixed fleet. Golden et al. (1984) published one of the first papers analyzing the heterogeneous
VRP. In this paper, they consider an unlimited number of vehicles. Since then, different features of
heterogeneous VRPs have been studied. Regarding the version with a limited number of vehicles (HVRP),
Taillard (1999) presented an approach based on Tabu Search and Column Generation. Gendreau et al. (1999)
proposed a Tabu Search algorithm, with different variable costs for each type of vehicle, to solve both the FSM-F
and the FSM-D problems. The FSM-F problem was solved by Ochi et al. (1998a, 1998b) and Osman and
Salhi (1996) using a Scatter Search approach and a Tabu Search algorithm, respectively. Lima et al. (2004) and
Liu et al. (2009) proposed a Memetic Algorithm and a Genetic Algorithm, respectively, to solve the FSM-FD.
Tarantilis et al. (2003) solved the HVRP-D by means of a list-based threshold accepting algorithm, in which a
worse solution is only accepted if it is within a given threshold. Tarantilis et al. (2004) also introduced the
Backtracking Adaptive Threshold Accepting algorithm to solve the HVRP-D. Finally, Tarantilis et al. (2008)
proposed a Guided Tabu Search, to solve the heterogeneous fixed fleet vehicle routing problem (HFFVRP).
Regarding exact approaches, Baldacci and Mingozzi (2009) and Pessoa et al. (2009) employed a Set-

Partitioning Based algorithm and Branch-Cut-and-Price (BCP) algorithm, respectively. The Asymmetric and
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Heterogeneous Vehicle Routing Problem (AHVRP), is another variant of the HVRP in which asymmetric
distance-based costs are considered. Herrero et al. (2014) proposed a hybrid methodology for solving the
AHVRP. Their approach combines a randomized version of a well-known savings heuristic with several local

searches specifically adapted to deal with the asymmetric nature of distance-based costs.

4 Overview of our approach

As stated in the Introduction, our approach integrates, inside an ILS framework (Lourenco et al., 2003), biased-
randomized versions of classical routing and packing heuristics. ILS is a conceptually simple yet powerful
metaheuristic that has proven to be very efficient in solving a diversity of combinatorial optimization problems.
The underlying idea behind ILS is to narrow the search for candidate local optimal solutions returned by some
embedded algorithm. In order to do so, an ILS framework iteratively combines a perturbation stage with a local
search stage (Figure 2). The perturbation stage aims at diversifying the search for a better solution inside the
solution space, while the local search aims at intensifying the search for a better solution inside a local vicinity of
the current solution. Usually, an acceptance criterion is also included to help the algorithm to escape from local
minimum solutions. Burke et al. (2010) showed that ILS obtains the best average performance among a set of
selected metaheuristic approaches in three classical combinatorial optimization problems: bin packing,
permutation flow shop, and personnel scheduling. The authors also emphasize two main factors for its success:
(i) an excellent balance between exploration and exploitation by “systematically combining a perturbation
followed by local search”, and (ii) the reduced number of parameters required.

Biased-randomization of heuristics refers to the use of skewed probability distributions to transform fast
deterministic heuristics into probabilistic algorithms Juan et al. (2013a). In our case, we apply this technique
over different routing and packing heuristics. For the routing part, we use a biased-randomized version of the
popular saving heuristic (Clarke and Wright 1964). For the packing part, which is integrated inside the routing
one for providing an integrated routing-and-packing optimization framework, we employ biased-randomized
versions of two well-known packing algorithms: the Best-Fit packing (Burke et al. 2004) and the Touching
Perimeter (Lodi et al. 1999). Moreover, our approach is also enriched with splitting and memory-based
strategies as proposed in Juan et al. (2011). The splitting technique is used during the perturbation stage to
extract a subset of routes from a given feasible solution and then focus the improvement efforts on the associated
sub-problem —notice that by improving the routing-and-packing plan for an independent subpart of a given
solution, the entire solution will be also improved. Furthermore, the memory cache technique allows the
algorithm to ‘remember’ good ways to cover a given set of customers as well as feasible packing configurations

found in the previous iterations. Details on all these components of the algorithm are given in the next section.
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Figure 2: General scheme of our approach.

One important advantage of the proposed algorithm is its relative simplicity and, in particular, the fact that it

employs just three parameters, as discussed in the next section. This reduces to a reasonable level the parameter

fine-tuning process, which is often non-trivial and time-consuming. Finally, the approach proposed in this paper

can be easily parallelizable: just by changing the seed for the pseudo-random number generator, different

instances of the algorithm can be run in parallel using different threads, cores, or computers, thus providing high-

quality results for complex combinatorial optimization problems in just a few seconds, as it has been already

shown for similar frameworks and related vehicle routing problems (Juan et al. 2013b).

Finally, it is worthy to highlight at this point the main differences between the algorithm presented here and

other previous algorithms we have developed in the past for solving simpler variants of the 2L-VRP:

a)

b)

While our previous algorithms for simpler versions of the 2L-VRP followed a Multi-Start scheme, this
algorithm is more evolved in the sense that it follows an Iterated Local Search (ILS) scheme (including the
use of a base solution and an acceptance criterion). In general, ILS approaches —when properly set— tend to
be more efficient —both in terms of solutions’ quality and in terms of computing times— than Multi-Start
ones. In fact, a Multi-Start approach can be seen as a particular (extreme) case of an ILS.

More importantly, the problem considered in this paper implies dealing with the sequencing issue during the
distribution process. This additional constraint requires from specific strategies and procedures. In
particular, both the Best-Fit packing heuristic (Burke et al. 2004) and the Touching Perimeter algorithm
(Lodi et al. 1999) have been modified throughout a biased-randomized process so that they can efficiently
deal with the sequencing constraint of the problem. Also, the new algorithm improves the packing

procedure, including a memory cache technique for storing feasible packing solutions.



5 Low-level details of our approach

This section provides the pseudo-code details of the proposed algorithm. These details allow other authors and
end users to quickly implement our algorithm in order to: (a) reproduce the experiments we have run and
compare our approach against other approaches; and (b) use our approach to solve real-life applications of the
2L-HFVRP-SR. Thus, Figure 3 shows the pseudo-code associated with the algorithm’s main procedure. Once
the instance inputs (customers’ demands of items, available vehicles, and items’ sizes and weights) have been
loaded into the program, an initial base solution is generated throughout the Pack-And-Route procedure (the
generation process is explained later in detail). This initial base solution is also set as the best solution so far
(lines 1 and 2). Then, the algorithm starts an ILS-like procedure (lines 4 to 21) that aims at improving the best
solution by combining a destruction-construction (perturbation) stage of the base solution with a local search
stage (lines 5 to 9). The perturbation and local search stages are based on splitting and cache techniques
proposed in Juan et al. (2011) for the Capacitated Vehicle Routing Problem. In the perturbation stage, a set of
adjacent routes is extracted from the base solution using a random selection process (destruction phase). This set
of routes —together with its vehicle configuration and packing— constitutes a sub-solution for a 2L-HVRP-SR

problem of smaller size than the original one (line 6) —and, therefore, easier to be efficiently solved.

Procedure ILS-BR(inputs, o, maxPackIter, B)

01 baseSol € packAndRoute (inputs, «, B) ¢ biased randomization
02 DbestSol € baseSol

03 delta € 0 % auxiliary variable

04 while {stopping condition not met} do

05 subSol € extractRoutesAtRandom (baseSol) ¢ destruction phase
06 subInptus € getSubProblem (subSol)

07 newSubSol € packAndRoute (subInputs, o, maxPackIter, B) % reconstruction phase
08 newSubSol € applyCache (newSubSol) ¢ fast local search

09 newSol € merge (baseSol, newSubSol)

10 delta € cost(newSol) - cost (baseSol)

11 if {delta < 0} then % base improvement

12 credit € -delta

13 baseSol € newSol

14 if {cost (newSol) < cost(bestSol)} then

15 bestSol € newSol

16 end if

17 else if {0 < delta < credit} then ¢ acceptance criterion

18 credit € 0

19 baseSol € newSol

20 end if

21 end while

22 return bestSol
end procedure

Figure 3: Pseudo-code of our ILS-BR main procedure.

Next, the sub-problem is solved using the Pack-and-Route procedure (line 7), and the resulting sub-solution is
merged with the non-extracted routes (line 9) to generate a new solution for the original problem (re-
construction phase). In fact, before this merging process occurs, a fast local search based on a cache of already
computed routes is completed (line 8). Basically, for each route in the sub-solution, a hash map data structure
containing the best found-so-far way to visit them is checked and, if appropriate, the route is updated. After the

local search, the cost of the new solution is compared against the cost of the base solution (line 10). Whenever
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the former is lower than the latter, the base solution is updated (line 13). A similar update process is made with
our best-found solution if appropriated (line 15). Under some circumstances, the base solution will be updated
with the new solution even if the latter shows a higher cost (line 19). This degradation of the base solution is
performed occasionally in order to diminish the probability of the algorithm getting trapped in a local minimum.
In our case, we use the following Demon-based criterion for accepting a downgrade of the base solution: (a) the
size of the downgrade has to be inferior to the size of the last upgrade (represented in the pseudo-code by the
credit variable); and (b) no two consecutive downgrades can be done (this is attained by resetting the credit to 0
anytime a downgrade is applied).

Figure 4 shows the pseudo-code for the Pack-and-Route procedure. First, a dummy solution is generated as
described in the popular savings heuristic by Clark and Wright (1964), i.e., a round-trip route from the depot to
each customer is created (line 1). This initial solution employs the smallest possible vehicle on every route.
Then, following the savings heuristic, the procedure computes the savings associated with each edge (line 2).
These edges are initially sorted from highest to lowest savings and, afterwards, re-sorted according to a biased-
randomization process —so that the higher the savings associated with one edge, the higher is the probability that
the edge gets ranked at the top of the list (line 3).

Procedure packAndRoute (inputs, o, maxPackIter, )

01 sol € genDummySol (inputs) % dummy CWS solution using smallest vehicles

02 savingsList € buildSavingsList (inputs)

03 savingsList € biasedRandSort (savingsList, a) % biased-rand of savings list
04 while {savingsList is not empty} do

05 nextEdge € extractNextEdge (savingsList)

06 iNode € getOriginNode (nextEdge)

07 jNode € getDestinyNode (nextEdge)

08 iRoute € getRoute (iNode, sol)

09 jRoute € getRoute (jNode, sol)

10 vehType € selectSmallestWeightCapableVehType (iRoute, jRoute)
11 isPackingFeasible €« false

12 isMergeAnImprovement € false

13 while {veh in vehType has not been checked} do

14 isMergeAnImprovement € checkIfMergeImprovesSol (iRoute, jRoute, veh)
15 if {isMergeAnImprovement is true} do

16 isPackingFeasible € checkPacking(iRoute, jRoute, vehType, maxPackIter, B)
17 if {isPackingFeasible is false} then

18 if {vehType is not the largest type of vehicle} do

19 vehType € selectNextLargerTypeOfVehicle (vehType)

20 else

21 exit while § refers to the nested one

22 end if

23 end if

24 end if

25 end while

26 if {isMergeAnImprovement} and {isPackingFeasible} then

27 newRoute € merge (iRoute, JjRoute, veh)

28 sol € update (iRoute, jRoute, newRoute)

29 end if

30 end while
31 return sol
end procedure

Figure 4: Pseudo-code of the Pack-and-Route procedure.




As discussed in detail in Juan et al (2010, 2013a), this biased randomization of the savings list allows edges to
be selected in a different order each time the procedure is called while, at the same time, the logic behind the
savings heuristic is maintained. In our case, a skewed Geometric distribution is employed to induce this biased
randomization behavior. The Geometric distribution uses one single parameter, o, which is relatively easy to set
since 0 < a < 1. After completing some preliminary tests with different values for a and analyzing the
corresponding outcomes, we decided to set a = 0.3 in our computational experiments. At this point, the dummy
solution is used as the initial solution in an iterative, route-merging, constructive process (lines 4 to 30). At each
iteration, the edge at the top of the biased-randomized list is extracted, and the two routes connected by this edge
are merged using the smallest possible vehicle if, and only if, the following conditions hold: (a) there is a vehicle
available with enough capacity, in terms of weight, to carry the items coming from both merging routes; (b) the
new merged route would reduce total costs —including both distance-based costs as well as costs associated with
the type of vehicle being employed; and (c) the items from both routes can be conveniently loaded in the selected
vehicle, i.e., they can be packed without overlapping and keeping the sequential order defined by the merged
route. Notice that the checking of the packing feasibility might become a non-trivial and time-consuming
process, which is discussed next. Figure 5 shows the pseudo-code of the procedure that completes a fast
checking of the packing feasibility. This procedure tries to quickly find a feasible solution that satisfies the

weight capacity constraint, the packing-without-overlapping constraint, and the sequence-loading constraint.

Procedure checkPacking (iRoute, jRoute, vehType, maxPackIter, f)
01 isPackingFeasible € false

02 itemsList € getItems (iRoute, jRoute)

03 custOrder € getCustomerOrder (iRoute, jRoute)

04 packingSol € emptySol
05 if {items total area <= vehicle loading surface} then

06 packingSol € checkPackingCache (custOrder, vehType) % checks memory cache

07 if {packingSol is not emptySol} then

08 isPackingFeasible € true % feasible packing already in memory

09 else ¢ try the biased-randomized version of the Touching Perimeter heuristic
10 packingSol € biasedRandTP (itemsList, custOrder, vehType, maxPackIter, B)
11 if {requestedLength (packingSol) <= length(vehType)} then

12 update packing cache with packingSol

13 isPackingFeasible € true

14 else ¢ try the biased-randomized version of the Best Fit heuristic

15 packingSol € biasedRandBF (itemsList, custOrder, vehType, maxPackIter, B)
16 if {requestedLength (packingSol) <= length(vehType)} then

17 update packing cache with packingSol

18 isPackingFeasible € true

19 end if

20 end if

21 end if

22 end if

23 return isPackingFeasible
end procedure

Figure 5: Pseudo-code of the Check Packing Feasibility procedure.

Firstly, this procedure makes use of a cache memory (a hash map data structure) in order to quickly check
whether a feasible packing solution was found before for the same configuration (line 6). If this is not the case,
then the procedure employs biased-randomized versions of two fast and well-known packing heuristics (lines 10
and 15): the Touching Perimeter (Lodi et al. 1999) and the Best-Fit (Burke et al. 2004). Again, by employing
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the biased-randomization technique described in Juan et al. (2011), these deterministic heuristics are
transformed into probabilistic algorithms (biasedRandTP and biasedRandBF, respectively) that are likely to
provide different outcomes each time they are run. These outcomes are then used to feed the memory cache,
which keeps the best packing solution found so far for a given vehicle-items-order configuration. Basically, this
randomization process aims at introducing some non-uniform randomness into the constructive part of the
heuristic by employing a skewed probability distribution. In a similar way as we did for the routing part, a
Geometric distribution of parameter £ is used to induce the biased-random behavior in the packing heuristics.
Again, we completed some preliminary tests with different values of £ and, after analyzing the outcomes, we
decided to randomly select a new £ value, in the interval (0.06, 0.24), each time a packing heuristic is called.
Finally, a maximum number of iterations is also included as a parameter. This parameter allows reducing the
computation time employed in running the heuristics. In our experiments, we set this parameter to be twice the

number of items to be packed.

6 Numerical experiments

The algorithm described in this paper has been implemented as a Java application. A single core of an Intel®
CoreTM i7-2670QM at 2.2 GHz and 4GB RAM was used to perform all the tests, which were run directly on the
Netbeans platform installed over a Windows 7 operating system. In order to test our algorithm, we used the
benchmarks described in Leung et al. (2013), which are a generalization of the classical 2L-CVRP benchmarks
used in lori et al. (2007) and Gendreau et al. (2008). The generalization was made by adding information
about capacity, loading surface, fixed and variable costs for each of the four types of vehicles considered. In
particular, we selected the benchmarks associated with the sequential loading, which are composed of 5 classes
of instances —differing in the number and size of their items—, each class including 36 instances. Using our
algorithm, the instances were run under two different scenarios, depending on whether or not the rotation of
items was allowed. For each scenario, and for each instance-class combination, we run five replications of our
algorithm, each of them using a different randomization seed. Each replication was run for a maximum time of 1
minute, i.e., a maximum time of 5 minutes was allowed for each scenario-instance-class combination. For the
two-dimensional sequential oriented (without items rotation) loading scenario, 2|SO|L, we compare our results
against the Simulated Annealing with Heuristic Local Search (SA_HLS) proposed in Leung et al. (2013). The
SA_HLS was coded in C++ and it was run on a computer with a Core 2 Duo at 2.2 GHz and 2 GB RAM under
Windows 7. As far as we know, for the two-dimensional sequential non-oriented (with items rotation) loading
scenario, 2|SR|L, there are no previous results published. For that reason, we decided to compare the results we
obtained for both scenarios as a way of estimating the reduction in costs derived from allowing rotation of items
—whenever this might be a valid assumption. Tables 1-3 show the results obtained for the three aforementioned
approaches: SA_HLS (oriented), our best solution for the oriented scenario (OBS O), and our best solution for
the scenario with rotation (OBS R). The values associated with the SA_HLS were directly obtained from Leung
et al. (2013). The values associated with our methodology correspond to the best solution found after five runs.
The computation time in seconds required to obtain the best solution in each case have been also included
whenever they were available. With regard to Class 1, since all its items are square-shaped, results for this class
are the same regardless items rotation is or is not allowed.
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Finally, we have also tested the efficiency of our approach for the two-dimensional unrestricted oriented
loading version, 2|UO|L. Table 4 shows a comparison between our algorithm and the aforementioned SA_HLS.
In this case, the sequential loading constraint is removed, i.e., re-arrangements of the items inside the vehicle at
the customers’ sites are allowed. Once again, we include our best solution of the five runs, the CPU time elapsed

and the percentage of improvement over the SA_HLS for this non-sequential loading version.
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Table 1. Comparison for the 2|Sx|L between the SA_HLS (x = O) and OBS (both x = O and x = R) - Classes 1 and 2.

Class 1 Class 2
Instance | SA HLS  t(s OBS t(s SAHLS  OBS t(s 0BS t(s

) ((1)) Oriented (2) (g)) Gap (M- | " 1) Oriented 2) (g)) Rotation (3) (g)) Gap (1)-(2) ~ Gap (1)-3)

[ 59607 2978 596.07 0.00 0.00% | 60426 604.26 0.00 602.88 0.42 0.00% 0.23%
2| 679.18 5.05 670.30 0.00 131% | 72160 721.60 0.06 700.94 0.00 0.00% 2.86%
3| 74551 1239 74551 0.01 0.00% | 77290 772.90 0.26 765.80 0.02 0.00% 0.92%
4| 69433 6.15 694.33 188 0.00%| 72190 700.13 0.03 697.06 0.02 L.77% 3.44%
5| 76119 5.62 758.47 0.02 036%|  799.80 783.08 0.44 762.92 0.30 -2.00% 4.61%
6| 80056 477 809.56 0.07 0.00%| 82880 828.80 0.10 824.60 0.04 0.00% 0.51%
7| 321183 367 321153 0.35 0.00% | 653435  6,324.92 263 595200  10.82 3.21% 8.91%
8| 318445 321 318445 0.17 0.00%| 509706 502573 114 4804.14 0.64 -1.40% 5.75%
9| 1,029.95 739 1,029.95 0.01 0.00%| 103494 103494 000 102995 0.03 0.00% -0.48%
10| 514951 697 493234 0.87 4200 | 834256  7.990.31 893 743925 3200 422%  -10.83%
11| 511940 697 493234 0.88 3.65%| 841074  8182.93 1333 800751 5836 2.71% -4.79%
12| 165856 3580 165573 0.31 017%| 167456 167456 004 167456 0.04 0.00% 0.00%
13| 14.655.40 193 1457987 0.15 0.52% | 2877160  27.546.67 4670 2631879  56.68 -4.26% -8.53%
14| 1001900 1351 909752 0.09 -9.20% | 1158030  11.005.84 3082  10389.98 2.79 4.96%  -10.28%
15| 1015170 549  9,007.52 008  -1038%| 1140230  11,076.43 2338 1078029  39.42 -2.86% 5.46%
16| 120258 1794 127622 0.01 1.27% | 128583 128583 010  1.280.90 0.03 0.00% 0.38%
17| 177083 3888 176432 0.03 037%| 175650  1.766.50 045 176650 3.99 0.57% 0.57%
18| 314055 1354 316076 0.95 093% | 604431 602964 2525 586261  40.71 -0.24% -3.01%
19| 155311 3256 149028 0.18 4.05% | 455017 457873 5576 395568 5551 043%  -13.24%
20| 195697 5600  1776.44 128 9.23%| 630387  6007.52 5624 535401 4563 470%  -15.07%
21| 256718 7500 247047 5180 3.77%| 916920 906172 5823 685861 5821 A17%  -25.20%
22| 260590 7639 247047 5152 5.20%| 953565  9,386.85 3875 716696  30.01 156%  -24.84%
23| 264384 9399 247047 5173 6.56% | 963210  9,537.27 1856 798490 5950 098%  -17.10%
24| 255541 6398 247047 4951 3.32%| 506740  4872.06 2004 458458 4323 -3.85% -9.53%
25| 207250 12004  2.728.40 6.01 8.21% | 13562.00  13,042.68 5408 1067978 5181 383%  -21.25%
26| 404064 8809  3477.26 144  -1413%| 1216560  11.831.64 2668 1059548 5100 275%  -12.91%
27| 356158 15020  2.728.40 658  -2330%| 5939.16  5604.27 5157 537307 4475 4.12% -9.53%
28| 685835 12560 406570 4685  -40.72% | 2491480  23,009.34 4697 1943358  59.00 7.20%  -22.00%
20| 969500 13973  9,10507 4526 6.08% | 2257300  22,243.22 5924 2037910  50.75 -1.46% 9.72%
30| 566333 24245 304679 4246  -3031%| 17.450.40  16,496.79 5787 1490024  57.93 551%  -14.66%
31| 805490 32551 537031 5079  -3333%| 2239360  21,550.63 5087 1828214  57.56 3.76%  -18.36%
32| 840861 37953 537034 5099  -36.13%| 2213440 2194556 5712 1893552 5472 085%  -14.45%
33| 855558 36850  5377.08 4882  -37.15%| 2216620  21.829.14 5000 1884663  56.40 1529%  -14.98%
34| 553663 32350 426378 4412 -2200%| 15497.00 1547471 5700 1360624  56.09 014%  -12.20%
35| 444459 32464 391117 5944  -1200%| 902399 878593 5447 834024  57.42 -2.64% -7.58%
36| 366089 55513  2847.02 5505  -2242%| 464615 453031 5680 429080  59.42 -2.49% 7.65%
Averages 416720 10493 357071 19.13 9.71%  9,25353  8,981.46 2897 803412 3323 2.09% 9.46%
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Table 2. Comparison for the 2|Sx|L between the SA_HLS (x = O) and OBS (both x = O and x = R) - Classes 3 and 4.

Class 3 Class 4
Instance | SA HLS  OBS Oriented t(s) OBS Rotation t(s) SA HLS  OBS Oriented t(s) OBS Rotation t(s)

1 597.28 609.81 0.00 597.04 0.01 2.10% -0.04% 614.99 614.14 0.14 596.07 0.02 -0.14% -3.08%
2 734.36 728.24 2.54 728.24 36.46 -0.83% -0.83% 684.99 695.91 0.02 695.91 0.02 1.59% 1.59%
3 791.54 779.47 4.06 777.60 0.02 -1.53% -1.76% 765.74 765.74 0.03 754.87 0.03 0.00% -1.42%
4 698.96 698.96 0.01 697.06 24.38 0.00% -0.27% 703.76 703.76 0.49 703.76 0.01 0.00% 0.00%
5 838.34 772.53 4.93 772.53 0.79 -7.85% -7.85% 805.20 789.89 51.13 768.74 0.03 -1.90% -4.53%
6 836.09 836.09 9.86 827.60 0.04 0.00% -1.01% 849.56 837.00 8.51 836.22 5.26 -1.48% -1.57%
7 5,456.98 5,216.26 0.06 5,135.66 0.03 -4.41% -5.89% 5,648.18 5,596.04 15.96 5,466.90 21.34 -0.92% -3.21%
8 6,840.48 6,680.41 25.32 6,400.11 3.04 -2.34% -6.44% 6,346.72 6,346.72 7.91 6,290.15 2.81 0.00% -0.89%
9 1,072.82 1,045.32 0.85 1,029.95 0.09 -2.56% -4.00% 1,052.67 1,052.67 0.60 1,052.62 5.05 0.00% 0.00%
10 7,045.68 6,580.03 35.64 6,173.72 47.17 -6.61% -12.38% 8,408.75 7,927.68 8.61 7,977.48 14.29 -5.72% -5.13%
11 9,175.84 8,491.06 28.97 8,289.87 18.68 -7.46% -9.66% 9,947.59 9,523.92 30.18 8,820.13 24.34 -4.26% -11.33%
12 1,681.51 1,681.51 0.11 1,681.51 0.05 0.00% 0.00% 1,685.18 1,680.01 0.74 1,680.01 0.89 -0.31% -0.31%
13| 26,212.20 25,614.96 9.06 24,598.85 58.61 -2.28% -6.15% | 28,382.00 27,645.11 36.95 26,103.64 58.75 -2.60% -8.03%
14| 11,415.60 10,944.31 56.88 11,345.99 42.35 -4.13% -0.61% | 10,965.80 10,781.90 5.93 10,233.70 53.03 -1.68% -6.68%
15| 11,644.60 11,316.73 5.52 10,753.20 43.35 -2.82% -7.66% | 12,358.10 11,956.69 43.03 11,449.40 25.39 -3.25% -7.35%
16 1,301.60 1,294.93 0.08 1,288.07 0.14 -0.51% -1.04% 1,296.62 1,290.00 0.19 1,290.00 0.20 -0.51% -0.51%
17 1,787.67 1,766.50 3.06 1,766.50 2.25 -1.18% -1.18% 1,767.66 1,766.50 1.78 1,766.50 142 -0.07% -0.07%
18 5,761.77 5,478.57 53.06 5,197.55 50.79 -4.92% -9.79% 6,416.46 6,343.99 45,76 6,084.39 13.46 -1.13% -5.18%
19 4,405.53 4,339.54 55.31 3,907.65 58.13 -1.50% -11.30% 4,924.24 4,909.05 18.57 4,641.27 33.83 -0.31% -5.75%
20 6,517.72 5,964.79 43.59 5,468.92 44.83 -8.48% -16.09% 6,676.43 6,151.25 49.42 5,689.54 46.89 -71.87% -14.78%
21| 10,271.00 9,837.16 54.47 8,228.34 55.71 -4.22% -19.89% 8,605.04 8,380.50 39.29 7,840.41 41.13 -2.61% -8.89%
22 9,583.69 9,229.27 59.42 8,117.96 58.69 -3.70% -15.29% 9,614.78 9,120.47 39.24 8,107.14 54.28 -5.14% -15.68%
23 9,086.49 9,007.05 54.79 7,555.01 59.59 -0.87% -16.85% 9,019.58 8,867.02 42.90 8,230.75 36.97 -1.69% -8.75%
24 4,713.20 4,566.74 45.68 4,271.53 59.73 -3.11% -9.37% 4,937.93 4,670.16 56.07 4,520.48 35.47 -5.42% -8.45%
25| 12,041.90 11,169.26 54.88 10,049.97 55.15 -7.25% -16.54% | 12,488.90 12,560.32 58.73 11,558.30 55.52 0.57% -7.45%
26| 12,895.50 11,882.81 59.67 10,700.47 35.98 -7.85% -17.02% | 14,120.20 13,251.60 59.49 11,725.40 58.82 -6.15% -16.96%
27 6,273.66 6,003.14 58.86 5,735.30 39.99 -4.31% -8.58% 5,895.78 5,820.64 55.72 5,497.14 58.59 -1.27% -6.76%
28| 24,376.40 23,902.85 51.87 20,023.42 116.42 -1.94% -17.86% | 24,796.20 23,753.12 56.51 21,579.76 59.76 -4.21% -12.97%
29| 22,746.10 21,236.21 46.88 20,343.62 59.25 -6.64% -10.56% | 24,164.20 22,950.32 58.28 21,568.48 55.08 -5.02% -10.74%
30| 18,107.10 16,939.47 58.88 15,222.37 56.14 -6.45% -15.93% | 17,974.40 17,937.61 54.80 16,450.52 58.07 -0.20% -8.48%
31| 23,643.40 22,106.28 59.46 20,243.98 56.75 -6.50% -14.38% | 24,192.90 23,476.65 49.59 21,480.92 59.72 -2.96% -11.21%
32| 21,951.30 20,513.42 59.76 17,921.40 56.57 -6.55% -18.36% | 22,939.40 22,633.35 55.36 20,308.82 58.45 -1.33% -11.47%
33| 23,392.00 22,804.37 58.99 20,344.29 59.33 -2.51% -13.03% | 24,245.10 23,910.80 41.49 21,899.41 57.40 -1.38% -9.67%
34| 15,778.40 15,358.08 58.78 14,185.86 57.20 -2.66% -10.09% | 16,022.90 16,198.56 58.80 15,326.26 56.27 1.10% -4.35%
35 9,815.20 9,541.24 51.91 8,876.94 44.29 -2.79% -9.56% | 10,042.10 9,747.07 55.40 9,226.53 56.35 -2.94% -8.12%
36 4,866.30 4,779.03 59.26 4,524.41 53.38 -1.79% -7.03% 4,643.86 4,521.06 59.45 4,280.03 57.80 -2.64% -7.83%
Averages 9,287.73 8,881.01 34.24 8,160.62 37.65 -3.51% -9.01% 9,555.66 9,310.48 32.42 8,680.60 32.41 -2.00% -6.56%
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Table 3. Comparison for the 2|Sx|L between the SA_HLS (x = O) and OBS (both x = O and x = R) - Classes 5 and Avg 2-5.

Class 5 Averages Classes 2-5
Instance | SA HLS  OBS t(s 0BS t(s SAHLS  t(s 0BS t(s 0BS t(s

1)  Oriented (2) (g)) Rotation (3) (g)) Gap (1)-(2) ~ Gap (1)-(3) o ((1)) Oriented (2) (.(2)) Rotation (3) (g)) Gap (1)-(2) ~ Gap (1)-3)

1| 5907 596.07 0.07 596.07 0.05 0.00% 0.00% |  603.15 573 606.07 0.05 598.02 012 0.48% 0.85%
2| e70.18 670.30 0.00 670.30 0.01 1.31% 131%| 70503 6.09 70401 0.66 698.85 9.12 0.14% -0.88%
3| 757.06 754.87 0.01 754.87 0.01 0.29% 020%| 77181 10.35 768.24 1.09 763.29 0.02 0.46% -1.10%
4| 60487 694.87 0.05 694.87 0.02 0.00% 0.00% | 70487 8.71 701,68 0.14 698.19 6.11 0.45% -0.95%
5|  766.89 758.47 5.18 758.47 459 1.10% 110% | 80256 9.35 775.99 15.42 765.67 143 3.31% -4.60%
6| 82460 824.60 0.03 822,69 0.01 0.00% 023%| 83476 9.2 831,62 462 827.78 134 0.38% -0.84%
7| 544379 494564 1095 472364 0.44 9.15%  -1323%| 577083 195 552071 740 531957 8.16 4.33% 7.82%
8| 424788 423824 074  3864.97 0.27 0.23% 9.01% | 563304 477 557278 878  5339.85 169 1.07% -5.20%
o| 102095  1,029.95 004  1,029.95 0.03 0.00% 0.00% | 1,047.60 1574 1040.72 037 103562 130 -0.66% -1.14%
10| 712504  6477.68 1606 6,065.00 17.46 9.10%  -1489% | 7.730.73 587  7.243.93 1731 691386 27.73 630%  -1057%
11| 64335 611672 519 605352 46.91 4.93% 5.91% | 849194 1007 8078.66 1942 779276 37.07 4.87% 8.23%
12| 168518 168677 004 167752 0.07 0.09% 0.45% | 168161 329  1680.71 023 167840 0.26 -0.05% -0.19%
13| 2367990  22,993.08 5946  22,808.22 57.83 2.90% -3.68% | 26,761.43 671  25949.96 3804  24.957.37 57.97 -3.03% -6.74%
14| 1051950 1027123 2507 10,005.07 10.64 -2.36% -4.89% | 11,120.30 1129 10750.82 2068  10493.68 27.20 3.32% -5.63%
15| 1226020  11,869.99 3085  11527.11 33.98 3.18% -5.98% | 11.916.30 2453 11,554.96 2560  11,127.50 35,53 3.03% -6.62%
16| 128090  1,280.90 006  1,280.90 0.04 0.00% 0.00% | 12901.24 2573 1287.92 011 128497 0.10 -0.26% -0.49%
17| 179014 176857 029 176857 46.27 -1.20% -1.20% | 177549 4341 176702 140 1767.02 13.48 -0.48% -0.48%
18| 493005 447179 5354 443596 14.62 0.48%  -1020%| 579062 305 558100 4440 539513 29.89 3.62% -6.83%
19| 332410 327467 2889 3.284.60 21.03 -1.49% -1.19% | 430326 5144 427550 39.63 394730 4212 -0.65% -8.27%
20| 536380 445031 5683 413383 5260  -16.86%  -22.93% | 6,215.48 9814 564572 5152 516157 4751 917%  -16.96%
21| 593213 587558 2330  5437.85 51.98 -0.95% 8.33% | 849437 12415  8283.74 4382 709130 51.76 242%  -1652%
2| 673427 603444 5063  5899.70 3845  -1039%  -12.39% | 8,867.10 1104 844276 4926 732294 4558 479%  -17.41%
23| 643003 657036 5931  5504.20 51.19 204%  -1452%| 854430 13044 849542 4389 731872 5181 057%  -14.34%
24| 413778 398483 4643 380504 51.84 -3.70% 8.04% | 471408 10498 452345 4453 429541 4757 -4.04% -8.88%
25| 831647 769350 4387 722721 50.62 749%  -13.10%| 1160232 18628 1111644 5280 987882 55.53 419%  -14.85%
26| 1033080 920051 57.71  8.185.74 5093 -1102%  -2083% | 1238028 15321 1154164 5080 1030177 5143 6.77%  -16.79%
27| 542240 535072 5895 510117 55.91 1.16% 5.92% | 588275 24004  5.719.45 56.27 542667 49.81 2.78% 7.75%
28| 2025500  17,545.98 50.04  16,007.78 5371 -1337%  -2052% | 2358560 39372 2207532 5382 10,283.63 72.22 640%  -18.24%
20| 2227190 2102583 5681  20,143.84 57.79 5.50% 9.55% | 2293880 48655  21,863.90 5530  20,608.76 55.72 460%  -10.16%
30| 1241790 1112003 5519  10,388.77 5241  -1045%  -1634% | 1648970 53678 1562348 56.60  14,240.48 56.14 5.25%  -13.64%
31| 1790230  16477.95 50.05 1485319 59.75 7.96%  -17.03% | 2203305 11108  20,902.88 57.22 1871506 58.44 513%  -15.06%
32| 1690560  14.294.70 5880  13,644.6 5830  -1544%  -1929% | 20,982.68 104006  19.846.76 57.76  17.702.61 57.01 541%  -15.63%
33| 17:82330 1582848 5830  13,648.79 5950  -11.19%  -2342% | 21.906.65 108793  21.093.20 5219  18,684.78 58.16 371%  -1471%
34| 1272170 1158958 57.58  10,480.51 58.21 8.90%  -17.62%| 1500500 1680.67  14,655.23 58.04  13,399.72 56.94 233%  -10.70%
35| 837287 813806 5730  7.776.65 52.74 -2.80% 712% | 931354 172296  9,053.07 5477 855500 52.70 -2.80% -8.14%
36| 411285 405225 5770 388348 51,98 L47% 5.58% | 456720 203508  4,470.66 5830  4.244.68 55.65 2.12% -7.06%
Averages 750858 7,054.88 3234 663985 32.79 481% 8.78% 892388 32103 8,556.96 3199 7,878.80 34.02 3.01% 8.45%
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Table 4. Comparison for the 2|UO|L between the SA_HLS and OBS — Classes 2 to 5 and Avg 2-5.

Class 2 Class 3 Class 4 Class 5 Average Classes 2-5
Gap Gap Gap Gap Gap
Inst. SA_HLS OBS t(s) (%) SA_HLS OBS t(s) (%) SA_HLS OBS t(s) (%) SA_HLS OBS t(s) (%) SA_HLS ILS-BR t(s) (%)

1 602.88 602.88 0.06 0.00 589.15 597.04 0.05 1.34 614.99 596.07 0.02 -3.08 596.07 596.07 0.04 0.00 600.77 598.02 0.04 -0.43
2 702.45 702.45 0.00 0.00 730.22 728.24 015  -0.27 684.99 695.91 0.01 1.59 679.18 670.30 000 -1.31 699.21 699.22 0.04 0.00
3 769.13 769.13 0.05 0.00 790.74 777.60 005 -1.66 765.74 754.87 0.02 -1.42 754.87 754.87 0.00 0.00 770.12 764.12 0.03 -0.77
4 697.06 697.06 0.00 0.00 697.06 697.06 8.60 0.00 703.76 703.76 0.00 0.00 694.87 694.87 0.00 0.00 698.19 698.19 2.15 0.00
5 762.92 762.92 0.01 0.00 833.68 772.53 0.03  -7.33 788.78 768.74 0.11 -2.54 761.97 758.47 0.48  -0.46 786.84 765.67 0.16 -2.58
6 827.60 824.60 0.00 -0.36 836.09 827.60 003 -1.01 837.00 827.81 0.06 -1.10 824.60 824.60 0.01 0.00 831.32 826.15 0.03 -0.62
7 6,343.55 6,251.37 0.02 -1.45 5,216.26 5,189.41 464 -051 5,574.00 5,433.80 0.37 -2.52 5,386.27 4,866.88 438 -9.64 5,630.02 5,435.36 2.35 -3.53
8 5,071.52 4,960.83 288 -2.18 6,820.56 6,672.52 0.09 -2.17 6,538.33 6,097.00  23.08 -6.75 3,979.98 3,979.98 0.40 0.00 5,602.60 5,427.58 6.61 -2.78
9 1,029.95 1,029.95 0.01 0.00 1,029.95 1,029.95 0.02 0.00 1,052.62 1,052.62 7.05 0.00 1,029.95 1,029.95 0.02 0.00 1,035.62 1,035.62 177 0.00
10 8,401.68 7,709.91  13.08 -8.23 6,853.97 6,343.17 435  -7.45 8,072.01 7,621.86  31.13 -5.58 7,172.52 6,391.70 1.92 -10.89 7,625.05 7,016.66 12.62 -8.04
11 8,465.67 7,886.43 1515 -6.84 8,751.56 8,230.31 160 -5.96 9,699.32 9,035.06  16.31 -6.85 6,402.22 6,101.67 212 -4.69 8,329.69 7,813.37 8.79 -6.09
12 1,674.56 1,674.56 0.03 0.00 1,681.51 1,681.51 0.04 0.00 1,683.02 1,680.01 0.09 -0.18 1,685.18 1,686.77 0.01 0.09 1,681.07 1,680.71 0.04 -0.02
13 27,842.80 26,982.03 096 -3.09 25,454.10  24,670.93 596  -3.08 2758540  26,596.69  45.18 -3.58 | 23,032.40  22,727.13  46.83  -1.33 25,978.68 2524419  24.73 -2.77
14 10,979.30  10,547.05 1248 -394 11,176.90 10,804.18 6.52 -3.33 10,809.90  10,512.96  51.24 -2.75 | 10,510.20 9,980.88  32.61 -4.95 10,869.08 10,46352  25.71 -3.74
15 11,160.20  10,738.77  56.16 -3.78 11,227.40 10,894.05  31.72 -2.97 11,900.50  11,422.24  33.66 -4.02 | 11,672.30 11,249.32 4880  -3.62 11,490.10 11,076.10  42.58 -3.60
16 1,285.83 1,285.83 0.24 0.00 1,300.95 1,294.93 026  -0.46 1,299.81 1,290.00 0.56 -0.75 1,280.90 1,280.90 0.57 0.00 1,291.87 1,287.92 0.41 -0.30
17 1,763.63 1,766.50 5.40 0.16 1,787.84 1,766.50 1544  -1.19 1,788.18 1,766.50 9.81 -1.21 1,766.50 1,766.50 3.97 0.00 1,776.54 1,766.50 8.65 -0.56
18 6,017.02 5,748.70 1448 -4.46 5,680.14 521648 3496  -8.16 6,283.94 594197  56.98 -5.44 4,723.56 4,517.83 1232 -4.36 5,676.17 5,356.25  29.68 -5.60
19 4,510.52 4,398.48  53.93 -2.48 4,371.60 427258  26.32 -2.27 4,781.83 4,706.71 18.40 -1.57 3,305.97 3,199.57 30.20 -3.22 4,242.48 414433 3221 -2.38
20 6,311.25 579778  52.83 -8.14 6,334.52 5,798.47  56.83  -8.46 6,655.06 598587 5543  -10.06 5,312.39 4,263.86 5854 -19.74 6,153.31 546149 5591 -11.60
21 8,745.10 8,262.07 3535 -552 9,917.98 9,058.61 4575  -8.66 8,393.49 8,017.68  24.38 -4.48 5,826.53 5,652.57 57.83  -2.99 8,220.78 7,747.73  40.83 -5.41
22 9,041.16 9,179.52  58.16 1.53 9,323.96 8,844.74 2390 -5.14 9,301.88 8,809.44  47.09 -5.29 6,630.77 5729.16  46.38 -13.60 8,574.44 8,140.72  43.89 -5.63
23 9,280.84 9,283.83  47.03 0.03 8,809.96 8,495.21 58,61  -3.57 8,727.79 8,325.05  51.59 -4.61 6,447.68 6,118.55 51.13  -5.10 8,316.57 8,055.66  52.09 -3.31
24 4,941.33 4,691.45  46.57 -5.06 4,558.84 4,281.13 5749  -6.09 4,698.84 4,457.04  58.23 -5.15 3,992.34 3,81840 5558  -4.36 4,547.84 4312.01 54.47 -5.16
25 12,822.20 12,41748 5547 -3.16 11,576.60 10,61850  50.70  -8.28 12,784.20  11,593.16  54.98 -9.32 8,288.69 7,360.96 5347 -11.19 11,367.92 10,497.53  53.66 -7.99
26 11,993.00 11,29530 56.98 -5.82 12,337.50 10,715.76 ~ 50.08 -13.14 13,039.90  12,360.82 59.34 -5.21 9,755.44 9,046.14 5952  -7.27 11,781.46 10,85451  56.48 -7.86
27 5,683.65 5370.61 3842 -551 6,109.92 5,682.85  52.37 -6.99 5,689.62 5456.35  57.68 -4.10 5,297.72 5,02455 5390 -5.16 5,695.23 5,383.59  50.59 -5.44
28 23,463.50 21,526.19 3790 -8.26 24,720.80  22,291.42  59.68  -9.83 23,517.90  21,347.81 59.82 -9.23 | 18,741.70 16,127.10  59.14 -13.95 22,610.98  20,323.13  54.14 -10.32
29 22,24380 20,345.33  52.08 -8.53 21,060.20 19,757.00 4373  -6.19 23,039.10  21,395.14  59.28 -7.14 | 21,161.60  20,13943  56.83  -4.83 21,876.18  20,409.22  52.98 -6.67
30 16,752.30 15,769.04  59.09 -5.87 17,092.60 16,197.69 3940  -5.24 17,14430  16,616.55  59.93 -3.08 | 12,183.20 10,467.34  59.84 -14.08 15,793.10 14,762.66  54.57 -7.07
31 21,906.60 20,17492  59.30 -7.90 21,905.90 20,769.28  52.16  -5.19 23,197.60  21,601.85  59.84 -6.88 | 17,491.70 1492459  57.64 -14.68 21,125.45 19,367.66  57.23 -8.66
32 21,729.60 20,902.46  59.57 -3.81 20,896.30 19,21380 5831  -8.05 21,835.80  20,509.59  59.41 -6.07 | 15,981.00 13,47225 59.78 -15.70 20,110.68 18,52452  59.27 -8.41
33 21,971.70  20,674.07 5756 -5.91 23,063.20 21,04191 5999  -8.76 23,267.20  22,302.71 60.00 -4.15 | 17,376.30 14,563.41  58.86 -16.19 21,419.60 19,645.53  59.10 -8.75
34 1511550 1451821  59.94 -3.95 15,374.20 14,218.25  57.57 -7.52 15,347.00  14,921.17 58.71 -2.77 | 12,101.40 10,908.30  59.82  -9.86 14,484.53 13,641.48  59.01 -6.03
35 8,765.86 8,205.04 59.06 -6.40 9,412.89 8,733.19  56.06 -7.22 9,594.11 9,159.57 57.80 -4.53 8,075.70 7,727.09 5590  -4.32 8,962.14 8,456.22  57.21 -5.62
36 4,475.44 4,19426 5836 -6.28 4,689.83 443156 5828 -551 4,425.41 4,244.01 59.01 -4.10 3,952.45 3,871.79 5455  -2.04 4,385.78 4,18541 5755 -4.48
Avgs 9,004.20 8,554.08 29.68 -3.48 8,972.64 8,406.00 28.38  -4.73 9,225.65 8,739.12  34.35 -4.00 7,357.67 6,730.63  31.76  -5.82 8,640.04 8,107.46  31.04 -4.51
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7 Discussion of results

For the sequential case, an initial look at Tables 1-3 allows us to conclude the following: (i) for the non-oriented
scenario, our algorithm is able to improve most of the individual results —as well as the average results— provided
by the SA_HLS algorithm, with individual average gaps ranging from -2.00% (Class 4) to -9.71% (Class 1), and
a total average gap for Classes 2 to 5 of -3.01%; (ii) results can be further enhanced, with respect to the oriented
version of our algorithm, by allowing rotation of items in Classes 2 to 5; and (iii) computational times employed
by our approach are far inferior to those employed by the SA_HLS algorithm using a similar CPU.

Since some of the gaps in Table 1 are noticeable, after checking again our results to make sure they were right
we contacted the authors of the paper Leung et al. (2013) in order to ask for their results. They kindly reply with
their latest results they have obtained (not published yet). These new results are now much closer to ours and,
therefore, they support the gaps obtained by our algorithm.

Figure 6 allows comparing, for each class (class number between parentheses), the total costs associated
with the best-found solution provided by each algorithm: SA-HLS (oriented), our algorithm oriented (OBS O),
and our algorithm with rotation (OBS R). Notice that: (i) Class 1 is the one showing the lowest costs; (ii) inside
each class, the average cost associated with OBS O is always lower than the one generated with the SA_HLS;
and (iii) in each class (except class 1 where items rotation has no impact), the cost associated with OBS R
represents always an additional improvement over the costs associated with OBS O —i.e., in practical situations,

the possibility of rotating items contributes to reduce costs.

Boxplots of Total Costs by Algorithm and Class
{each class contains 36 instances, the class number is in parentheses)
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Figure 6. Comparison of Total Costs among SA_HLS Oriented, OBS Oriented, and OBS with Rotation.
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Figure 7 allows comparing the gaps between results generated by pairs of algorithms and classes. In particular,
notice the following: (i) when comparing the SA_HLS with OBS O, the greater gaps are those associated with
classes 1 and 5; (ii) similarly, when comparing the SA_HLS with OBS R, the greater gaps are those associated
with classes 1, 2, and 5 —of course, this comparison has to take into account that SA_HLS does not consider
rotation of items, so the values provided by the SA_HLS are only used as references—; and (iii) comparing both
the oriented and non-oriented scenarios of our algorithm for Classes 2 to 5, it follows that additional costs
reductions (sometimes over 10% in size) can be attained by allowing the rotation of items during the loading
stage, especially for classes 2 and 3.

Boxplots of Gaps by Algorithm and Class
{each class contains 36 instances, the class number is in parentheses)

Class 1 Class 3 Class 5
0% | “ | |
-10%5
o
G 2% g
SA_HLS vs OBS-O Yy,
Y
-30% A SA_HLS vs OBS-R AY ~ J
OBS-O vs OBS-R
¥ ¥
-40% { & "
T T T T T T T T T T T T T T T
R I R T I T T
#ﬁx q}%ﬂu #{}u #ﬂk #ﬁu é;}u . i #%k . W5 o i #Qg% #@% é;}u @%‘% X X
e e G- S o G v N+ G
’ ’ ’ ’ , ;aﬂ ;jﬂ ;jﬂ L L ’ ’ ’ ’ ’
&S W @ W T e /\.-;, ,@ B B G
A . S S . L L S S ()

Figure 7. Comparison of Gaps among SA_HLS Oriented, OBS Oriented, and OBS with Rotation.

In order to show the complexity of the 2L-HFVRP-SR, Figure 8 illustrates the sequential packing solution
obtained for instance 10 in class 3.

Finally, regarding the unrestricted oriented loading case our approach also obtains high-quality solutions
with low computational times. As we can see in Table 4, the improvements are even better than in the case of
the sequential oriented loading version. Thus, the total average gap for Classes 2 to 5 between our approach and
the SA_HLS is about 4.51%. As we would expect, the sequential loading constraint —in which the delivery order
is taken into account— increases the average cost with respect to the unrestricted loading version of the problem —

about 5.54% according to our results for the considered set of benchmarks.
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Figure 8. Sequential packing solution found for instance 10 in class 3.
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8 Conclusions

This paper focuses on a rich and realistic version of the Two-Dimensional Vehicle Routing Problem (2L-VRP),
which includes heterogeneity of vehicles, sequential loading, and items rotation. The version considered not
only can be frequently encountered in real-life applications, but it also represents an important research
challenge since it combines a heterogeneous vehicle routing problem with a highly-constrained packing problem.
Although some recent papers have partially discussed the heterogeneous fleet, sequential loading, and items
rotation versions of the 2L-VRP, to our knowledge this is the first work in the literature including all these
conditions simultaneously. The paper presents a hybrid algorithm which combines biased-randomized versions
of routing and packing heuristics inside an Iterated Local Search framework. Our approach considers both
routing and packing costs simultaneously to better support the decision-making process. According to the results
obtained, the algorithm proposed is able to provide state-of-the-art solutions to the richer version of the 2L-VRP

and also to outperform other state-of-the-art approaches for the version without rotation.
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