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Simple Summary: Despite recent progress in the treatment of metastatic colorectal cancer patients,
novel therapeutic approaches are highly warranted to further improve outcome. Additionally, it is of
utmost importance to define subgroups of patients who may derive the most benefit from a specific
treatment, as we are moving forward in the field of personalized medicine. This review provides an
overview about established biomarkers helping us to better guide treatment. Moreover, we report on
emerging and potential promising biomarkers having the potential to be implemented into clinical
practice in the near future.

Abstract: Colorectal cancer (CRC) is the third most frequent cancer worldwide, and its incidence is
steadily increasing. During the last two decades, a tremendous improvement in outcome has been
achieved, mainly due to the introduction of novel drugs, targeted treatment, immune checkpoint
inhibitors (CPIs) and biomarker-driven patient selection. Moreover, progress in molecular diagnostics
but also improvement in surgical techniques and local ablative treatments significantly contributed
to this success. However, novel therapeutic approaches are needed to further improve outcome
in patients diagnosed with metastatic CRC. Besides the established biomarkers for mCRC, such as
microsatellite instability (MSI) or mismatch repair deficiency (dMMR), RAS/BRAF, sidedness and
HER2 amplification, new biomarkers have to be identified to better select patients who derive the
most benefit from a specific treatment. In this review, we provide an overview about therapeutic
relevant and established biomarkers but also shed light on potential promising markers that may
help us to better tailor therapy to the individual mCRC patient in the near future.

Keywords: colorectal cancer; metastatic; biomarker; precision medicine; personalized treatment

1. Introduction

Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide, and
its global incidence is continuously increasing [1]. Thus, the global burden of CRC will pose
significant challenges to the health care system due to increasing financial costs [2]. Whereas
the median overall survival (mOS) of patients with metastatic CRC (mCRC) did not exceed
6 months in the eighties, nowadays the median survival reaches almost 30 months [3,4].
The implementation of upfront antiangiogenic agents in right-sided RAS wild-type mCRC,
the addition of anti-epithelial growth factor receptor (EGFR) antibodies in left-sided RAS
wild-type mCRC, and the introduction of tyrosine kinase inhibitors and further chemother-
apeutics have led to a significant improvement in prognosis over time [5–8]. Certainly, the
establishment of interdisciplinary tumor boards, advances in surgical techniques and local
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ablative and stereotactic procedures, especially in oligometastatic disease, have further con-
tributed to this successful development [9]. Additionally, CPIs have significantly improved
OS in approximately 3–5% of mCRC patients harboring microsatellite instable (MSI) or
mismatch repair-deficient (dMMR) tumors [10]. Patients harboring a BRAFV600E mutation
(8–15%) undergoing a combination therapy with encorafenib and cetuximab in second-
and further-lines have demonstrated a longer survival compared to those who received
physician’s choice therapy [11]. Currently, the efficacy of this combination is further ex-
plored in the first-line setting [12]. Moreover, just recently, several small clinical phase 1 and
2 trials demonstrated encouraging response rates in pretreated mCRC patients harboring
KRASG12C mutations (3–4% of all mCRC), NTRK- (0.5%) or RET fusions (0.2–1.6%) who
underwent treatment with KRASG12C inhibitors in combination with anti-EGFR agents,
larotrectinib or entrectinib, or selpercatinib, respectively [13–16]. However, advances in
drug development are highly warranted to further improve prognosis. In the past, research
focused more towards directly targeting the tumor cells, while neglecting the crucial role
of the tumor microenvironment (TME) and its influence on tumor progression. A grow-
ing body of evidence nowadays indicates that targeting cells within the TME might be
promising to further enhance anti-tumorigenic properties or to impede pro-tumorigenic
effects [17,18]. To keep up with the latest progress in drug development, further biomarkers
have to be defined and promising platforms such as ex vivo culturing of tumors are to be
established to help personalize treatment and to identify patients who may benefit most
from a specific therapy. In the present review, we will provide an overview about currently
established biomarkers that guide clinical decision-making but also shed light on promising
markers that may be clinically useful in the near future. Table 1 outlines a selection of re-
quirements for an effective prognostic or predictive biomarker [19–23]. While a prognostic
biomarker predicts the outcome of a disease irrespective of the applied treatment and thus
may serve as an independent indicator of tumor biology, a predictive biomarker predicts
the outcome of a disease depending on a specific treatment [24]. Diagnostic biomarkers do
not play a role in mCRC. An elevation of the carcinoembryonic antigen (CEA) can indicate
or support the presence of colon cancer but is not diagnostic, as an increased CEA level
is rather unspecific and can also be observed in the presence of inflammation or other
malignancies. Conversely, a normal CEA level does not exclude colon cancer.

Table 1. Selection of requirements for an effective prognostic or predictive biomarker *.

Prediction with high accuracy [19,20]

Cost effective [19,21]

Easy to assess [20,21]

Reproducible/Reliable [19,21]

Consistent and rapid turnaround time [22]

Prognostic/predictive impact confirmed in validation sets [19–21]

Proven useful in a given clinical context [19,20]

Longitudinal and non-invasive measurements [23]
* This selection reflects the authors’ opinions and is not intended to be exhaustive.

2. Established Biomarkers in mCRC

The advances of precision medicine have produced unprecedented paradigm shifts in
the treatment algorithms of advanced cancers. However, CRC remains far behind the other
solid tumors (e.g., non-small cell lung cancer, melanoma, genitourinary tract cancers). To
date, only a few biomarkers have sufficient actionable and clinical implications to warrant
international guideline-recommended routine testing [25]. Table 2 provides an overview of
established biomarkers in mCRC.
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Table 2. Evidence of established biomarkers in metastatic colorectal cancer patients in selected clinical trials.

Biomarker Trial Phase N Setting Treatment Outcomes

Sidedness
(retrospective analyses,

except PARADIGM)

CALGB/SWOG
80405 III 476 First-line mCRC FOLFOX/FOLFIRI + cetuximab vs.

FOLFOX/FOLFIRI + bevacizumab
mOS right 16.4 vs. 24.5 months
mOS left 37.5 vs. 32.1 months

FIRE-3 III 394 First-line mCRC FOLFIRI + cetuximab vs. FOLFIRI +
bevacizumab

mOS right 18.3 vs. 23.0 months
mOS left 38.3 vs. 28.0 months

PEAK II 143 First-line mCRC FOLFOX + panitumumab vs.
FOLFOX + bevacizumab

mOS right 17.5 vs. 21.0 months
mOS left 43.4 vs. 32.0 months

PARADIGM III 802 First-line mCRC FOLFOX + panitumumab vs.
FOLFOX + bevacizumab

mOS right 20.2 vs. 23.2 months
mOS left 37.9 vs. 34.3 months

CRYSTAL III 364 First-line mCRC FOLFIRI + cetuximab vs. FOLFIRI mOS right 18.5 vs. 15.0 months
mOS left 28.7 vs. 21.7 months

PRIME III 408 First-line mCRC FOLFOX + panitumumab vs.
FOLFOX

mOS right 11.1 vs. 15.4 months
mOS left 30.3 vs. 23.6 months

dMMR/MSI-H

KEYNOTE-164 II 124

MSI-H/dMMR
mCRC treated with ≥2
prior lines of standard

therapy

Pembrolizumab PFS 31% at 24 months
OS 55% at 24 months

CheckMate-142 II 74
MSI-H/dMMR

mCRC who had ≥ 1
prior treatment

Nivolumab PFS 36% at 48 months
OS 49% at 48 months

CheckMate-142 II 119
MSI-H/dMMR mCRC

who had ≥1 prior
treatment

Nivolumab 3 mg/kg + ipilimumab
1 mg/kg q3w × 4 followed by

nivolumab 3 mg/kg q2w

PFS 53% at 48 months
OS 71% at 48 months

KEYNOTE-177 III 307 First-line
MSI-H/dMMRmCRC Pembrolizumab mPFS 16.5 months

mOS not reached

RAS

CRYSTAL III

retrospective
analysis of 827 pts
evaluable for RAS
mutational status

First-line mCRC FOLFIRI vs. FOLFIRI + cetuximab

RAS wild-type
mOS 20.2 vs. 28.4 months, HR 0.69

RAS mutant
mOS 17.7 vs. 16.4 months, HR 1.05

PRIME III 656 First-line mCRC KRAS
wild-type

FOLFOX vs. FOLFOX +
panitumumab mOS 19.4 vs. 23.8 months, HR 0.83

PARADIGM III 604 First-line mCRC RAS
wild-type left-sided

FOLFOX + bevacizumab vs.
FOLFOX + panitumumab mOS 34.3 vs. 37.9 months, HR 0.82
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Table 2. Cont.

Biomarker Trial Phase N Setting Treatment Outcomes

KRASG12C
CodeBreak 100 II 62 Refractory mCRC Sotorasib ORR 9.7%, DCR 82.3%

KRYSTAL-1 I/II 46 Refractory mCRC Adagrasib ORR 22%, DCR 87%

BRAFV600E BEACON III 665 Refractory mCRC

Encorafenib + binimetinib +
cetuximab vs. encorafenib +
cetuximab vs. FOLFIRI or

cetuximab + irinotecan

mPFS 4.5 vs. 4.3 vs. 1.5 months
mOS 9.3 vs. 9.3 vs. 5.9 months

HER2

HERACLES II 27 Refractory mCRC Lapatinib + trastuzumab ORR 30%

HERACLES-B II 31 Refractory mCRC Pertuzumab +
trastuzumab-emtansine ORR 9.7%

MyPathway II 43 Refractory mCRC
KRAS wild-type Pertuzumab + trastuzumab

mPFS 5.3 months
mOS 14.0 months

ORR 40%

TRIUMPH II 27 Refractory mCRC Pertuzumab + trastuzumab
mPFS 4.0 months
mOS 10.1 months

ORR 30%

MOUNTAINEER II 26 Refractory mCRC Tucatinib + trastuzumab
mPFS 6.2 months
mOS 17.3 months

ORR 55%

DESTINY-CRC01 II 53 Refractory mCRC Trastuzumab-deruxtecan
mPFS 6.9 months
mOS 15.5 months

ORR 45.3%

NTRK

NAVIGATE II 10 Refractory mCRC NTRK
fusion-positive Larotrectinib

mPFS 5.5 months
mOS 29.4 months

ORR 50%

ALKA-372-001,
STARTRK-1, and

STARTRK-2
I/II 4 mCRC NTRK

fusion-positive Entrectinib ORR 25%

DCR, disease control rate; FOLFIRI, 5-fluorouracil + irinotecan; FOLFOX, 5-fluorouracil + oxaliplatin; dMMR, DNA mismatch repair deficiency; mCRC, metastatic colorectal cancer;
MSI-H, microsatellite instability high; OS, overall survival; ORR, objective response rate; PFS, progression-free survival.
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Only in approximately 5% of mCRC patients, namely those harboring an MSI/dMMR
tumor, we observed outstanding and practice-changing results with CPI therapy. The
treatment of the remaining vast majority of mCRC patients (who are microsatellite stable—
MSS) is still based upon only a few molecular and/or clinical determinants: sidedness of the
primary tumor location, RAS and BRAF mutational status [26]. Another well-established
biomarker is HER2 amplification, since several trials have shown the clinical activity of a
combination strategy for HER2 blockade [27], although no standard treatments have been
approved by regulatory agencies for these patients.

NTRK fusions are extremely rare in CRC patients (<1%). Despite this, the recent
positive and practice-changing basket trials of TRK inhibitors (larotrectinib [28] and entrec-
tinib [15]) encourage clinicians to test for NTRK in mCRC patients, especially in later-lines
of therapy [29]. Several other molecular determinants are under clinical investigation.
Some of them are expected to become part of our practice routine and change our thera-
peutic paradigms in the near future: circulating tumor DNA (ctDNA), POLE alteration,
KRASG12C mutation, FGFR fusions, altered DNA damage repair (DDR) genes, tumor mu-
tational burden (TMB) and consensus molecular subtypes classification (CMS), as well as
ALK/RET/ROS fusions [30].

2.1. Sidedness

Primary tumor sidedness (right- versus left-sided) is considered an established and
crucial prognostic and predictive factor in the treatment of mCRC [31–34]. Besides the
difference in their origin, these tumors exhibit different histology. While right-sided tumors
are often associated with sessile serrated adenomas or mucinous adenocarcinomas, left-
sided tumors are related to tubular, villous and typical adenocarcinomas. Usually, left-sided
tumors exhibit a polypoid growth pattern and are therefore easier to detect compared to
right-sided tumors which are more frequently flat [35].

Comparative molecular analyses of right- and left-sided CRCs revealed molecular
distinctions, such as different mutation rates in TP53, KRAS, PIK3CA, BRAF and diverse
methylation patterns, as well as different MSI/dMMR rates [36–38]. Another study demon-
strated that right-sided colon cancers had higher rates of MSI, more frequent aberrant
activation of the EGFR/MAPK pathway including higher BRAF mutation rates and an
increased mutational burden compared to left-sided CRCs [36].

A retrospective study using data from the SEER registry demonstrated that patients
with right-sided stage III or IV colon cancers had worse survival outcomes in comparison
to left-sided CRC patients [39]. Another study indicated that right-sided colon cancers were
associated with a high CpG island methylator phenotype (CIMP) and BRAF mutations,
translating into inferior OS and a worse response to anti-EGFR treatment [40].

Therefore, one may assume that mCRC with primary tumors located in the left colon
display a different tumor biology with a different response to therapy compared to those
arising in the right colon. This hypothesis has been confirmed in multiple exploratory post-
hoc analyses of large, randomized trials [8,33,41–43] (see Table 2). Just recently, the findings
of the phase III PARADIGM study have been presented at the ASCO Annual Meeting 2022.
Patients with left-sided RAS wild-type mCRC treated with FOLFOX and panitumumab
showed a prolonged mOS compared to those receiving FOLFOX and bevacizumab in the
first-line setting (37.9 vs. 34.3 months, HR 0.82, p = 0.031) [44,45].

For these reasons, to date, the treatment algorithm for mCRC patients in the first-line
setting is based on the primary tumor location: chemotherapy plus anti-EGFR regimen is
recommended for left-sided MSS, RAS and BRAF wild-type tumors, while chemotherapy
plus anti-VEGF (bevacizumab) is recommended for right-sided MSS mCRC patients [46].

2.2. DNA Mismatch Repair Deficiency (dMMR) and/or Microsatellite Instability (MSI)

dMMR comprises about 15% of all CRC. It is more frequently observed in early- than in
late-stage disease (stage I–II: 15–20%, stage III: 10–15%, stage IV: around 5%) [47,48]. The mis-
match repair system (MMR) status can be investigated by testing for loss of an MMR protein
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by immunohistochemistry (IHC) or for MSI using a PCR- or NGS-based assay. dMMR or
MSI-high (MSI-H) tumors display the loss of at least one MMR protein with IHC (MLH1,
MSH2, MSH6, and PMS2) or instability in two or more of the five microsatellite markers
(BAT25, BAT26, D2S123, D5S346 and D17S250) with a PCR-based assay [49,50], respectively.
Concordance between these two techniques is quite high (>90%) [51], thus usually IHC
testing is performed to determine the MMR status. However, further PCR- or NGS-based
testing is recommended in case of undetermined or inconclusive IHC findings [26,52]. MSI-
H/dMMR mCRC are more frequently right-sided and poorly differentiated and correlate
more often with BRAF mutations [49].

Testing for dMMR/MSI-H status is mandatory and crucial for the management of CRC
patients for mainly four reasons: (a) universal screening for Lynch syndrome, which is the
most common cause of hereditary CRC [53,54]; (b) dMMR status is one of the most studied
and well-established biomarkers for better prognosis, especially in stage II CRC patients.
In all the studies, MSI-H has been associated with a better outcome in comparison to MSS,
in terms of time to recurrence (TTR), relapse-free survival (RFS) and OS [55,56]; (c) in
stage II, CRC dMMR status is also a strong negative predictive biomarker of 5-fluorouracil
efficacy, thus guiding adjuvant chemotherapy choice [57]; (d) in the metastatic setting,
MSI-H/-dMMR status is a strong positive factor for predicting response upon CPI, as was
first shown by the landmark studies by Le et al. [58,59]. Recently, the final analysis of
the phase II KEYNOTE-164 trial was presented, yielding durable and clinical meaningful
benefit, with a 30% plateau of both progression-free survival (PFS) and OS curves at five
years and a manageable safety profile in patients with previously treated MSI-H/dMMR
mCRC [60].

MSI-H/dMMR status is a well-established biomarker predictive of CPI response. The
rationale is based on the significantly increased number of mutation-associated neoantigens
resulting from mismatch-repair deficiency. In fact, MSI-H mCRC has an immunogenic
TME, characterized by dense immune infiltration and a Th1-associated cytokine-rich envi-
ronment [61]. Several trials demonstrated that CPI as monotherapy or combined with other
agents were associated with improved clinical outcome in this subgroup of patients [62,63].
Currently, the phase II CheckMate 142 trial explores the impact of nivolumab monotherapy
and in combination with ipilimumab in previously treated or untreated patients with
MSI-H/dMMR or MSS/MMR-proficient mCRC [64]. A robust and durable clinical benefit
with a manageable safety profile in previously treated patients with MSI-H/dMMR mCRC
was shown [62,63]. A recent report with 4 years of follow-up confirmed impressive and
unprecedented results with nivolumab (3 mg/kg) plus low-dose (1 mg/kg) ipilimumab in
this setting: ORR was 65%, with a disease control rate (DCR) of 81%. The 48-month rates of
PFS and OS were 53% and 71%, respectively [64].

Based on these results, nivolumab combined with ipilimumab obtained approval
in Europe, while Japan and the United States approved nivolumab as a single-agent
treatment and combined with ipilimumab in pretreated MSI-H/dMMR mCRC patients.
These exceptional findings have also been confirmed in the first-line setting: with a median
follow-up of 29.0 months, nivolumab plus low-dose ipilimumab showed an ORR and a
DCR of 69% and 84%, respectively. Furthermore, the 24-month rates of PFS and OS were
74% and 79%, respectively [65]. In this setting, the results are awaited from the current
phase III CheckMate 8HW trial (NCT04008030).

Finally, the KEYNOTE-177 phase III randomized trial showed that pembrolizumab
led to significantly longer PFS than chemotherapy plus antibody (16.5 vs. 8.2 months) in
newly diagnosed MSI-H/dMMR mCRC, with significant fewer treatment-related adverse
events [10]. Moreover, 3-year OS (3-yr OS) was 61.4% in the experimental arm, much
higher than that of the control arm (3-yr OS 50.3%) [66]. Considering these results, the Food
and Drug Administration (FDA) first and then the European Medicines Agency (EMA)
approved pembrolizumab alone as a first-line treatment for patients with MSI-H/dMMR
mCRC.
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These results led to a paradigm shift in the management of MSI-H/dMMR mCRC
patients in recent years [67]. Many studies are still warranted to improve our knowledge,
especially about primary resistance to CPIs, since up to 30–40% of MSI-H/dMMR mCRC
patients do not benefit and progress. This may be caused by different reasons, such as the
misdiagnosis of the actual dMMR status [68], microenvironment characteristics and the
composition of the gut microbiome [69], as well as the presence of ascites and peritoneal
involvement [70]. Nevertheless, the benefit for the majority of MSI-H/dMMR mCRC
patients treated with CPI is unprecedented, with one-third of patients who could achieve a
complete response. This makes MMR status mandatory and extremely useful in clinical
practice.

To underscore the revolution in the management of patients with MSI-H/dMMR, it
is noteworthy that neoadjuvant CPI also proved to be a promising new approach for the
management of MSI-H/dMMR non-metastatic CRC [71–74].

2.3. RAS Mutations

The RAS oncogene family consists of three oncogenes in humans, located on chro-
mosome 12, namely Kirsten (KRAS), Neuroblastoma (NRAS) and Harvey rat sarcoma
viral oncogene homolog (HRAS). The RAS family is one of the most frequently mutated
genes across all malignancies, including CRC [75], and functions as regulators of the in-
tracellular signaling transduction cascades involved in cell growth, differentiation and
survival [76]. RAS stimulates various downstream signaling pathways, including the
RAS-RAF-MEK-ERK and the phosphatidylinositol 3-kinase (PI3K) pathways [77].

Approximately 40–50% of CRC carry KRAS or NRAS mutations. The majority of them
are found in KRAS G12, G13 or Q61 codons. Of these, G12 variants are the most frequent
ones (around 70%) [78].

RAS (and BRAF) mutations confer more aggressive tumor biology and are negative
prognostic factors in particular in MSS mCRC. Moreover, these genetic alterations are
negative predictive factors for a response to milestone anti-EGFR therapy (cetuximab or
panitumumab) [79–81].

For a long time, RAS mutations have been deemed ‘undruggable’ [82], as many
attempts targeting RAS mutations failed in the past. However, the recent development of
KRASG12C-selective inhibitors established a foundation for the development of inhibitors
suitable for clinical testing and opened new therapeutic strategies for this historically
undruggable target [83,84].

Determination of primary tumor location, MMR status and RAS/BRAF mutational
status is mandatory to assess the optimal therapeutic strategy in the first-line setting. As
mentioned above, patients with MSS, RAS and BRAF wild-type mCRC and a primary
tumor located in the left colon are considered suitable candidates for first-line anti-EGFR
treatment in combination with chemotherapy [4,31–33,85–87].

Despite this selection of patients, primary resistance to anti-EGFR agents still ex-
ists, and more studies are requested to dig deep into the mechanisms of resistance. For
these reasons, Cremolini et al. demonstrated a promising negative predictive impact of
the PRESSING panel: uncommon molecular alterations linked to primary resistance to
EGFR inhibition, including HER2 amplification/activating mutations, MET amplification,
NTRK/ROS1/ALK/RET rearrangements, PIK3CA exon 20, PTEN and AKT1 mutations [88].
This negative molecular hyperselection of patients, added to the initial assessment of sided-
ness and RAS/BRAF mutational status, may help identify a subgroup of patients who will
exceptionally benefit from anti-EGFR–based initial therapy [89].

KRASG12C Mutation

The specific KRASG12C mutation is detectable in 1–3% of CRCs [83,90–92]. Only
recently, two oral inhibitors (sotorasib, adagrasib) demonstrated clinical activity in mCRC
patients harboring a KRASG12C mutation [93,94]. In a phase I trial, sotorasib yielded a
DCR of 73.8% and a PFS of 4.0 months [95]. These results have been confirmed by the
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subsequent phase II CodeBreak trial (ORR: 9.7%, PFS: 4.0 months) [96]. Furthermore, the
KRYSTAL-1 phase I/II trial investigated the clinical activity of adagrasib in pretreated
mCRCs. These promising findings revealed an ORR of 22%, DCR of 87% and a PFS of
5.6 months [13]. Additionally, preliminary results of a combined treatment with adagrasib
and cetuximab demonstrated an ORR of 43% and a stable disease in 57% [13]. Further
trials exploring the combination of anti-EGFR and anti-KRAS inhibitors are currently under
clinical investigation with the aim of improving the efficacy of KRAS inhibitors [97].

2.4. BRAFV600E Mutation

The RAS/MEK/ERK and PI3K pathways play a major role in cancer development
and progression [98]. Among solid tumors, the prevalence of activating somatic missense
BRAF mutations, with the V600E mutational variant accounting for about 80% of mutations,
occurs in malignant melanomas (60–70%), papillary and anaplastic thyroid carcinomas
(40–50%) and ovarian cancers (30%). All mutations in BRAF confer increased kinase
activity compared with the wild-type protein and thereby stimulate MAPK/ERK activity
in a RAS-independent manner. BRAF mutation occurs in about 10–20% of CRCs, and 90%
of these mutations occur in V600E. BRAF-mutated CRCs patients show distinct clinico-
pathological and molecular features identifying a subset with an aggressive phenotype and
poor outcome [99]. More specifically, BRAF-mutated tumors are more frequently observed
in elderly patients, females and in right-sided tumors, show more aggressive pathological
features such as mucinous features, serrated architecture, poor differentiation, as well as
peritoneal dissemination, and they present in an advanced stage at the time of the initial
diagnosis [100]. Finally, the vast majority of patients with BRAF-mutated mCRC experience
early disease progression [101].

BRAFV600E mutation is strongly associated with MSI-H/dMMR status (20–60%) [102].
Indeed, in sporadic CRCs, BRAF mutation is seen in approximately 60% of MSI-H tumors
and only in 5–10% in MSS tumors [103]. This association is crucial also to distinguish
sporadic MSI-H/dMMR from Lynch syndrome, since the BRAFV600E mutation excludes
Lynch syndrome while being related to sporadic CRC patients [104].

The BRAFV600E mutation has been widely investigated, and its negative prognostic
impact on stage II and III CRC has been observed in numerous studies [105,106]. Similarly,
in advanced-stage patients with BRAF mutant CRC have low response rates to conventional
therapies and poor OS [103].

Selective BRAF inhibitors are very effective as monotherapy in other malignancies,
such as melanoma. However, disappointing results were observed in pretreated BRAF
mutant mCRC patients with vemurafenib [107], suggesting that combination treatment
could be more efficious to overcome primary resistance due to adaptive feedback, resulting
in upstream activation of EGFR and subsequent treatment resistance [108].

The phase III BEACON trial was the first trial to show a substantial benefit both in
survival and in response rates in pretreated BRAFV600E mCRCs [109]. This trial randomized
665 patients to receive triplet-therapy (encorafenib + binimetinib + cetuximab) or doublet-
therapy (encorafenib + cetuximab) compared to the control arm (cetuximab + irinotecan or
FOLFIRI). The results showed a clear advantage for the experimental arms: the doublet
reported benefit in OS compared to control (9.3 months vs. 5.9 months, HR 0.61), in PFS
and RR [110]. Results were almost identical with the triplet, yet with different and more
frequent side effects. Based on these results, the doublet (encorafenib + cetuximab) was
determined to be sufficient for OS and received FDA approval in April 2020.

Of note, the results of this combination of drugs showed disappointing results in
first-line BRAFV600E mCRC patients in the single-arm phase II trial (ANCHOR CRC) with a
PFS of 4.9 months [111]. For this reason, the phase III BREAKWATER trial (NCT04607421) is
currently ongoing and is comparing encorafenib + cetuximab alone or in combination with
a chemotherapy doublet versus the doublet or triplet chemotherapy +/− bevacizumab in
first-line BRAFV600E mutated mCRC [12].



Cancers 2022, 14, 4828 9 of 25

Just recently, encouraging results of a phase I/II trial exploring the efficacy of enco-
rafenib and cetuximab plus nivolumab in 26 patients with MSS/BRAFV600E-mutated mCRC
were presented at the 2022 Gastrointestinal Cancers Symposium [112]. The ORR and DCR
were 50% and 96%, and mPFS and mOS were 7.4 and 15.1 months, respectively.

Based on data available and due to the strong association between MSI-H and BRAF
mutations, we believe that patients with MSI-H/BRAFV600E-mutated mCRC should be
treated with CPI in the first-line setting, followed by a combined targeted treatment con-
sisting of encorafenib and cetuximab in case of disease progression.

2.5. HER2 Amplification

Amplification in the HER2/Erbb2 oncogene or overexpression of its protein produces a
hyperactivation of mitogenic signals, leading to uncontrolled cell proliferation and tumori-
genesis [113]. HER2 amplification has been reported in about 2–5% of all CRCs [114].

The role of HER2 amplification as a prognostic biomarker is still uncertain [115], while
its role as a negative predictive factor of resistance to anti-EGFR agents is more and more
established [116].

More importantly, HER2 amplification is a well-known druggable target in other
settings, such as in breast and gastric cancers, in which approved treatments are already
available.

In mCRC, the proof-of-concept multicenter, open-label, phase II trial HERACLES
reported promising results with the combination of trastuzumab and lapatinib in heavily
pretreated mCRC harboring a HER2 amplification [117], although in a small population
(n = 27), with an ORR of 30%. On the other hand, the HERACLES-B did not reach its pri-
mary endpoint of ORR. The HERACLES-B was a single-arm, phase II trial, in patients with
histologically confirmed RAS/BRAF wild-type and HER2+ mCRC refractory to standard
treatments [118].

Two further international phase II studies investigated the role of pertuzumab and
trastuzumab combination in heavily pretreated patients: the MyPathway trial [119] and
the TRIUMPH trial [120], with similar promising results.

The ongoing phase II MOUNTAINEER trial is exploring the efficacy of tucatinib
and trastuzumab in treatment-resistant mCRC [121]. Trastuzumab–deruxtecan (T-DXd)
is an antibody–drug conjugate consisting of a humanized anti-HER2 monoclonal specif-
ically targeting HER2, with the same amino acid sequence as trastuzumab, a cleavable
tetrapeptide-based linker and a potent topoisomerase I inhibitor as the cytotoxic drug
(payload), who demonstrated revolutionizing and astonishing results in different malignan-
cies [122]. The DESTINY-CRC01 was an open-label, phase II trial investigating the efficacy
of T-DXd single agent in pretreated HER2-overexpressing mCRC patients [123]. In the
HER2-positive cohort (defined as IHC3+ or IHC2+ and in situ hybridization (ISH)-positive),
the ORR was 45.3%, and the mOS was 15.5 months. In addition, T-DXd seems to overcome
resistance to previous HER2-targeted treatment, as no differences in outcome could be
observed between patients who received HER2-targeted treatment in earlier lines and those
being anti-HER2 treatment naïve [124].

Based on these results, the multicenter, randomized, double-blind, 2-arm, parallel
phase II study DESTINY-CRC02 (NCT04744831) is currently ongoing [125]. Of note, in this
trial KRAS mutant mCRC patients will also be enrolled, while in previous trials only RAS
wild-type tumor patients were recruited.

3. Beyond Classical Biomarkers in CRC
3.1. NTRK Fusions

The neurotrophic tropomyosin receptor kinase genes (NTRK1, NTRK2, NTRK3) en-
code for tropomyosin receptor kinase proteins (TRK1, TRK2, TRK3) that are involved in
embryonal neural development and in cell homeostasis [126,127]. Chromosomal fusions
involving NTRK (e.g., ETV6-NTRK3, CD74-NRTK1) have been detected in a subset of cancer
patients [128,129]. After promising results of preclinical experiments [129], clinical trials
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using two TRK inhibitors have been conducted. In a phase I/II trial, the first-generation
TRK inhibitor larotrectinib was analysed for efficacy in tumor patients harboring a NTRK
fusion [130]. An impressive ORR of 75% and long-lasting responses were observed. Not
surprisingly, larotrectinib has been approved for the treatment of NTRK-rearranged ma-
lignancies, irrespective of tumor histology [131]. Similarly, treatment with entrectinib, an
inhibitor targeting TRK, ROS1 and ALK, was associated with clinically meaningful and
durable responses in NTRK-fusion-positive tumors [15]. To overcome secondary resis-
tance mechanisms, further second-generation TRK inhibitors are currently under clinical
evaluation (i.e., repotrectinib [132] and taletrectinib [133]).

In CRC, NTRK fusions are detectable in <1% of CRCs [134]. Molecular profiling
data revealed that NTRK fusions are associated with APC and TP53 mutations and are
mutually exclusive of RAS/RAF alterations [134]. Furthermore, NTRK-rearranged tumors
occur more frequently in MSI-H/dMMR CRCs [135]. Four CRC patients were treated with
entrectinib within a clinical trial. Of them, one patient (25%) showed a partial response [15].
The ongoing phase II basket trial (NAVIGATE) investigates the effect of larotrectinib in
patients with NTRK fusion-positive tumors. Preliminary data demonstrated an ORR of 50%
and an mOS of 29.4 months in 10 patients with refractory NTRK fusion-positive mCRC [28].

Although NTRK fusions occur only in an extremely small subset of CRCs (<1%)
and limited data exist in terms of the clinical efficacy of NTRK inhibitors in these tumors,
larotrectinib and entrectinib are possible therapeutic options for NTRK fusion CRCs. Further
research is needed to clarify the biological function and role of NTRK in CRC, especially
in the subgroup of MSI-H/dMMR, and how this might affect response rates on anti-TRK
inhibitors.

3.1.1. FGFR

Only recently, gene alterations within the fibroblast-growth factor receptor (FGFR)
family have gained attention, since several different targeted agents showed clinically
meaningful activity [136]. FGFR signaling is involved in numerous different pathways,
including the MAPK and mTOR pathway [137,138]. The FGFR family includes four mem-
bers: FGFR1, FGFR2, FGFR3 and FGFR4. Gene fusions, mutations, and amplifications of the
FGFR gene have all been reported in gastrointestinal cancers. In CRC, mainly amplifications
in FGFR1 and FGFR2 are observed with an incidence of approximately 4% and 3%, respec-
tively [139]. While in other FGFR-altered tumors, including cholangiocarcinomas [140] and
bladder cancers [141], specific FGFR inhibitors yielded impressive response, in CRC data
on FGFR1 and FGFR2 amplifications as novel targets are limited. In a retrospective study,
investigators found that three of three patients with a FGFR1-amplified CRC showed a
partial response upon regorafenib therapy [139]. Only recently, the activity of the FGFR1-4
inhibitor futibatinib was assessed in a clinical phase I trial including five CRC patients in
which only a modest activity could be described [142].

3.1.2. DNA Damage Repair Genes

DNA damage repair (DDR) genes are essential for preserving the function of cells [143].
Several genes are involved in maintaining the stability of the DDR system, including
BRCA1, BRCA2 and PALB2 [144]. Deficiencies in DDR genes via homologous recombi-
nation (HR) can cause genetic instability leading to increased rates of somatic genetic
alterations [145,146]. Not surprisingly, for decades researchers tried to target these respec-
tive genes. Recently, poly(ADP-ribose)polymerase (PARP) inhibitors have been described
to induce synthetic lethality in BRCA-mutated cancer cells in vitro [147] and are now in-
creasingly used in BRCA-mutated tumors, such as pancreatic cancer [148]. Alterations in
BRCA and in other DDR genes are found in a significant subset of gastrointestinal cancers
(15–20%) [149]. Moreover, mutated DDR genes are detectable in approximately 22% of
CRCs [144]. While the results of a first clinical trial investigating the efficacy of a monother-
apy with the PARP inhibitor olaparib were disappointing [150], combining a PARP inhibitor
with classical cytotoxic regimens yielded promising response rates [151,152]. Further agents
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beyond PARP inhibitors are currently under clinical investigation in several cancers. Of
them, inhibitors targeting ATR, CHK1 and WEE1 seem to be very promising [153].

Since DDR gene mutations are detectable in a significant subset of CRC and several
targeted agents currently being tested in clinical trials, these mutations represent a clinical
meaningful target and will change the diagnostic and therapeutic management of CRCs in
the near future.

3.1.3. POLE

DNA polymerase epsilon (POLE) encodes for the catalytic subunit of the DNA poly-
merase epsilon, which is involved in DNA replication and repair [154]. Mutations in
POLE are observed in approximately 1–2% of CRC [155,156]. Interestingly, similarly to
MSI-H tumors, POLE-mutated CRCs are characterized by the high infiltration of CD8+ T-
cells [157,158] and a high TMB [159]. For this reason, researchers investigated the efficacy of
the CPI nivolumab in mCRC patients harboring a POLE mutation. Five out of seven patients
recruited in this study yielded a clinical response upon nivolumab monotherapy [159]. In a
phase II trial, another CPI (durvalumab) was tested in MSI-H/dMMR or POLE-mutated
mCRCs. Three patients with a POLE mutation were included. The efficacy of durvalumab
could be observed in one patient [160]. Thus, POLE might serve as a potential predictive
biomarker for CPI in patients with a MSS mCRC [161]. However, more research and clinical
data are still needed to confirm this hypothesis.

3.1.4. RET

Rearranged-during-transfection (RET) fusions occur in a subset of cancer patients,
particularly in thyroid [162] and lung cancers [163]. RET rearrangements are detectable in
0.2–1.6% of CRCs [164,165]. RET-fused CRCs are more commonly detected in right-sided
primaries, are associated with MSI-H/dMMR and with non-mutated RAS/RAF status.
Regarding prognosis, they are linked to a shorter survival [166]. Interestingly, a negative
predictive role of RET fusions upon anti-EGFR inhibitors were noted [89,167].

Even if the incidence of RET fusions in CRCs are rare, several approved multi-tyrosine
kinase inhibitors (i.e., vandetanib, lenvatinib, ponatinib) are available that inhibit this
specific pathway [168–170]. Just recently, Subbiah et al. presented preliminary data from
the ongoing phase I/II LIBRETTO-001 trial (NCT03157128) [171]. Patients with mCRC
harboring RET fusions and treated with selpercatinib achieved an ORR of 44% [16]. An-
other phase I/II trial is currently ongoing aiming to investigate the efficacy of pralsetinib
(NCT03037385) in RET-rearranged tumors [172].

3.1.5. RSPO Fusions and RNF43 Mutations

WNT/β-catenin signaling represents the most important altered pathway in the
tumorigenesis of CRCs mainly induced by mutations in APC [173,174]. Many efforts
were made to therapeutically inhibit WNT/β-catenin signaling. However, until now all
studies failed to show any efficacy [175]. Interestingly, a subset of patients with CRC,
pancreatic cancer and small bowel cancer harbor mutations in RNF43 [176] or harbor an
R-spondin (RSPO) fusion [177]. These genetic alterations are observed in a significant subset
of CRC (8%) [178] and are mutually exclusive of mutations in APC. Currently, several early
clinical trials are aiming to test the efficacy of various therapeutic agents, including LRP5/6
inhibitors (NCT03604445) [179].

3.1.6. Other Promising Biomarkers

There are several post hoc translational studies from phase III randomized trials, such
as FIRE-3 and TRIBE, demonstrating that variations in the RSPO2, MKNK1 or GC genes
involved in the MAPK and WNT signaling pathways predict outcome in patients with
mCRC treated with FOLFIRI and bevacizumab [174,180,181]. These translational studies
are critical to identify potential biomarkers in mCRC patients enabling us to better tailor
treatment.
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3.2. A Selection of Emerging Biomarkers in the TME

The TME consists of various cell types such as cytotoxic and regulatory T-cells (CTL,
Tregs), helper (Th) cells, natural killer (NK) cells, B-cells, myeloid-derived suppressor
cells (MDSC), tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF)
and endothelial cells [182–184]. These cells interact closely with cancer cells by promot-
ing anti- and pro-tumorigenic effects and thus play a crucial role in modulating tumor
growth, invasion and progression [17]. Pagès et al. could demonstrate in a large cohort
of stage I–III colon cancer patients that an increased infiltration of CD3+ and cytotoxic
CD8+ T-cells (Immunoscore high) is associated with a lower risk of disease recurrence
and longer overall survival compared to those patients whose tumors exhibit a decreased
CD3+/CD8+ density Immunoscore low) independent of age, T or N stages and MSI status.
These results could be confirmed in further validation sets [185]. Additionally, the clinical
utility of the Immunoscore could also be shown in mCRC patients [186,187]. Therefore, we
can conclude that the CD3+/CD8+ immune infiltration within the TME may serve as a
prognostic biomarker. However, whether the Immunoscore is predictive of response to CPI
in MSS mCRC patients has to be further explored in prospective clinical trials. Guinney
et al. categorized CRC into four molecular subgroups and created the consensus molecular
subtypes (CMS) based on gene expression profiles [188]. The CMS1 group (MSI-like) is
distinguished by a certain gene expression pattern being representative of activated cyto-
toxic T-cells. Thus, the CMS1 subtype represents an immunogenic TME and is in general
associated with a favorable outcome [189]. In contrast, the CMS4 subtype (mesenchymal) is
characterized by a stroma-rich and immunosuppressive TME and mainly associated with a
poor outcome [189]. While the CMS2 subtype (canonical) comprises CRC with predom-
inantly activated WNT and Myc signaling pathways, the CMS3 subgroup (metabolic) is
enriched by KRAS mutations and activated metabolic pathways. Both of them exhibit a
decreased immune-related gene expression profile and are associated with an intermediate
prognosis [189]. Although the prognostic impact of the CMS classification could have
been shown and retrospective translational analysis of phase III clinical trials [190,191]
demonstrated an added predictive value, its implementation into the daily diagnostic
algorithm has not been established yet. This is mainly due to the labor-intensive, complex
and costly analyses preventing a translation into the daily diagnostic workflow.

3.3. Circulating Tumor DNA (ctDNA)

Tumor cells shed ctDNA into the bloodstream. These ctDNA fragments possess the
same genetic information as the primary tumor or the metastases [18]. The fraction of
ctDNA is highly variable, ranging from <0.1% up to 10% depending on tumor load, tumor
stage, tumor shedding and disease site [192,193]. In CRC, the use of ctDNA is not yet
implemented in clinical practice. However, findings from recent studies and ongoing trials
indicate that ctDNA may serve as both prognostic and predictive biomarkers in the near
future. For a more comprehensive overview about ctDNA in colorectal cancer, we suggest
further literature [194].

Briefly, ctDNA can be used with different aims in the adjuvant and metastatic setting.
In early-stage patients ctDNA may be implemented at diagnosis for molecular pro-

filing, especially if tumor tissue is not available. Moreover, ctDNA may be used as a
biomarker for response to neoadjuvant and adjuvant therapies to detect minimal residual
disease (MRD) after surgery and to guide treatment selection. For instance, the concentra-
tion of ctDNA in pretreatment plasma is significantly lower in stage I patients compared
with stage II–III patients [195].

Recently, Tie et al. demonstrated that a ctDNA-guided treatment approach in stage II
colon cancer patients reduced the use of adjuvant chemotherapy without compromising
RFS [196]. Although other studies are needed, this study opens new avenues for the best
selection of patients who are candidates for adjuvant treatment.

On the other hand, in the metastatic setting, ctDNA holds many promises in the clinic:
molecular profiling at diagnosis, targeted therapy selection, treatment response monitor-
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ing, post-treatment tumor surveillance to detect recurrence, and monitoring treatment
resistance [197,198].

Several trials are ongoing to investigate the clinical utility of ctDNA in both early-stage
and advanced CRC patients, and the results derived from these studies will potentially
change our clinical practice soon.

4. Preclinical Models for Target Discovery
4.1. Patient Derived Organoids

Given the high costs and the long timeline of new drug development, repurposing
of already approved drugs used in other malignancies is a promising, cost-effective and
efficient way to rapidly implement drugs with a known safety profile in the treatment
algorithm of mCRC. A promising approach to simultaneously test multiple different single
drugs or drug combinations and to assess their cytotoxic effect on tumor cells are patient-
derived organoids (PDO) from patients with mCRC [199]. PDO are three-dimensional
ex vivo cultured cancer cells that derive directly from the patient’s tumor. PDO reflect
the in vivo heterogeneity and complexity of the tumor while retaining the accessibility
of in vitro technologies. Preliminary studies could demonstrate that organoids exhibited
similar molecular profiles as those observed in the patient’s tumor and may help unraveling
resistance mechanisms to certain drugs during the course of the disease [200]. Additionally,
there is evidence that PDO drug screens have the potential to predict therapeutic response
in mCRC patients. Currently, several trials are ongoing to test organoid-based treatment
prediction using already established standard of care regimens. However, the clinical
utility of prospective PDO-based drug screening that goes beyond testing for standard
of care options in patients with mCRC has not been largely explored yet. The APOLLO
trial demonstrated that PDO-guided treatment might be promising to expand therapeutic
options in patients with treatment-refractory peritoneal mCRC. However, the small number
of patients included in this trial precludes drawing any definite conclusions [201]. An
obvious limitation of classical PDO is that they do not mirror the complexity of the TME.
However, further development of PDO and adding of co-cultures containing compounds
of the extracellular matrix, such as endothelial cells, fibroblasts and immune cells, are
highly warranted to accurately predict response to treatment that targets TME, including
the immune system (e.g., CPI) [202]. Another issue is to obtain enough fresh tumor
tissue for culturing, as sufficient tissue should also be available for routine diagnostic
procedures at the same time. A further challenge in the clinical translation of PDO is
to reduce the turnaround time, that means to minimize the time from obtaining tumor
tissue for generating PDOs until the clinician receives the PDO drug screen results. In
case of successful identification of potential effective compounds, further hurdles have to
be overcome such as access to off-label drugs. Such a process involves a request for cost
reimbursement from the health insurance company or the willingness of the pharmaceutic
company to provide the drug for free. This approach is inevitably accompanied by the
uncertainties of obtaining (or not) off-label compounds to treat such patients.

In conclusion, there is an unmet need to further explore the promising use of patient
avatars such as PDO to move the field forward and to find new ways to optimize precision
medicine and to individualize further-line treatment in mCRC patients. Further alternative
models are described below.

4.2. Patient-Derived Xenograft Models (PDX)

Various murine models have been developed in the past to better understand tu-
morigenesis, tumor cell migration, invasion, metastasis and response to treatment [203].
A widely used model is the patient-derived xenograft (PDX), where human tumor cells
are directly injected or transplanted into immunocompromised mice [203]. Whereas this
model has the potential to examine response to therapy in vivo, several limitations do exist.
First, the establishment and maintenance of PDX models is labor-intensive and associated
with high costs. Second, tumor growth can last several months and may not guarantee
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efficient drug testing that can be rapidly translated into the real-life situation in the clinic,
when the patient is faced with tumor progression and a further-line treatment has to be
initiated within a reasonable time frame. Third, immunocompromised mice do not mirror
the conditions in human cancers and may not serve as an optimal model to study response
to CPI or interactions between the host’s immunity and the tumor.

As our understanding of the significance of the TME and the host’s immune system is
evolving, adapted models are eagerly needed to further advance in the field of precision
medicine.

4.3. Patient-Derived Tumor Fragment Platform (PDTF)

Just recently, Voabil et al. developed an ex vivo tumor fragment culture that preserves
the cellular composition and the architecture of the tumor. This platform maintains the
characteristics of the TME and allows for example to study ex vivo CPI, mechanisms of
resistance and various interactions between the tumor and its surrounding microenviron-
ment. Moreover, Voabil et al. could demonstrate that there is a high correlation between
clinical and ex vivo responses to CPI. This promising observation may lead us to further
explore whether a PDTF platform helps to predict outcomes in cancer patients treated with
CPI [204].

5. Challenges in Biomarker Research and Future Perspective

The dream of precision oncology is to individualize the diagnostic and therapeutic
management of cancer patients according to their genetic profile. The increasing use of
high-throughput techniques, such as next-generation sequencing (NGS), helped to pave the
way for the implementation of precision oncology in our daily routine. The turn-around
time of NGS results for established predictive biomarkers in the first-line setting (MSI, RAS,
BRAF) could be significantly shortened and is currently about 5–7 days, enabling a timely
start of biomarker-driven therapy. For these biomarkers, corresponding drugs are available
and reimbursed by health insurance companies. Regarding the therapeutically relevant
assessment of MSI/MMRd for first-line treatment, IHC testing for MMR status is even
faster than NGS and allows a very early initiation of CPI in case of MMRd mCRC. The
NGS results report not only contains informations on MSI, RAS and BRAF status but also
includes comprehensive details on further druggable genetic alterations, such as HER2
amplifications and NTRK fusions, that may be important in the further-line setting [117,131].
Although HER2 amplification or overexpression of its protein is considered an established
predictive biomarker in the further-line treatment of mCRC patients [117], anti-HER2
drugs are not yet approved in this setting and not reimbursed and only available within
clinical trials or upon off-label request. Despite the low prevalence of NTRK fusions in
mCRC [134], response rates to targeted treatment are encouraging [131,154], and drugs
such as larotrectinib and entrectinib are available and reimbursed by the National Health
System. However, while the clinical utility of single biomarkers, such as KRAS [205] and
MSI-H/dMMR [10], have been proved to extend survival of CRC patients, the role of
comprehensive molecular profiling remains largely questionable. Moreover, only a limited
number of studies have investigated the cost-effectiveness of molecular profiling in cancer
patients [206–210]. For instance, a study conducted in NSCLC patients showed that NGS-
based parallel testing was more cost-effective than single-gene-based testing [207]. To
the best of our knowledge, no similar study exists for CRC patients. For this reason, a
health–economic analysis investigating the clinical utility, in terms of survival benefit, and
the cost-effectiveness of comprehensive molecular profiling would be highly desirable.
Additionally, the evidence of emerging biomarkers in patients with mCRC is mainly based
on post-hoc, retrospective translational work and unplanned subgroup analysis from large
clinical trials. Due to the low prevalence of potentially druggable oncogenic drivers in
mCRC, biomarker-driven clinical studies focusing on evaluating targeted drugs in a single
tumor entity are challenging, labor-intensive and costly. With the introduction of basket
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trials exploring new drugs that target a distinct genetic alteration irrespective of the type of
cancer, these hurdles could be at least partly overcome [211].

Emerging biomarkers in the TME such as the Immunoscore or the CMS classification
have proven their prognostic impact [185,188,189]. However, their predictive value in
mCRC has still to be proven in prospective trials. One of the reasons why the CMS
classification did not find its way into the clinic so far are the resource-intensive and costly
analyses impeding its clinical implementation. PDX models or ex vivo platforms such as
PDO or PDTF might be promising translational tools for biomarker development and drug
testing in the near future. However, their role as patient avatars has to be further developed
and optimized before an implementation into the daily clinical practice can be realized.

With the introduction of new therapeutic approaches, the need for biomarkers will
steadily increase in the future to identify subgroups of patients who may derive the
most benefit from a specific treatment. While immunotherapies, targeted and cellular-
based therapies have already found their way into the clinic for several malignancies,
further innovative treatment approaches are emerging, such as cellular therapies, combined
therapy using oncolytic viruses or genetically modified attenuated bacteria with immune-
checkpoint inhibitors (NCT03256344, NCT05120596) [212,213]. Additionally, repurposing
of drugs will be crucial to enlarge the treatment armamentarium against colorectal cancer.
However, it is still debated whether ex vivo models such as PDX, PDO or PDTF may help
us to accelerate this process.

In the future, to improve the selection of CRC patients for individualized therapies,
we will need more informative profiling. However, we are still at the beginning of compre-
hensive molecular profiling, since we are still focusing (mostly) only on genetic alterations.
Thus, to better depict the unique properties of cancer, we will need to include more informa-
tion concerning the tumor’s biology. For instance, gene expression analyses might help to
better characterize the link between genetic landscape and the cancer’s behavior [214,215].
Currently, understanding the complex interplay between CRC cells and the surrounding
TME (e.g., immune cells, fibroblasts, healthy enterocytes and the gut microbiome) is a main
focus in cancer research [216,217]. Findings from these analyses might help to establish a
“real” comprehensive molecular profile that might serve as an imperative tool for precise
therapies in CRC.

Therefore, future development of precision medicine in metastatic colorectal cancer
will not only focus on tumor cells but rather on implementing the tumor microenvironment
in clinical decision-making. Notably, recent advances have elucidated that gut microbiota
has different and complex roles in cancer development, as well as in treatment response,
that must be comprehensively addressed from a clinically translational angle [218]. Various
studies demonstrated that the composition of intestinal bacteria differs between responders
and non-responders to immune checkpoint inhibitors [219] and also to chemotherapy.
Several studies are ongoing to investigate the potential of utilizing gut microbiome as
CRC biomarkers and also to enhance treatment efficacy and reduce adverse effects of CRC
treatments [220].

Furthermore, combining information coming from genomics, transcriptomics, epige-
nomics, metabolomics, microbiomics and proteomics might help to establish a “real” com-
prehensive molecular profile that might serve as an imperative tool for precise therapies
in CRC.

Finally, artificial intelligence and digital pathology will help us to define nomograms
integrating clinical, molecular and histopathological factors, while we are moving forward
in the field of precision medicine.

6. Conclusions

A biomarker-driven treatment algorithm allows to identify those mCRC patients who
derive the most benefit from a specific therapeutic approach, while we are further pursuing
the path of personalized therapy.
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