8,583 research outputs found

    INTEGRATIVE ANALYSIS OF OMICS DATA IN ADULT GLIOMA AND OTHER TCGA CANCERS TO GUIDE PRECISION MEDICINE

    Get PDF
    Transcriptomic profiling and gene expression signatures have been widely applied as effective approaches for enhancing the molecular classification, diagnosis, prognosis or prediction of therapeutic response towards personalized therapy for cancer patients. Thanks to modern genome-wide profiling technology, scientists are able to build engines leveraging massive genomic variations and integrating with clinical data to identify “at risk” individuals for the sake of prevention, diagnosis and therapeutic interventions. In my graduate work for my Ph.D. thesis, I have investigated genomic sequencing data mining to comprehensively characterise molecular classifications and aberrant genomic events associated with clinical prognosis and treatment response, through applying high-dimensional omics genomic data to promote the understanding of gene signatures and somatic molecular alterations contributing to cancer progression and clinical outcomes. Following this motivation, my dissertation has been focused on the following three topics in translational genomics. 1) Characterization of transcriptomic plasticity and its association with the tumor microenvironment in glioblastoma (GBM). I have integrated transcriptomic, genomic, protein and clinical data to increase the accuracy of GBM classification, and identify the association between the GBM mesenchymal subtype and reduced tumorpurity, accompanied with increased presence of tumor-associated microglia. Then I have tackled the sole source of microglial as intrinsic tumor bulk but not their corresponding neurosphere cells through both transcriptional and protein level analysis using a panel of sphere-forming glioma cultures and their parent GBM samples.FurthermoreI have demonstrated my hypothesis through longitudinal analysis of paired primary and recurrent GBM samples that the phenotypic alterations of GBM subtypes are not due to intrinsic proneural-to-mesenchymal transition in tumor cells, rather it is intertwined with increased level of microglia upon disease recurrence. Collectively I have elucidated the critical role of tumor microenvironment (Microglia and macrophages from central nervous system) contributing to the intra-tumor heterogeneity and accurate classification of GBM patients based on transcriptomic profiling, which will not only significantly impact on clinical perspective but also pave the way for preclinical cancer research. 2) Identification of prognostic gene signatures that stratify adult diffuse glioma patientsharboring1p/19q co-deletions. I have compared multiple statistical methods and derived a gene signature significantly associated with survival by applying a machine learning algorithm. Then I have identified inflammatory response and acetylation activity that associated with malignant progression of 1p/19q co-deleted glioma. In addition, I showed this signature translates to other types of adult diffuse glioma, suggesting its universality in the pathobiology of other subset gliomas. My efforts on integrative data analysis of this highly curated data set usingoptimizedstatistical models will reflect the pending update to WHO classification system oftumorsin the central nervous system (CNS). 3) Comprehensive characterization of somatic fusion transcripts in Pan-Cancers. I have identified a panel of novel fusion transcripts across all of TCGA cancer types through transcriptomic profiling. Then I have predicted fusion proteins with kinase activity and hub function of pathway network based on the annotation of genetically mobile domains and functional domain architectures. I have evaluated a panel of in -frame gene fusions as potential driver mutations based on network fusion centrality hypothesis. I have also characterised the emerging complexity of genetic architecture in fusion transcripts through integrating genomic structure and somatic variants and delineating the distinct genomic patterns of fusion events across different cancer types. Overall my exploration of the pathogenetic impact and clinical relevance of candidate gene fusions have provided fundamental insights into the management of a subset of cancer patients by predicting the oncogenic signalling and specific drug targets encoded by these fusion genes. Taken together, the translational genomic research I have conducted during my Ph.D. study will shed new light on precision medicine and contribute to the cancer research community. The novel classification concept, gene signature and fusion transcripts I have identified will address several hotly debated issues in translational genomics, such as complex interactions between tumor bulks and their adjacent microenvironments, prognostic markers for clinical diagnostics and personalized therapy, distinct patterns of genomic structure alterations and oncogenic events in different cancer types, therefore facilitating our understanding of genomic alterations and moving us towards the development of precision medicine

    Patient-Derived Cells to Guide Targeted Therapy for Advanced Lung Adenocarcinoma

    Get PDF
    Adequate preclinical model and model establishment procedure are required to accelerate translational research in lung cancer. We streamlined a protocol for establishing patient-derived cells (PDC) and identified effective targeted therapies and novel resistance mechanisms using PDCs. We generated 23 PDCs from 96 malignant effusions of 77 patients with advanced lung adenocarcinoma. Clinical and experimental factors were reviewed to identify determinants for PDC establishment. PDCs were characterized by driver mutations and in vitro sensitivity to targeted therapies. Seven PDCs were analyzed by whole-exome sequencing. PDCs were established at a success rate of 24.0%. Utilizing cytological diagnosis and tumor colony formation can improve the success rate upto 48.8%. In vitro response to a tyrosine kinase inhibitor (TKI) in PDC reflected patient treatment response and contributed to identifying effective therapies. Combination of dabrafenib and trametinib was potent against a rare BRAF K601E mutation. Afatinib was the most potent EGFR-TKI against uncommon EGFR mutations including L861Q, G719C/S768I, and D770_N771insG. Aurora kinase A (AURKA) was identified as a novel resistance mechanism to olmutinib, a mutant-selective, third-generation EGFR-TKI, and inhibition of AURKA overcame the resistance. We presented an efficient protocol for establishing PDCs. PDCs empowered precision medicine with promising translational values.ope

    Unlocking the potential of anti-CD33 therapy in adult and childhood acute myeloid leukaemia

    Get PDF
    Acute Myeloid Leukaemia (AML) develops when there is a block in differentiation and uncontrolled proliferation of myeloid precursors, resulting in bone marrow failure. AML is a heterogeneous disease clinically, morphologically, and genetically, and biological differences between adult and childhood AML have been identified. AML comprises 15-20% of all children less than fifteen years diagnosed with acute leukaemia. Relapse occurs in up to 40% of children with AML and is the commonest cause of death.1,2 Relapse arises from leukaemic stem cells (LSCs) that persist after conventional chemotherapy. The treatment of AML is challenging and new strategies to target LSCs are required. The cell surface marker CD33 has been identified as a therapeutic target, and novel anti-CD33 immunotherapies are promising new agents in the treatment of AML. This review will summarise recent developments emphasising the genetic differences in adult and childhood AML, while highlighting the rationale for CD33 as a target for therapy, in all age groups

    The role of network science in glioblastoma

    Get PDF
    Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with references CEECINST/00102/2018, CEECIND/00072/2018 and PD/BDE/143154/2019, UIDB/04516/2020, UIDB/00297/2020, UIDB/50021/2020, UIDB/50022/2020, UIDB/50026/2020, UIDP/50026/2020, NORTE-01-0145-FEDER-000013, and NORTE-01-0145-FEDER000023 and projects PTDC/CCI-BIO/4180/2020 and DSAIPA/DS/0026/2019. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 951970 (OLISSIPO project)

    Network-based methods for biological data integration in precision medicine

    Full text link
    [eng] The vast and continuously increasing volume of available biomedical data produced during the last decades opens new opportunities for large-scale modeling of disease biology, facilitating a more comprehensive and integrative understanding of its processes. Nevertheless, this type of modelling requires highly efficient computational systems capable of dealing with such levels of data volumes. Computational approximations commonly used in machine learning and data analysis, namely dimensionality reduction and network-based approaches, have been developed with the goal of effectively integrating biomedical data. Among these methods, network-based machine learning stands out due to its major advantage in terms of biomedical interpretability. These methodologies provide a highly intuitive framework for the integration and modelling of biological processes. This PhD thesis aims to explore the potential of integration of complementary available biomedical knowledge with patient-specific data to provide novel computational approaches to solve biomedical scenarios characterized by data scarcity. The primary focus is on studying how high-order graph analysis (i.e., community detection in multiplex and multilayer networks) may help elucidate the interplay of different types of data in contexts where statistical power is heavily impacted by small sample sizes, such as rare diseases and precision oncology. The central focus of this thesis is to illustrate how network biology, among the several data integration approaches with the potential to achieve this task, can play a pivotal role in addressing this challenge provided its advantages in molecular interpretability. Through its insights and methodologies, it introduces how network biology, and in particular, models based on multilayer networks, facilitates bringing the vision of precision medicine to these complex scenarios, providing a natural approach for the discovery of new biomedical relationships that overcomes the difficulties for the study of cohorts presenting limited sample sizes (data-scarce scenarios). Delving into the potential of current artificial intelligence (AI) and network biology applications to address data granularity issues in the precision medicine field, this PhD thesis presents pivotal research works, based on multilayer networks, for the analysis of two rare disease scenarios with specific data granularities, effectively overcoming the classical constraints hindering rare disease and precision oncology research. The first research article presents a personalized medicine study of the molecular determinants of severity in congenital myasthenic syndromes (CMS), a group of rare disorders of the neuromuscular junction (NMJ). The analysis of severity in rare diseases, despite its importance, is typically neglected due to data availability. In this study, modelling of biomedical knowledge via multilayer networks allowed understanding the functional implications of individual mutations in the cohort under study, as well as their relationships with the causal mutations of the disease and the different levels of severity observed. Moreover, the study presents experimental evidence of the role of a previously unsuspected gene in NMJ activity, validating the hypothetical role predicted using the newly introduced methodologies. The second research article focuses on the applicability of multilayer networks for gene priorization. Enhancing concepts for the analysis of different data granularities firstly introduced in the previous article, the presented research provides a methodology based on the persistency of network community structures in a range of modularity resolution, effectively providing a new framework for gene priorization for patient stratification. In summary, this PhD thesis presents major advances on the use of multilayer network-based approaches for the application of precision medicine to data-scarce scenarios, exploring the potential of integrating extensive available biomedical knowledge with patient-specific data

    Tumor cell heterogeneity and resistance; report from the 2018 Coffey‐Holden Prostate Cancer Academy Meeting

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147081/1/pros23729.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147081/2/pros23729_am.pd

    Recent Approaches Encompassing the Phenotypic Cell Heterogeneity for Anticancer Drug Efficacy Evaluation

    Get PDF
    Despite the advancements in biomarker-based personalized cancer therapy, the inadequacy of molecular and genetic profiling in identifying effective drug combinations was defined in most cases. Drug resistance remains a major limitation of the current predictive oncology. Emerging reports indicate that the success of anticancer therapy is usually limited by intratumoral heterogeneity which is not captured by the existing cancer cell biomarker-based approaches. Cell heterogeneity, not only genetic but also phenotypic, is considered to be the root cause of resistance to anticancer treatment, cancer progression, and the presence of cancer stem cells. Therefore, functional testing of live cells representing various cell types within the tumor exposed to potential therapies is needed for identification of effective drug combinations. Here we look at the different existing model systems, including ex vivo models of the patient’s tumor cells, 2D/3D in vitro cultures/cocultures, patient-derived cellular organoids, single-cell models, ex vivo tumor platforms containing tumor microenvironment and extracellular matrix, etc., scoping at drug efficacy evaluation and solving the problem of cancer resistance

    Biomarkers in Metastatic Colorectal Cancer: Status Quo and Future Perspective.

    Get PDF
    Colorectal cancer (CRC) is the third most frequent cancer worldwide, and its incidence is steadily increasing. During the last two decades, a tremendous improvement in outcome has been achieved, mainly due to the introduction of novel drugs, targeted treatment, immune checkpoint inhibitors (CPIs) and biomarker-driven patient selection. Moreover, progress in molecular diagnostics but also improvement in surgical techniques and local ablative treatments significantly contributed to this success. However, novel therapeutic approaches are needed to further improve outcome in patients diagnosed with metastatic CRC. Besides the established biomarkers for mCRC, such as microsatellite instability (MSI) or mismatch repair deficiency (dMMR), RAS/BRAF, sidedness and HER2 amplification, new biomarkers have to be identified to better select patients who derive the most benefit from a specific treatment. In this review, we provide an overview about therapeutic relevant and established biomarkers but also shed light on potential promising markers that may help us to better tailor therapy to the individual mCRC patient in the near future
    corecore