344 research outputs found

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Runtime home mapping for effective memory resource usage

    Full text link
    In tiled Chip Multiprocessors (CMPs) last-level cache (LLC) banks are usually shared but distributed among the tiles. A static mapping of cache blocks to the LLC banks leads to poor efficiency since a block may be mapped away from the tiles actually accessing it. Dynamic policies either rely on the static mapping of blocks to a set of banks (D-NUCA) or rely on the OS to dynamically load pages to statically mapped addresses (first-touch). In this paper, we propose Runtime Home Mapping (RHM), a new dynamic approach where the LLC home bank is determined at runtime by the memory controller when the block is fetched from main memory, trying to map each block as close as possible to the requestor thus speeding up execution time and lowering message latencies. Block migration and replication provide further improvements to basic RHM. Also, in a further optimization we eliminate the directory structure. All these optimizations involve specific NoC optimizations and co-designs. Results with PARSEC and SPLASH-2 applications show, when compared with alternative solutions, that RHM achieves a 41% and 35% average reduction in load and store latencies respectively compared to static mapping. This leads to an average reduction of 28% in applications execution.Lodde, M.; Flich Cardo, J. (2014). Runtime home mapping for effective memory resource usage. Microprocessors and Microsystems. 38(4):276-291. doi:10.1016/j.micpro.2014.03.008S27629138

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks

    A RECONFIGURABLE AND EXTENSIBLE EXPLORATION PLATFORM FOR FUTURE HETEROGENEOUS SYSTEMS

    Get PDF
    Accelerator-based -or heterogeneous- computing has become increasingly important in a variety of scenarios, ranging from High-Performance Computing (HPC) to embedded systems. While most solutions use sometimes custom-made components, most of today’s systems rely on commodity highend CPUs and/or GPU devices, which deliver adequate performance while ensuring programmability, productivity, and application portability. Unfortunately, pure general-purpose hardware is affected by inherently limited power-efficiency, that is, low GFLOPS-per-Watt, now considered as a primary metric. The many-core model and architectural customization can play here a key role, as they enable unprecedented levels of power-efficiency compared to CPUs/GPUs. However, such paradigms are still immature and deeper exploration is indispensable. This dissertation investigates customizability and proposes novel solutions for heterogeneous architectures, focusing on mechanisms related to coherence and network-on-chip (NoC). First, the work presents a non-coherent scratchpad memory with a configurable bank remapping system to reduce bank conflicts. The experimental results show the benefits of both using a customizable hardware bank remapping function and non-coherent memories for some types of algorithms. Next, we demonstrate how a distributed synchronization master better suits many-cores than standard centralized solutions. This solution, inspired by the directory-based coherence mechanism, supports concurrent synchronizations without relying on memory transactions. The results collected for different NoC sizes provided indications about the area overheads incurred by our solution and demonstrated the benefits of using a dedicated hardware synchronization support. Finally, this dissertation proposes an advanced coherence subsystem, based on the sparse directory approach, with a selective coherence maintenance system which allows coherence to be deactivated for blocks that do not require it. Experimental results show that the use of a hybrid coherent and non-coherent architectural mechanism along with an extended coherence protocol can enhance performance. The above results were all collected by means of a modular and customizable heterogeneous many-core system developed to support the exploration of power-efficient high-performance computing architectures. The system is based on a NoC and a customizable GPU-like accelerator core, as well as a reconfigurable coherence subsystem, ensuring application-specific configuration capabilities. All the explored solutions were evaluated on this real heterogeneous system, which comes along with the above methodological results as part of the contribution in this dissertation. In fact, as a key benefit, the experimental platform enables users to integrate novel hardware/software solutions on a full-system scale, whereas existing platforms do not always support a comprehensive heterogeneous architecture exploration

    Locality-oblivious cache organization leveraging single-cycle multi-hop NoCs

    Get PDF
    Locality has always been a critical factor in on-chip data placement on CMPs as accessing further-away caches has in the past been more costly than accessing nearby ones. Substantial research on locality-aware designs have thus focused on keeping a copy of the data private. However, this complicatesthe problem of data tracking and search/invalidation; tracking the state of a line at all on-chip caches at a directory or performing full-chip broadcasts are both non-scalable and extremely expensive solutions. In this paper, we make the case for Locality-Oblivious Cache Organization (LOCO), a CMP cache organization that leverages the on-chip network to create virtual single-cycle paths between distant caches, thus redefining the notion of locality. LOCO is a clustered cache organization, supporting both homogeneous and heterogeneous cluster sizes, and provides near single-cycle accesses to data anywhere within the cluster, just like a private cache. Globally, LOCO dynamically creates a virtual mesh connecting all the clusters, and performs an efficient global data search and migration over this virtual mesh, without having to resort to full-chip broadcasts or perform expensive directory lookups. Trace-driven and full system simulations running SPLASH-2 and PARSEC benchmarks show that LOCO improves application run time by up to 44.5% over baseline private and shared cache.Semiconductor Research CorporationUnited States. Defense Advanced Research Projects Agency (Semiconductor Technology Advanced Research Network

    OrthoNoC: a broadcast-oriented dual-plane wireless network-on-chip architecture

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksOn-chip communication remains as a key research issue at the gates of the manycore era. In response to this, novel interconnect technologies have opened the door to new Network-on-Chip (NoC) solutions towards greater scalability and architectural flexibility. Particularly, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. This work presents ORTHONOC, a wired-wireless architecture that differs from existing proposals in that both network planes are decoupled and driven by traffic steering policies enforced at the network interfaces. With these and other design decisions, ORTHONOC seeks to emphasize the ordered broadcast advantage offered by the wireless technology. The performance and cost of ORTHONOC are first explored using synthetic traffic, showing substantial improvements with respect to other wired-wireless designs with a similar number of antennas. Then, the applicability of ORTHONOC in the multiprocessor scenario is demonstrated through the evaluation of a simple architecture that implements fast synchronization via ordered broadcast transmissions. Simulations reveal significant execution time speedups and communication energy savings for 64-threaded benchmarks, proving that the value of ORTHONOC goes beyond simply improving the performance of the on-chip interconnect.Peer ReviewedPostprint (author's final draft

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version

    Efficient Cache Coherence on Manycore Optical Networks

    Get PDF
    Ever since industry has turned to parallelism instead of frequency scaling to improve processor performance, multicore processors have continued to scale to larger and larger numbers of cores. Some believe that multicores will have 1000 cores or more by the middle of the next decade. However, their promise of increased performance will only be reached if their inherent scaling challenges are overcome. One such major scaling challenge is the viability of efficient cache coherence with large numbers of cores. Meanwhile, recent advances in nanophotonic device manufacturing are making CMOS-integrated optics a realityâ interconnect technology which can provide significantly more bandwidth at lower power than conventional electrical analogs. The contributions of this paper are two-fold. (1) It presents ATAC, a new manycore architecture that augments an electrical mesh network with an optical network that performs highly efficient broadcasts. (2) It introduces ACKwise, a novel directory-based cache coherence protocol that provides high performance and scalability on any large-scale manycore interconnection net- work with broadcast capability. Performance evaluation studies using analytical models show that (i) a 1024-core ATAC chip using ACKwise achieves a speedup of 3.9Ã compared to a similarly-sized pure electrical mesh manycore with a conventional limited directory protocol; (ii) the ATAC chip with ACKwise achieves a speedup of 1.35Ã compared to the electrical mesh chip with ACKwise; and (iii) a pure electrical mesh chip with ACKwise achieves a speedup of 2.9Ã over the same chip using a conventional limited directory protocol
    corecore