350 research outputs found

    Energy Efficient Hybrid Routing Protocol Based on the Artificial Fish Swarm Algorithm and Ant Colony Optimisation for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are a particular type of distributed self-managed network with limited energy supply and communication ability. The most significant challenge of a routing protocol is the energy consumption and the extension of the network lifetime. Many energy-efficient routing algorithms were inspired by the development of Ant Colony Optimisation (ACO). However, due to the inborn defects, ACO-based routing algorithms have a slow convergence behaviour and are prone to premature, stagnation phenomenon, which hinders further route discovery, especially in a large-scale network. This paper proposes a hybrid routing algorithm by combining the Artificial Fish Swarm Algorithm (AFSA) and ACO to address these issues. We utilise AFSA to perform the initial route discovery in order to find feasible routes quickly. In the route discovery algorithm, we present a hybrid algorithm by combining the crowd factor in AFSA and the pseudo-random route select strategy in ACO. Furthermore, this paper presents an improved pheromone update method by considering energy levels and path length. Simulation results demonstrate that the proposed algorithm avoids the routing algorithm falling into local optimisation and stagnation, whilst speeding up the routing convergence, which is more prominent in a large-scale network. Furthermore, simulation evaluation reports that the proposed algorithm exhibits a significant improvement in terms of network lifetime

    Multiprocessor System-on-Chips based Wireless Sensor Network Energy Optimization

    Get PDF
    Wireless Sensor Network (WSN) is an integrated part of the Internet-of-Things (IoT) used to monitor the physical or environmental conditions without human intervention. In WSN one of the major challenges is energy consumption reduction both at the sensor nodes and network levels. High energy consumption not only causes an increased carbon footprint but also limits the lifetime (LT) of the network. Network-on-Chip (NoC) based Multiprocessor System-on-Chips (MPSoCs) are becoming the de-facto computing platform for computationally extensive real-time applications in IoT due to their high performance and exceptional quality-of-service. In this thesis a task scheduling problem is investigated using MPSoCs architecture for tasks with precedence and deadline constraints in order to minimize the processing energy consumption while guaranteeing the timing constraints. Moreover, energy-aware nodes clustering is also performed to reduce the transmission energy consumption of the sensor nodes. Three distinct problems for energy optimization are investigated given as follows: First, a contention-aware energy-efficient static scheduling using NoC based heterogeneous MPSoC is performed for real-time tasks with an individual deadline and precedence constraints. An offline meta-heuristic based contention-aware energy-efficient task scheduling is developed that performs task ordering, mapping, and voltage assignment in an integrated manner. Compared to state-of-the-art scheduling our proposed algorithm significantly improves the energy-efficiency. Second, an energy-aware scheduling is investigated for a set of tasks with precedence constraints deploying Voltage Frequency Island (VFI) based heterogeneous NoC-MPSoCs. A novel population based algorithm called ARSH-FATI is developed that can dynamically switch between explorative and exploitative search modes at run-time. ARSH-FATI performance is superior to the existing task schedulers developed for homogeneous VFI-NoC-MPSoCs. Third, the transmission energy consumption of the sensor nodes in WSN is reduced by developing ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called Novel Ranked Based Clustering (NRC). In cluster formation parameters such as residual energy, distance parameters, and workload on CHs are considered to improve LT of the network. The results prove that ARSH-FATI-CHS outperforms other state-of-the-art clustering algorithms in terms of LT.University of Derby, Derby, U

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    ARSH-FATI a Novel Metaheuristic for Cluster Head Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor network (WSN) consists of a large number of sensor nodes distributed over a certain target area. The WSN plays a vital role in surveillance, advanced healthcare, and commercialized industrial automation. Enhancing energy-efficiency of the WSN is a prime concern because higher energy consumption restricts the lifetime (LT) of the network. Clustering is a powerful technique widely adopted to increase LT of the network and reduce the transmission energy consumption. In this article (LT) we develop a novel ARSH-FATI-based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called novel ranked-based clustering (NRC) to reduce the communication energy consumption of the sensor nodes while efficiently enhancing LT of the network. Unlike other population-based algorithms ARSH-FATI-CHS dynamically switches between exploration and exploitation of the search process during run-time to achieve higher performance trade-off and significantly increase LT of the network. ARSH-FATI-CHS considers the residual energy, communication distance parameters, and workload during cluster heads (CHs) selection. We simulate our proposed ARSH-FATI-CHS and generate various results to determine the performance of the WSN in terms of LT. We compare our results with state-of-the-art particle swarm optimization (PSO) and prove that ARSH-FATI-CHS approach improves the LT of the network by ∌25%

    Energy-efficient device-to-device communication in internet of things using hybrid optimization technique

    Get PDF
    Device-to-device (D2D) communication has grown into notoriety as a critical component of the internet of things (IoT). One of the primary limitations of IoT devices is restricted battery source. D2D communication is the direct contact between the participating devices that improves the data rate and delivers the data quickly by consuming less battery. An energy-efficient communication method is required to enhance the communication lifetime of the network by reducing the node energy dissipation. The clustering-based D2D communication method is maximally acceptable to boom the durability of a network. The oscillating spider monkey optimization (OSMO) and oscillating particle swarm optimization (OPSO) algorithms are used in this study to improve the selection of cluster heads (CHs) and routing paths for D2D communication. The CHs and D2D communication paths are selected depending on the parameters such as energy consumption, distance, end-to-end delay, link quality and hop count. A simulation environment is designed to evaluate and test the performance of the OSMO-OPSO algorithm with existing D2D communication algorithms (such as the GAPSO-H algorithm, adaptive resource-aware split-learning (ARES), bio-inspired cluster-based routing scheme (Bi-CRS), and European society for medical oncology (ESMO) algorithm). The results proved that the proposed technique outperformed with respect to traditional routing strategies regarding latency, packet delivery, energy efficiency, and network lifetime

    An energy-efficient cluster head selection in wireless sensor network using grey wolf optimization algorithm

    Get PDF
    Clustering is considered as one of the most prominent solutions to preserve theenergy in the wireless sensor networks. However, for optimal clustering, anenergy efficient cluster head selection is quite important. Improper selectionofcluster heads(CHs) consumes high energy compared to other sensor nodesdue to the transmission of data packets between the cluster members and thesink node. Thereby, it reduces the network lifetime and performance of thenetwork. In order to overcome the issues, we propose a novelcluster headselection approach usinggrey wolf optimization algorithm(GWO) namelyGWO-CH which considers the residual energy, intra-cluster and sink distance.In addition to that, we formulated an objective function and weight parametersfor anefficient cluster head selection and cluster formation. The proposedalgorithm is tested in different wireless sensor network scenarios by varyingthe number of sensor nodes and cluster heads. The observed results conveythat the proposed algorithm outperforms in terms of achieving better networkperformance compare to other algorithms

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance
    • 

    corecore